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Abstract. For cavity-assisted optomechanical cooling experiments, in order
to achieve the quantum ground state of the mechanical oscillator, the cavity
bandwidth needs to be smaller than the mechanical frequency. In the literature,
this is the so-called resolved-sideband or good-cavity limit, and this is based
on an understanding of optomechanical dynamics. We provide a different but
physically equivalent explanation of such a limit: that is, information loss due
to finite cavity bandwidth. With an optimal feedback control to recover the
information in the cavity output, we can surpass the resolved-sideband limit
and achieve the quantum ground state. In addition, recovering this information
can also significantly enhance the entanglement between the cavity mode and
the mechanical oscillator. Especially when the environmental temperature is
high, such optomechanical entanglement will either exist or vanish critically
depending on whether information is recovered or not. This provides a vivid
example of a quantum eraser in the optomechanical system.
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1. Introduction

Recently, achieving the quantum ground state of a macroscopic mechanical oscillator has
aroused great interest among physicists. It will not only have a significant impact on quantum-
limited measurements [1] but also shed light on quantum entanglement involving macroscopic
mechanical degrees of freedom [2]–[7], which can be useful for future quantum computing and
help us to understand transitions between the classical and quantum domains [8]–[10].

By using a conventional cryogenic refrigeration, O’Connell et al have successfully cooled
a 6 GHz micromechanical oscillator down to its quantum ground state [11]. Meanwhile, to cool
larger and lower-frequency mechanical oscillators at a high environmental temperature, there
have been great efforts in trying different approaches: active feedback control or parametrically
coupling the oscillator to optical or electrical degrees of freedom [12]–[33]. The cooling
mechanism has been discussed extensively, and certain classical and quantum limits have
been derived [34]–[44]. In the case of cavity-assisted cooling schemes, pioneering theoretical
works by Marquardt et al [36] and Wilson-Rae et al [37] showed that the quantum limit for
the occupation number of the oscillator is (γ /2ωm)

2 (see footnote 6). Specifically, it dictates
that, in order to achieve the ground state of the mechanical oscillator (i.e. with an occupation
number equal to zero), the cavity bandwidth γ must be much smaller than the mechanical
frequency ωm , which is the so-called resolved-sideband or good-cavity limit. This limit is
derived by analyzing the quantum fluctuation of the radiation pressure force on the mechanical
oscillator. Here, we use a different but physically equivalent perspective on such a limit. It can
actually be attributable to information loss: information about the oscillator motion leaks into
the environment without being carefully treated, which induces decoherence.

This perspective immediately illuminates two possible approaches for surpassing the limit.
(i) The first one is to implement the novel scheme proposed by Elste et al [45], in which,
via destructive interference of the quantum noise, the information of the oscillator motion
around ωm does not leak into the environment. Corbitt suggested an intuitive understanding

6 There is a factor of two difference in defining the cavity bandwidth here compared with the one defined in [36].
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by thinking of an optical cavity with a movable front mirror rather than a movable end mirror in
those cooling experiments [46]. In this hypothetical scheme, optical fields directly reflected and
those filtered through the cavity both contain the information about the front-mirror motion. If
the cavity detuning is appropriate, these two bits of information destructively interfere with
each other, and the quantum coherence of the mechanical oscillator is maintained. (ii) The
second approach is to recover the information by detecting the cavity output. This will work
because the conditional quantum state—best knowledge of the oscillator state conditional on the
measurement result—is always pure for an ideal continuous measurement with no readout loss7.
Indeed, when the cavity bandwidth is much larger than the mechanical frequency, the cavity
mode will follow the dynamics of the oscillator and can therefore be adiabatically eliminated.
The quantum noise can be treated as being Markovian and a standard stochastic-master-equation
(SME) analysis has already shown how the conditional quantum state approaches a pure state
under a continuous measurement [47]–[51]. For a finite cavity bandwidth considered here,
the cavity mode has a dynamical timescale comparable to that of the mechanical oscillator.
Correspondingly, the quantum noise has correlations at different times and becomes non-
Markovian. To estimate the conditional state, a Wiener-filtering approach is more transparent
than the SME approach [52]. As we will show, the quantum state of the oscillator conditional on
the measurement of the cavity output is indeed almost pure, with residue impurity contributed
by the thermal excitation, imperfections in the detection and the optomechanical entanglement
between the cavity mode and the oscillator.

Since generally the conditional mean of the position and momentum of the oscillator is
non-zero, the conditional quantum state is a coherent state. In order to localize the oscillator in
the phase space and achieve its ground state, we need to remove the conditional mean of the
position and momentum by using a feedback control. Depending on the feedback scheme, the
final occupation number of the controlled state will be different. In those pioneering works
on feedback control for achieving ground state [35, 38, 47], a proportional and derivative
control is considered. It provides an additional viscous damping of the mechanical oscillator
and allows us to achieve a low occupation number. However, such a control scheme is not the
optimal one. In order to achieve the minimal occupation number close to zero (quantum ground
state), an optimal feedback control is essential. In [41], the optimal controller for general linear
quantum dynamics is derived, and the result can be directly applied to the non-Markovian open
quantum dynamics of the optomechanical system here. In figure 1, the final occupation number
of the unconditional state and optimally controlled state is shown. As long as optimal control is
applied, the minimally achievable occupation number of the oscillator will not be constrained
by the resolved-sideband limit.

Another interesting issue in the optomechanical system is creating quantum entanglement
between the cavity mode and the oscillator, or, even between, two oscillators [3]–[7]. Intuitively,
one might think that such an entanglement must be very vulnerable to the thermal decoherence,
and the environmental temperature needs to be extremely low in order to create it. However,
as shown in [6] and a more recent investigation [53], the environmental temperature—even
though an important factor—affects the entanglement implicitly. In [53], an elegant scaling for
the entanglement measure is derived and it only depends on the ratio between the strength of
optomechanical interaction and that of thermal decoherence. The reason why, in [3]–[5], [7], the

7 Note that we are focusing on the steady state and therefore the information about the initial quantum state of the
mechanical oscillator has decayed away, and the purity of the conditional state will be solely determined by the
measurement and optomechanical interaction.
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Figure 1. A contour plot of the occupation number as a function of cavity
bandwidth γ and detuning 1 for the unconditional state (left) as obtained
in [36, 37] and the optimally controlled state (right), the details of which are
in sections 3–5.

Figure 2. Optomechanical entanglement strength EN as a function of
temperature T with (solid) and without (dashed) recovering information (details
are given in section 6).

temperature plays a dominant role in determining the existence of the entanglement can also be
traced back to information loss. Here, we will address this issue more explicitly with a rigorous
analytical study. Figure 2 shows that, by recovering the information contained in the cavity
output, the optomechanical entanglement can even be revived at high temperature. This is a vivid
example of a quantum eraser first proposed by Scully and Drühl [54] and later demonstrated
experimentally [55]: quantum coherence can be revived by recovering lost information.

The outline of this paper is as follows. In section 2, we will analyze the system dynamics by
applying the standard Langevin equation approach and derive the spectral densities of important
dynamical quantities. In section 3, we will obtain the unconditional variances of the oscillator
position and momentum, and evaluate the corresponding occupation number, which recovers the
resolved-sideband limit. In section 4, the conditional variances will be derived via the Wiener-
filter approach, which clearly demonstrates that the conditional quantum state is almost pure.
In section 5, we will show the occupation number of the optimally controlled state and the
corresponding optimal controller to achieve it. In section 6, we will consider the optomechanical
entanglement and demonstrate that significant enhancements in the entanglement strength can
be achieved after recovering information. In section 7, to motivate cavity-assisted cooling
experiments, we will consider imperfections in a real experiment and provide a numerical
estimate given a set of experimentally achievable specification. Finally, we will conclude in
section 8.
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Figure 3. A schematic plot of an optomechanical system with a mechanical
oscillator (with displacement x̂) coupled to a cavity mode â, which in turn
couples to the external ingoing âin and outgoing optical field âout.

2. Dynamics and spectral densities

In this section, we will analyze the optomechanical dynamics and derive spectral densities of
relevant quantities that are essential for obtaining the occupation number of the mechanical
oscillator.

2.1. Dynamics

Even though the dynamics of such a system have been discussed extensively in the literature
[36, 37, 40], we will go through some equations for the coherence of the present paper.
An optomechanical system and the relevant dynamical quantities are shown schematically in
figure 3. The corresponding Hamiltonian is given by

Ĥ= h̄ωc â†â +
p̂2

2m
+

1

2
mω2

m x̂2 + h̄G0 x̂ â†â + ih̄
√

2γ (âine−iω0 t â†
− H.c.). (1)

Here, ωc and ω0 are the cavity resonant frequency and the laser frequency, respectively; â is
the annihilation operator for the cavity mode, which satisfies [â, â†] = 1; x̂ and p̂ denote the
oscillator position and momentum with [x̂, p̂] = i h̄; m is the mass of the oscillator; G0 ≡ ω0/L
is the optomechanical coupling constant, with L being the cavity length. In the rotating frame
at the laser frequency ω0, the following nonlinear Langevin equations can be obtained,

˙̂x(t)= p̂(t)/m, (2)

˙̂p(t)= −γm p̂(t)− mω2
m x̂(t)− h̄G0â†(t)â(t)+ ξ̂th(t), (3)

˙̂a(t)= −(γ − i1)â(t)− i G0 x̂(t)â(t)+
√

2γ âin(t), (4)

where the cavity detuning 1≡ ω0 −ωc. To take into account the fluctuation-dissipation
mechanism of the oscillator coupled to a thermal heat bath at temperature T , we have included
the mechanical damping γm and the associated Brownian force ξ̂th, of which the correlation
function is 〈ξ̂th(t)ξ̂th(t ′)〉 = 2mγmkBT δ(t − t ′) in the high temperature limit. In the cooling
experiment, the cavity mode is driven by a coherent laser and, to a good approximation, the
system dynamics are linear. To linearize the system, we simply need to replace any operator
ô(t) with the sum of a steady-state part and a small perturbed part, namely ô(t)→ ō + ô(t).8 We

8 For simplicity, we use the same ô to denote its perturbed part.
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assume that the mean position of the oscillator is equal to zero with x̄ = 0. The solution to ā
is given by ā =

√
2γ āin/(γ − i1) and āin =

√
I0/(h̄ω0), with I0 being the input optical power.

We have chosen an appropriate phase reference such that ā is real and positive. The resulting
linearized equations are

m[ ¨̂x(t)+ γm
˙̂x(t)+ω2

m x̂(t)] = −h̄ Ḡ0[â†(t)+ â(t)] + ξ̂th(t), (5)

˙̂a(t)+ (γ − i1)â(t)= −iḠ0 x̂(t)+
√

2γ âin(t), (6)

with Ḡ0 ≡ G0ā. The input–output relation of the cavity, which relates the cavity mode to the
external continuum optical mode, reads [48]

âout(t)=
√
η[−âin(t)+

√
2γ â(t)] +

√
1 − η n̂(t), (7)

where η quantifies the quantum efficiency of the photodetector (η = 1 for a perfect detector) and
n̂ is the associated vacuum fluctuation that is not correlated with âin. The linearized dynamics
of this system are fully described by equations (5)–(7), which can be solved in the frequency
domain.

2.1.1. Mechanical oscillator part. By denoting the Fourier component of any quantity Ô(t)
as Õ(�), the solution to the oscillator position is then

x̃(�)= R̃eff(�)[F̃BA(�)+ ξ̃th(�)]. (8)

Here, the back-action force F̃BA(�) is

F̃BA(�)= 2h̄Ḡ0
√
γ χ(�)[(γ − i�)ṽ1(�)−1 ṽ2(�)], (9)

where we have defined the amplitude quadrature ṽ1(�) and the phase quadrature ṽ2(�)

of the vacuum fluctuation, namely ṽ1(�)≡ [ãin(�)+ ã†
in(−�)]/

√
2 and ṽ2(�)≡ [ãin(�)−

ã†
in(−�)]/(i

√
2). Due to the position dependence of the radiation pressure (cf equations (5)

and (6)), it gives rise to the well-known optical-spring effect, which modifies the mechanical
response of the oscillator from its original value R̃xx(�)= −[m(�2 + 2iγm�−ω2

m)]
−1 to an

effective one given by

R̃eff(�)≡ [R̃−1
xx (�)− 0̃(�)]

−1, (10)

with 0̃(�)≡ 2 h̄Ḡ2
01χ(�) and χ(�)≡ [(�+1+ iγ )(�−1+ iγ )]−1.

2.1.2. Cavity mode part. The solution to the cavity mode is

ã(�)=
Ḡ0 x̃(�)+ i

√
2γ ãin(�)

�+1+ iγ
. (11)

In terms of amplitude and phase quadratures, it can be rewritten as

ã1(�)=
√

2γ χ[(−γ + i�)ṽ1(�)+1 ṽ2(�)] −
√

2 Ḡ01χ x̃(�), (12)

ã2(�)=
√

2γ χ[−1 ṽ1(�)− (γ − i�)ṽ2(�)] +
√

2 Ḡ0 (γ − i�)χ x̃(�). (13)
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2.1.3. Cavity output part. Similarly, we introduce amplitude and phase quadratures for
the cavity output: Ỹ1(�)≡ [ãout(�)+ ã†

out(−�)]/2 and Ỹ2(�)≡ [ãout(�)− ã†
out(−�)]/2. Their

solutions are

Ỹi(�)= Ỹ vac
i (�)+

√
η R̃Yi F(�) x̃(�) (i = 1, 2). (14)

The vacuum parts Ỹ vac
i of the output, which induce measurement shot noise, are

Ỹ vac
1 (�)=

√
1 − η ñ1(�)+

√
η χ(�)[(12

− γ 2
−�2)ṽ1(�)+ 2 γ 1 ṽ2(�)], (15)

Ỹ vac
2 (�)=

√
1 − η ñ2(�)+

√
η χ(�)[−2 γ 1 ṽ1(�)+ (12

− γ 2
−�2)ṽ2(�)]. (16)

The output response R̃Yi F(�) is defined as [61]

R̃Y1 F(�)≡ −2
√
γ Ḡ01χ(�), R̃Y2 F(�)≡ 2

√
γ Ḡ0(γ − i�)χ(�). (17)

2.2. Spectral densities

Given the above solutions, we can analyze the statistical properties of the dynamical quantities.
We assume all noises to be Gaussian and stationary but not necessarily Markovian, which
properly describes the situation in an actual experiment. Their statistical properties are fully
quantified by the spectral densities. We define a symmetrized single-sided spectral density
S̃AB(�) according to the standard formula ([62] and references therein)

2πδ(�−�′)S̃ AB(�)= 〈A(�)B̃†(�′)〉sym = 〈 Ã(�)B̃†(�′)+ B̃†(�′) Ã(�)〉. (18)

For vacuum fluctuations â1,2, we simply have S̃a1a1(�)= S̃a2a2(�)= 1 and S̃a1a2(�)= 0.

2.2.1. Mechanical oscillator part. The spectral density for the oscillator position is (cf
equations (8) and (9))

S̃xx(�)= |R̃eff(�)|
2 S̃tot

F F(�), (19)

with the noise spectrum for the total force noise given by

S̃F F(�)= 4h̄m�3
q γ |χ(�)|2(γ 2 +�2 +12)+ 2h̄m�2

F , (20)

where we have introduced characteristic frequencies for the optomechanical interaction �q ≡

(h̄Ḡ2
0/m)1/3 and the thermal noise �F ≡

√
2γmkBT/h̄. The spectral density for the oscillator

momentum is simply S̃ pp(�)= m2�2 S̃xx(�).

2.2.2. Cavity mode part. The spectral density for the cavity mode is a little bit complicated,
and it reads

Saa(�)= M0M†
0 + M0M†

1 + M1M†
0 + M2 S̃xx(�). (21)

Here, elements of the matrix Saa are denoted by S̃ai a j (�) (i, j = 1, 2); the matrix M0 is

M0 ≡
√

2γ χ(�)

[
−γ + i� 1

−1 −γ + i�

]
, (22)

the matrix M1 is

M1 ≡ 2
√

2h̄Ḡ2
0

√
γ |χ(�)|2 R̃eff(�)

[
−1(γ − i�) 12

(γ − i�)2 −1(γ − i�)

]
(23)
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and the matrix M2 is

M2 ≡ 2Ḡ2
0|χ(�)|

2

[
12

−1(γ + i�)
−1(γ − i�) γ 2 +�2

]
. (24)

The cross correlations between the cavity mode and the output [SaY ]i j ≡ S̃ai Y j (�) are given by

SaY = M0M†
3 + M0M†

1 + M1M†
3 +

√
2γM2 S̃xx(�), (25)

with

M3 ≡

[
12

− γ 2
−�2 2γ1

−2γ1 12
− γ 2

−�2

]
. (26)

The cross correlation between the cavity mode and the oscillator position is[
S̃a1x(�)

S̃a2x(�)

]
= 2h̄Ḡ0

√
γχ∗ R̃∗

eff(�)M0

[
γ + i�
−1

]
+

√
2Ḡ0χ

[
−1

γ − i�

]
S̃xx(�). (27)

For the oscillator momentum, S̃ak p(�)= i m� S̃ak x (k = 1, 2).

2.2.3. Cavity output part. As an important feature of the quantum noise in this optomechanical
system, there is a non-vanishing correlation between the shot noise Ŷ vac

i and the quantum back-
action noise F̂BA, and it has the following spectral densities (cf. equations (9), (15) and (16)),

S̃FY vac
1
(�)= 2

√
h̄mγ η�3

q (γ + i�)χ(�)∗, (28)

S̃FY vac
2
(�)= 2

√
h̄mγ η�3

q 1χ(�)
∗, (29)

with χ∗ being the complex conjugate of χ . Correspondingly, the spectral densities for the output
quadratures read

S̃Yi Y j (�)= δi j + η R̃Yi F(�)R̃
eff
xx(�)S̃FY vac

j
(�)+ η[R̃Y j F(�)R̃

eff
xx(�)S̃FY vac

i
(�)]∗

+η R̃Yi F(�)R̃
∗

Y j F(�)S̃xx(�). (30)

The information about the oscillator position x̂ contained in the cavity output Ŷi are
quantified by the cross correlations between x̂ and Ŷi , which are

S̃xYi (�)=
√
η R̃eff

xx(�)S̃FY vac
i
(�)+

√
η R̃∗

Yi F(�)S̃xx(�). (31)

Similarly, for the oscillator momentum, S̃ pYk (�)= −i m� S̃xYk (�) (k = 1, 2).

3. Unconditional quantum state and the resolved-sideband limit

In the red-detuned regime (1< 0), where those cavity-assisted cooling experiments are
currently working, a delayed response of the cavity mode to the oscillator motion gives rise to a
viscous damping that can significantly reduce the thermal occupation number of the oscillator,
as shown schematically in figure 4. Physically, it acts like a feedback and the mechanical
response is changed into an effective one (cf equation (10)), while the thermal force spectrum
remains the same. The ground state can be achieved when the occupation number is much
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Figure 4. A block diagram of the optomechanical system. The optomechanical
cooling can be viewed as a feedback mechanism and reduces the thermal
occupation number of the oscillator, which has an effective temperature much
lower than the heat bath. Meanwhile, some information about the oscillator
motion flows into the environment without being properly treated, leading to
the resolved-sideband limit.

smaller than one. If we neglect the information about the oscillator motion that is contained
in the output, the resulting quantum state of the oscillator will be unconditional and the
corresponding occupation number of the oscillator can be obtained with the following standard
definition,

N ≡
1

h̄ωm

(
Vpp

2m
+

1

2
mω2

m Vxx

)
−

1

2
, (32)

where variances in the oscillator position Vxx and momentum Vpp are related to the spectral
densities by the following formula,

Vxx,pp =

∫
∞

0

d�

2π
S̃xx,pp(�). (33)

Since N is dimensionless, it only depends on the following ratios,

�q/ωm, γ /ωm, 1/ωm, �F/ωm, γm/ωm. (34)

The mass and mechanical frequency of the oscillator only enter implicitly. As long as these
ratios are the same in different experiments, the final achievable occupation number of different
oscillators will be identical.

The resulting N is shown in the left panel of figure 1. To highlight the quantum limit,
we have fixed the interaction strength �q with �q/ωm = 0.5, and we have neglected the
thermal force noise. In the optimal cooling regime with 1= −ωm , a simple closed form for
the occupation number can be obtained [40],

N = γ 2/(2ωm)
2 +

[1 + (γ /ωm)
2](�q/ωm)

3

4[1 + (γ /ωm)2 − 2(�q/ωm)3)]
. (35)

The resolved-sideband limit is achieved for a weak interaction strength �q → 0 and

Nlim = γ 2/(2ωm)
2. (36)

In the next section, we will demonstrate that such a limit can indeed be surpassed by recovering
the information contained in the cavity output.

4. Conditional quantum state and Wiener filtering

Since, given a finite cavity bandwidth, the cavity output contains the information about the
oscillator position (cf equation (31)), according to the quantum mechanics, measurements of the
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output will collapse the oscillator wave function and project it into a conditional quantum state
that is in accord with the measurement result. The conditional state, or equivalently its Wigner
function, is completely determined by the conditional mean [x cond, pcond] and the covariance
matrix Vcond between the position and momentum. More explicitly, the Wigner function reads

W (x, p)=
1

2π
√

det Vcond
exp

[
−

1

2
δ EX Vcond−1

δ EXT

]
, (37)

with δ EX = [x − x cond, p − pcond]. Since more information is acquired, the conditional quantum
state is always more pure than the unconditional counterpart. In the limiting case of an ideal
measurement, the conditional quantum state of the mechanical oscillator would be pure with
variances constrained by the Heisenberg uncertainty, i.e. the determinant of Vcond satisfying
det Vcond

|pure state = h̄2/4.
To derive the conditional mean and variances, the usually applied mathematical tool is

the SME, which is most convenient for treating Markovian processes [47]–[51]. In the case
considered here, however, the cavity has a bandwidth comparable to the mechanical frequency,
and the quantum noise is non-Markovian. The corresponding conditional mean and variance can
be derived more easily with the Wiener-filtering approach. As shown in [52], the conditional
mean of any quantity ô(t) given a certain measurement result Y (t ′) (t < t ′) can be written as

o(t)cond
≡ 〈ô(t)〉cond

=

∫ t

−∞

dt ′ Ko(t − t ′)Y (t ′). (38)

Here, Ko(t) is the optimal Wiener filter and is derived by using the standard Wiener–Hopf
method9. Its frequency representation is

K̃ o(�)=
1

ψ̃+(�)

[
S̃oY (�)

ψ̃−(�)

]
+

≡
G̃o(�)

ψ̃+(�)
, (39)

where [ ]+ means taking the causal component and ψ̃± is a spectral factorization of the output
S̃Y Y ≡ ψ̃+ψ̃− with ψ̃+ (ψ̃+) and its inverse analytical in the upper-half (lower-half) complex
plane and we have introduced G̃o(�). The conditional covariance between Â and B̂ is given by

V cond
AB ≡ 〈 Â(t)B̂(t)〉cond

sym − 〈 Â(t)〉cond
〈B̂(t)〉cond

=

∫
∞

0

d�

2π
[S̃ AB(�)− G̃ A(�)G̃

∗

B(�)], (40)

where the argument t is eliminated due to stationarity. Since the first term gives the
unconditional variance, the second term can be interpreted as a reduction in the uncertainty
due to acquiring additional information from the measurement.

These results can be applied directly to the optomechanical system. Suppose we measure
the following quadrature of the cavity output,

Ŷζ = Ŷ1 sin ζ + Ŷ2 cos ζ. (41)

Its spectral density reads

S̃Y Y (�)= S̃Y1Y1(�) sin2 ζ + <[S̃Y1Y2(�)] sin(2ζ )+ S̃Y2Y2(�) cos2 ζ. (42)

9 For more technical details, one can refer to [52] or the appendix of [65].
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Figure 5. A contour plot of the effective occupation number of the conditional
quantum state. For comparison, we have chosen the same specification as in the
unconditional case.

The cross correlation between Ŷζ and the oscillator position (momentum) is simply

S̃xY,pY = S̃xY1,pY1(�) sin ζ + S̃xY2,pY2(�) cos ζ. (43)

Substituting the spectral densities S̃Yi Y j , S̃xYi ,pYi and S̃xx,pp derived in section 2.2 into
equation (40), we can obtain the conditional covariances of the oscillator position and
momentum, namely V cond

xx , V cond
pp and V cond

xp .
To quantify how pure the conditional quantum state is, the occupation number defined in

equation (32) is no longer an adequate summarizing figure. This is because, generally, V cond
xp

is not equal to zero, and a pure squeezed state can have a large occupation number defined in
equation (32). A well-defined figure of merit is the uncertainty product, which is given by

U ≡
2

h̄

√
V cond

xx V cond
pp − V cond

xp
2
. (44)

From it, we can introduce an effective occupation number,

Neff = (U − 1)/2, (45)

which quantifies how far the quantum state deviates from the pure one (Neff = 0). This
is identical to the previous definition (cf equation (32)) in the limiting case of V cond

xx =

V cond
pp /(m2ω2

m) and V cond
xp = 0, which is actually satisfied for most of the parameter regimes

plotted in figure 1.
For a numerical estimate and a comparison with the unconditional quantum state in the

previous section, we assume the same specification and an ideal phase quadrature detection
with ζ = 0 and η = 1. The resulting effective occupation number is shown in figure 5. Just as
expected, the conditional quantum state is not constrained by the resolved-sideband limit and
is almost independent of detailed specifications of γ and 1. The residue occupation number
or impurity of the state, shown in figure 5, is due to information about the oscillator motion
being confined inside the cavity. Such a confinement is actually attributable to the quantum
entanglement between the cavity mode and the oscillator, as we will discuss in section 6.

5. Optimal feedback control

Even though the conditional quantum state has minimum variances in position and momentum,
the oscillator itself actually wanders around in the phase space with its center given by the
conditional mean [x cond(t), pcond(t)] at any instant t . In order to localize the mechanical
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Figure 6. A block diagram for the feedback control scheme. A force is applied
onto the mechanical oscillator based on the measurement result with a control
kernel C̃ . In the detuned case (1 6= 0), the radiation pressure and the control
force work together to place the mechanical oscillator near its quantum ground
state.

oscillator (make the mean position and momentum equal to zero) and achieve its ground state,
we need to apply a feedback control, i.e. a force on the oscillator, according to the measurement
result. Such a procedure is shown schematically in figure 6. Depending on the choice of the
controller, the resulting controlled state will have different occupation numbers. The minimum
occupation number can only be achieved if the unique optimal controller is applied. In [41], the
optimal controller was derived for a general linear continuous measurement. We will apply the
results to this optomechanical system.

Specifically, given the measured output quadrature Ŷζ , the feedback force applied to the
oscillator can be written in the time domain and the frequency domain as

F̂FB(t)=

∫ t

−∞

dt ′ C(t − t ′)Ŷ ζ (t
′) and F̃FB(�)= C̃(�)Ỹ ζ (�), (46)

with C(t) being a causal control kernel. The dynamics of the oscillator will be modified (cf
equation (6)) and the new equation of motion of the oscillator reads

m[ ¨̂x ctrl(t)+ γm
˙̂x ctrl(t)+ω2

m x̂ctrl(t)] = −h̄ Ḡ0[â†(t)+ â(t)] + ξ̂th(t)+ F̂FB(t). (47)

In the frequency domain, the controlled oscillator position x̂ctrl is related to the uncontrolled one
x̂ by

x̃ctrl(�)= x̃(�)+
R̃eff

xx(�)C̃(�)Ỹ ζ (�)

1 − R̃eff
xx(�)R̃Yζ F(�)C̃(�)

. (48)

As shown in [41], by minimizing the effective occupation number of the controlled state, the
optimal controller can be derived and is given by

C̃opt(�)= −
R̃eff

xx(�)
−1

K̃ opt
ctrl(�)

1 − R̃Y F(�)K̃
opt
ctrl(�)

, (49)

where

K̃ opt
ctrl(�)=

1

ψ̃+(�)

G̃x(�)−
Gx(0)√

V cond
pp /V cond

xx − i�

 , (50)

with G̃x(�)= [S̃xY (�)/ψ̃−(�)]+ defined in equation (39).
From equation (48), we can find out the spectral densities and the covariance for the con-

trolled position and momentum. As it turns out, there is an intimate connection between the

New Journal of Physics 12 (2010) 083032 (http://www.njp.org/)

http://www.njp.org/


13

optimally controlled state and the conditional quantum state. Due to the requirement of station-
arity (V ctrl

xx and V ctrl
pp are constant), it indicates that V ctrl

xp = 0 because V ctrl
xp = (1/2)mV̇ ctrl

xx = 0,
and, therefore, the optimally controlled state is always less pure than the conditional state. The
corresponding uncertainty product of the optimally controlled state reads [41]

U opt
ctrl =

2

h̄

√
V ctrl

xx V ctrl
pp |optimally controlled =

2

h̄

[√
V cond

xx V cond
pp + |V cond

xp |

]
. (51)

The occupation number N for the optimally controlled state was shown in figure 1 in the
introduction. Since V cond

xp is quite small compared with V cond
xx,pp, the resulting occupation number

is very close to that of the conditional quantum state. Therefore, as long as the optimal controller
is applied, the mechanical oscillator is almost in its quantum ground state and the resolved-
sideband limit does not impose significant constraints.

6. Conditional optomechanical entanglement and the quantum eraser

In this section, we will analyze the optomechanical entanglement between the oscillator and
the cavity mode. In particular, we will show that (i) the residue impurity of the conditional
quantum state of the oscillator is attributable to the optomechanical entanglement and (ii), if the
environmental temperature is high, the existence of entanglement critically depends on whether
the information in the cavity output is recovered or not. In other words, the quantum correlation
is affected by the ‘eraser’ of certain information, and this manifests the idea of ‘quantum eraser’
proposed by Scully and Drühl [54], which is well known in the quantum optics community.

The existence of optomechanical entanglement is shown in the pioneering work by Vitali
et al [4]. The entanglement criterion, i.e. inseparability, is based on the positivity of the partially
transposed density matrix [56]–[58]. In the case of Gaussian variables considered here, this
reduces to the following uncertainty principle in phase space,

Vpt +
1

2
K> 0, K =

(
0 −2i
2i 0

)
, (52)

with K denoting the commutator matrix. The subscript ‘pt’ is short for partial transpose. The
partial transpose transform is equivalent to time reversal. In the phase space, the momentum of
the oscillator changes sign, and the corresponding partially transposed covariance matrix Vpt ≡

V| p̂→−p. From the Williamson theorem, there exists a symplectic transformation S ∈ Sp(4,R)

such that STVptS =
⊕2

i=1 Diag[λi , λi ]. Using the fact that STKS = K, the above uncertainty
principle requires λi > 1. If ∃λ < 1, the states are entangled. The amount of entanglement can
be quantified by the logarithmic negativity EN , which is defined as ([59]; [60] and references
therein)

EN ≡ max[− ln λ, 0]. (53)

Given a 4 × 4 covariance matrix V between the oscillator [x̂, p̂] and the cavity mode [â1, â2],
the simplectic eigenvalue λ has the following closed form

λ=

√
6−

√
62 − 4 det V/

√
2, (54)

where 6 ≡ det A + det B − 2 det C and

V = 〈[x̂, p̂, â1, â2]T [x̂, p̂, â1, â2]〉sym =

[
A2×2 C2×2

CT
2×2 B2×2

]
. (55)
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Figure 7. Contour plots of the logarithmic negativity EN for unconditional
(left) and conditional (right) entanglement between the cavity mode and the
oscillator. We have assumed that �q/ωm = 0.5 to make sure that the resulting
optomechanical system is stable in those parameter regimes shown in the figure.
In addition, to manifest the entanglement, we have ignored thermal noise.

In [4], the information contained in the cavity output is ignored and unconditional
covariances are used to evaluate the entanglement measure EN . We can call it unconditional
entanglement. If the information is recovered, conditional covariances obtained in equation (40)
will replace the unconditional counterparts. In figure 7, we compare the unconditional and the
conditional entanglement, and the figure clearly shows that the entanglement strength increases
dramatically in the conditional case. Additionally, the regime where the entanglement is strong
is in accord with where the conditional quantum state of the oscillator is less pure, as shown in
figure 5. Indeed, there is a simple analytical relation between the effective occupation number
Neff and the logarithmic negativity EN in this ideal case with no thermal noise—that is,

EN = −2 ln[
√
Neff + 1 −

√
Neff] ≈ 2

√
Neff (56)

for small Neff [59]. Therefore, the quantum limitation of a cooling experiment actually arises
from the optomechanical entanglement, which justifies our claim in section 4.

If we take into account the environmental temperature, as shown in figure 2 in
the introduction, the unconditional entanglement vanishes when the temperature is higher
than 10 K, given the following specifications: γ /ωm = 1, 1/ωm = −1, �q/ωm = 1, and the
mechanical quality factor Qm ≡ ωm/γm = 5 × 105. In contrast, the conditional one exists even
when the temperature rises higher than 100 K. Therefore, only when the information contained
in the cavity output is properly treated will the observer be able to recover the quantum
correlation between the oscillator and the cavity mode at high temperature. In fact, the
temperature is not the only figure that determines the existence of quantum entanglement.
A recent investigation showed that, in the simple system with an oscillator interacting with
a coherent optical field, quantum entanglement always exists between the oscillator and the
outgoing optical field [53]. The resulting entanglement strength only depends on the ratio
between the characteristic interaction strength �q and the thermal-noise strength �F , which
depends on the environmental temperature. We can make some connections to the results in [53]
by assuming a large cavity bandwidth. In such a case, the cavity mode exchanges information
with the external outgoing field at a timescale much shorter than the thermal decoherence
timescale of the oscillator. In figure 8, we show the resulting EN of the conditional entanglement
as a function of cavity bandwidth and environmental temperature with fixed interaction strength.

New Journal of Physics 12 (2010) 083032 (http://www.njp.org/)

http://www.njp.org/


15

Figure 8. Logarithmic negativity EN as a function of cavity bandwidth and
environmental temperature. We have chosen �q/ωm = 1, 1= 0, Qm = 5 × 105

and ωm/2π = 106 Hz. The shaded regimes are where entanglement vanishes.

The entanglement can persist at a very high temperature (104 K shown in this plot!) as long as
the cavity bandwidth is large. This, to some extent, recovers the results obtained in [53].

7. Experimental realization and numerical estimate

In the following, we will consider the experimental realization of such a scheme by discussing
various imperfections that exist in an actual experiment, e.g. the classical laser noise, non-unity
quantum efficiency of the photodetector, environmental thermal noise and optical loss.

The classical laser noise has been pointed out to be an important issue by Diosi [42] and
more recently by Rabl et al [43]. The laser amplitude and phase noises induce both readout
noise and stochastic force noise on to the mechanical oscillator, which increases the occupation
number. Their effects, in principle, can be reduced by using either the interferometric setup
presented in [63] or the three-mode optomechanical interaction [44, 64]. The non-unity quantum
efficiency of the photodetector and the environmental thermal noise has already been taken into
account in the equations of motion, which induces uncorrelated vacuum fluctuation. Similarly,
for the optical loss, some uncorrelated vacuum fields enter the cavity in an unpredictable way.
A small optical loss will not modify the cavity bandwidth significantly but will introduce an
additional force noise, which is (cf equation (28))

Sadd
F F(�)= 4h̄m�3

q γε |χ |
2(γ 2 +�2 +12), (57)

where γε ≡ c ε/(4L) is the effective bandwidth that is induced by an optical loss of ε.
To motivate table-top cavity-assisted cooling experiments, we will use the following

experimental achievable parameters for a numerical estimate,

m = 1 mg, I0 = 20 mW, F = 3 × 104, ωm/(2π)= 105 Hz,
(58)

Qm = 5 × 106, L = 1 cm, η = 0.95, ε = 10 ppm,

where F ≡ πc/(Lγ ) is the cavity finesse. This gives a coupling strength of �q/ωm ≈ 0.6 (we
have chosen 1= −ωm) and a cavity bandwidth γ /ωm = 2.5. The final results will not change
if we increase both the mass and the optical power with the same factor, which essentially
gives the same effective interaction strength, and therefore, it can easily be extended to a large-
scale experiment with a massive mechanical oscillator. In figure 9, we show the corresponding
occupation number for the controlled state as a function of environmental temperature and
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the temperature and the cavity detuning. The other specifications are chosen to
be achievable in an actual experiment, which are detailed in the main text.
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Figure 10. Bode plots of the amplitude (left column) and phase (right column)
of control kernels C̃(�). The first row shows the case of �q/ωm = 0.6 and
the controller is roughly a notch filter at the mechanical frequency. The second
row presents the case of �q/ωm = 1.2, and the corresponding controller can be
approximately a lead compensator. The other specifications are the same as listed
in the main text.

cavity detuning. An occupation number of less than one can be achieved when the environmental
temperature falls lower than 10 K given the above specifications. If the oscillator can sustain a
higher optical power, one can increase the interaction strength to reduce thermal excitations.

The corresponding feedback control can be realized by using either a capacitive drive or
the radiation pressure of another auxiliary laser, as demonstrated in the experiment [13]. The
Bode plot of the optimal controller in the particular case with an environmental temperature
of 5 K is shown in figure 10. As we can see when the interaction strength (the optical power)
increases, the optimal controller is approximately a lead compensator10,

C̃(�)≈ α0
�+ iα1

�+ iα2
, (59)

10 There is a difference in the sign of the phase due to the definition of Fourier transform: f̃ (�)=
∫

dt f (t)ei�t

rather than
∫

dt f (t)e−i�t .
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with αi (i = 0, 1, 2) being some constants and α2 > α1. It is a derivative controller around the
mechanical frequency, and this, to some extent, justifies the use of the band-limited derivative
controller in the experiment.

We have been discussing the experimental realization of achieving the quantum
ground state of the mechanical oscillator. To realize the optomechanical entanglement, the
experimental requirement is almost the same as that for achieving the quantum ground state.
The subtle issue here is verifying such conditional entanglement. This would require an
additional verification stage to obtain the condition covariance matrix V in equation (55)
or equivalently the joint conditional distribution of dynamical variables [x̂, p̂, â1, â2]. In
general, there will be some added error due to measurement noise during the verification
stage. For Gaussian noises, such an error can be quantified by a covariance matrix
Vadd. To reveal the quantum correlation (entanglement), the verification error has to be
below the Heisenberg limit—a quantum tomography process11. To achieve this, we can
apply the experimental verification procedure proposed in [65], where the verification
of entanglement between two mechanical oscillators is discussed, and the mathematical
structure is entirely the same as what has been considered here. The basic idea is to
apply a time-dependent homodyne detection of the cavity output to measure the optical and
mechanical quadratures. By optimizing the time-dependent phase of the local oscillator for
the homodyne detection, the verification error can be significantly smaller than the Heisenberg
limit.

8. Conclusion

We have shown that both the conditional state and the optimally controlled state of the
mechanical oscillator can achieve a low occupation number, even if the cavity bandwidth is
large. Therefore, as long as the information about the oscillator motion contained in the cavity
output is carefully recovered, the resolved-sideband limit will not pose a fundamental limit
in cavity-assisted cooling experiments. This work can help us understand the intermediate
regime between the optomechanical cooling and feedback cooling, which will be useful for
searching optimal parameters for a given experimental setup. In addition, we have shown that the
optomechanical entanglement between the cavity mode and the oscillator can be significantly
enhanced by recovering information, and its existence becomes insensitive to the environmental
temperature.
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