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Abstract. For cavity-assisted optomechanical cooling experiments, it has been

shown in the literature that the cavity bandwidth needs to be smaller than the

mechanical frequency in order to achieve the quantum ground state of the mechanical

oscillator, which is the so-called resolved-sideband or good-cavity limit. We provide a

new but physically equivalent insight into the origin of such a limit: that is information

loss due to a finite cavity bandwidth. With an optimal feedback control to recover

those information, we can surpass the resolved-sideband limit and achieve the quantum

ground state. Interestingly, recovering those information can also significantly enhance

the optomechanical entanglement. Especially when the environmental temperature is

high, the entanglement will either exist or vanish critically depending on whether

information is recovered or not, which is a vivid example of a quantum eraser.

http://arxiv.org/abs/1003.4048v1
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1. Introduction

Recently, achieving the quantum ground state of a macroscopic mechanical oscillator

has aroused great interests among physicists. It will not only have significant impacts on

quantum-limited measurements [1] but also will shed light on quantum entanglements

involving macroscopic mechanical degrees of freedom [2, 3, 4, 5, 6, 7], which can be

useful for future quantum computing and help us to understand transitions between the

classical and quantum domains [8, 9, 10].

By using a conventional cryogenic refrigeration, O’Connell et al. has successfully

cooled a 6 GHz micromechanical oscillator down to its ground state [11]. Meanwhile,

to cool larger-size and lower-frequency mechanical oscillators at high environmental

temperature, there have been great efforts in trying different approaches: active feedback

control and parametrically coupling the oscillator to optical or electrical degrees of

freedom [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33].

The cooling mechanism has been extensively discussed, and certain classical and

quantum limits have been derived [34, 35, 36, 37, 38, 39, 40, 41, 42]. In the case of

cavity-assisted cooling schemes, pioneering theoretical works by Marquardt et al. [36]

and Wilson-Rae et al. [37] showed that the quantum limit for the occupation number

is (γ/2ωm)
2 ‡. It dictates that, in order to achieve the ground state of the mechanical

oscillator, the cavity bandwidth γ must be smaller than the mechanical frequency ωm,

which is the so-called resolved-sideband or good-cavity limit. This limit is derived by

analyzing the quantum fluctuations of the radiation pressure force on the mechanical

oscillator. From a physically equivalent perspective, it can actually be attributable to

information loss: information of the oscillator motion leaks into the environment without

being carefully treated, which induces decoherence.

This perspective immediately illuminates two possible approaches for surpassing

such a limit: (i) The first one is to implement the novel scheme proposed by Elste

et al. [43], in which the quantum noise gets destructively interfered and information

of the oscillator motion around ωm does not leak into the environment. Corbitt

suggested an intuitive understanding by thinking of an optical cavity with a movable

front mirror rather than a movable end mirror in those cooling experiments [44]. In

this hypothetic scheme, optical fields directly reflected and those filtered through the

cavity both contain the information of the front-mirror motion. If the cavity detuning

is appropriate, these two bits of information destructively interfere with each other,

and the quantum coherence of the mechanical oscillator is maintained. (ii) The second

approach is to recover the information by detecting the cavity output. This will work

because a conditional quantum state—best knowledge of the oscillator state conditional

on the measurement result—is always pure for an ideal continuous measurement with

no readout loss. Indeed, when the cavity bandwidth is much larger than the mechanical

frequency, the cavity mode will follow the oscillator dynamics and can therefore be

‡ There is a factor of two difference in defining the cavity bandwidth here compared with the one

defined in Ref. [36].
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adiabatically eliminated. The quantum noise can be treated as being Markovian and

a standard stochastic-master-equation (SME) analysis has already shown that how the

conditional quantum state approaches to a pure state under a continuous measurement

[45, 46, 47, 48, 49]. For a finite cavity bandwidth considered here, the cavity mode has a

dynamical timescale comparable to that of the mechanical oscillator. Correspondingly,

the quantum noise has correlations at different times and is non-Markovian. To estimate

the conditional state, a Wiener-filtering approach is more transparent than the SME

[50]. As we will show, the conditional quantum state of the oscillator in the cavity-

assisted cooling schemes is indeed almost pure, with residue impurity contributed by the

thermal noise, imperfections in detections and optomechanical entanglement between

the oscillator and the cavity mode. In order to further localize the oscillator in the phase

space and achieve its ground state, an optimal feedback control is essential [39]. In Fig.

1, the final occupation number of the unconditional state and optimally controlled state

is shown. As long as the optimal control is applied, the minimally achievable occupation

number of the oscillator will not be constrained by the resolved-sideband limit.
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Figure 1. A contour plot of the occupation number as a function of cavity bandwidth

γ and detuning ∆ for the unconditional state (left) as obtained in Ref. [36, 37] and

optimally controlled state (right) of which the details are in Sec. 3, 4, 5.

Another interesting issue in the optomechanical system is creating quantum

entanglement between the cavity mode and the oscillator, or even between two oscillators

[3, 2, 4, 5, 6, 7]. Intuitively, one might think that such an entanglement must be very

vulnerable to the thermal decoherence, and the environmental temperature needs to be

extremely low in order to create it. However, as shown in Ref. [6] and a more recent

investigation [51], the environmental temperature—even though being an important

factor—affects the entanglement implicitly, and only the ratio between the interaction

strength and thermal decoherence matters. The reason why in Refs. [3, 4, 5, 7], the

temperature plays a dominant role in determining the existence of the entanglement

can also be traced back to information loss, as briefly mentioned in Ref. [51]. Here we

will address this issue more explicitly. Fig. 2 shows that by recovering the information

contained in the cavity output, the optomechanical entanglement can even be revived at

high temperature. This is a vivid example of a quantum eraser first proposed by Scully

and Drühl [52] and later demonstrated experimentally [53]: Quantum coherence can be

revived by recovering lost information.
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Recovering information

Without recovering information

Figure 2. Optomechanical entanglement strength EN as a function of temperature

T with (solid) and without (dashed) recovering information (details are in Sec. 6).

The outline of this paper is the following: In Sec. 2, we will analyze the system

dynamics by applying the standard Langevin-equation approach and derive the spectral

densities of important dynamical quantities. In Sec. 3, we obtain unconditional

variances of the oscillator position and momentum, and evaluate the corresponding

occupation number, which recovers the resolved-sideband limit. In Sec. 4, conditional

variances are derived via the Wiener-filtering approach, which clearly demonstrates that

the conditional quantum state is almost pure. In Sec. 5, we show the occupation number

of the optimally controlled state and the corresponding optimal controller to achieve

it. In Sec. 6, we consider the optomechanical entanglement and demonstrate that

significant enhancements in the entanglement strength can be achieved after recovering

information. In Sec. 7, to motivate cavity-assisted cooling experiments, we consider

imperfections in a real experiment and provide a numerical estimate for the occupation

number given a set of experimentally achievable specification. Finally, we conclude our

main results in Sec. 8.

2. Dynamics and spectral densities

Figure 3. A schematic plot of an optomechanical system with a mechanical oscillator

x̂ coupled to a cavity mode â which in turn couples to the external ingoing âin and

outgoing optical field âout.

In this section, we will analyze the optomechanical dynamics and derive spectral

densities of relevant quantities which are essential for obtaining the occupation number

of the mechanical oscillator.
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2.1. Dynamics

Even though the dynamics of such a system has been discussed extensively in the

literature [36, 37, 38], we will go through some equations for the coherence of this

article. An optomechanical system and the relevant dynamical quantities are shown

schematically in Fig. 3. The corresponding Hamiltonian is given by

Ĥ = h̄ ωc â
†â+

p̂2

2m
+
1

2
mω2

mx̂
2+h̄ G0x̂ â

†â+i h̄
√

2γ (âine
−i ω0 tâ†−H.c.).(1)

Here ωc and ω0 are the cavity resonant frequency and the laser frequency, respectively;

â is the annihilation operator for the cavity mode, which satisfies [â, â†] = 1; x̂ and

p̂ denote the oscillator position and momentum with [x̂, p̂] = i h̄; m is mass of the

oscillator; G0 ≡ ω0/L is the optomechanical coupling constant with L the cavity length.

In the rotating frame at the laser frequency ω0, a set of nonlinear Langevin equations

can be obtained:

˙̂x(t) = p̂(t)/m, (2)

˙̂p(t) = −γmp̂(t)−mω2
mx̂(t)− h̄ G0â

†(t)â(t) + ξ̂th(t), (3)

˙̂a(t) = −(γ − i∆)â(t)− i G0x̂(t)â(t) +
√

2γ âin(t), (4)

where cavity detuning ∆ ≡ ω0 − ωc. To take into account the fluctuation-dissipation

mechanism of the oscillator coupled to a thermal heat bath at temperature T , we have

included the mechanical damping γm and the associated Brownian force ξ̂th of which the

correlation function is 〈ξ̂th(t)ξ̂th(t′)〉 = 2mγmkBTδ(t− t′) in the high-temperature limit.

In the cooling experiment, the cavity mode is driven by a coherent laser and, to a good

approximation, the system is linear. To linearize the system, we simply replace any

operator ô(t) with the sum of a steady-state part and a small perturbed part, namely

ô(t) → ō + ô(t)§. We assume that the mean displacement of the oscillator is equal to

zero with x̄ = 0. The solution to ā is simply ā =
√
2γ āin/(γ− i∆) and āin =

√

I0/(h̄ ω0)

with I0 the input optical power. We have chosen an appropriate phase reference such

that ā is real and positive. The resulting linearized equations are

m[¨̂x(t) + γm ˙̂x(t) + ω2
mx̂(t)] = −h̄ Ḡ0[â

†(t) + â(t)] + ξ̂th(t), (5)

˙̂a(t) + (γ − i∆)â(t) = −i Ḡ0x̂(t) +
√

2γ âin(t), (6)

with Ḡ0 ≡ G0ā. The input-output relation of the cavity, which relates the cavity mode

to the external continuum optical mode, reads [46]

âout(t) =
√
η[−âin(t) +

√

2γ â(t)] +
√

1− η n̂(t), (7)

where η quantifies the quantum efficiency of the photodetector and n̂ is the associated

vacuum fluctuation that is not correlated with âin. The linearized dynamics of this

system is fully described by Eqs. (5), (6) and (7) which can be solved in the frequency

domain.

§ For simplicity, we use the same ô to denote its perturbed part.
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Mechanical oscillator part.—By denoting the Fourier component of any quantity O as

Õ(Ω), the solution to the oscillator position is

x̃(Ω) = R̃eff(Ω)[F̃BA(Ω) + ξ̃th(Ω)]. (8)

Here the back-action force F̃BA(Ω) is

F̃BA(Ω) = 2 h̄ Ḡ0
√
γ χ(Ω)[(γ − iΩ)ṽ1(Ω)−∆ ṽ2(Ω)], (9)

where we have defined the amplitude quadrature ṽ1(Ω) and the phase quadrature ṽ2(Ω)

of the vacuum fluctuation, namely ṽ1(Ω) ≡ [ãin(Ω)+ ã
†
in(−Ω)]/

√
2 and ṽ2(Ω) ≡ [ãin(Ω)−

ã†in(−Ω)]/(i
√
2). Due to the well-known optical-spring effect, the mechanical response

of the oscillator is modified from its original value R̃xx(Ω) = −[m(Ω2+2 i γmΩ−ω2
m)]

−1

to an effective one given by

R̃eff(Ω) ≡ [R̃−1
xx (Ω)− Γ̃(Ω)]−1 (10)

with Γ̃(Ω) ≡ 2 h̄ Ḡ2
0∆χ and χ ≡ [(Ω + ∆ + iγ)(Ω−∆+ iγ)]−1.

Cavity mode part.—The solution to the cavity mode is

ã(Ω) =
Ḡ0 x̃(Ω) + i

√
2γ ãin(Ω)

Ω +∆+ iγ
. (11)

In terms of amplitude and phase quadratures, it can be rewritten as

ã1(Ω) =
√

2γ χ[(−γ + iΩ)ṽ1(Ω) + ∆ ṽ2(Ω)]−
√
2 Ḡ0 χ∆ x̃(Ω), (12)

ã2(Ω) =
√

2γ χ[−∆ ṽ1(Ω)− (γ − iΩ)ṽ2(Ω)] +
√
2 Ḡ0 χ (γ − iΩ) x̃(Ω). (13)

Cavity output part.—Similarly, we introduce amplitude and phase quadratures for

the cavity output: Ỹ1(Ω) ≡ [ãout(Ω) + ã†out(−Ω)]/2 and Ỹ2(Ω) ≡ [ãout(Ω)− ã†out(−Ω)]/2.

Their solutions are

Ỹi(Ω) = Ỹ vac
i (Ω) +

√
η R̃YiF (Ω) x̃(Ω), (i = 1, 2). (14)

The vacuum parts Ỹ vac
i of the output, which induce measurement shot noise, are the

following:

Ỹ vac
1 (Ω) =

√

1− η ñ1(Ω) +
√
η χ[(∆2 − γ2 − Ω2)ṽ1(Ω) + 2 γ∆ ṽ2(Ω)], (15)

Ỹ vac
2 (Ω) =

√

1− η ñ2(Ω) +
√
η χ[−2 γ∆ ṽ1(Ω) + (∆2 − γ2 − Ω2)ṽ2(Ω)].(16)

The output response R̃YiF (Ω) are defined as [59]

R̃Y1F (Ω) ≡ −2
√
γ Ḡ0∆χ, R̃Y2F (Ω) ≡ 2

√
γḠ0(γ − iΩ)χ. (17)

2.2. Spectral densities

Given the above solutions, we can analyze the statistical properties of the dynamical

quantities. We consider all noises to be Gaussian and stationary but not necessarily

Markovian. Their statistical properties are fully quantified by the spectral densities.

We define a symmetrized single-sided spectral density S̃AB(Ω) according to the standard

formula [60],

2πδ(Ω−Ω′)S̃AB(Ω) = 〈A(Ω)B̃†(Ω′)〉sym = 〈Ã(Ω)B̃†(Ω′)+B̃†(Ω′)Ã(Ω)〉.(18)
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For vacuum fluctuations â1,2, we simply have S̃a1a1(Ω) = S̃a2a2(Ω) = 1 and S̃a1a2(Ω) = 0.

Mechanical oscillator part.—The spectral density for oscillator position is [cf. Eq.(8)

and Eq. (9)]

S̃xx(Ω) = |R̃eff(Ω)|2S̃tot
FF (Ω), (19)

with total force-noise spectrum

S̃FF (Ω) = 4 h̄mΩ3
q γ |χ|2(γ2 + Ω2 +∆2) + 2 h̄mΩ2

F , (20)

where we have introduced characteristic frequencies for the optomechanical interaction

Ωq ≡ (h̄ Ḡ2
0/m)1/3 and the thermal noise ΩF ≡

√

2γmkBT/h̄. The spectral density for

the oscillator momentum is simply S̃pp(Ω) = m2Ω2S̃xx(Ω).

Cavity mode part.—The spectral density for the cavity mode is a little bit complicated,

which reads

Saa(Ω) = M0M
†
0 +M0M1

† +M1M0
† +M2S̃xx(Ω). (21)

Here the elements of the matrix Saa are denoted by S̃aiaj (Ω) (i, j = 1, 2); the matrix M0

is

M0 ≡
√

2γ χ

[

−γ + iΩ ∆

−∆ −γ + iΩ

]

; (22)

the matrix M1 is

M1 ≡ 2
√
2h̄Ḡ2

0

√
γ|χ|2R̃eff(Ω)

[

−∆(γ − iΩ) ∆2

(γ − iΩ)2 −∆(γ − iΩ)

]

; (23)

the matrix M2 is

M2 ≡ 2Ḡ2
0|χ|2

[

∆2 −∆(γ + iΩ)

−∆(γ − iΩ) γ2 + Ω2

]

. (24)

The cross correlations between the cavity mode and the output [SaY ]ij ≡ S̃aiYj
(Ω) are

given by

SaY = M0M
†
3 +M0M

†
1 +M1M

†
3 +

√

2γM2S̃xx(Ω) (25)

with

M3 ≡
[

∆2 − γ2 − Ω2 2γ∆

−2γ∆ ∆2 − γ2 − Ω2

]

. (26)

The cross correlation between the cavity mode and the oscillator is the following:
[

S̃a1x(Ω)

S̃a2x(Ω)

]

= 2h̄Ḡ0
√
γχ∗R̃∗

eff(Ω)M0

[

γ + iΩ

−∆

]

+
√
2Ḡ0χ

[

−∆

γ − iΩ

]

S̃xx(Ω).(27)

For the oscillator momentum, S̃akp(Ω) = imΩ S̃akx (k = 1, 2).

Cavity output part.—As an important feature of the quantum noise in this

optomechanical system, there is a nonvanishing correlation between the shot noise Ŷ vac
i
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and the quantum back-action noise F̂BA, and it has the following spectral densities [cf.

Eqs. (9), (15) and (16)]:

S̃FY vac

1
(Ω) = 2

√

h̄m γ ηΩ3
q (γ + iΩ)χ∗, (28)

S̃FY vac

2
(Ω) = 2

√

h̄m γ ηΩ3
q ∆χ∗ (29)

with χ∗ the complex conjugate of χ. Correspondingly, the spectral densities for the

output quadratures read

S̃YiYj
(Ω) = δij + η R̃YiF (Ω)R̃

eff
xx(Ω)S̃FY vac

j
(Ω)

+ η [R̃YjF (Ω)R̃
eff
xx(Ω)S̃FY vac

i
(Ω)]∗ + η R̃YiF (Ω)R̃

∗
YjF

(Ω)S̃xx(Ω). (30)

The information of oscillator position x̂ contained in the output Ŷi are quantified

by the the cross correlations between x̂ and Ŷi, which are

S̃xYi
(Ω) =

√
η R̃eff

xx(Ω)S̃FY vac

i
(Ω) +

√
η R̃∗

YiF
(Ω)S̃xx(Ω). (31)

Similarly, for the oscillator momentum, S̃pYk
(Ω) = −imΩ S̃xYk

(Ω) (k = 1, 2).

3. Unconditional quantum state and resolved-sideband limit

Figure 4. A block diagram for the optomechanical system. The optomechanical

cooling can be viewed as a feedback mechanism and reduce the thermal occupation

number of the oscillator which has an effective temperature much lower than the heat

bath. Meanwhile, some information of the oscillator motion flows into the environment

without being properly treated, leading to the resolved-sideband limit.

In the red-detuned regime (∆ < 0) where those cavity-assisted cooling experiments

are currently working, a delayed response of the cavity mode to the oscillator motion

gives rise to a viscous damping which can significantly reduce the thermal occupation

number of the oscillator, as shown schematically in Fig. 4. Physically, it is because the

mechanical response is changed into an effective one [cf. Eq. (10)] while the thermal

force spectrum remains the same. The ground state can be achieved when the occupation

number is much smaller than one. If we neglect the information of the oscillator

motion that contains in the output, the resulting quantum state of the oscillator will

be unconditional and the corresponding occupation number of the oscillator can be

obtained with the following standard definition:

N ≡ 1

h̄ ωm

(

Vpp
2m

+
1

2
mω2

mVxx

)

− 1

2
, (32)

where variances of the oscillator position Vxx and momentum Vpp are related to the

spectral densities by the following formula:

Vxx,pp =
∫ ∞

0

dΩ

2π
S̃xx,pp(Ω). (33)



Achieving ground state and enhancing entanglement by recovering information 9

Since N is dimensionless, it only depends on the following ratios

Ωq/ωm, γ/ωm, ∆/ωm, ΩF/ωm, γm/ωm. (34)

The oscillator mass and frequency only enter implicitly. As long as those ratios are

the same in different experiments, the final achievable thermal occupation number of

different oscillators will be identical.

The resulting N is shown in the left panel of Fig. 1. To highlight the quantum limit,

we have fixed the interaction strength Ωq with Ωq/ωm = 0.5, and we have neglected the

thermal force noise. In the optimal cooling regime with ∆ = −ωm, a simple closed form

for the occupation number can be obtained [38]

N = γ2/(2ωm)
2 +

[1 + (γ/ωm)
2](Ωq/ωm)

3

4[1 + (γ/ωm)2 − 2(Ωq/ωm)3)]
. (35)

The resolved-sideband limit is achieved for a weak interaction strength Ωq → 0 and

Nlim = γ2/(2ωm)
2. (36)

In the next section, we will demonstrate that such a limit can indeed be surpassed by

recovering the information contained in the cavity output.

4. Conditional quantum state and Wiener filtering

Since, given a a finite cavity bandwidth, the cavity output contains the information of the

oscillator position [cf. Eq. (31)], according to the quantum mechanics, measurements

of the output will collapse the oscillator wave function and project it into a conditional

quantum state that is in accord with the measurement result. The conditional state

or equivalently its Wigner function is completely determined by the conditional mean

[xcond, pcond] and the covariance matrix Vcond between the position and momentum.

More explicitly, the Wigner function reads

W (x, p) =
1

2π
√
detVcond

exp
[

−1

2
δ ~XVcond−1

δ ~XT
]

(37)

with δ ~X = [x − xcond, p − pcond]. Since more information is acquired, the conditional

quantum state is always more pure than the unconditional counterpart. In the

limiting case of an ideal measurement, the conditional quantum state of the mechanical

oscillator would be pure with variances constrained by the Heisenberg Uncertainty, i.e.,

detVcond|pure state = h̄2/4.

To derive the conditional mean and variances, a usually applied mathematical tool is

the stochastic-master-equation (SME), which is most convenient for treating Markovian

process [45, 46, 47, 48, 49]. In the case considered here, however, the cavity has a

bandwidth comparable to the mechanical frequency, and the quantum noise is non-

Markovian. The corresponding conditional mean and variance can be derived more

easily with the Wiener-filtering approach. As shown in Ref. [50], the conditional mean

of any quantity ô(t) given certain measurement result Y (t′) (t < t′) can be written as

o(t)cond ≡ 〈ô(t)〉cond =
∫ t

−∞
dt′Ko(t− t′)Y (t′). (38)
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Figure 5. A contour plot for the effective occupation number of the conditional

quantum state. For comparison, we have chosen the same specification as in the

unconditional case.

HereKo(t) is the optimal Wiener filter and is derived by using the standard Wiener-Hopf

method. Its frequency representation is

K̃o(Ω) =
1

ψ̃+(Ω)

[

S̃oY (Ω)

ψ̃−(Ω)

]

+

≡ G̃o(Ω)

ψ̃+(Ω)
, (39)

where [ ]+ means taking the causal component and ψ̃± is a spectral factorization of the

output S̃Y Y ≡ ψ̃+ψ̃− with ψ̃+ (ψ̃+) and its inverse analytical in the upper-half (lower-

half) complex plane and we have introduced G̃o(Ω). The conditional covariance between

Â and B̂ is given by

V cond
AB ≡ 〈Â(0)B̂(0)〉condsym − 〈Â(0)〉cond〈B̂(0)〉cond

=
∫ ∞

0

dΩ

2π

[

S̃AB(Ω)− G̃A(Ω)G̃
∗
B(Ω)

]

. (40)

Since the first term is the unconditional variance, the second term can be interpreted

as reductions in the uncertainty due to acquiring additional information from the

measurement.

Those results can be directly applied to the optomechanical system. Suppose we

measure the following quadrature of the cavity output

Ŷζ = Ŷ1 sin ζ + Ŷ2 cos ζ (41)

and its spectral density is

S̃Y Y (Ω) = S̃Y1Y1
(Ω) sin2 ζ + ℜ[S̃Y1Y2

(Ω)] sin(2ζ) + S̃Y2Y2
(Ω) cos2 ζ (42)

The cross correlation between Ŷζ and oscillator position (momentum) is simply

S̃xY,pY = S̃xY1,pY1
(Ω) sin ζ + S̃xY2,pY2

(Ω) cos ζ. (43)

Plugging the spectral densities S̃YiYj
, S̃xYi,pYi

and S̃xx,pp derived in subsection 2.2 into Eq.

(40), we can obtain the conditional covariances of the oscillator position and momentum,

namely V cond
xx , V cond

pp and V cond
xp .

To quantify how pure the conditional quantum state is, the occupation number

defined in Eq. (32) is no longer an adequate summarizing figure. This is because

generally V cond
xp is not equal to zero, and a pure squeezed state can have a large
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occupation number defined in Eq. (32). A well-defined figure of merit is the uncertainty

product, which is given by

U ≡ 2

h̄

√

V cond
xx V cond

pp − V cond
xp

2. (44)

From it, we can introduce an effective occupation number

Neff = (U − 1)/2, (45)

which quantifies how far the quantum state deviates from the pure one with Neff = 0.

It is identical to the previous definition [cf. Eq. (32)] in the limiting case of

V cond
xx = V cond

pp /(m2ω2
m) and V cond

xp = 0, which is actually satisfied in most of the

parameter regimes plotted in Fig. 1.

For a numerical estimate and comparing with the unconditional quantum state in

the previous section, we assume the same specification and an ideal phase quadrature

detection with ζ = 0 and η = 1. The resulting effective occupation number is shown

in Fig. 5. Just as expected, the conditional quantum state is not constrained by the

resolved-sideband limit and is almost independent of detailed specifications of γ and

∆. The residue occupation number or impurity of the state, shown in Fig. 5, is due to

information of the oscillator motion being confined inside the cavity. Such a confinement

is actually attributable to the quantum entanglement between the cavity mode and the

oscillator, as we will discuss in Sec. 6.

5. Optimal feedback control

Figure 6. A block diagram for the feedback control scheme. A force is applied onto

the mechanical oscillator based on the measurement result with a control kernel C̃. In

the detuned case (∆ 6= 0), the radiation pressure and the control force work together

to place the mechanical oscillator near its quantum ground state.

Even though the conditional quantum state has minimum variances in position and

momentum, the oscillator itself actually wanders around in phase space with its center

given by the conditional mean [xcond(t), pcond(t)] at any instant t. In order to localize the

mechanical oscillator and achieve its ground state, we need to apply a feedback control,

i.e., a force onto the oscillator, according to the measurement result. Such a procedure

is shown schematically in Fig. 6. Depending on different controllers, the resulting

controlled state will have different occupation numbers. The minimum occupation

number can only be achieved if the unique optimal controller is applied. In Ref. [39],

the optimal controller was derived for a general linear continuous measurement. It can
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be directly applied to the optomechanical system with non-Markovian quantum noise

considered here.

Specifically, given the measured output quadrature Ŷζ, the feedback force applied

to the oscillator can be written in the time and the frequency domains as:

F̂FB(t) =
∫ t

−∞
dt′C(t− t′)Ŷζ(t

′) , and F̃FB(Ω) = C̃(Ω)Ỹζ(Ω) . (46)

with C(t) a causal control kernel. The equation of motion for the oscillator will be

modified as [cf. Eq. (6)]

m[¨̂xctrl(t)+γm ˙̂xctrl(t)+ω
2
mx̂ctrl(t)] = −h̄ Ḡ0[â

†(t)+â(t)]+ξ̂th(t)+F̂FB(t).(47)

In the frequency domain, the controlled oscillator position x̂ctrl is related to the

uncontrolled one x̂ by

x̃ctrl(Ω) = x̃(Ω) +
R̃eff

xx(Ω)C̃(Ω)Ỹζ(Ω)

1− R̃eff
xx(Ω)R̃YζF (Ω)C̃(Ω)

. (48)

As shown in Ref. [39], by minimizing the effective occupation number of the controlled

state, the optimal controller can be derived and it is given by

C̃opt(Ω) = − R̃eff
xx(Ω)

−1
K̃opt

ctrl(Ω)

1 − R̃Y F (Ω)K̃
opt
ctrl(Ω)

, (49)

where

K̃opt
ctrl(Ω) =

1

ψ̃+(Ω)



G̃x(Ω)−
Gx(0)

√

V cond
pp /V cond

xx − iΩ



 (50)

with G̃x(Ω) = [S̃xY (Ω)/ψ̃−(Ω)]+ as defined in Eq. (39).

From Eq. (48), we can find out the spectral densities and the covariance for the

controlled position and momentum. As it turns out, there is an intimate connection

between the optimally controlled state and the conditional quantum state. Due to the

requirement of stationarity, it indicates that V ctrl
xp = 0 [Vxp = (1/2)mV̇xx(0) = 0], and

therefore the optimally controlled state is always less pure than the conditional state.

The corresponding purity of the optimally controlled state reads [39]

Uopt
ctrl =

2

h̄

√

V ctrl
xx V ctrl

pp |optimally controlled =
2

h̄

[√

V cond
xx V cond

pp + |V cond
xp |

]

. (51)

The occupation number N for the optimally controlled state was shown in Fig. 1 in the

introduction. Since V cond
xp is quite small compared with V cond

xx,pp, the resulting occupation

number is very close to that of the conditional quantum state. Therefore, as long as the

optimal controller is applied, the mechanical oscillator is almost in its quantum ground

state and the resolved-sideband limit does not impose significant constraints.
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Figure 7. Contour plots of the logarithmic negativity EN for unconditional (left) and

conditional (right) entanglement between the cavity mode and the oscillator. We have

assumed that Ωq/ωm = 0.5 to make sure that the resulting optomechanical system

is stable in those parameter regimes shown in the figure. Besides, to manifest the

entanglement, we have ignored thermal noise.

6. Conditional Optomechanical Entanglement and Quantum Eraser

In this section, we will analyze the optomechanical entanglement between the oscillator

and the cavity mode. In particular, we will show (i) the residue impurity of

the conditional quantum state of the oscillator is induced by this optomechanical

entanglement; (ii) if the environmental temperature is high, the existence of

entanglement critically depends on whether the information in the cavity output is

recovered or not. In other words, the quantum correlation is affected by the “eraser” of

certain information, which manifests the idea of “quantum eraser” proposed by Scully

and Drühl [52].

The existence of optomechanical entanglement is shown in the pioneering work by

Vitali et al. [4]. The entanglement criterion, i.e., inseperability, is based upon positivity

of the partially transposed density matrix [54, 55, 56]. In the case of Gaussian variables

considered here, this reduces to the following uncertainty principle in phase space:

Vpt +
1

2
K ≥ 0, K =

(

0 −2i

2i 0

)

(52)

with K denoting the commutator matrix. Partial transpose is equivalent to time

reversal and the momentum of the oscillator changes sign. The corresponding partially

transposed covariance matrixVpt = V|p̂→−p. From the Williamson theorem, there exists

a symplectic transformation S ∈ Sp(4,R) such that STVptS =
⊕2

i=1Diag[λi, λi]. Using

the fact that STKS = K, the above uncertainty principle requires λi ≥ 1. If ∃λ < 1, the

states are entangled. The amount of entanglement can be quantified by the logarithmic

negativity EN [57, 58], which is defined as

EN ≡ max[− lnλ, 0]. (53)

Given a 4 × 4 covariance matrix V between the oscillator [x̂, p̂] and the cavity mode

[â1, â2], the simplectic eigenvalue λ has the following closed form:

λ =
√

Σ−
√
Σ2 − 4 detV/

√
2, (54)
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Figure 8. Logarithmic negativity EN as a function of cavity bandwidth and

environmental temperature. We have chosen Ωq/ωm = 1, ∆ = 0, Qm = 5 × 105

and ωm/2π = 106 Hz. The shaded regimes are where entanglement vanishes.

where Σ ≡ detA+ detB− 2 detC and

V = 〈[x̂, p̂, â1, â2]T [x̂, p̂, â1, â2]〉sym =

[

A2×2 C2×2

CT

2×2 B2×2

]

. (55)

In Ref. [4], the information contained in the cavity output was ignored and

unconditional covariances were used to evaluate the entanglement measure EN . We

can call it unconditional entanglement. If the information were recovered, conditional

covariances obtained in Eq. (40) will replace the unconditional counterparts. In Fig. 7,

we compare the unconditional and conditional entanglement, and it clearly shows that

the entanglement strength increases dramatically in the conditional case. Additionally,

the regime where the entanglement is strong is in accord with where the conditional

quantum state of the oscillator is less pure as shown in Fig. 5. Indeed, there is a simple

analytical relation between the effective occupation number Neff and the logarithmic

negativity EN in this ideal case with no thermal noise—that is

EN = −2 ln
[

√

Neff + 1−
√

Neff

]

≈ 2
√

Neff (56)

for small Neff [57]. Therefore, the limitation of a cooling experiment actually comes

from the optomechanical entanglement, which justifies our claim in Sec. 4.

If we take into account the environmental temperature as shown in Fig. 2 in the

introduction part, the unconditional entanglement vanishes when the temperature is

higher than 10 K given the following specifications: γ/ωm = 1, ∆/ωm = −1, Ωq/ωm = 1

and Qm = 5 × 105 with ωm/2π = 106 Hz. In contrast, the conditional one exists even

when the temperature becomes higher than 100 K. Therefore, only when the information

contained in the cavity output is properly treated will the observer be able to recover the

quantum correlation between the oscillator and the cavity mode at high temperature.

In fact, the temperature is not the dominant figure that determines the existence of

quantum entanglement. A recent investigation showed that in the simple system with

an oscillator interacting with a coherent optical field, quantum entanglement always

exists between the oscillator and outgoing optical field [51]. The resulting entanglement

strength only depends on the ratio between the characteristic interaction strength Ωq and

thermal-noise strength ΩF , rather than the environmental temperature. We can make
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Figure 9. Occupation number of the optimally controlled state as a function of

the temperature and the cavity detuning. The other specifications are chosen to be

achievable in a real experiment, which are detailed in the main text.

some correspondences to the results in Ref. [51] by assuming a large cavity bandwidth.

In such a case, the cavity mode exchanges information with the external outgoing field

at a timescale much shorter than the thermal decoherence timescale of the oscillator.

In Fig. 8, we show the resulting EN of the conditional entanglement as a function of

cavity bandwidth and environmental temperature with fixed interaction strength. The

entanglement can persist at a very high temperature (104 K shown in this plot!) as long

as the cavity bandwidth is large. This, to some extents, recovers the results obtained in

Ref. [51].

7. Effects of imperfections and thermal noise

To motivate cavity-assisted cooling experiments, we will consider effects of various

imperfections that exist in a real experiment, which include nonunity quantum efficiency

of the photodetection, thermal noise and optical loss. The effects of nonunity quantum

efficiency and thermal noise have already been taken into account in the equations

of motion. With an optical loss, some uncorrelated vacuum fields enter the cavity

in an unpredictable way. A small optical loss will not modify the cavity bandwidth

significantly but will introduce an additional force noise, which is [cf. Eq. (28)]

Sadd
FF (Ω) = 4 h̄mΩ3

q γǫ |χ|2(γ2 + Ω2 +∆2), (57)

where γǫ ≡ c ǫ/(4L) is the effective bandwidth that induces by an optical loss of ǫ. For

numerical estimations, we will use the following experimentally achievable parameters:

m = 1mg, I0 = 3mW, F = 3× 104, ωm/(2π) = 105Hz,

Qm = 5× 106, L = 1 cm, η = 0.95, ǫ = 10 ppm, (58)

where F is the cavity finesse and Qm ≡ ωm/(γm) is the mechanical quality factor. This

gives a coupling strength of Ωq/ωm ≈ 0.6 (for ∆ = −ωm) and a cavity bandwidth

γ/ωm = 2.5. The final results will not change if we increase both mass and power with

the same factor, which essentially gives the same effective interaction strength.

In Fig. 9, we show the corresponding occupation number for the controlled state as

a function of environmental temperature and cavity detuning. An occupation number
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less than one can be achieved when the environmental temperature becomes lower than

10 K given the above specifications. If the oscillator can sustain higher optical power,

one can increase the interaction strength to reduce thermal excitations.

8. Conclusion

We have shown that both the conditional state and the optimally controlled state of the

mechanical oscillator can achieve a low occupation number even if the cavity bandwidth

is large. Therefore, as long as information of the oscillator motion contained in the cavity

output is carefully recovered, the resolved-sideband limit will not pose a fundamental

limit in cavity-assisted cooling experiments. This work can help understanding the

intermediate regime between optomechanical cooling and feedback cooling, which will

be useful for searching optimal parameters for a given experimental setup. In addition,

we have shown that the optomechanical entanglement between the cavity mode and

the oscillator can be significantly enhanced by recovering information, and its existence

becomes insensitive to the environmental temperature.
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