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Abstract: We introduce C-Algebras of compact Riemann surfaces � as
non-commutative analogues of the Poisson algebra of smooth functions on �. Represen-
tations of these algebras give rise to sequences of matrix-algebras for which matrix-com-
mutators converge to Poisson-brackets as N → ∞. For a particular class of surfaces,
interpolating between spheres and tori, we completely characterize (even for the inter-
mediate singular surface) all finite dimensional representations of the corresponding
C-algebras.

Introduction

Attaching sequences of matrix algebras to a given manifold M to describe a non-
commutative and approximate version of its ring of smooth functions has become a
rather important tool in non-commutative field theory: more precisely, for each positive
integer N let QN : C∞(M, C) → MN ,N (C) be a complex linear surjective map of
the ring of smooth functions on M into the space of all complex N × N -matrices such
that products of functions are approximately mapped to products of matrices in the limit
N → ∞. In almost all cases, C∞(M, C) carries a Poisson bracket { , } (for instance if M
is symplectic, such as every orientable Riemann surface), and one further demands that
Poisson brackets are approximately mapped to matrix commutators in the limit N → ∞
(see e.g. [BHSS91] for details).

For the 2-sphere S
2 [GH82] one could use the fact that the space of all spherical

harmonics of fixed l is in bijection with the space of all harmonic polynomials in R
3

of degree l; substituting the three commuting variables by irreducible N-dimensional
representations of the three-dimensional Lie algebra su(2) allows to define a map from
functions on S

2 to N × N matrices, that sends Poisson brackets to matrix commutators
up to corrections of order 1/N (see also [BHSS91], Example 3, p. 218). The result was
dubbed “Fuzzy Sphere” in [Mad92]. The papers [KL92] prove that the (complexified)
Poisson algebra of functions on any Riemann surface arises as a N → ∞ limit of
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gl(N , C) – which had been conjectured in [BHSS91]. This result was extended to any
quantizable compact Kähler manifold in [BMS94], the technical tool being geometric
and Berezin-Toeplitz quantization. A thorough analysis of non-commutative Riemann
surfaces of genus greater than or equal to 2 as a continuous field of simple C∗-algebras,
strongly Morita equivalent to a reduced twisted group C∗-algebra of its fundamental
group, has been given in [NN99]. Insight on how matrices can encode topological infor-
mation (certain sequences having been identifiable as converging to a particular function,
but gl(N , C) lacking topological invariants) was gained in [Shi04].

Even though the above general results are constructive, there seem to be only two
explicit formulas, for the two-sphere [GH82] and for the two-torus [FFZ89] (see also
[Hop89/88]), which are quite different from each other; the former uses the natural
embedding of the two-sphere into R

3 whereas the latter relies on the fact that the two-
torus is a quotient R

2/Z
2. The general results are based on the complex nature of any

compact orientable Riemann surface.
In this paper, we should like to propose an approach which to the best of our knowl-

edge does not seem to have been treated in the literature so far, despite its rather intuitive
appeal: we are using the ‘visualisable’ embedding of a compact orientable Riemann
surface � into R

3 explicitly given by the set of all zeros of a real polynomial C . The
function C , via

{ f, g}C := ∇C · (∇ f × ∇g
)
,

defines a Poisson bracket for all real-valued smooth functions f, g on R
3. Since C is

a Casimir function for the bracket { , }C , one gets a symplectic Poisson bracket on �

by restriction. The idea now is to use the above Poisson bracket on R
3 to first define an

infinite-dimensional algebra as a quotient algebra of the free non-commutative algebra
in three variables, involving a real parameter � and suitably ordered non-commutative
analogues of {x, y}C , {y, z}C and {z, x}C . In a second step the resulting algebra is divided
by an ideal generated by the constraint polynomial C thus giving a non-commutative
version of the functions on �. In a third step matrix representations of any size N of
this latter algebra are constructed where the parameter � takes specific values depending
on N . It is noteworthy that the construction does not require the zero set of C to be a
regular surface. Thus, even for a singular surface (e.g., in the transition from sphere to
torus) the non-commutative analogue is still well defined.

The main result of this paper is an explicit construction of non-commutative
(non-round) spheres and tori, including the transition region with a singular surface
that emerges at the point of topology change. Encouraged by the explicit construction
and by the fact that for the two-torus our results almost coincide with the older results
of [BHSS91], we are quite optimistic that for the case of genus g ≥ 2 this embedding
approach may give more explicit constructions than the existence proof in [KL92] and
[BMS94].

The paper is organized as follows: In Sect. 1 we describe Riemann surfaces of genus
g embedded in R

3 as inverse images of polynomial constraint-functions, C(�x). The
above-mentioned Poisson bracket { , }C on R

3 is treated in Sect. 2, where the bracket
restricts to a symplectic bracket on the embedded Riemann surface �.

In Sect. 3 step one and two of the above programme is explicitly proven for a polyno-
mial constraint C describing the two-sphere, the two-torus, and a transition region: we
give a system of relations (Eqs. (3.2), (3.3), (3.4)), and show that this system satisfies
the hypothesis of the Diamond lemma, thus proving that the non-commutative algebra
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carries a multiplication which is a converging deformation of the point wise multiplication
of polynomials in three commuting variables (see Proposition 3.1).

In the central Sect. 4 we completely classify all the finite-dimensional representations
of the algebras constructed in the preceding section (two-sphere, two-torus, and transi-
tion) which are hermitian in the sense that the variables x , y, and z are sent to hermitian
N × N -matrices. The main technical tool is graph-theory describing the non-zero entries
of the matrices. Next, in Sect. 5, we confirm that the eigenvalue sequences of these rep-
resentations reflect topology in the sense suggested in [Shi04].

The final Sect. 6 compares the classification results of Sect. 4 with previously known
matrix constructions for the sphere and the torus. In the case of the torus it is shown
that our result agrees with what can be obtained by (variants of) Berezin-Toeplitz-
Quantization, see e.g. [BHSS91].

1. Genus g Riemann Surfaces

The aim of this section is to present compact connected Riemann surfaces of any genus
embedded in R

3 by inverse images of polynomials. For this purpose we use the regu-
lar value theorem and Morse theory. Let C be a polynomial in 3 variables and define
� = C−1({0}). What are the conditions on C , for � to be a genus g Riemann surface?
If the restriction of C to � is a submersion, then � is an orientable submanifold of R

3.
� has to be compact and of the desired genus. For further details see [Hir76,Hof02].

The classification of 2-dimensional compact (connected) manifolds is well-known. In
this case there is a one to one correspondence between topological and diffeomorphism
classes. The result is that any compact orientable surfaces is homeomorphic (hence dif-
feomorphic) to a sphere or to a surface obtained by gluing tori together (connected sum).
The number g of tori is called the genus and is related to the Euler-Poincaré characteristic
by the formula χ = 2 − 2g.

To compute χ(�) we apply Morse theory to a specific function. A point p of a
(smooth) function f on � is a singular point if D f p = 0 in which case f (p) is a singu-
lar value. At any singular point p one can consider the second derivative D2 f p of f and
p is said to be non-degenerate if det(D2 f p) �= 0. Moreover, one can attach an index to
each such point depending on the signature of D2 f : 0 if positive, 1 if hyperbolic and 2 if
negative. A Morse function is a function such that every singular point is non-degenerate
and singular values all distinct. Then χ(�) is given by the formula:

χ(�) = n(0) − n(1) + n(2),

where n(i) is the number of singular points which have an index i .
The Cotex function is defined as the restriction of the first coordinate on the surface.

It is not necessarily a Morse function (one has to choose a “good” embedding for that),
but the singular points are those for which the gradient grad C is parallel to the Ox axis.
Moreover the Hessian matrix of Cotex at such a point p is:

− 1
∂C
∂x (p)

⎛

⎝
∂2C
∂y2 (p) ∂2C

∂y∂z (p)

∂2C
∂y∂z (p) ∂2C

∂z2 (p)

⎞

⎠ .

Take

C(�x) = 1

2

(
P(x) + y2)2 +

1

2
z2 − 1

2
c,
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where c > 0, P(x) = a2k x2k + a2k−1x2k−1 + · · · + a1x + a0 with a2k > 0 and k > 0.
Obviously � is closed and bounded (even degree of P) hence compact. � is a subman-
ifold of R

3 if, and only if for each p ∈ �, DC p �= 0 which is equivalent to requiring
that the polynomials P − √

c and P +
√

c have only simple roots. The singular points
of the Cotex function on � are the points (x, 0, 0) such that P(x)2 = c and the Hessian
matrix is:

− 1
∂C
∂x (x, 0, 0)

(
2P(x) 0

0 1

)
.

Hence it is positive or negative if, and only if P(x) = √
c and hyperbolic if, and only if

P(x) = −√
c. Thanks to the fact that P(x) never vanishes at a singular point, this also

shows that Cotex is a genuine Morse function. Finally,

n(0) + n(2) = #{P = √
c} and n(1) = #{P = −√

c}.
If the polynomial P − √

c has exactly 2 simple roots and the polynomial P +
√

c has
exactly 2g simple roots, then χ(�) = 2 − 2g and � is a surface of genus g.

Let g > 0. Set:

(i) G(t) = (t − 1)(t − 22) . . . (t − g2) and M = max
0≤t≤g2+1

G(t), α∈
(

0,
2
√

c

M

)
,

(ii) Q(x) = αG(x) − √
c and P(x) = Q(x2).

One can directly see that Q +
√

c has exactly g simple roots, hence P +
√

c has exactly 2g
simple roots. For t ∈ [0; g2 + 1], the function Q(t)−√

c has no zero. On the other hand,
for t ≥ g2 + 1, Q(t) − √

c is strictly growing and has exactly one zero. Consequently
the polynomial P − √

c has exactly 2 simple roots and the surface � defined above is a
genus g compact Riemann surface. Note that non-compact, respectively non-polynomial,
higher genus Riemann surfaces have been considered in [BKL05].

2. The Construction for General Riemann Surfaces

For arbitrary smooth C : R
3 −→ R,

{ f, g}R3 := ∇C · (∇ f × ∇g) (2.1)

defines a Poisson bracket for functions on R
3 (see e.g. Nowak [Now97] who studied the

formal deformability of (2.1)).1 Clearly, C is a Casimir function of the bracket, i.e. C
commutes with every function. Let now, as in Sect. 1, �g ⊂ R

3 be described as C−1(0)

with

C(�x) = 1

2

(
P(x) + y2)2 +

1

2
z2 − 1

2
c, (2.2)

and c > 0. For this choice of C , the bracket {·, ·}R3 defines a Poisson bracket on �g

through restriction. The Poisson brackets between x ,y and z read:

{x, y}R3 = ∂zC = z,

{y, z}R3 = ∂x C = P ′(x)(P(x) + y2), (2.3)

{z, x}R3 = ∂yC = 2y(P(x) + y2).

1 While we did not (yet find a way to) use his results, we are very grateful for his “New Year’s Eve”
explanations, as well as providing us with his Ph.D. Thesis.
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We claim that fuzzy analogues of �g can be obtained via matrix analogues of (2.3).
Apart from possible “explicit 1/N corrections”, direct ordering questions arise on the
r.h.s. of (2.3), while on the l.h.s. one replaces Poisson brackets by commutators, i.e.
{·, ·} → 1

i� [·, ·]. We present the following Ansatz for the C-algebra of �g , given as
three relations in the free algebra generated by the letters X, Y, Z :

[X, Y ] = i�Z , (2.4)

[Y, Z ] = i�
2g∑

r=1

ar

r−1∑

i=0

Xi
(

P(X) + Y 2
)

Xr−1−i ≡ φ̂X , (2.5)

[Z , X ] = i�
[
2Y 3 + Y P(X) + P(X)Y

]
≡ φ̂Y , (2.6)

where � is a positive real number and P(X) = ∑2g
r=0 ar Xr . The particular ordering in

(2.5) and (2.6) is chosen such that the three equations are consistent, in the sense of the
Diamond Lemma [Ber78].

Proposition 2.1. Let S = {σX , σY , σZ } be a reduction system with

σX = (WX , fX ) = (
ZY, Y Z − φ̂X

)
,

σY = (WY , fY ) = (
Z X, X Z + φ̂Y

)
,

σZ = (WZ , fZ ) = (
Y X, XY − i�Z

)
.

This reduction system contains an ambiguity; i.e., there are two ways of reducing the
word ZY X: Either we replace ZY by Y Z − φ̂X or we replace Y X by XY − i�Z. The
ambiguity is called resolvable if these two reductions eventually reduce to the same
expression, by using that we can replace any occurrence of WX , WY , WZ by fX , fY , fZ
respectively.

The statement of this proposition is that the ambiguity (ZY )X = Z(Y X) is resolv-
able if and only if [X, φ̂X ] + [Y, φ̂Y ] = 0, and that this relation is satisfied for the choice
in (2.5) and (2.6).

Proof. The ambiguity is resolvable if we can show that A := (Y Z − φ̂X )X −
Z(XY − i�Z) = 0 using only the possibility to replace any occurrence of Wi with
fi , for i = X, Y, Z . We get

A = Y Z X − Z XY − φ̂X X + i�Z2 = Y (X Z + φ̂Y ) − (X Z + φ̂Y )Y − φ̂X X + i�Z2

= Y X Z − X ZY + [Y, φ̂Y ] − φ̂X X + i�Z2

= (XY − i�Z)Z − X (Y Z − φ̂X ) + [Y, φ̂Y ] − φ̂X X + i�Z2 = [X, φ̂X ] + [Y, φ̂Y ].

It is then straightforward to check that [Y, φ̂Y ] = −[X, φ̂X ] for the choice in (2.5) and
(2.6). ��

Finding explicit representations of (2.4)–(2.6), let alone classifying them, is of course
a very complicated task. We succeeded in doing so for a (continuously deformable) class
of surfaces corresponding to spheres and tori.
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3. The Torus and Sphere C-Algebras

Let us now take P(x) = x2 − µ, in which case C−1(0), with

C(x, y, z) = 1

2

(
x2 + y2 − µ

)2
+

1

2
z2 − 1

2
c (c > 0), (3.1)

describes a surface of revolution which is a torus for µ >
√

c and a sphere for −√
c <

µ <
√

c.
As µ increases from −√

c to
√

c the (almost) round sphere gets deformed by intro-
ducing two growing “sinks”; one at the north pole and one at the south pole. At the
critical point µ = √

c the two sinks meet and the surface develops a singularity. For
larger µ the singularity vanishes and a hole appears, giving the topology of a torus.

The corresponding C-algebra is defined as the quotient of the free algebra C 〈X, Y, Z〉
with the two-sided ideal generated by the relations

[
X, Y

] = i�Z , (3.2)
[
Y, Z

] = i�
[
2X3 + XY 2 + Y 2 X − 2µX

]
, (3.3)

[
Z , X

] = i�
[
2Y 3 + Y X2 + X2Y − 2µY

]
. (3.4)

By introducing W = X + iY and V = X − iY one can rewrite (3.3) and (3.4) as
(

W 2V + V W 2
)

(1 + �
2) = 4µ�

2W + 2(1 − �
2)W V W, (3.5)

(
V 2W + W V 2

)
(1 + �

2) = 4µ�
2V + 2(1 − �

2)V W V, (3.6)

and we denote by I (µ, �) the ideal generated by these relations. Through the “Diamond
lemma” [Ber78] one can explicitly construct a basis of this algebra.

Proposition 3.1. Let C(µ, �) = C〈W, V 〉/I (µ, �). Then a basis of C(µ, �) is given by

{V i (W V ) j W k : i, j, k = 0, 1, 2, . . .}.
As a vector space, C(µ, �) is therefore isomorphic to the space of commutative polyno-
mials C[X, Y, Z ].
Proof. In the notation of the Diamond Lemma, let S = {σ1, σ2} be a reduction system
with

σ1 = (wσ1 , fσ1) =
(

W 2V,
4µ�

2

1 + �2 W +
2(1 − �

2)

1 + �2 W V W − V W 2
)

,

σ2 = (wσ2 , fσ2) =
(

W V 2,
4µ�

2

1 + �2 V +
2(1 − �

2)

1 + �2 V W V − V 2W

)
,

and let ≤ be a partial ordering on 〈W, V 〉 such that p < q if either the total degree (in
W and V ) of p is less than the total degree of q or if p is a permutation of the letters in q
and the misordering index of p is less than the misordering index of q. The misordering
index of a word a1a2 . . . ak is defined to be the number of pairs (ak, ak′) with k < k′
such that ak = W and a′

k = V . This partial ordering is compatible with S in the sense
that every word in fσi is less than wσi .
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We will now argue that the partial ordering fulfills the descending chain condition,
i.e. that every sequence of words such that w1 ≥ w2 ≥ · · · eventually becomes constant.
Assume that w1 has degree d and misordering index i . If w1 > wk , then d or i must
decrease by at least 1. Since both the degree and the misordering index are non-negative
integers, an infinite sequence of strictly decreasing words can not exist.

The reduction system S has one overlap ambiguity, namely, there are two ways to
reduce the word W 2V 2; either you write it as (W 2V )V and use σ1, or you write it as
W (W V 2) and use σ2. In an associative algebra, these must clearly be the same, and
if they do reduce to the same expression, we call the ambiguity resolvable. It is now
straightforward to check that the indicated ambiguity is in fact resolvable.

The above observations allow for the use of the Diamond lemma, which in particular
states that a basis for C(µ, �) is given by the set of irreducible words. In this particular
case, it is clear that the words V i (W V )k W j are irreducible (since they do not contain
W 2V or W V 2) and that there are no other irreducible words. ��

By a straightforward calculation, using (3.5) and (3.6), one proves the following
result.

Proposition 3.2. Define D = W V , D̃ = V W and Ĉ = (D + D̃ − 2µ)2 + (D − D̃)2/�
2.

Then it holds that

(i) [D, D̃] = 0,
(ii) [W, Ĉ] = [V, Ĉ] = 0.

In particular, this means that the direct non-commutative analogue of the constraint (3.1)
is a Casimir of C(µ, �).

Let us make a remark on the possibility of choosing a different ordering when con-
structing a non-commutative analogue of the Poisson algebra. Assume we choose to
completely symmetrize the r.h.s of Eqs. (2.3). Then, the defining relations of the algebra
become

[
X, Y

] = i�Z ,

[
Y, Z

] = 2i�

[
X3 +

1

3

(
XY 2 + Y 2 X + Y XY

)− µX

]
,

[
Z , X

] = 2i�

[
Y 3 +

1

3

(
Y X2 + X2Y + XY X

)− µY

]
.

Again, defining W = X + iY and V = X − iY , gives
(

W 2V + V W 2
)

(1 + 4�
2/3) = 4µ�

2W + 2(1 − 2�
2/3)W V W,

(
V 2W + W V 2

)
(1 + 4�

2/3) = 4µ�
2V + 2(1 − 2�

2/3)V W V,

which, by rescaling �
2 = 3�

′2
3−h′2 , can be brought to the form of Eqs. (3.5) and (3.6), with

�
′ as the new parameter.

4. Representations of the Torus and Sphere Algebras

Let us now turn to the task of finding representations φ, of the algebra C(µ, �), with
0 < � < 1, for which φ(X), φ(Y ), φ(Z) are hermitian matrices, i.e. φ(W )† = φ(V ).
First, we observe that any such representation is completely reducible; hence, in the
following, we need only consider irreducible representations.
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Proposition 4.1. Any representation φ of C(µ, �) such that φ(W )† = φ(V ) is
completely reducible.

Proof. Since the algebra of all complex N × N matrices equipped with the sup-norm is a
C∗-algebra, it is clear that any ∗-subalgebra is completely reducible. For the convenience
of the reader, we give the algebraic proof.

Let φ be a representation of C(µ, �) fulfilling the conditions in the proposition.
Moreover, let A be the subalgebra, of the full matrix-algebra, generated by φ(W ) and
φ(V ). First we note that since φ(V ) = φ(W )†, the algebra A is invariant under hermitian
conjugation, thus given M ∈ A we know that M† ∈ A.

We prove that Rad(A) (the radical of A), i.e. the largest nilpotent ideal of A, vanishes,
which implies, by the Wedderburn-Artin theorem, see e.g. [ASS06], that φ is completely
reducible. Let M ∈ Rad(A). Since Rad(A) is an ideal it follows that M† M ∈ Rad(A).
For a finite-dimensional algebra, Rad(A) is nilpotent, which in particular implies that
there exists a positive integer m such that

(
M† M

)m = 0. It follows that M = 0, hence
Rad(A) = 0. ��

In the following, we shall always assume that φ is an hermitian irreducible representa-
tion of C(µ, �). For these representations, φ(D) and φ(D̃) (as defined in Proposition 3.2)
will be two commuting hermitian matrices and therefore one can always choose a basis
such that they are both diagonal. We then conclude that the value of the Casimir Ĉ
will always be a non-negative real number, which we will denote by 4c. Finding her-
mitian representations of C(µ, �) with φ(Ĉ) = 4c1 thus amounts to solving the matrix
equations

(W D + D̃W )
(

1 + �
2
)

= 4µ�
2W +

(
1 − �

2
)

(W D̃ + DW ), (4.1)
(

D + D̃ − 2µ1
)2

+
1

�2

(
D − D̃

)2 = 4c 1, (4.2)

with D = W W † = diag(d1, d2, . . . , dN ) and D̃ = W †W = diag(d̃1, d̃2, . . . , d̃N ) being
diagonal matrices with non-negative eigenvalues. The “constraint” (4.2) constrains the
pairs �xi = (di , d̃i ) to lie on the ellipse (x + y − 2µ)2 + (x − y)2/�

2 = 4c, e.g. as in
Fig. 1.

Representations with c = 0, which we shall call degenerate, are particularly simple,
and can be directly characterized.

Proposition 4.2. Let φ be an hermitian representation of C(µ, �) such that φ(Ĉ) = 0.
Then µ ≥ 0 and there exists a unitary matrix U such that φ(W ) = √

µ U.

Proof. When D and D̃ are non-negative diagonal matrices, c = 0 implies D = D̃ = µ1
via (4.2), which necessarily gives µ ≥ 0. In this case, Eq. (4.1) is identically satisfied,
and we are left with solving the equations W W † = W †W = µ1. Hence, there exists a
unitary matrix U such that W = √

µ U . ��
Assume in the following that c > 0. We note that any representation φ′ of C(µ′, �),

with φ′(Ĉ) = 4c′1, can be obtained from a representation φ of C(µ, �) with φ(Ĉ) =
4c1, if µ/

√
c = µ′/

√
c′. Namely, one simply defines φ′(W ) := 4

√
c′/c φ(W ).

Proposition 4.3. Let φ be an hermitian representation of C(µ, �) with φ(Ĉ) = 4c1.
Then it holds that −√

c ≤ µ.
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Fig. 1. The constraint ellipse

Proof. Assume that there exists a representation of C(µ, �) with −√
c > µ. Then the

diagonal components of Eq. (4.2) describes an ellipse in the (d, d̃)-plane, for which all
points (d, d̃) satisfy that either d or d̃ is strictly negative. This contradicts the fact that
D and D̃ have non-negative eigenvalues. Hence, −√

c ≤ µ. ��
Writing out (4.1) in components gives

Wi j

(
(
�

2 + 1
)
(d̃i + d j ) +

(
�

2 − 1
)
(di + d̃ j ) − 4µ�

2
)

= 0, (4.3)

and we also note that W D̃ = DW yields Wi j
(
di − d̃ j

) = 0. If Wi j �= 0, the two
equations give a relation between the pairs �xi = (di , d̃i ) and �x j = (d j , d̃ j ). Namely,
�x j = s (�xi ) with

s
(
d, d̃

) =
(

4µ sin2 θ + 2d cos 2θ − d̃, d
)

, (4.4)

where � = tan θ for 0 < θ < π/4. The map s is better understood if we introduce
coordinates z(�x) = (d − d̃)/� and ϕ(�x) = d + d̃ − 2µ in which case one finds that

(
z
(
s(�x)

)

ϕ
(
s(�x)

)
)

=
(

cos 2θ − sin 2θ

sin 2θ cos 2θ

)(
z(�x)

ϕ(�x)

)
. (4.5)

We conclude that s amounts to a “rotation” on the ellipse described by the constraint
(4.2). Let us collect some basic facts about s in the next proposition.

Proposition 4.4. Let s : R
2 → R

2 be the map as defined above and let q = e2iθ . Then

(i) s is a bijection,

(ii) if �x(β0) = √
c
(

µ√
c

+ cos β0
cos θ

,
µ√

c
+ cos(β0+2θ)

cos θ

)
then sl

(�x(β0)
) = �x (β0 + 2lθ) ,

(iii) s(�x) = �x if and only if �x = (µ,µ),
(iv) if �x �= (µ,µ), then sn(�x) = �x if and only if qn = 1.

From these considerations one realizes that it will be important to keep track of the pairs
(i, j) for which Wi j �= 0. This leads us to a graph representation of the matrix W .
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4.1. Graph representation of matrices. In this section we will introduce the directed
graph of the matrix W . See, e.g., [FH94] for the standard terminology concerning directed
graphs.

Definition 4.5. Let G = (V, E) be a directed graph on N vertices with vertex set
V = {1, 2, . . . , N } and edge set E ⊆ V × V . We say that an N × N matrix W is
associated to G (or G is associated to W ) if it holds that (i j) ∈ E ⇔ Wi j �= 0.

Given an equation for W , we say that a graph G is a solution if G is associated to a
matrix W , solving the equation. Needless to say, for a given solution G there might exist
many different (matrix) solutions associated to G. A graph with several disconnected
components is clearly associated to a matrix that is a direct sum of matrices; hence, it
suffices to consider connected graphs. In the following, a solution will always refer to a
solution of (4.1).

Given a connected solution G, we note that given the value of �xi = (di , d̃i ), for
any i , we can compute �xk = (dk, d̃k), for all k, using (4.4). Namely, since G is
connected, we can always find a sequence of numbers i = i1, i2, . . . , il = k, such
that Wi j i j+1 �= 0 or Wi j+1i j �= 0, which will give us �xk = sm(�xi ), where m is the differ-
ence between the number of edges (in the path) directed from i and the number of edges
directed towards i .

Proposition 4.6. Let G = (V, E) be a connected non-degenerate solution. Then

(i) G has no self-loops (i.e. (i i) /∈ E),
(ii) there is at most one edge between any pair of vertices.

Proof. In both cases, assuming the opposite, it follows from (4.3) that there exists an i
such that di = d̃i = µ. Since the graph is connected we will have di = d̃i = µ for all
i ((µ,µ) is indeed the fix-point of s), giving c = 0. Hence, a non-degenerate solution
will satisfy the two conditions above. ��

Any finite directed graph has a directed cycle, which we shall call loop, or a directed
path from a transmitter (i.e. a vertex having no incoming edges) to a receiver (i.e. a
vertex having no outgoing edges), which we shall call string. The existence of a loop or
a string imposes restrictions on the corresponding representations. From Proposition 4.4
we immediately get:

Proposition 4.7. Let G be a non-degenerate solution containing a loop on n vertices.
Then qn = 1.

Lemma 4.8. Let G be a solution. The vertex i is a transmitter if and only if d̃i = 0. The
vertex i is a receiver if and only if di = 0.

Proof. Since D = W W † and D̃ = W †W , we have

di =
∑

k

Wik W ik =
∑

k

|Wik |2,

d̃i =
∑

k

W ki Wki =
∑

k

|Wki |2,

and it follows that di = 0 if and only if Wik = 0 for all k, i.e. i is a receiver. In the same
way d̃i = 0 if and only if Wki = 0 for all k, i.e. i is a transmitter. ��
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Next we prove that if G is a solution, then G can not contain both a string and a loop.

Lemma 4.9. Let G be a non-degenerate connected solution and assume that G has a
transmitter or a receiver. Then G has no loop and therefore there exists a string.

Proof. Let us prove the case when a transmitter exists. Let us denote the transmitter by
1 ∈ V , and by Lemma 4.8 we have �x1 = (a, 0), for some a > 0. Assume that there
exists a loop and let i be a vertex in the loop. Since G is connected there exists an integer
i such that �xi = si (�x1). Let l be the number of vertices in the loop. From Proposition
4.7 we know that ql = 1, which means that there is at most l different values of �xk in
the graph, and all values are assumed by vertices in the loop. In particular this means
that there exists a vertex k in the loop, such that �xk = �x1. But this implies, by Lemma
4.8, that k is a transmitter, which contradicts the fact that k is part of a loop. Hence, if a
transmitter exists, there exists no loop and therefore there must exist a string. ��

The above result suggests to introduce the concept of loop representations and string
representations, since all representations are associated to graphs that have either a loop
or a string.

Let us now prove a theorem providing the general structure of the representations.

Theorem 4.10. Let φ be an N-dimensional non-degenerate connected hermitian rep-
resentation of C(µ, �) with φ(Ĉ) = 4c1. Then there exists a positive integer k divid-
ing N, a unitary N × N matrix T , unitary N/k × N/k matrices U0, . . . , Uk−1 and
β, ẽ0, . . . , ẽk−1 ∈ R with ẽ1, . . . , ẽk−1 > 0, such that

T φ(W )T † =

⎛

⎜
⎜⎜⎜⎜
⎝

0
√

ẽ1 U1 0 · · · 0
0 0

√
ẽ2 U2 · · · 0

...
...

. . .
. . .

...

0 0 · · · 0
√

ẽk−1 Uk−1√
ẽ0 U0 0 · · · 0 0

⎞

⎟
⎟⎟⎟⎟
⎠

, (4.6)

ẽl = √
c

[
µ√

c
+

cos(2lθ + β)

cos θ

]
. (4.7)

Proof. Let U be a unitary N × N matrix such that U DU † and U D̃U † are diagonal,
set Ŵ = Uφ(W )U † and let G be the graph associated to Ŵ . Define {x̂0, . . . , x̂k−1}
to be the set of pairwise different vectors out of the set {�x1, �x2, . . . , �xN }, such that
x̂i+1 = s

(
x̂i
)

for i = 0, . . . , k − 2 (which is always possible since G is connected), and
write x̂i = (ei , ẽi ). We note that if G has a transmitter, it must necessarily correspond to
the vector x̂0, in which case ẽ0 = 0. In particular this means that no vertex corresponding
to x̂i , for i > 0, can be a transmitter and hence, by Lemma 4.8, ẽ1, . . . , ẽk−1 > 0. Now,
define

Vi = { j ∈ V : �x j = x̂i } i = 0, . . . , k − 1,

and set li = |Vi |. Since x̂i+1 = s(x̂i ), a necessary condition for (i j) ∈ E is that j = i +1.
This implies that there exists a permutation σ ∈ SN (permuting vertices to give the order
V0, . . . , Vk−1) such that

W ′ := σ Ŵσ † =

⎛

⎜⎜⎜⎜
⎝

0 W1 0 · · · 0
0 0 W2 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 Wk−1
W0 0 · · · 0 0

⎞

⎟⎟⎟⎟
⎠

,
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where Wi is a li−1 × li matrix (counting indices modulo k). In this basis we get

D = diag(e0, . . . , e0︸ ︷︷ ︸
l0

, . . . , ek−1, . . . , ek−1︸ ︷︷ ︸
lk−1

)

= W ′W ′† = diag(W1W †
1 , . . . , Wk−1W †

k−1, W0W †
0 ),

D̃ = diag(ẽ0, . . . , ẽ0︸ ︷︷ ︸
l0

, . . . , ẽk−1, . . . , ẽk−1︸ ︷︷ ︸
lk−1

)

= W ′†W ′ = diag(W †
0 W0, W †

1 W1, . . . , W †
k−1Wk−1),

which gives Wi W †
i = ei−11li−1 and W †

i Wi = ẽi1li . Since x̂i+1 = s(x̂i ) we know that

ẽi+1 = ei , which implies that Wi W †
i = ẽi1i−1 for i = 1, . . . , k − 1. Any matrix satisfy-

ing such conditions must be a square matrix, i.e. li = li−1 for i = 1, . . . , k − 1. Hence,
Wi is a square matrix of dimension N/k, and there exists a unitary matrix Ui such that
Wi = √

ẽiUi . Moreover, we take T to be the unitary N × N matrix σU . Finally, since
every point x̂i = (ei , ẽi ) lies on the ellipse, there exists a β0 such that x̂0 corresponds
to the point

√
c (cos(β0 + θ), sin(β0 + θ)) in the (z, ϕ)-plane, as in Proposition 4.4. By

defining β = β0 + 2θ , we get, since x̂l+1 = s(x̂l), that ẽl = √
c
[

µ√
c

+ cos(2lθ+β)
cos θ

]
. ��

The above theorem proves the structure of any connected representation, but the
question of irreducibility still remains. We will now prove that any representation is in
fact equivalent to a direct sum of representations where the Ui ’s are 1 × 1-matrices.

Lemma 4.11. Let W1 and W2 be matrices such that

W1 =

⎛

⎜⎜
⎜⎜
⎝

0 w1U1 0 · · · 0
0 0 w2U2 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 wn−1Un−1
w0U0 0 · · · 0 0

⎞

⎟⎟
⎟⎟
⎠

; W2 =

⎛

⎜⎜
⎜⎜
⎝

0 w11 0 · · · 0
0 0 w21 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 wn−11
w0V 0 · · · 0 0

⎞

⎟⎟
⎟⎟
⎠

,

where U0, . . . , Un−1 are unitary matrices, w0, . . . , wn−1 ∈ C and V a diagonal matrix
such that

SV S† = U1U2 · · · Un−1U0

for some unitary matrix S. Then there exists a unitary matrix P such that

W1 = PW2 P† and W †
1 = PW †

2 P†.

Proof. Let us define P as P = diag(S, P1, . . . , P̄n−1) with

Pl = (U1U2 . . . Ul)
†S

for l = 1, . . . , n − 1. Then one easily checks that W1 = PW2 P† and W †
1 = PW †

2 P†.
��

Note that a graph associated to a matrix such as W2, consists of n components, each
being either a string (ẽ0 = 0) or a loop (ẽ0 > 0). Therefore, we have the following result.
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Fig. 2. The constraint ellipse of a Toral representation

Theorem 4.12. Let φ be a non-degenerate hermitian representation of C(µ, �). Then
φ is unitarily equivalent to a representation whose associated graph is such that every
connected component is either a string or a loop.

The existence of strings or loops will depend on the ratio µ/
√

c, and therefore we split
all connected representations of C(µ, �) into three subsets, in correspondence with the
original surface described by the polynomial C(x, y, z):

(a) −1 < µ/
√

c ≤ 1 – Spherical representations,
(b) 1 < µ/

√
c ≤ 1/ cos θ – Critical toral representations,

(c) 1/ cos θ < µ/
√

c – Toral representations.

4.2. Toral representations. For µ/
√

c > 1/ cos θ the constraint ellipse lies entirely in
the region where both d and d̃ are strictly positive, e.g. as in Fig. 2. In particular this
implies, by Lemma 4.8, that a graph associated to a toral representation can not have any
transmitters or receivers. Hence, it must have a loop, and by Proposition 4.7, there exists
an integer k such that qk = 1. We note that the restriction 0 < θ < π/4 necessarily
gives k ≥ 5.

Theorem 4.13. Assume that µ/
√

c > 1/ cos θ and let k be a positive integer such that
qk = 1. Furthermore, let U0, . . . , Uk−1 be unitary matrices of dimension N and let
β ∈ R. Then φ is an N · k dimensional hermitian toral representation of C(µ, �), with
φ(Ĉ) = 4c1, if

φ(W ) =

⎛

⎜⎜⎜⎜
⎜
⎝

0
√

ẽ1 U1 0 · · · 0
0 0

√
ẽ2 U2 · · · 0

...
...

. . .
. . .

...

0 0 · · · 0
√

ẽk−1 Uk−1√
ẽ0 U0 0 · · · 0 0

⎞

⎟⎟⎟⎟
⎟
⎠

(4.8)

and

ẽl = √
c

[
µ√

c
+

cos(2lθ + β)

cos θ

]
. (4.9)
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Definition 4.14. We define a single loop representation φL of C(µ, �) to be a toral
representation, as in Theorem 4.13, with Ui chosen to be 1 × 1 matrices and k to be the
smallest positive integer such that qk = 1.

As a simple corollary to Theorem 4.12 we obtain

Corollary 4.15. Let φ be a toral representation of C(µ, �). Then φ is unitarily equivalent
to a direct sum of single loop representations.

Proposition 4.16. A single loop representation of C(µ, �) is irreducible.

Proof. Given a single loop representation φL of dimension n, it holds that qn = 1, and
there exists no n′ < n such that qn′ = 1, by definition. Now, assume that φL is reducible.
Then, by Proposition 4.1, φL is equivalent to a direct sum of at least two representations.
In particular, this means that there exists a toral representation of C(µ, �) of dimension
m < n which implies, by Proposition 4.7, that there exists an integer n′ < n such that
qn′ = 1. But this is impossible by the above argument. Hence, φL is irreducible. ��

For two loop representations of the same dimension, it is not only the value of the
Casimir Ĉ that distinguishes them, but there is in fact a whole set of inequivalent repre-
sentations - parametrized by a complex number.

Definition 4.17. Let φL be a single loop representation in the notation of Theorem 4.13
with Ul = eiαl . We define the index z(φL) as the complex number

z(φL) = √
ẽ0ẽ1 · · · ẽk−1 eiγ

with γ = α0 + α1 + · · · + αk−1.

Lemma 4.18. Let k, n be integers such that gcd(k, n) = 1 and define

Al(β) = cos

(
β +

2πkl

n

)

for l = 0, 1, . . . , n − 1. Then there exists permutations σ+, σ− ∈ Sn such that

Aσ+(l)(β) = Al(β + 2π/n) and Aσ−(l)(β) = Al(2π/n − β)

for l = 0, 1, . . . , n − 1.

Proof. Let us prove the existence of σ+; the proof that σ− exists is analogous. We want
to show that there exists a permutation σ+ such that Aσ+(l)(β) = Al(β + 2π/n). Let us
make an Ansatz for the permutation; namely, we take it to be a shift with σ+(l) = l + δ

(mod n) for some δ ∈ Z. We then have to show that there exists a δ such that

cos

(
β +

2πk(l + δ)

n

)
= cos

(
β +

2π(kl + 1)

n

)
.

This holds if for some m ∈ Z,

β +
2πk(l + δ)

n
= β +

2π(kl + 1)

n
+ 2πm ⇐⇒

kδ − nm = 1.

Now, can we find δ such that this holds for some m? It is an elementary fact in number
theory that such an equation has integer solutions for δ and m if gcd(k, n) = 1. Hence,
if we set σ+(l) = l + δ (mod n), where δ is such a solution, then the argument above
shows that Aσ+(l)(β) = Al(β + 2π/n). ��
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Lemma 4.19. Let θ = πk/n with gcd(k, n) = 1, and set

f (β) =
n−1∏

l=0

[
µ +

√
c cos(2lθ + β)

cos θ

]
.

Then f (β) = f (β + 2π/n), f (β) = f (2π/n − β) and if β, β ′ ∈ [0, π/n] then β �= β ′
implies that f (β) �= f (β ′).
Proof. It follows directly from Lemma 4.18 that f (β) = f (β +2π/n) = f (2π/n −β).

Since f is periodic, with period 2π/n, it can be expanded in a Fourier series as

f (β) =
∞∑

l=−∞
ale

2π ilβ/(2π/n) =
∞∑

l=−∞
ale

ilnβ.

Comparing the Fourier series with the original expression for f , and introducing q = e2iθ ,
we get

f (β) =
( √

c

cos θ

)n n−1∏

l=0

[
µ cos θ√

c
+

1

2

(
qleiβ + q−l e−iβ

)]
=

∞∑

l=−∞
ale

inlβ.

From this equality we deduce that there are only three non-zero coefficients in the Fourier
series, namely a−1, a0, a1. Comparing both sides, we obtain

a−1 = 1

2n
q−n(n−1)/2,

a1 = 1

2n
qn(n−1)/2,

which implies that
( √

c

cos θ

)−n

f (β) = a0 +
1

2n
q−n(n−1)/2e−inβ +

1

2n
qn(n−1)/2einβ

= a0 +

(
−1

2

)n−1

cos nβ.

From this it is clear that f (β) �= f (β ′) when β �= β ′ and β, β ′ ∈ [0, π/n]. ��
Proposition 4.20. Let φL and φ′

L be single loop representations of dimension n, such

that φL(Ĉ) = φ′
L(Ĉ). Then φL and φ′

L are equivalent if and only if z(φL) = z(φ′
L).

Proof. Then characteristic equation of φL(W ) is λn −z(φL). Therefore, a necessary con-
dition for φL and φ′

L to be equivalent is that z(φL) = z(φ′
L). Now, to prove the opposite

implication, assume that z(φL) = z(φ′
L). Let us denote the β in Theorem 4.13 by β and

β ′ for φL and φ′
L respectively. The fact that z(φL) = z(φ′

L) gives directly γ = γ ′, and in
the notation of Lemma 4.19, we must have f (β) = f (β ′). By the same Lemma, writing
θ = πk/n, this leaves us with three possibilities: Either β ′ = β, β ′ = β + 2πm/n or
β ′ = 2πm/n − β for some m ∈ Z. In all three cases, by Lemma 4.18, there exists a
permutation σ such that for W ′′ = σφ′

L(W )σ † it holds that ẽ′′
l = ẽl . Then it is easy to

construct a diagonal unitary matrix P such that φL(W ) = Pσφ′
L(W )σ † P†. ��

Hence, for a given dimension n and for a given value of the Casimir, such that toral
representations exist, the set of inequivalent irreducible representations is parametrized
by a complex number w such that π/n ≤ |w| ≤ 2π/n. We relate w to a single loop
representation by setting w = βeiγ .
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4.3. Spherical representations. In contrast to the case of toral representations, we will
show that, in a spherical representation, there can not exist any loops. The intuitive pic-
ture is that the part of the ellipse lying in the region where either d or d̃ is negative, is
too large to skip by a rotation through the map s ; see, e.g. Fig. 1.

By Lemma 4.8, we know that the �x corresponding to a transmitter or a receiver must
lie on the d-axis or the d̃-axis respectively. For this reason, let us calculate the points
where the ellipse crosses the axes.

Lemma 4.21. Consider the ellipse (x +y−2µ)2 + (x −y)/�
2 = 4c. Then x = 0 implies

y = a± and y = 0 implies x = a± with

a± = 2 sin θ
[
µ sin θ ±

√
c − µ2 cos2 θ

]
= 2 sin2 θ

⎡

⎣µ ±
√

µ2 +
c − µ2

sin2 θ

⎤

⎦ (4.10)

Lemma 4.22. Let �x = (0, a+), with a+ as in Lemma 4.21. Then s(�x) = (a−, 0).

Lemma 4.23. If φ is a spherical representation of C(µ, �), that contains a string on n
vertices, then

0 < (n + 1)θ ≤ π. (4.11)

Proof. Let us denote the vectors corresponding to the vertices in the string by �x1, . . . , �xn
and we define 0 < β, θ0 < 2π through �x1 = �x(β) and �xn = �x(β + θ0) in the notation
of Proposition 4.4. Since �xn = sn−1

(�x(β)
)

we must have that (n − 1)2θ = θ0 + 2πk
for some integer k ≥ 0. Let us prove that k = 0. For a spherical representation, a− ≤ 0,
which implies, by Lemma 4.22, that s

(�x(β + θ0)
) = (a−, 0) can not correspond to a

vertex of a connected representation. Hence, for any α ∈ (0, 2θ), s
(�x(β + θ0 − α)

)
can

not correspond to a vertex of a connected representation. This implies that k = 0, i.e.
the string never crosses the d̃-axis. Therefore 0 < (n − 1)2θ = θ0 < 2π . Again, by
Lemma 4.22, both vectors s(0, a+) and s2(0, a+) have non-positive components which
implies that 0 < (n + 1)2θ ≤ 2π . In fact, equality is attained when a− = 0. ��
Proposition 4.24. Let φ be a spherical representation of C(µ, �). Then the associated
graph has no loops.

Proof. In the same way as in the proof of Lemma 4.23, we can argue that for α ∈ (0, 2θ),
s
(�x(β + θ0 − α)

)
has a negative component (or equals (0, 0)), which implies that it is

impossible to have loops. ��
Hence, we have excluded the possibility of loop representations and can conclude that

all spherical representations are string representations. We therefore get the following
corollary to Theorem 4.12.

Corollary 4.25. Let φ be a spherical representation of C(µ, �). Then φ is unitarily
equivalent to a direct sum of string representations.

Let us now investigate the conditions for the existence of strings.

Lemma 4.26. Let �x1 = (a, 0) and �xn = (0, b). Then sn−1(�x1) = �xn if and only if

(i) qn = −1, µ = 0 and a = b,
(ii) qn = 1 and b = −a + 4µ sin2 θ ,

(iii) qn �= ±1, and
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a = b = −2µ sin θ sin(n − 1)θ

cos nθ
. (4.12)

In particular, if a = a+ and qn = 1, then b = a−.

Proposition 4.27. Let φ be a spherical representation of C(µ, �) containing a string on
n vertices. Then

√
c cos nθ + µ cos θ = 0. (4.13)

Proof. Assume the existence of a string on n vertices. From Lemma 4.26 we can exclude
the possibility that qn = 1, since a− < 0. Hence, either qn = −1 and µ = 0 or qn �= ±1.
If qn = −1 and µ = 0 then (4.13) is clearly satisfied. Now, assume qn �= ±1 and
a = b = 2µ sin θ sin(n−1)θ

cos nθ
. Demanding that (a, 0) and (0, b) lie on the ellipse determines

c as c = µ2 cos2 θ/ cos2 nθ . Let us set ε = sgn µ. Recalling that 0 < (n + 1)θ ≤ π ,
from Lemma 4.23, demanding a > 0 makes it necessary that sgn(cos nθ) = −ε, which
determines the sign of the root in the statement. ��

As we have seen, the existence of a loop puts a restriction on � through the relation
qn = 1. For the case of strings, the restriction comes out as a restriction on the possible
values of the Casimir.

In the next theorem we show that the necessary conditions for the existence of spher-
ical representations are in fact sufficient.

Theorem 4.28. Let n be a positive integer, c a positive real number such that
√

c cos nθ +
µ cos θ = 0 and 0 < (n + 1)θ ≤ π . Furthermore, let U1, . . . , Un−1 be N × N uni-
tary matrices. Then φ is a N · n-dimensional spherical representation of C(µ, �), with
φ(Ĉ) = 4c1, if

φ(W ) =

⎛

⎜⎜⎜⎜⎜
⎝

0
√

ẽ1 U1 0 · · · 0
0 0

√
ẽ2 U2 · · · 0

...
...

. . .
. . .

...

0 0 · · · 0
√

ẽn−1 Un−1
0 0 · · · 0 0

⎞

⎟⎟⎟⎟⎟
⎠

and

ẽl = 2
√

c sin lθ sin(n − l)θ

cos θ
.

Proof. It is easy to check that the matrixφ(W ) satisfy (4.1), since s(ẽl , ẽl−1) = (ẽl+1, ẽl).
Moreover, it is clear that ẽl > 0 since 0 < (n − 1)θ < π . Let us show that it is indeed a
spherical representation, i.e. −1 < µ/

√
c ≤ 1. Since

√
c cos nθ + µ cos θ = 0, we get

that

µ√
c

= −cos nθ

cos θ

and from 0 < (n + 1)θ ≤ π we obtain 0 < nθ ≤ π − θ . From this it follows that
| cos nθ | ≤ | cos θ | which implies that φ is a spherical representation. ��
Remark. Let us note that the matrix elements of the diagonal matrix Z = [W, W †]/2�

can be written as zl = √
c sin(n + 1 − 2l)θ .
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Fig. 3. The constraint ellipse of a critical toral representation

Definition 4.29. We define a single string representation φS of C(µ, �) to be a spher-
ical representation, as in Theorem 4.28, with Ui chosen to be 1 × 1 matrices.

Proposition 4.30. Any single string representation of C(µ, �) is irreducible.

Proof. Assume that φS is reducible and has dimension n with φS(Ĉ) = 4c1. Then, by
Proposition 4.1, φS is equivalent to a direct sum of at least two representations of dimen-
sion < n. In particular, this implies that there exists a representation φ of dimension
m < n with φ(Ĉ) = 4c1. But this is false, since there is at most one integer l such that
�x(β + 2lθ) = �x(β + θ0), for 0 < (l + 1)2θ < 2π and 0 < θ0 < 2π . ��

We conclude that the single string representations are the only irreducible spherical
representations. Moreover, two single string representations φS and φ′

S , of the same

dimension, are equivalent if and only if φS(Ĉ) = φ′
S(Ĉ).

4.4. Critical toral representations. In the case of critical toral representations, the con-
straint ellipse intersects the positive d (resp. d̃) axis twice, as in Fig. 3. As we will show,
there are both loop representations and string representations. String representations can
be obtained from Theorem 4.28, by demanding that 1 < µ/

√
c ≤ 1/ cos θ instead of

0 < (n + 1)θ ≤ π . Let us as well give an example of a loop representation.

Proposition 4.31. Assume that θ = π/N, N ≥ 5 odd and 1 < µ/
√

c ≤ 1/ cos θ . If
we define φ as in Theorem 4.13 with β = 0, then φ is a critical toral representation of
C(µ, �).

Proof. One simply has to check that

ẽl = √
c

[
µ√

c
+

cos(2l π
N )

cos π
N

]
> 0

for l = 0, . . . , N − 1. If N is odd then 2θl /∈ (π − θ, π + θ) and 2θl /∈ (2π − θ, 2π),
which implies that | cos 2θl| < | cos θ |. Since µ/

√
c > 1 we conclude that ẽl > 0 for

l = 0, . . . , N − 1. ��
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In contrast to the previous cases, it is, for a given value of the Casimir, possible to
have both string representations and loop representations. Namely, if we assume that
qn = 1 and let �x1 correspond to the largest intersection with the d-axis, then sn−1(�x1)

will be the smallest intersection with the d̃-axis (cp. Lemma 4.26), and one can check
that all pairs �xi , for i = 2, . . . , n − 1 will be strictly positive.

4.5. Summary of representations. We have shown that every representation can be
decomposed into a direct sum of irreducible representations of two types: string and
loop representations. String representations correspond to matrices of the form

φ(W ) =

⎛

⎜⎜⎜⎜
⎝

0 W12 0 · · · 0
0 0 W23 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 WN−1,N
0 0 · · · · · · 0

⎞

⎟⎟⎟⎟
⎠

,

and loop representations to matrices of the form

φ(W ) =

⎛

⎜⎜⎜⎜
⎝

0 W12 0 · · · 0
0 0 W23 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 WN−1,N
WN ,1 0 · · · · · · 0

⎞

⎟⎟⎟⎟
⎠

,

with W12, W23, . . . , WN−1,N , WN ,1 �= 0. Furthermore, existence of representations puts
restrictions on the parameter � and the value 4c of the Casimir Ĉ . A necessary con-
dition for loop representations to exist is that there is a positive integer k such that
qk = e2ikθ = 1, where � = tan θ . A necessary condition for string representations to
exist is that

√
c cos nθ + µ cos θ = 0, for some positive integer n.

The structure of representations respects the classical geometry as follows: In the
region −1 < µ/

√
c ≤ 1 we have shown that there are only string representations and

when µ/
√

c > 1/ cos θ there are only loop representations. In the critical region, where
1 < µ/

√
c ≤ 1/ cos θ (classically, one is close to the singular surface), there are in fact

representations of both types.

5. Eigenvalue Distribution and Surface Topology

In this section we consider the eigenvalue distribution of the matrix X in the representa-
tions obtained in sect. 4, with the help of numerical computations. The eigenvalue dis-
tribution is of interest since in [Shi04] it was shown that the Morse theoretic information
of topology manifests itself in certain branching phenomena of eigenvalue distribution
of a single matrix. More precisely, critical points of the Morse function correspond to
branching points of the eigenvalue distribution. (The meaning of the word “branching
phenomena” will be illustrated below by using the eigenvalue distribution of the matrix
X , plotted in Fig. 4, as an example.) This was achieved by using arguments analogous
to those used in the WKB approximation in quantum mechanics, and is part of a more
general correspondence between matrix elements and certain geometric quantities com-
puted from the corresponding function on the surface. For a description of this analogy
and also for more examples, we refer the reader to [Shi04].
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Fig. 4. Plot ofλi andλi+1−λi versus i , whereλ1 < λ2 < . . . < λN are eigenvalues of X , forµ = 0.9, 1.1, 1.3.
The size of matrices is given by N = 30. Critical values of x are also shown by the horizontal lines

Eigenvalues of X (whose continuum counterpart, x , is a Morse function on the
surface) in the representations obtained in Sect. 4, do exhibit this branching phenomena,
as is consistent with the results in [Shi04]. In Fig. 4, eigenvalues of X , computed numer-
ically, for the case µ = 0.9, 1.1, 1.3 are shown. (We use the normalization convention
in which c = 1, so that the transition between sphere and torus occurs at µ = 1. The
size of matrices is given by N = 30. For the toral representation, we have taken the
additional “phase shift” parameter β to be zero. Using different β’s does not change the
plot qualitatively.) The horizontal lines correspond to the critical values of the function
x on the surface.

The plots directly reflect the Morse theoretic information of topology, with x as the
Morse function, for each case µ = 0.9, 1.1, 1.3. For the case µ = 0.9, there are two
critical values which are connected by a single branch. Correspondingly, the eigenvalue
plot shows that there is only one “sequence” of eigenvalues λ1 < λ2 < . . . < λN
which increase smoothly. For the cases µ = 1.1 and µ = 1.3, there are four critical
values of x , say xA < xB < xC < xD . For xA < x < xB and xC < x < xD the
surface consists of a single branch, whereas for xB < x < xC , the surface consists of
two branches. Correspondingly, in the plot of eigenvalues, one sees that eigenvalues
xA < λi < xB and xC < λi < xD each consists of a single smoothly increasing
eigenvalue sequence, whereas eigenvalues xC < λi < xD are naturally divided into two
sequences both of which increase smoothly. This branching phenomena of eigenvalues
can be seen more manifestly if one plots the difference between eigenvalues, λi+1 − λi ,
as is shown in the figure. From the figure it can also be seen that by decreasing the
parameter µ from 1.3 to 1.1 the part of the surface which has two branches shrinks,
as is consistent with the geometrical picture about the transition between torus and
sphere.
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6. Comparison with Other Quantization Methods

6.1. The torus. The purpose of this section is to compare matrix representations obtained
in Sect. 4, in the torus case, with those one gets using Berezin-Toeplitz quantization. Full
details and proofs can be found in [Hof07]. We shall use Theorem 5.1 from the paper
[BHSS91] applied to S

1 × S
1. Namely n = 1, τ = 1 and we omit the Laplacian terms:

π

m

n∑

k=1

τk

(

r2
k +

r2
k+n

t2
k

)

and
n∏

s=1

exp

(
−πτs

2m

(
r2

s +
r2

s+n

τ 2
s

))
.

We reformulate it for simplicity and to fix notations.

Theorem 6.1. Let r1, r2 ∈ Z and N ≥ 5 be an integer. Then the N × N-matrix corre-
sponding to the phase function e2π i(r1ϑ+r2ϕ) is:

M
(

e2π i(r1ϑ+r2ϕ)
)

= χr1r2 S−r1 T r2 and χ := e− π i
N ,

where the S and T are matrices such that:

S =

⎛

⎜⎜
⎜⎜⎜
⎝

0 1 0 · · · 0

0 0 1
. . . 0

...
...

...
. . .

...

0 0 0 · · · 1
1 0 0 · · · 0

⎞

⎟⎟
⎟⎟⎟
⎠

, T = diag(1, q, . . . , q N−1) where q := χ2 = e− 2π i
N .

Remark 6.2. The M map is not a morphism of algebras. However, M is continuous in
the topology of uniform convergence.

To apply this theorem to the torus case, i.e. the regular values of the polynomial
function (x2 + y2 − µ)2 + z2 − c (with µ/

√
c > 1), one has to choose an embedding:

Proposition 6.3. Assume that µ/
√

c > 1. By using the parametrization:
⎧
⎨

⎩

x(ϑ, ϕ) = cos(2πϑ)
√√

c cos(2πϕ) + µ

y(ϑ, ϕ) = sin(2πϑ)
√√

c cos(2πϕ) + µ

z(ϑ, ϕ) = √
c sin(2πϕ)

one gets:

M(x) = S

2

√

1µ +

√
c

2

(
χ−1T + χT −1

)
+

S−1

2

√

1µ +

√
c

2

(
χT + χ−1T −1

)
, (6.1)

M(y) = S

2i

√

1µ +

√
c

2

(
χ−1T + χT −1

)− S−1

2i

√

1µ +

√
c

2

(
χT + χ−1T −1

)
, (6.2)

M(z) =
√

c

2i

(
T − T −1

)
. (6.3)

Proof. The key idea is an expansion in Fourier series of
√

µ +
√

c cos(2πϕ). We then
replace phase functions by matrices T and S according to Theorem 6.1. Square roots of
matrices are well defined since the matrices are positive definite. ��
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Lemma 6.4. Let D = diag(d1, . . . , dN ) be a diagonal N × N-matrix, then:

S−1 DS = diag(dN , d1, . . . , dN−1) and SDS−1 = diag(d2, . . . , dN , d1).

Let us denote:

D :=
√

1µ +

√
c

2

(
χT + χ−1T −1

)
and D̃ :=

√

1µ +

√
c

2

(
χ−1T + χT −1

)
.

Then one can write (6.1) and (6.2) as:

M(x) = 1

2

(
SD̃ + S−1 D

)
and M(y) = − i

2

(
SD̃ − S−1 D

)
.

It is easily seen that the matrices D and D̃ are diagonal:

D = diag

(√

µ +
√

c cos

(
2πl

N
+

π

N

))

l=1,...,N

,

D̃ = diag

(√

µ +
√

c cos

(
2πl

N
− π

N

))

l=1,...,N

.

By Lemma 6.4,

SD̃ = SD̃S−1S = diag

(√

µ +
√

c cos

(
2πl

N
+

π

N

))

l=1,...,N

× S = DS.

As a consequence, M(x) and M(y) can be written as:

M(x) = 1

2

(
DS + S−1 D

)
and M(y) = − i

2

(
DS − S−1 D

)
.

Theorem 6.5. The matrices M(x), M(y) and M(z) are:

M(x) = 1

2

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

0 x1 0 · · · 0 xN
x1 0 x2 · · · 0 0

0 x2 0
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0 · · · . . . 0 xN−1
xN 0 · · · 0 xN−1 0

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

,

M(y) = − i

2

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

0 y1 0 · · · 0 −yN
−y1 0 y2 · · · 0 0

0 −y2 0
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0 · · · . . . 0 yN−1
yN 0 · · · 0 −yN−1 0

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

,

M(z) = diag(z1, z2, . . . , zN ),



Noncommutative Riemann Surfaces by Embeddings in R
3 425

where the xl ’s, yl ’s and zl ’s (for l = 1, . . . , N) are:

xl = yl =
√

µ +
√

c cos

(
2πl

N
+

π

N

)
and zl = −√

c sin

(
2πl

N

)
.

These matrices satisfy the following relations:

Theorem 6.6. Let µ,
√

c ∈ R and N ≥ 5 such that µ/
√

c > 1. If one assumes
� = tan(θ) with θ := π/N, then:

[X̃ , Ỹ ] = i�(cos(θ)Z̃),

[Ỹ , (cos(θ)Z̃)] = i�
(

X̃(X̃2 + Ỹ 2 − µ1) + (X̃2 + Ỹ 2 − µ1)X̃
)

,

[(cos(θ)Z̃), X̃ ] = i�
(

Ỹ (X̃2 + Ỹ 2 − µ1) + (X̃2 + Ỹ 2 − µ1)Ỹ
)

,

(X̃2 + Ỹ 2 − µ1)2 + (cos(θ)Z̃)2 = (
√

c cos(θ))21,

where X̃ := M(x), Ỹ := M(y) and Z̃ := M(z) are the matrices obtained in
Theorem 6.5.

Proof. This is a direct computation on matrices. ��
This proves that the matrices X = X̃ , Y = Ỹ and Z = cos(θ)Z̃ satisfy exactly

the relations (3.2), (3.3) and (3.4). The Casimir identity is satisfied with c replaced by
c cos2 θ . Note that cos θ converges to 1 as N goes to infinity.

6.2. The sphere. Let us start by constructing a parametrization for the deformed sphere
described by (3.1) with −√

c < µ <
√

c. Recall the well-known parametrization of
the sphere ξ1 = sin ϑ cos ϕ, ξ2 = sin ϑ sin ϕ, ξ3 = cos ϑ . We would like to keep the
axial symmetry and therefore we make the following Ansatz outside the poles for a map
(x, y, z) : S2 → �,

x = f (ϑ) cos ϕ,

y = f (ϑ) sin ϕ.

Keeping the relation {x, y}S2 = z, using the (round sphere) Poisson bracket,

{ f, g}S2 = λ

sin ϑ

(
∂ϑ f ∂ϕg − ∂ϕ f ∂ϑg

)

(where λ > 0 is an arbitrary parameter scaling the round sphere volume as 4π/λ), yields

z = λ

sin ϑ
f ′(ϑ) f (ϑ).

Demanding that these functions satisfy the constraint (x2 + y2 − µ)2 + z2 − c = 0 gives
the following differential equation for f (ϑ):

(
f 2(ϑ) − µ

)2
+

λ2

sin2 ϑ

(
f ′(ϑ) f (ϑ)

)2 − c = 0,
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which is solved by

f (ϑ) =
√

µ +
√

c cos

(
2

λ
cos ϑ + B

)
,

for arbitrary B. As ϑ goes to 0 or π we need that x and y go to zero; there are two
ways of achieving this (giving conditions on λ and B) but only the following leads to an
embedding:

Proposition 6.7. The map � : S2 → R
3 defined by

ϑ ∈ (0, π) :

⎧
⎪⎪⎨

⎪⎪⎩

x = cos ϕ

√
µ +

√
c cos

( 2
λ

cos ϑ
)

y = sin ϕ

√
µ +

√
c cos

( 2
λ

cos ϑ
)
,

z = √
c sin

( 2
λ

cos ϑ
)

ϑ = 0 : x = y = 0, z = √
c sin(2/λ); ϑ = π : x = y = 0, z = −√

c sin(2/λ),

with µ√
c

= − cos
( 2

λ

)
, −1 < µ/

√
c < 1, and 0 < 2/λ < π , is an embedding of the

(round) sphere into R
3 whose image coincides with �. Moreover, it holds that

{x, y}S2 = z, {y, z}S2 = 2x(x2 + y2 − µ) and {z, x}S2 = 2y(x2 + y2 − µ).

The embedding is therefore a Poisson map and hence volume preserving (where � is
equipped with the volume defined by the inverse of the restriction of the C-bracket (2.1)).

Proof. Outside the poles all the assertions are computed in a straight forward manner.
Around the poles we can express x ,y and z by the local round sphere charts ξ1 and ξ2 to
see that the map is a smooth embedding. ��

Let us introduce the hermitian n × n matrices S1, S2, S3, whose nonzero matrix
elements are

(
S1
)

k,k+1 = 1

2

√
k(n − k) = (

S1
)

k+1,k, k = 1, . . . , n − 1,

(
S2
)

k,k+1 = − i

2

√
k(n − k) = −(S2

)
k+1,k, k = 1, . . . , n − 1,

(
S3
)

k,k = 1

2
(n + 1 − 2k), k = 1, . . . , n,

satisfying [Sa, Sb] = iεabc Sc and S2
1 + S2

2 + S2
3 = n2−1

4 1. We then define rescaled
matrices Xa = A(n)Sa , for some function A(n).

In analogy with the case of the torus, we would like to compare the Berezin-Toeplitz
quantization of the embedding functions with the results obtained in Sect. 4.3. Quan-
tizing the function cos ϑ will (up to scaling) give the diagonal matrix S3. However, a
function of cos ϑ is in general not mapped to the same function of S3 and one can
numerically check that the quantization of z(ϑ) (in Proposition 6.7) is not equal to the
matrix Z obtained in Sect. 4.3. However, they agree up to corrections of order 1/n.
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In [GH82] the following prescription for replacing functions on S2 by matrices was
introduced: Smooth functions on S2 are expanded in terms of the spherical harmonics
Ylm(ϑ, ϕ), resp. Ylm = rlYlm , written as

Ylm(x1, x2, x3) =
3∑

a1,...,al=1

c(m)
a1···al

xa1 · · · xal ,

(x1 = r sin ϑ cos ϕ, x2 = r sin ϑ sin ϕ, x3 = r cos ϑ) with c(m)
a1···al chosen to be totally

symmetric with respect to the lower indices. A function is then mapped to a n × n via

T (n)
(
Ylm

) = B(n, l)
3∑

a1,...,al=1

c(m)
a1···al

Xa1 · · · Xal ,

where B(n, l) = √
4π

√
(n2−1)l (n−1−l)!

(n + l)! and X1, X2, X3 are defined as above, with the

choice A(n) = 2/
√

n2 − 1. Disregarding multiplication by an overall n-dependent func-
tion, the map T (n) will act on the basic functions in the following way:

T (n)(x1) = T (n)
(

sin ϑ cos ϕ
) ∼ S1,

T (n)(x2) = T (n)
(

sin ϑ sin ϕ
) ∼ S2,

T (n)(x3) = T (n)
(

cos ϑ
) ∼ S3.

We will now show that, for some scaling of X1, X2, X3, the following hermitian matrices:

X̂ = 1

2

√

µ +
√

c cos

(
2

λ
X3

)(√
1 − X2

3

)−1

X1

+
1

2
X1

√

µ +
√

c cos

(
2

λ
X3

)(√
1 − X2

3

)−1

,

Ŷ = 1

2

√

µ +
√

c cos

(
2

λ
X3

)(√
1 − X2

3

)−1

X2

+
1

2
X2

√

µ +
√

c cos

(
2

λ
X3

)(√
1 − X2

3

)−1

,

Ẑ = √
c sin

(
2

λ
X3

)
,

being noncommutative analogues of the embedding functions in Proposition 6.7, agree
with the results obtained in Sect. 4.3 up to corrections of order 1/n; moreover, the matrix
Ẑ will have an exact agreement. (Actually, all orderings we tried for x + iy gave matri-
ces with nonzero elements only on the first off-diagonal; furthermore, they also agreed
with our results up to order 1/n, as we have seen from numerical computations.) For a
spherical representation, it holds that

Zll = 1

2�
[W, W †]ll = √

c sin
(
(n + 1 − 2l)θ

)
,
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with µ cos θ +
√

c cos nθ = 0. Furthermore, the matrix elements of Ẑ are given by

Ẑll = √
c sin

(
(n + 1 − 2l)

A(n)

λ

)
.

As one can easily check, the relation µ cos θ +
√

c cos nθ = 0 defines a unique smooth
function θ(n) such that 0 < θ(n) < π/(n + 1). Defining A(n) = λθ(n) gives directly
that Zll = Ẑll , and one can show that the matrices X̂ , Ŷ will agree with the matrices
X, Y up to corrections of order 1/n. The main ingredient is the following lemma.

Lemma 6.8.

µ√
c

+ cos

(
2

λ

(
X3
)

l,l

)
= 2 sin(n − l)θ sin lθ

cos θ
+ O

(
1

n

)
.

Proof. Setting θ = A(n)/λ, we can rewrite

cos

(
2

λ

(
X3
)

l,l

)
= cos(n − l)θ cos lθ + sin(n − l)θ sin lθ

+
(

cos θ − 1
)

cos(n − 2l)θ − sin θ sin(n − 2l)θ.

Since − cos(2/λ) = µ/
√

c = − cos nθ/ cos θ , it follows that θ(n) = 2/(λn)+ O(1/n2)

and we conclude that

cos

(
2

λ

(
X3
)

l,l

)
= cos(n − l)θ cos lθ + sin(n − l)θ sin lθ + O

(
1

n

)
.

Since µ = −√
c cos

(
2/λ

)
, we have − cos nθ = − cos(2/λ + O(1/n)) = µ/

√
c +

O(1/n), which implies that

µ√
c

+ cos

(
2

λ

(
X3
)

l,l

)
= 2 sin(n − l)θ sin lθ + O

(
1

n

)
,

from which the statement of the lemma follows. ��

Acknowledgement. We would like to thank the Swedish Research Council, the Royal Institute of Technology,
the Knut and Alice Wallenberg foundation, the Japan Society for the Promotion of Science, the Albert Einstein
Institute, the Sonderforschungsbereich “Raum-Zeit-Materie”, the IHES, the ESF Scientific Programme MIS-
GAM, and the Marie Curie Research Training Network ENIGMA for financial support resp. hospitality. In
addition, we are thankful for the constructive remarks of the referees.

References

[ASS06] Assem, I., Simson, D., Skowronski, A.: Elements of the Representation Theory of Associative
Algebras. LMS Student Texts 65, Cambridge: Cambridge University Press, 2006

[Ber78] Bergman, G.M.: The diamond lemma for ring theory. Adv. Math. 29, 178–218 (1978)
[BHSS91] Bordemann, M., Hoppe, J., Schaller, P., Schlichenmaier, M.: gl(∞) and geometric quantization.

Commun. Math. Phys. 138, 209–244 (1991)
[BKL05] Bak, D., Kim, S., Lee, K.: All higher genus BPS membranes in the plane wave background.

JHEP 0506, 035 (2005)
[BMS94] Bordemann, M., Meinrenken, E., Schlichenmaier, M.: Toeplitz Quant. of Kähler manifolds

and gl(N ), N → ∞ limits. Commun. Math. Phys. 165, 281–296 (1994)
[FFZ89] Fairlie, D., Fletcher, P., Zachos, C.: Trigonometric structure constants for new infinite

algebras. Phys. Lett. B 218, 203 (1989)



Noncommutative Riemann Surfaces by Embeddings in R
3 429

[GH82] Hoppe, J.: Quantum theory of a massless relativistic surface. Ph.D. Thesis (Advisor:
J. Goldstone), MIT. http://www.aei.mpg.de/~hoppe/, 1982

[FH94] Harary, F.: Graph Theory. Reading MA: Addison-Wesley, 1969
[Hir76] Hirsch, M.W.: Differential topology. New-York: Springer, 1976
[Hof02] Hofer, L.: Surfaces de Riemann compactes. Master’s thesis, Université de Haute-Alsace

Mulhouse, http://laurent.hofer.free.fr/data/master_hofer_2002.pdf, 2002
[Hof07] Hofer, L.: Aspects algébriques et quantification des surfaces minimales. Ph.D. thesis,

Université de Haute-Alsace de Mulhouse, http://laurent.hofer.free.fr/data/these_hofer_2007.
pdf, June 2007

[Hop89/88] Hoppe, J.: diffeomorphism groups, quantization, and SU (∞). Int. J. of Mod. Phys. A, 4(19),
5235–5248 (1989); Diff A T 2, and the curvature of some infinite dimensional manifolds. Phys.
Lett. B 215, 706–710 (1988)

[KL92] Klimek, S., Lesniewski, A.: Quantum Riemann surfaces I. The unit disc Commun. Math. Phys.
146, 103–122 (1992); Quantum Riemann surfaces II. The discrete series. Lett. Math. Phys. 24,
125–139 (1992)

[Mad92] Madore, J.: The fuzzy sphere. Class. Quant. Grav. 9, 69–88 (1992)
[NN99] Natsume, T., Nest, R.: Topological approach to quantum surfaces. Commun. Math. Phys.

202, 65–87 (1999)
[Now97] Nowak, C.: Über Sternprodukte auf nichtregulren Poissonmannigfaltigkeiten (Ph.D Thesis,

Freiburg University); Star Products for integrable Poisson Structures on R
3. http://arxiv.org/

abs/q-alg/9708012, 1997
[Shi04] Shimada, H.: Membrane topology and matrix regularization. Nucl. Phys. B 685, 297–320

(2004)

Communicated by Y. Kawahigashi

http://www.aei.mpg.de/~hoppe/
http://laurent.hofer.free.fr/data/master_hofer_2002.pdf
http://laurent.hofer.free.fr/data/these_hofer_2007.pdf
http://laurent.hofer.free.fr/data/these_hofer_2007.pdf
http://arxiv.org/abs/q-alg/9708012
http://arxiv.org/abs/q-alg/9708012

	Noncommutative Riemann Surfaces by Embeddings in R3
	Abstract:
	Genus g Riemann Surfaces
	The Construction for General Riemann Surfaces
	The Torus and Sphere C-Algebras
	Representations of the Torus and Sphere Algebras
	Eigenvalue Distribution and Surface Topology
	Comparison with Other Quantization Methods


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


