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Abstract. We solve numerically the two-fluid, Hall–Vinen–Bekarevich–Khalatnikov equations
for a He-II-like superfluid contained in a differentially rotating, spherical shell, generalizing
previous simulations of viscous spherical Couette flow (SCF) and superfluid Taylor–Couette
flow. The system tends towards a stationary but unsteady state, where the torque oscillates
persistently, with amplitude and period determined by dimensionless gap width δ and rotational
shear ∆Ω. In axisymmetric superfluid SCF, the number of meridional circulation cells multiplies
as the Reynolds number Re increases. In nonaxisymmetric superfluid SCF, three-dimensional
vortex structures are classified according to topological invariants. We find that the mutual
friction is “patchy”; that is, it takes different forms in different parts of the vessel, a surprising
new result.

1. Introduction

Spherical Couette flow (SCF), is observed when a viscous fluid fills a differentially rotating,
spherical shell [1]. However, the problem of superfluid SCF, for example in He II, has not yet
been explored numerically or experimentally [2]. Even in cylindrical (Taylor–Couette) geometry,
only a limited amount of information exists regarding state transitions in the superfluid problem,
for the special cases of very small gap widths (δ ∼ 0.02) and small Reynolds numbers (Re ∼

< 380)
[3].

In this paper, we employ a numerical solver recently developed to solve the two-fluid Hall–
Vinen–Bekarevich–Khalatnikov (HVBK) equations for a rotating superfluid [4] to study the
unsteady behaviour of SCF in viscous (Navier–Stokes) fluids and superfluids, in two and three
dimensions. We study the effect of the normal fluid/superfluid dynamics on the time-dependence
of the macroscopic hydrodynamics. Differential rotation drives a meridional counterflow which
can excite microscopic turbulence in the superfluid. We study the coupling between the
macroscopic flow and microscopic superfluid turbulence, which has an important effect on the
form and strength of the mutual friction between the normal and superfluid components and
hence on the torque on the container.
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2. HVBK theory

The motion of a rotating superfluid is described by the HVBK equations, a generalization of
the two-fluid Landau-Tisza theory for He II that includes the physics of quantized vortices [5–
7]. Quantized vortex lines mediate an interaction between the normal fluid and the superfluid
component known as mutual friction. For a rectilinear vortex array the mutual friction is
anisotropic, with F ∝ ω̂s × ωs × vns, where vs the velocity of the superfluid, vn the velocity
of the normal fluid, vns = vn − vs, and ωs = ∇× vs [6]. If the counterflow speed vns exceeds
a threshold, growing Kelvin waves are excited along the vortex lines (the Donnelly-Glaberson
instability, DGI) and the rectilinear array is disrupted to form a self-sustaining, reconnecting,
“turbulent” vortex tangle [8]. In this case the mutual friction per unit mass is isotropic, and
takes the Gorter-Mellink (GM) form, with F ∝ v2

nsvns [6–8].
We solve the HVBK equations using a pseudospectral collocation method for the spatial

discretization and a time-split algorithm to step forward in time. A detailed description of the
method can be found in [7, 9].

3. Unsteady, axisymmetric flow states

We investigate the unsteady behaviour of superfluid SCF by performing a set of axisymmetric
(Nφ = 4) and nonaxisymmetric (Nφ = 12) numerical experiments with rotational shear in the
range 0.1 ≤ ∆Ω ≤ 0.3, in medium and large gaps (0.2 ≤ δ ≤ 0.5), with HV and GM mutual
friction. Figure 1 depicts the meridional streamlines of the normal (left) and superfluid (right)
components in superfluid SCF, for Re = 104, δ = 0.5, and ∆Ω = 0.3, with HV mutual friction. In
the equator we observe large circulation cells adjacent to the inner boundary, each one containing
twin cores circulating in the same sense. The flow in each hemisphere is symmetric about the
equatorial plane. This flow pattern is characteristic of moderately high Reynolds numbers
(Re ∼

> 104). The HV mutual friction couples normal and superfluid components strongly, so

that their meridional streamlines are similar. At lower Reynolds numbers (Re ∼
< 103), the

streamlines of the two components differ markedly. The normal component behaves like a
viscous, Navier–Stokes fluid at low Re, with a small number (∼< 3) of large circulation cells on
each side of the equatorial plane. The superfluid is influenced less by the normal fluid, due to
the stiffness provided by the vortex tension force [2]. When GM mutual friction operates, the
normal and superfluid components behave similarly, both at low and high Reynolds numbers,
but the superfluid displays a richer variety of circulation cells, while the normal component
behaves like an uncoupled Navier–Stokes fluid.

The torque exerted by the normal fluid component on the inner and outer spheres, is plotted
versus time in Figures 2a and 2b. It oscillates, with peak-to-peak amplitude ∼ 10−3 for t ≤ 30
and ∼ 10−5 for t ≥ 30. These oscillations, with period ≈ 2π/Ω, persist as long as the differential
rotation is maintained, up to t = 214 in our longest simulation. They are observed at all the
Reynolds numbers considered in this paper (1× 102 ≤ Re ≤ 3× 104). The oscillation amplitude
is greater for HV friction; oscillations are still observed for GM friction, but with peak-to-peak
amplitude ∼ 10−6. Superfluid SCF is intrinsically unsteady and quasiperiodic.

In axisymmetric superfluid SCF, the torque oscillates persistently during steady differential
rotation (after initial transients die away), with typical period ∼ Ω−1 and fractional amplitude
∼ 10−2. The amplitude of the oscillations increases with Re. If the outer sphere is impulsively
set into corotation with the inner sphere after a period of differential rotation, the relaxation
time scale is set mainly by the angular velocity change ∆Ω, while the long-term evolution of the
torque is controlled by δ. The viscous torque exerted by a superfluid with GM mutual friction
is approximately three times smaller when compared to the torque when HV friction is acting.
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Figure 1. Snapshots at t = 214
of meridional streamlines for the normal
(left) and superfluid (right) components in
superfluid SCF, with Re = 104, δ = 0.5, and
∆Ω = 0.3.

time

N
z

0 50 100 150 200

-0.004

-0.003

-0.002

-0.001

(a)

time

N
z

0 50 100 150 200

-0.005

-0.004

-0.003

-0.002

-0.001

0

0.001

(b)

Figure 2. Viscous torque exerted on the
(a) inner and (b) outer spheres as a function
of time in superfluid SCF, with HV mutual
friction, δ = 0.5, ∆Ω = 0.3, and Re = 104.

4. Unsteady, nonaxisymmetric flow states

Using the discriminant criterion DA for identifying vortical structures in the flow [7, 10], we
study a system that exhibits nonaxisymmetric flow: a differentially rotating shell in which the
rotation axes of the inner and outer spheres are mutually inclined by an angle θ0 = 3 ◦, with
vs weakly coupled to vn via GM mutual friction [7]. We show the topology of the superfluid in
Figure 3. We present isosurfaces of DA = 10−4 (Figures 3a–d) and DA = −10−4 (Figures 3e–h)
for vs in superfluid SCF with Re = 103. Throughout most of the volume, the flow is focal in
nature. Strain-dominated regions, shown in orange, also exist, but are less widespread. They
have a threaded structure (Figures 3e–h). The normal fluid dynamics (not shown), on the other
hand, is almost completely dominated by vorticity, with strain-dominated regions only detected
in small regions close to the poles.

Nonaxisymmetric superfluid SCF induced by tilting the rotation axis of the inner and outer
spheres (for angles θ0 ≤ 3 ◦), is focal throughout most of the volume of the shell, with
strain-dominated regions confined inside narrow toroidal threads. Vorticity isosurfaces have
a characteristic wedge shape that drifts along the equator. Persistent torque oscillations are also
observed in all three dimensional flows considered, with period ∼ 6Ω−1.

5. Applications

The results on superfluid dynamics summarised in this paper are also relevant to laboratory
experiments by Tsakadze and Tsakadze [11], the only systematic experimental study of spherical
Couette flow in He II undertaken to date, which studied the deceleration of axisymmetric vessels
made of glass and plastic and filled with He II, after an impulsive acceleration. The Tsakadze
experiments — and by extension, the numerical results in this paper — are of general interest
in understanding the physics of superfluid turbulence in rotating systems [7, 8]. One interesting
effect is that the meridional circulation can generate patchy mutual friction: the DGI is excited
in parts of the superfluid (e.g. near the walls, on the rotation axis, and at the equator) but not
elsewhere [8] (see for example Fig. 9 of [8]). We are currently performing numerical simulations
of the Tsakadze experiments using a patchy friction force. The results of this investigation will
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Figure 3. Nonaxisymmetric superfluid SCF when the inner and outer spheres are mutually
inclined by θ0 = 3, with Re = 103, and δ = 0.3: instantaneous flow topology of the superfluid
component. Isosurfaces in light blue for DA = 10−4 at (a) t = 20, (b) t = 30, (c) t = 40, and
(d) t = 50; and in orange for DA = −10−4 at (e) t = 20, (f) t = 30, (g) t = 40, and (h) t = 50.

be presented in a forthcoming paper.
Patchy friction in superfluids may be also important in the dynamics of glitches in pulsars [4].

Glitches are characterized by a sudden increase in the angular velocity of the pulsar, followed
by a period of exponential relaxation [12]. The long relaxation time after a glitch, and the
temperatures in a neutron star imply that the interior of the star is a superfluid [6, 12]. We find
that, if the meridional circulation is fast enough, a vortex tangle is alternatively created and
destroyed in the outer core of the star (and indeed any spherical container) [8]. Before a glitch,
differential rotation in the outer core drives a nonzero, poloidal counterflow which excites the
DGI, and the vortices evolve into an isotropic tangle. Right after a glitch, the differential rotation
ceases, so does the poloidal counterflow, the vortex tangle decays, a rectilinear vortex array
forms, and the mutual friction changes to HV form, suddenly locking the normal and superfluid
components and leading to a spin-up of the crust. The very high Reynold numbers found in
neutron star interiors (Re ∼

> 1011) make a numerical study of this problem very challenging [8].
However, experiments of the Tsakadze type have provided promising results on the relaxation
of rotating superfluids. New experiments of this type can test which aspects of the turbulent-
laminar transition are caused by the normal and superfluid components respectively.
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