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a b s t r a c t

We revisit the model of a quantum Brownian oscillator linearly
coupled to an environment of quantum oscillators at finite temper-
ature. By introducing a compact and particularly well-suited for-
mulation, we give a rather quick and direct derivation of the
master equation and its solutions for general spectral functions
and arbitrary temperatures. The flexibility of our approach allows
for an immediate generalization to cases with an external force
and with an arbitrary number of Brownian oscillators. More impor-
tantly, we point out an important mathematical subtlety concern-
ing boundary-value problems for integro-differential equations
which led to incorrect master equation coefficients and impacts
on the description of nonlocal dissipation effects in all earlier der-
ivations. Furthermore, we provide explicit, exact analytical results
for the master equation coefficients and its solutions in a wide vari-
ety of cases, including ohmic, sub-ohmic and supra-ohmic environ-
ments with a finite cut-off.

Published by Elsevier Inc.
1. Introduction

1.1. New results placed in background context

An open quantum system (OQS) [1] refers to a quantum system interacting with an environment,
which could be multi-partite, possessing many more degrees of freedom (it could also be identified
as the remaining ‘‘irrelevant’’ degrees of freedom of the system itself). An environment in some
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simplified modeling can be described in terms of its spectral density and parametrized by its temper-
ature. Its influence on the open system can be expressed in terms of fluctuations (vacuum and ther-
mal) and noises (the most general form can be colored and multiplicative). A theory of OQS
describes the nature and dynamics of this system as a result of such interactions, which manifest in
quantum dissipation and diffusion and can alter significantly the quantum coherence, entanglement
and correlation properties of the otherwise closed quantum system. The familiar quantum statistical
mechanics is the extreme limiting case when the system remains in equilibrium through interaction
with a thermal or chemical reservoir.

Open quantum system is the theoretical construct suitable for the investigation of the properties
and dynamics of nonequilibrium quantum systems in the Langevin vein (as distinguished from the
Boltzmann vein, which considers closed systems albeit often with a hierarchical structure; see, e.g.,
Ref. [2]). It plays an important role in addressing the fundamental issues such as the quantum-to-clas-
sical transition through the environment-induced decoherence mechanism [3,4]. For practical pur-
poses it has been effectively applied to exciting phenomena in many new directions of micro- and
meso-physics in the last two decades, made possible by innovative experiments aided by technolog-
ical advances in high-precision instrumentation. These include the areas of superconductivity such as
quantum dissipative tunneling in SQUIDs [5–7], atomic and quantum optical systems using ultrafast
lasers with atoms in cavities and optical lattices [8–10], as well as nanoelectromechanical devices
[11,12] which have great potential in physical, chemical and bioscience applications. For an accurate
description of the system’s properties and evolution in these processes, the effects of its interaction
with the environment are essential.

Quantum Brownian motion (QBM) of an oscillator coupled to a thermal bath of quantum oscillators
has been extensively studied as a canonical model for open quantum systems because there is a con-
siderable amount of insight that one can learn from it while being treatable analytically to a significant
degree. In this paper we continue the lineage of work on QBM via the influence functional path-inte-
gral method of Feynman and Vernon [13] used by Caldeira and Leggett [14] to derive a master equa-
tion for a high-temperature ohmic environment, which corresponds to the Markovian regime.
Following this, Caldeira et al. [15] derived the Markovian master equation for the system with weak
coupling to an ohmic bath, which was claimed to be valid at arbitrary temperature (see Section 5.3 for
a critique of this claim). At the same time Unruh and Zurek [16] derived a more complete and general
master equation that incorporated a colored noise at finite temperature, but there is a problem with
their fluctuation–dissipation relation (see Ref. [17]). Finally, in a path-integral calculation from first
principles, Hu et al. (HPZ) [17] derived a master equation for a general environment (arbitrary temper-
ature and spectral density), barring certain subtle errors in the coefficients, which lead to inaccurate
treatment of the nonlocal dissipation cases, as we will discuss. After that, this equation has been rede-
rived by a number of authors. Halliwell and Yu [18] exploited the phase-space transformation prop-
erties of the Wigner function for the full system plus environment and derived a Fokker–Planck
equation corresponding to the HPZ equation. Calzetta et al. (CRV) [19,20] derived it using a stochastic
description for open quantum systems based on Langevin equations, whereas Ford and O’Connell [21]
employed a somewhat related method via the quantum Langevin equation [22] and obtained also the
solution to the HPZ equation for a Gaussian wave-packet.

The present paper’s contribution to this legacy is threefold:

1. We have completely determined the precise form of the HPZ master equation coefficients and
pointed out a problem with earlier derivations for nonlocal dissipation (Section 3.2).

2. We have found concise and efficient solutions to the master equation with a number of exact non-
perturbative analytical results (Section 4).

3. We have extended the theory to that of a system of multiple oscillators bilinearly coupled amongst
themselves and to the bath in an arbitrary fashion while acted upon by classical forces (Section 7).

In this paper we will follow the approach of CRV in Refs. [19,20] and make use of a stochastic
description whose central element is a Langevin equation for the dynamics of the open quantum sys-
tem. This offers an efficient mathematical tool for obtaining all the quantum properties of the system.
An important feature of the present approach is the reformulation in phase-space (rather than
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position space) together with the use of vector and matrix notation. The combination of all these ele-
ments makes this new approach far more flexible and compact. For example, we are able to derive the
general expression for the solution of the master equation in essentially two short lines (see Eq. (36)).
The flexibility of our formalism is also illustrated by the straightforward generalizations to the cases of
an external force (this is nontrivial for nonlocal dissipation) and an arbitrary number of system oscil-
lators that will be presented. This goes far beyond previous generalizations of the theory [23] which
assume specific forms of coupling.

One of our key contributions, however, is uncovering a significant shortcoming of earlier results for
the master equation coefficients. We point out a subtlety involving boundary conditions for solutions
of integro-differential equations and explain how certain properties that hold for ordinary differential
equations are not true for nonlocal dissipation. These properties had always been employed errone-
ously, in one way or another, when deriving the expressions for the master equation coefficients, even
those which were then evaluated numerically. This long-standing error could have deep implications
for regimes where the effects of nonlocal dissipation are significant and one should be cautious with
all results for those cases reported in the literature.

Taking into account the aspect mentioned in the previous paragraph, and using our compact for-
mulation, we have provided a relatively simplified expression for the correct master equation. More-
over, one can also obtain the general solution to the master equation in terms of the matrix propagator
of a linear integro-differential equation, and see that at late times it tends to a Gaussian state com-
pletely characterized by a constant covariance matrix. For odd meromorphic spectral functions, and
many others, we are able to reduce the calculation of this covariance matrix to a simple contour inte-
gral and obtain exact nonperturbative results for finite cut-off and arbitrarily strong coupling. This in-
cludes examples of ohmic, sub-ohmic and supra-ohmic environments; and from this late-time
covariance one can immediately obtain the late-time diffusion coefficients as well. Our results gener-
alize the work of Anastopoulos and Halliwell [24] as well as Ford and O’Connell [21], who already
found the late time state to be a Gaussian, and the earlier work of Hu and Zhang [25,26] on the gen-
eralized uncertainty function for Gaussian states.

In addition, working with Laplace transforms and then transforming back to time domain, we
manage to find the exact solutions for the propagators associated with the integro-differential equa-
tions corresponding to ohmic, sub-ohmic and supra-ohmic environments with a finite cut-off. This
enables us to gain very valuable information on the dynamics of the system. For instance, for an oh-
mic environment one can show that using the local approximation for the propagator is a valid
approximation in the large cut-off limit, which makes it possible to obtain relatively manageable ana-
lytic results for the diffusion coefficients at all times. Furthermore, the exact solution for a specific
sub-ohmic environment reveals that long-time correlations (due to excessive coupling with IR modes
of the environment) give rise to contributions to the propagator that decay at late times like power
laws. This invalidates the use of an effectively local description at late times, whose contributions de-
cay exponentially, and provides a clear example of a situation where nonlocal dissipation needs to be
properly dealt with. Finally, studying the exact solutions for some particular supra-ohmic environ-
ment we also find significant nonlocal effects which are due in this case to the UV regulator function.
This leads to a marked cut-off sensitivity of the momentum covariance that had not been noticed
before.
1.2. Key points and organization

Those readers who want to find out quickly the problem with earlier derivations of the master
equation can simply read Section 2 to get acquainted with our notation and formalism and go to Sec-
tion 3.2, where the master equation is derived, aided perhaps by Appendix D, which explains in detail
the key mathematical subtlety concerning integro-differential equations and its implications for the
existing derivations. They may also find Section 6 valuable since it contains specific examples where
nonlocal dissipation effects give dominant contributions and can lead to significant discrepancies from
previous results.

Other useful results are mentioned below alongside a description of how this paper is organized.
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The key framework providing the stochastic description for an open quantum system in terms of a
Langevin equation and its compact phase-space formulation is introduced in Section 2, where a very
simple derivation of the general solution for the state evolution of the system is given. The problems
with previous derivations are pointed out and the correct derivation of the master equation is given in
Section 3. The master equation is then solved using the method of characteristic curves and the solu-
tion is shown to be equivalent to that obtained in a more straightforward manner from the Langevin
equation.

The general solution of the master equation is employed in Section 4 to discuss general properties
of the state evolution of the QBM subsystem, tending to a Gaussian stationary state at late times. A
very simple and intuitive picture of environment-induced decoherence in terms of the reduced Wig-
ner function can be directly extracted, which could easily be made quantitative and precise. In addi-
tion, a generic discussion of late-time dynamics is provided.

In Section 5 we find the exact nonlocal propagator for an ohmic environment with finite cut-off and
identify a new regime at ultra-strong coupling. We provide exact nonpertrubative results for the late-
time thermal covariance and full-time results for the diffusion coefficients in the large cut-off limit.

Explicit examples of sub-ohmic and supra-ohmic spectral functions are considered in Section 6 for
which the exact propagator is computed and dominant contributions from nonlocal dissipation effects
are found (of IR origin in one case and UV in the other).

The generalization to a system of multiple oscillators bilinearly coupled to themselves and the bath
in arbitrary fashion and acted upon by classical forces is presented in Section 7. Finally, in Section 8 we
summarize our results and discuss their main implications as well as possible applications.

In addition to a couple of appendices on special functions and properties of Laplace transforms for
reference purposes, Appendix C contains technical aspects concerning divergences of the dissipation
kernel and frequency renormalization, as well as initial kicks and a discussion of divergences associ-
ated with uncorrelated initial states.

Appendix D contains a detailed explanation of the mathematical subtlety involving boundary-value
problems for integro-differential equations and a discussion of how it affected different classes of ear-
lier derivations of the master equations. The important formula for the late-time covariance in terms
of a single frequency integral is derived in Appendix E, and the explicit analytic results for the diffusion
coefficients of an ohmic environment at all times in the large cut-off limit are computed in Appendix F.

Throughout the paper we use units with �h = kB = 1.

2. The Langevin equation

2.1. General theory

The Lagrangian of a closed system consisting of a quantum Brownian oscillator with mass M, nat-
ural frequency X and coordinate x, bilinearly coupled with coupling constants cn to an environment
consisting of oscillators with mass mn, natural frequency xn and coordinates xn, is most straightfor-
wardly given by
L ¼ 1
2

M _x2 �X2
barex2

� �
þ
X

n

1
2

mn _x2
n �x2

nx2
n

� �
�
X

n

cnxxn: ð1Þ
One introduces a ‘‘bare’’ frequency Xbare because the interaction with the environment shifts the coef-
ficient of the potential term by a certain amount dX2, given by Eq. (C.3), so that the square of the actual
frequency characterizing the subsystem of interest is given by X2

bare � dX2. Alternatively, one can con-
sider the following Lagrangian:
L ¼ 1
2

M _x2 �X2x2
� �

þ
X

n

1
2

mn _x2
n �x2

n xn �
cnhsðtÞ
mnx2

n
x

� �2
 !

; ð2Þ
where X corresponds to the actual frequency of the Brownian oscillator. For hs(t) = 1 and provided that
one identifies X2 with X2

bare � dX2, this new Lagrangian is equivalent to that of Eq. (1) (further details
on frequency renormalization and related issues are provided in Appendix C). In addition, we included
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a switch-on function hs(t) which vanishes at the initial time and smoothly increases to reach a con-
stant unit value after a characteristic timescale ts. While we consider initially uncorrelated states
for the Brownian oscillator and the environment throughout the paper, which can sometimes lead
to certain unphysical results, introducing a smooth switch-on function provides a way of effectively
generating well-behaved initial states with the high-frequency modes of the environment properly
correlated with the Brownian oscillator. Further discussion on this point can be found in Appendix
C.2, but throughout the rest of the paper we will take hs(t) = 1 (or, equivalently, ts = 0) unless stated
otherwise, and will only occasionally describe how the results would differ for a non-vanishing
switch-on time.

The subsystem corresponding to the quantum Brownian oscillator constitutes an open quantum
system: while the evolution of the whole closed system is unitary, the Brownian oscillator (referred
to as the ‘‘system’’ from now on) evolves non-unitarily due to the entanglement generated by the
interaction with the environment. An important object characterizing the open system is the reduced
density matrix, which results from taking the density matrix of the closed system and tracing out the
environment: qr ¼ TrEq. The expectation value of observables O that only depend on the system vari-
ables and are local in time can be directly obtained from it: hOiðtÞ ¼ Tr½OqrðtÞ�. Given the density ma-
trix for a continuous degree of freedom in position representation, one can always define the
corresponding Wigner function:
WrðX; p; tÞ ¼
1

2p

Z þ1

�1
dDeipDqr X � D

2
;X þ D

2
; t

� �
; ð3Þ
which contains the same amount of information. See for instance Ref. [27] for a detailed description of
the main properties of Wigner functions. In addition, the so-called dissipation and noise kernels
(which involve respectively the commutator and anticommutator of the environment position oper-
ators in interaction picture) play an important role when studying the open system dynamics
[28,29]. The case of a time-dependent coupling has been considered by Hu and Matacz [30], wherein
all parameters of the system and bath oscillators and their couplings were allowed to be time-depen-
dent. When only the system-environment coupling is time-dependent, as in our case, and the initial
state of the environment is a thermal state with temperature T, the dissipation and noise kernels
are given respectively by
lðt; sÞ ¼ �
Z 1

0
dx sin½xðt � sÞ�IðxÞhsðtÞhsðsÞ; ð4Þ

mðt; sÞ ¼ þ
Z 1

0
dx coth

x
2T

� �
cos xðt � sÞ½ �IðxÞhsðtÞhsðsÞ; ð5Þ
where I(x) is the spectral density function defined by
IðxÞ ¼
X

n

c2
n

2mnxn
dðx�xnÞ: ð6Þ
It is often taken to be ohmic, i.e. I(x) = (2/p)Mc0 x, but with a cut-off regulator so that it vanishes (or
decays sufficiently fast) above some high-frequency scale K. However, more general spectral functions
have been considered before and will be considered here as well.

It was shown in Ref. [19] that the quantum properties of this kind of open systems can be entirely
studied using a stochastic description whose central element is a Langevin equation of the form
(L � x)(t) = n(t), where n(t) is a Gaussian stochastic source with a vanishing mean and correlation func-
tion equal to the noise kernel, i.e. hn(t)in = 0 and hn(t) n(s)in = m(t,s). The dissipation kernel in turn ap-
pears in the Langevin integro-differential operator L, which is defined by
ðL � xÞðtÞ ¼ M€xðtÞ þMX2xðtÞ þ 2
Z t

0
dslðt; sÞxðsÞ þMdX2h2

s ðtÞxðtÞ; ð7Þ
and where dX2 is given by Eq. (C.3). One can then express the time-evolving reduced Wigner function
in terms of solutions of the Langevin equation and a double average over their initial conditions,
weighed with the reduced Wigner function at the initial time, and over the realizations of the
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stochastic source (see Eq. (29) below). Furthermore, one can also obtain the quantum correlation func-
tions for system observables at multiple times (which in general cannot be obtained from the reduced
Wigner function and its evolution via the master equation) in terms of the solutions of the Langevin
equation [19], as briefly illustrated in Section 2.4. See also Ref. [22] for a similar formulation involving
a Langevin equation for operators in the Heisenberg picture.

If we take a vanishing switch-on time, which amounts to discarding the switch-on function en-
tirely, both the noise and dissipation kernels become time-translation invariant. Moreover, it is con-
venient to introduce a damping kernel c(t � s) which is related to the dissipation kernel by
l(t,s) = l(t � s) = M(@/@t)c(t � s) and is hence given by
cðt; sÞ ¼ cðt � sÞ ¼ 1
M

Z 1

0
dx cos½xðt � sÞ� IðxÞ

x
: ð8Þ
Note that this kernel is symmetric and positive definite like the noise kernel. Integrating by parts, the
left-hand side of the Langevin equation can be written as follows (see Appendix C for further details):
ðL � xÞðtÞ ¼ M€xðtÞ þ 2M
Z t

0
dscðt � sÞ _xðsÞ þMX2xðtÞ þ 2McðtÞxð0Þ: ð9Þ
The damping-kernel representation provides a cancelation of the frequency renormalization while
introducing a slip in the initial conditions. This is caused by the last term on the right-hand side of
Eq. (9), which corresponds to a transient driving term proportional to the position of the system at
the initial time. Leaving the slip term aside, one can show that all the (accumulated) energy dissipated
through the nonlocal damping kernel term will be strictly positive (no amplification) as a consequence
of the damping kernel being positive-definite.

2.2. Solutions of the Langevin equation

The Langevin equation can be written as:
L � x ¼ Mð€xþ 2c � _xþX2xÞ þ 2Mx0c ¼ n; ð10Þ
where ⁄ denotes the Laplace convolution, i.e. ðA � BÞðtÞ ¼
R t

0 dsAðt � sÞBðsÞ, and x0 is the initial condi-
tion at t = 0. It is, thus, convenient to perform a Laplace transform:
f̂ ðsÞ ¼ LffgðsÞ ¼
Z 1

0
dte�stf ðtÞ; ð11Þ
under which the equation becomes purely algebraic. The Laplace transform of Eq. (10) is given by
Mðs2 þ 2sĉðsÞ þX2Þx̂ðsÞ ¼ M sx0 þ _x0ð Þ þ n̂ðsÞ; ð12Þ
whose solution is
x̂ðsÞ ¼ Mðsx0 þ _x0ÞbGðsÞ þ bGðsÞn̂ðsÞ; ð13Þ

bGðsÞ ¼ 1=M

s2 þ 2sĉðsÞ þX2 ; ð14Þ
where terms proportional to the initial conditions x0 and _x0 correspond to the homogeneous solution
while the noise term corresponds to the driven solution. G(t) satisfies the initial boundary conditions
Gð0Þ ¼ 0; _Gð0Þ ¼ 1

M and fully determines the retarded Green function or propagator. In the time do-
main, the solution can be expressed as:
xðtÞ ¼ Mðx0
_GðtÞ þ _x0GðtÞÞ þ ðG � nÞðtÞ: ð15Þ
2.2.1. Meromorphic spectra
For an ohmic environment in the infinite cut-off limit one has ĉðsÞ ¼ c0. More realistically, ĉðsÞ will

decay sufficiently fast at high s, implying a certain degree of nonlocal dissipation (non-polynomial
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behavior in Laplace space). Thus, as illustrated by this example, one will generally need to deal with
non-polynomial damping kernels ĉðsÞ. If ĉðsÞ is a meromorphic function (i.e. analytic except for an iso-
lated set of poles), obtaining the inverse Laplace transform of bGðsÞ amounts to calculating a simple
contour integral.

On the other hand, given expression (8) for the damping kernel, one can easily compute its Laplace
transform:
ĉðsÞ ¼ 1
M

Z 1

0
dx

IðxÞ
x

s
x2 þ s2 : ð16Þ
If we take the odd extension of the spectral density for negative frequencies, i.e. I(�jxj) � �I(jxj), then
the integral can be recast as:
ĉðsÞ ¼ 1
2M

Z þ1

�1
dx

IðxÞ
x

s
x2 þ s2 ; ð17Þ
which can be easily evaluated if the odd extension of I(x) is meromorphic, e.g. for I(x) �x but not
I(x) �x2. This is still less than ideal as the difficulty of solving the Langevin equation is more directly
determined by the nature of the damping kernel. One would rather make the choice of damping kernel
first (preferably in the Laplace domain) than derive it from the spectral density. Nevertheless, since the
spectral density is still required to compute the noise kernel, we need the inverse relationship. Fur-
thermore, as shown below, not every ĉðsÞ (even sufficiently regular ones) can be obtained from a spec-
tral function through Eq. (17).

Fortunately, Eq. (8) implies a simple relation between the spectral density and the Fourier trans-
form of the damping kernel: IðxÞ ¼ M

p x~cðxÞ, and using Eq. (B.14) applied to ~cðxÞwe get the following
result for I(x) in terms of the Laplace transform of the damping kernel:
IðxÞ ¼ 1
p

Mx lim
�!0

ĉð�þ ıxÞ þ ĉð�� ıxÞ½ �: ð18Þ
From this we see that meromorphic damping kernels result in spectral densities which are odd mer-
omorphic functions. Conversely, we have also seen that odd meromorphic spectral densities lead to a
meromorphic damping kernel in Laplace space that can be obtained via contour integration through
Eq. (17). We will thus refer to this class of odd meromorphic spectral densities and corresponding
damping kernels as meromorphic spectra. Moreover, as we will see in later sections, given that Brom-
wich’s formula for the inverse Laplace transform can also be computed as a contour integral, all the
important quantities for these meromorphic spectra are calculable via contour integration.

Note that, as mentioned above, not every meromorphic function ĉðsÞ corresponds to a damping
kernel that can be obtained from a spectral function through Eq. (17). This point can be seen by real-
izing that according to Eq. (18) different ĉðsÞ will give rise to the same spectral density as long as
ĉð�þ ıxÞ þ ĉð�� ıxÞ is the same. Hence, if one wants to consider a candidate function ĉðsÞ, one should
proceed as follows. Eq. (18) is first used to obtain the spectral density, which is then substituted into
Eq. (17). If the initial candidate is recovered, it was a satisfactory one to begin with, otherwise it should
be discarded, but the new damping kernel obtained in the last step is a valid one, which can be used
instead.

2.2.2. Phase-space representation
If we introduce the phase-space coordinates zT = (x,p), the Langevin equation (10), together with

the relation p ¼ m _x, can be recast as a first-order linear integro-differential system of equations:
_zþH � z ¼ n; ð19Þ
where we introduced the boldface notation for vectors and matrices, nT = (0,n) and the time-nonlocal
pseudo-Hamiltonian H(t,s) = H(t � s) is given by
HðsÞ ¼
0 � 1

M dðsÞ
MX2dðsÞ 2cðsÞ

" #
: ð20Þ
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Performing the Laplace transform of Eq. (19), which becomes a purely algebraic equation, and rear-
ranging the terms to express the solution in terms of the initial conditions and the stochastic source,
one gets:
ẑðsÞ ¼ ÛðsÞz0 þ ÛðsÞn̂ðsÞ; ð21Þ

ÛðsÞ ¼ MsbGðsÞ bGðsÞ
M2s2bGðsÞ �M MsbGðsÞ
" #

; ð22Þ
where bGðsÞ is the same propagator derived in the position representation and given by Eq. (14). Trans-
forming back to the time domain, we can express the initial-value solutions as:
zðtÞ ¼ UðtÞz0 þ ðU � nÞðtÞ; ð23Þ

UðtÞ ¼ M _GðtÞ GðtÞ
M2 €GðtÞ M _GðtÞ

" #
; ð24Þ
and U(t) can be identified as the matrix propagator associated with the phase-space version of the
Langevin equation, Eq. (19).

Combining the result for z(t) as given by Eq. (23) with an analogous expression for the solution z(s)
evaluated at an earlier time s < t, one can write z(s) in terms of z(t) and the stochastic source as
follows:
zðsÞ ¼ Uðs; tÞzðtÞ �
Z t

s
ds0Uðs; tÞU t � s0ð Þn s0ð Þ

�
Z s

0
ds0½U s; tð ÞU t � s0ð Þ �U s� s0ð Þ�n s0ð Þ; ð25Þ
where we introduced the transition matrix U(t,s), which is defined as:
Uðt; sÞ ¼ UðtÞU�1ðsÞ: ð26Þ

Note that U(t,s) – U(t � s) unless one has local dissipation. Thus, in the general case of nonlocal dis-
sipation the last term on the right-hand side of Eq. (25) does not vanish and z(s) also depends on n(s0)
with s0 < s. This means that, unlike with ordinary differential equations, when boundary conditions
z(t) are specified at a final time t, there is no truly advanced propagator for the inhomogeneous solu-
tions of the integro-differential equation. One can still express the solution of such a final-value prob-
lem in terms of a matrix propagator (or Green’s function in position space) with the right boundary
conditions:
z sð Þ ¼ U s; tð Þz tð Þ þ
Z t

0
ds0Uf s; s0ð Þn s0ð Þ; ð27Þ
where
Uf s; s0ð Þ ¼ �U s; tð ÞU t � s0ð Þ þ h s� s0ð ÞU s� s0ð Þ; ð28Þ
but one only has Uf(s,s0) = 0 for s > s0 in the case of strictly local dissipation.
Such mathematical subtleties of final-value problems for integro-differential equations have been

missed in the existing literature on the derivation of the master equation for QBM models and could
lead to significant discrepancies whenever the nonlocal effects of dissipation are important. A detailed
discussion of this and related points is provided in Appendix D.

2.3. Evolution of states

As found in Ref. [19], the reduced Wigner function can be expressed in terms of the solutions of the
Langevin equation and a double average over their initial conditions and the realizations of the sto-
chastic source. Using the vector notation for phase-space variables introduced in the previous subsec-
tion, the result can be written as:
Wrðz; tÞ ¼ hhdðzðtÞ � zÞiniz0
; ð29Þ
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with the averages over the initial conditions and the stochastic source defined as follows:
h� � � iz0
¼ 1

2p

Z
dz � � �Wrðz;0Þ; ð30Þ

h� � � in ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p detðmÞ
p Z

Dn � � � e�1
2n�m

�1 �n; ð31Þ
where the right-hand side of Eq. (31) corresponds to the functional integral associated with the
Gaussian stochastic source and denotes the integration ðA � BÞðtÞ ¼

R t
0 dsAðsÞBðsÞ. The characteristic

function of the Wigner function, regarded as a phase-space distribution, is given by its Fourier trans-
form and it can be shown to take a rather simple form:
Wrðk; tÞ ¼
Z

dze�ikTzhhd½z� zðtÞ�iz0
in; ð32Þ

¼ hhe�ikTzðtÞiz0
in; ð33Þ

¼ e�ikTUðtÞz0

D E
z0

e�ikTðU�nÞðtÞ
D E

n
; ð34Þ

¼ WrðUTðtÞk;0Þe�1
2kTrT ðtÞk; ð35Þ
where the thermal covariance matrix rT(t) is given by
rT tð Þ ¼
Z t

0
ds
Z t

0
ds0U t � sð Þm s; s0ð ÞUT t � s0ð Þ; ð36Þ

m s; s0ð Þ ¼
0 0
0 m s; s0ð Þ

	 

: ð37Þ
In the third equality above we used the initial-value solution (23) for z(t) to get Eq. (34), and in the last
step we completed the square to calculate the Gaussian functional integral corresponding to the noise
average in order to obtain the final result in Eq. (35). Note that for our Lagrangian, the stochastic force
n only has a momentum component and, therefore, all the components of its covariance matrix m van-
ish except for the momentum–momentum component, which coincides with the noise kernel.

The form of the solution is rather simple: all initial cumulants of the Wigner function undergo
damped oscillations (for the underdamped case) while the thermal covariance starts from a vanishing
value and evolves to the asymptotic values corresponding to the thermal equilibrium state for the sys-
tem coupled to the environment. We will discuss these solutions more thoroughly in Section 4.

2.4. General correlations

Using the initial-value solution of the Langevin equation given by Eq. (23) and following the same
approach as in Ref. [19], it is straightforward to calculate quantum correlations between system
observables at different times. For instance, the symmetrized two-point quantum correlation function
for position and momentum operators in the Heisenberg representation is given by
1
2
hz t1ð ÞzT t2ð Þ þ z t2ð ÞzT t1ð Þi ¼

1
2
hhz t1ð ÞzT t2ð Þ þ z t2ð ÞzT t1ð Þiniz0

; ð38Þ
which with our solutions in Eq. (23) and some basic properties of the stochastic Gaussian source,
namely h n(t)in = 0 and hn(t)n(s) in = m(t,s), will produce the two-time correlation:
hhzðt1ÞzTðt2Þiniz0
¼ Uðt1Þr0U

Tðt2Þ þ rTðt1; t2Þ; ð39Þ
in terms of the two-time thermal covariance:
rT t1; t2ð Þ ¼
Z t1

0
ds1

Z t2

0
ds2U t1 � s1ð Þm s1; s2ð ÞUT t2 � s2ð Þ: ð40Þ
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The result for the coincidence-time limit, t1 = t2 = t, agrees with that of our master equation solution,
Eqs. (35) and (36), as discussed in Section 4.1.1. Higher-order correlations can be calculated in a sim-
ilar manner, but we can see from the form of our solution in Eq. (35) and the Gaussian character of the
stochastic source and its vanishing mean that only the homogeneous part of the solution contributes
to cumulants different from the second-order one, which are therefore entirely characterized by the
initial state of system and the homogeneous solutions of the Langevin equation.

3. Master equation

3.1. General theory

Given the microscopic QBM model of Section 2.1, the HPZ master equation for the reduced density
matrix operator qr and for the reduced Wigner function are given respectively by
o

ot
qr ¼ �ı HR;qr½ � � ıC x; fp;qrg½ � �MDpp x; x;qr½ �½ � � Dxp x; p;qr½ �½ �; ð41Þ

o

ot
Wr ¼ fHR;Wrg þ 2C

o

op
ðpWrÞ þMDpp

o2

op2 Wr � Dxp
o2

oxop
Wr ; ð42Þ
where HR corresponds to the system Hamiltonian with X2 replaced by a time-dependent frequency
X2

RðtÞ � X2 whose detailed form, together with that of the time-dependent dissipation coefficient
C(t) and the diffusion coefficients Dxp(t) and Dpp(t), can be found in Ref. [17].

However, as discussed in Appendix D, previous derivations of this master equation missed a math-
ematical subtlety concerning the Green functions of integro-differential equations, which renders the
existing results for the master equation coefficients invalid whenever the nonlocal aspects of dissipa-
tion become important. In the next subsection we provide a compact rederivation of the master equa-
tion where this issue is properly dealt with, and obtain the correct expressions for the coefficients in
the general case (including the case of nonlocal dissipation). In addition, in Section 3.3 we will provide
an analytic expression for the solutions of the master equation and show its equivalence with the re-
sult for the state evolution obtained in the previous section using the Langevin equation.

3.2. Derivation of the master equation

At this point, the quickest derivation of the QBM master equation would merely consist of taking
the time derivative of Eq. (35) and calculating the inverse Fourier transform. Nevertheless, in order to
point out the differences with previous derivations, which missed the subtleties of propagators asso-
ciated with integro-differential equations, we will now provide a more traditional derivation involving
the propagator associated with final-value boundary conditions and show that, when done correctly,
the two are equivalent. We will follow the derivation by Calzetta et al. (CRV) [19,20] adapting it to our
compact notation in terms of phase-space vectors and matrices.

We start by considering the stochastic representation of the Wigner function:
Wrðz; tÞ ¼ hhdðzðtÞ � zÞiniz0
; ð43Þ
and differentiate with respect to time:
o

ot
Wrðz; tÞ ¼ �$T

zhh _zðtÞdðzðtÞ � zÞiniz0
: ð44Þ
One can then use the Langevin equation _zþH � z ¼ n to substitute _zðtÞ and rewrite Eq. (44) as:
o

ot
Wrðz; tÞ ¼ $T

z

Z t

0
dsHðt; sÞzðsÞ � nðtÞ

� �
d zðtÞ � zð Þ

� �
n

* +
z0

: ð45Þ
Next, using Eq. (27) one can express z(s) in terms of the final value z(t) = z and the propagator Uf(s,s0)
given by Eq. (28). As already pointed out in Section 2.2 and discussed in detail in Appendix D, Uf(s,s0)
will only be a truly advanced propagator (with Uf(s,s0) = 0 for s > s0) when considering a strictly local
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damping kernel, contrary to what had been previously assumed. After using Eq. (27) we are left with a
homogeneous term and two more terms involving the stochastic source:
o

ot
Wðz; tÞ ¼ $T

z

Z t

0
dsHðt; sÞUðs; tÞzWðz; tÞ

þ $T
z

Z t

0
ds
Z t

0
ds0Hðt; sÞUfðs; s0Þnðs0ÞdðzðtÞ � zÞ

� �
n

* +
z0

� $T
zhhnðtÞdðzðtÞ � zÞiniz0

: ð46Þ
The expectation value of the terms proportional to the stochastic source n can be evaluated with the
help of Novikov’s formula:
hnðs0ÞdðzðtÞ � zÞin ¼ �
Z t

0
ds00mðs0; s00Þ dzðtÞ

dnðs00Þ

	 
T

$zdðzðtÞ � zÞ
* +

n

; ð47Þ
which can be derived by using Eq. (31) and functionally integrating by parts with respect to n. The
functional Jacobian matrix appearing in Eq. (47) can be easily obtained by functionally differentiating
with respect to n(s00) the solution of the Langevin equation as given by Eq. (23), and one gets:
dzðtÞ
dnðs00Þ

	 

¼ Uðt � s00Þ: ð48Þ
Putting these elements together we finally get the following result for the master equation:
o

ot
Wrðz; tÞ ¼ f$T

zHðtÞzþ $T
zDðtÞ$zgWrðz; tÞ; ð49Þ
with the time-local pseudo-Hamiltonian and diffusion matrices given respectively by
HðtÞ �
Z t

0
dsHðt; sÞUðs; tÞ; ð50Þ

D tð Þ � Sy
Z t

0
dsm t; sð ÞUT t � sð Þ

� Sy
Z t

0
ds
Z t

0
ds0
Z t

0
ds00H t; sð ÞUf s; s0ð Þm s0; s00ð ÞUT t � s00ð Þ; ð51Þ
and where Uf(s,s0) was defined in Eq. (28), and only the symmetric part, Sy(M) � (M + MT)/2, of the
diffusion matrix contributes to the master equation. These matrices relate to the conventional repre-
sentation as follows:
HðtÞ ¼
0 � 1

M

MX2
RðtÞ 2CðtÞ

" #
; ð52Þ

DðtÞ ¼
0 � 1

2 DxpðtÞ
� 1

2 DxpðtÞ MDppðtÞ

" #
: ð53Þ
The result for the master equation coefficients is expressed here in a form analogous to that of previ-
ous derivations, but this is not the simplest representation. We will next proceed to simplify them by
eliminating the explicit dependence on the time-nonlocal pseudo-Hamiltonian H(t,s).

3.2.1. Simplification of the master equation coefficients
Let us start with the pseudo-Hamiltonian matrix
HðtÞ ¼ ðH �UÞðtÞU�1ðtÞ: ð54Þ
Taking into account that U satisfies the integro-differential equation _UðtÞ ¼ �ðH �UÞðtÞ, the pseudo-
Hamiltonian can be rewritten as:
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HðtÞ ¼ � _UðtÞU�1ðtÞ: ð55Þ
This new expression forHðtÞ immediately reveals that the homogenous solutions of the nonlocal Lange-
vin equation can be equivalently related to the solutions of linear ordinary differential equation with
time-dependent coefficients. Indeed, the nonlocal propagator also satisfies the dual local equation:
_UðtÞ þHðtÞUðtÞ ¼ 0: ð56Þ
Hence, for local dissipation one would simply have a time-independent H and UðtÞ ¼ e�tH, whereas
for nonlocal dissipation HðtÞ would be time-dependent and U(t) would be given by a time-ordered
exponential.

One can proceed analogously for the diffusion matrix. In order to do so we need to simplify the fol-
lowing integral:
Z t

0
dsH t; sð ÞU s� s0ð Þh s� s0ð Þ ¼

Z t

s0
dsH t � sð ÞU s� s0ð Þ

¼
Z t�s0

0
dsH t � s0 � sð ÞU sð Þ ¼ � _U t � s0ð Þ: ð57Þ
where we made use of the stationary property of the dissipation kernel and introduced a simple
change of variables. Using Eqs. (55) and (57), Eq. (51) can be simplified to the following form, which
involves terms with at most two time integrals:
DðtÞ ¼ Sy
Z t

0
dsmðt; sÞUTðt � sÞ

þ Sy
Z t

0
ds
Z t

0
ds0 d

dt
þHðtÞ

	 

Uðt � sÞ


 �
mðs; s0ÞUTðt � s0Þ; ð58Þ
where one can clearly see that the second term on the right-hand side vanishes for local dissipation,
when the transition matrix is the exponential matrix e�tH. However, it can play a crucial role when-
ever the effects of nonlocal dissipation are important, as in the example of a sub-ohmic environment
of Section 6.1.

From our new expression (58) one can see that the diffusion matrix can be easily related to the
thermal covariance, as given by Eq. (36), and its time derivative. Our simplified representation of
the master equation is then:
o

ot
Wrðz; tÞ ¼ $T

zHðtÞzþ $T
zDðtÞ$z

n o
Wrðz; tÞ; ð59Þ

HðtÞ ¼ � _UðtÞU�1ðtÞ; ð60Þ

DðtÞ ¼ 1
2
fHðtÞrTðtÞ þ rTðtÞHTðtÞ þ _rTðtÞg; ð61Þ
with the phase-space propagator U(t) given by Eq. (24) and the thermal covariance rT(t) given by Eq.
(36). This representation contains fewer integrals than the conventional representation and is com-
pletely determined in terms of U(t) and the noise kernel.

3.3. Master equation solutions

In this section we will show that the master equation itself can be solved to produce the same solu-
tion as derived in Section 2.3. We consider the general master equation:
o

ot
Wr ¼ ð$T

zDðtÞ$z þ $T
zHðtÞzÞWr: ð62Þ
This is a hyperbolic second-order partial differential equation (PDE). The equation is not separable in
time nor phase-space. The nature of the PDE suggests taking a Fourier transform of the phase-space
variables as the derivatives are of higher order than the algebraic parameters. Furthermore, not only
does a Fourier transform reduce the PDE to first order, but the computation of expectation values also
becomes trivial since we are then working with the characteristic function of the distribution.
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The Fourier transform is defined as:
FffgðkÞ ¼
Z þ1

�1
dx
Z þ1

�1
dpe�ık�zf ðzÞ; ð63Þ
and it exhibits the usual properties:
ın onFffg
okn

j

ð0Þ ¼
Z þ1

�1
dx
Z þ1

�1
dpqn

j f ðzÞ: ð64Þ
The master equation becomes then:
o

ot
þ kT

H$k

� �
Wr ¼ �kTDkWr ; ð65Þ
where Wr ¼ FfWrg and the normalization of Wr(z, t) implies Wrð0; tÞ ¼ 1.
From Eq. (65) it is clear that if the master equation coefficients asymptote to constant values, then

we will have a stationary Gaussian solution in the late-time limit given by
W1T ¼ e�
1
2kTr1T k; ð66Þ
with r1T uniquely determined by the Lyapunov equation:
H1r1T þ r1T HT
1 ¼ 2D1: ð67Þ
To zeroth-order in the system-environment coupling, this corresponds to the free thermal state of the
system. It is also reasonable to believe that more generally this corresponds to the thermal state of our
system coupled to the environment (i.e. the reduced density matrix of the thermal state of the whole
system including the system-environment interaction). For arbitrary systems this has been proven to
second order in the system-environment coupling (here first order in damping, e.g. c0) [31].

3.3.1. Method of characteristic curves
The method of characteristic curves involves looking for parameterized curves in the domain (t,k)

along which the first order PDE becomes a set of first-order ODEs. For each one of those curves we
have:
Wr½k; t� ¼ Wr kðsÞ; tðsÞ½ �; ð68Þ
d

ds
Wr ¼

dt
ds

o

ot
Wr þ

dk
ds

T

$kWr; ð69Þ
Next, we attempt to match the right-hand side of Eq. (69) to the left-hand side of Eq. (65). This results
in a system of ODEs in the parameter s. We will look for curves that synchronize with the initial time
so that t(0) = 0, k(0) = k0. The solution for the parameterization of the time coordinate is simple:
dt
ds
¼ 1) tðsÞ ¼ s: ð70Þ
On the other hand, finding the parameterization for the Fourier transform of the phase-space variables
is a bit more involved. It is characterized by the linear ODE system:
d
ds

kTðsÞ ¼ þkTðsÞHðsÞ; ð71Þ
and its solutions can be written as:
kðsÞ ¼ UkðsÞk0; ð72Þ
where Uk(s) is the matrix propagator associated with the transpose of Eq. (71) and equals the identity
matrix at s = 0. For local dissipation, H is time independent and the propagator is simply given by
UT

kðsÞ ¼ eþsH, which equals U�1(s). Such a relation between the matrix propagator of the integro-dif-
ferential Langevin equation (19) and the local Eq. (71) actually holds in general. Indeed, taking into
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account Eq. (55), it follows that the propagator for the characteristic curves UT
kðsÞ must satisfy the

equation:
d
ds

UT
kðsÞ ¼ �UT

kðsÞ _UðtÞU�1ðtÞ; ð73Þ
which is equivalent to the relation:
d
ds

UT
kðsÞUðsÞ

� �
¼ 0: ð74Þ
Together with UT
kð0ÞUð0Þ ¼ I, since both Uk(s) and U(s) equal the identity matrix at the initial time,

this implies that UT
kðsÞ ¼ U�1ðsÞ.

We now have the rules for transforming back and forth between the domain coordinates (t,k) and
the characteristic curve coordinates (s,k0); k0 uniquely specifies each characteristic curve parameter-
ized by s. Using these results, we can immediately apply the method of characteristic curves to solving
Eq. (65) as follows:
d
ds
Wr kðsÞ; tðsÞ½ � ¼ �ðkTDðtÞkÞWr kðsÞ; tðsÞ½ �; ð75Þ

d
ds
Wr UkðsÞk0; tðsÞ½ � ¼ � kT

0U
T
kðsÞDðsÞUkðsÞk0

� �
Wr UkðsÞk0; tðsÞ½ �: ð76Þ
The last equation is a linear ODE whose solution can be easily found to be:
Wr UkðsÞk0; s½ � ¼ Wr k0;0½ �e�
R s

0
ds0 kT

0UT
k
ðs0 ÞDðs0 ÞUkðs0Þk0ð Þ; ð77Þ
where Wr½k0;0� is the initial characteristic function at t = 0. We can now express the solution back in
terms of k and U to get the final result:
Wr k; t½ � ¼ Wr UTðtÞk;0
� �

e�
1
2kTrT ðtÞk; ð78Þ
with thermal covariance defined:
rTðtÞ � 2
Z t

0
dsUðt; sÞDðsÞUTðt; sÞ; ð79Þ
and note that U(t,s) here does not have time-translational invariance for nonlocal dissipation,
where U(t,s) = U(t)U�1(s) – U(t � s); see the discussion in Appendix D.

3.3.2. Equivalence with the result from the Langevin equation
We have shown that the form of the solution from the master equation is equivalent to that derived

from the Langevin equation in Section 2.2. What remains to be shown is that the thermal covariances
are indeed equivalent. To do this one can differentiate Eq. (79) with respect to time and get the follow-
ing result:
_rTðtÞ ¼ �HðtÞrTðtÞ � rTðtÞHTðtÞ þ 2DðtÞ: ð80Þ
This equation is also satisfied by the thermal covariance expression directly derived from the Langevin
equation, as can be seen from Eq. (61). Furthermore, the thermal covariances given by Eqs. (79) and
(36) both have vanishing initial conditions: rT(0) = 0. Therefore, since they are both solutions of the
same ordinary differential equation and have the same initial conditions, they must be equivalent.

4. Evolution of states

4.1. General solutions

Whether derived via the Langevin equation in Section 2.3 or solving the master equation in Section
3.3, the evolution of the system state is most easily represented in terms of the characteristic function
(the Fourier transform) of the reduced Wigner distribution:
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Wr½k; t� ¼ Wr UTðtÞk; 0
� �

e�
1
2kTrT ðtÞk; ð81Þ
with the thermal covariance rT(t) given by
rTðtÞ ¼
Z t

0
ds
Z t

0
ds0Uðt � sÞmðs; s0ÞUTðt � s0Þ; ð82Þ
where U(t) is the phase-space propagator for the Langevin equation defined in Eq. (22).
The solution in Eq. (81) consists of two factors. The first one tends to unity in the long time limit

and encodes the disappearance of the initial state (we will call it the death factor). The second factor
describes the appearance of a Gaussian state that evolves in time and tends asymptotically to a state
that corresponds to thermal equilibrium (we will refer to this as the birth factor). Assuming dissipa-
tion, all initial distributions evolve towards this final Gaussian state, with thermal covariance rT(t).
This state does not look like the thermal state of a free harmonic oscillator because of the coupling
to the environment. It more likely results from considering the thermal equilibrium state for the
whole system (system plus environment) including the system-environment interaction, which gives
rise to a non-trivial correlation between them, and tracing out the environment.

The death factor contains the information on the initial conditions; it describes the gradual disap-
pearance of the initial distribution and it is always temperature independent. The free evolution of the
Wigner function corresponds to rotation in phase space (when properly rescaled) at constant angular
velocity. Dissipation will modify this rotation to inspiralling of the trajectories down to the origin, or
decay to the origin without completing a full rotation in the case of overdamping. More generally, for
nonlocal dissipation the trajectories will correspond to those of a parametrically damped oscillator,
which in some cases could be quite complicated.

The birth factor describes the complicated birth and settlement of a state of thermal equilibrium.
This factor is always Gaussian with a covariance matrix given by Eq. (82), which involves a convolu-
tion of the noise kernel with propagators that reflect the natural oscillatory decay of the system. This
covariance matrix vanishes at the initial time and tends at late times to an equilibrium covariance ma-
trix which can be easily determined from the Lyapunov equation (67). The thermal covariance matrix
is always positive definite.

4.1.1. Trajectories of the cumulants
As we have already mentioned, the Fourier transform of the reduced Wigner function corresponds

to its characteristic function, from which the correlation functions for the phase-space variables can be
easily derived using Eq. (64). The general expressions for the cumulants can be obtained straightfor-
wardly from the logarithm of the reduced Wigner function in Fourier space as follows:
X1

n¼1

1
n!

jðnÞi1 ...in
ðtÞ
Yn

l¼1

ıkil ¼ logWrðk; tÞ; ð83Þ
where kil denotes the components of the vector k and we used the Einstein summation convention for
pairs of repeated indices (i.e., it is implicitly understood that a sum

P2
il¼1 should be preformed over

each pair of repeated indices il). j(n) is the nth cumulant and acts as a tensor of order n contracted with
n copies of k. Using the result for Wrðt;kÞ from Eq. (81) we have:
X1

n¼1

1
n!

jðnÞi1 ...in
ðtÞ
Yn

l¼1

ıkil ¼
X1
n¼1

1
n!

jðnÞi1 ...in
ð0Þ
Yn

l¼1

ıðUTðtÞkÞil � 1
2

kTrTðtÞk; ð84Þ
where jðnÞj1 ...jn
ð0Þ are the cumulants associated with the initial distribution. Eq. (84) implies:
jðnÞi1 ...in
ðtÞ ¼ jðnÞj1 ...jn

ð0Þ
Yn

l¼1

ıðUTðtÞÞjl il þ dn2ri1 i2
T ðtÞ: ð85Þ
We can see that the only cumulant with a non-vanishing asymptotic value, which is a consequence of
the thermal fluctuations, is the covariance matrix (with n = 2). The closely related second momenta of
the distribution are given by



Fig. 1. The trajectory of the expectation values hxi, hpi.
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hzzTiðtÞ ¼ UðtÞhzzTiq0
UTðtÞ þ rTðtÞ; ð86Þ
where h� � � iq0
denotes the expectation value with respect to the reduced Wigner function at the initial

time,1 as defined in Eq. (30). All other cumulants experience whatever oscillatory decay is inherent in the
homogeneous solution of the Langevin equation. In particular, the expectation value:
hziðtÞ ¼ UðtÞhziq0
; ð87Þ
follows a trajectory like that plotted in Fig. 1 for local dissipation, where one can see that the trajectory
of the expectation values hxi, hpi for any initial distribution inspiral into the origin. This captures the
behavior of Gaussians plotted by Unruh and Zurek [16].

4.1.2. Thermal covariance
As we have seen, the only additional quantity that needs to be calculated besides the propagator is

the thermal covariance. Here we discuss the full-time evolution of the thermal covariance, which can
be most easily obtained from Eq. (82). Using the addition formula for the argument of the cosine func-
tion appearing in the definition of the noise kernel, one obtains the following expressions for the com-
ponents of the thermal covariance, which only involve calculating a single time integral besides the
integral over frequencies:
e that the expectation value of any phase-space function with respect to the reduced Wigner function is equivalent to a
expectation value with respect to the corresponding reduced density matrix where the arguments x and p of the phase-

nction are promoted to operators and the Weyl ordering prescription is employed. In particular, for the second-order
nts this corresponds to considering symmetrized two-point quantum correlation functions.
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rxx
T ðtÞ ¼

Z 1

0
dxIðxÞ coth

x
2T

� �
GðtÞ � cosðxtÞ½ �2 þ GðtÞ � sinðxtÞ½ �2

n o
; ð88Þ

rxp
T ðtÞ ¼

1
2

M _rxx
T ðtÞ; ð89Þ

rpp
T ðtÞ ¼

Z 1

0
dxIðxÞ coth

x
2T

� �
M2 _GðtÞ � cosðxtÞ

h i2
þ _GðtÞ � sinðxtÞ
h i2


 �
: ð90Þ
These results are expressed in terms of Laplace convolutions of the propagator with sinusoidal func-
tions which become trivial in Laplace domain, although one must eventually transform back to com-
pute the squares. Moreover, integrating by parts in the Laplace convolutions and taking into account
that G(0) = 0, the momentum covariance can be expressed in the alternative form:
rpp
T ðtÞ ¼

Z 1

0
dxx2IðxÞ coth

x
2T

� �
½GðtÞ � cosðxtÞ�2 þ ½GðtÞ � sinðxtÞ�2
n o

þM2mð0ÞGðtÞ2; ð91Þ
which is completely analogous to that for the position covariance, but with an effectively higher-order
spectral density due to the additional factor of x2, plus a simple cut-off sensitive transient term which
decays with the characteristic relaxation rate. It becomes then obvious that the momentum covari-
ance will contain the dominant contribution to any potential ultraviolet sensitivity of the thermal
covariance, whereas the position covariance will contain the dominant contribution to any possible
infrared sensitivity.

In order to compute the evolution of the thermal covariance, especially when calculating it numer-
ically, it is often convenient to use the following alternative expressions, which can be derived by dif-
ferentiating with respect to time the xx and pp components of Eq. (82):
_rxx
T ðtÞ ¼ 2GðtÞ½mðtÞ � GðtÞ�; ð92Þ

_rpp
T ðtÞ ¼ 2M2 _GðtÞ d

dt
½mðtÞ � GðtÞ�; ð93Þ

rxp
T ðtÞ ¼

M
2

_rxx
T ðtÞ ¼ MGðtÞ½mðtÞ � GðtÞ�; ð94Þ
where the convolution of the propagator with the noise kernel should be performed before the fre-
quency integral of the noise kernel. This will typically result in expressions more amenable to num-
erics since one can avoid increasingly oscillatory integrands.

For odd meromorphic spectral functions the frequency integral can be evaluated by contour inte-
gration (and the residue theorem) using the rational expansion of the hyperbolic cotangent:
coth
x
2T

� �
¼ 2T

x
þ 2

p
X1
k¼1

x
2pT

k2 þ x
2pT

� �2 : ð95Þ
One should then be left with a sum of terms rational in the Laplace domain, which can be contracted
into digamma or harmonic-number functions [respectively w(z) or H(z)], which are asymptotically
logarithmic. When transforming back to the time domain, the residues of the hyperbolic cotangent
additionally give rise to products of rational functions of k with e�2pTtk. These terms contain all effects
which decay at temperature-dependent rates and can be expressed in terms of Lerch transcendent
functions, U(z,1,e�2pTt), which are useful for numerical calculations but not particularly insightful.

Fortunately, one can also derive a simple analytic expression for the late-time thermal covariance,
as shown in Appendix E:
rTð1Þ ¼
Z 1

0
dxIðxÞ coth

x
2T

� �
jbGðıxÞj2 1 0

0 M2x2

	 

; ð96Þ
which reduces the calculation of late-time uncertainties to a single integral. This relation confirms that
for late times the momentum covariance has precisely x2 more frequency sensitivity in its integrand.
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4.1.3. Linear entropy
In this subsection we investigate the linear entropy [32], which can be easily obtained from the

Wigner distribution as follows:
SL ¼ 1� Trðq2
r Þ ¼ 1� 2p

Z
d2zW2

r ðz; tÞ: ð97Þ
In Fourier space it becomes:
SL ¼ 1� 1
2p

Z
d2kWrðk; tÞj j2; ð98Þ
and using the result in Eq. (81) we finally get:
SL ¼ 1� 1
2p

Z
d2k Wr 0;UTðtÞk

� ��� ��2e�kTrT ðtÞk: ð99Þ
At the initial time the linear entropy is that of the initial state, and at late times it tends to:
SL ¼ 1� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det r1T

p : ð100Þ
Alternatively, one can express the linear entropy in terms of an integral of the Fourier-transformed
reduced Wigner function at the initial time by introducing the change of variables k0 = UT(t)k. Eq. (99)
can then be written as:
SL ¼ 1� 1
2p

Z
d2k0

1
det½UðtÞ� Wrð0;k0Þj j2e�kT

0U�1ðtÞrT ðtÞU�TðtÞk0

¼ 1� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½rTðtÞ�

p Z
d2k0 Wrð0;k0Þj j2N 0;

1
2

UTðtÞr�1
T ðtÞUðtÞ; k0

� �
; ð101Þ
where N(l,r;k0) is a normalized Gaussian distribution for the variable k0 with mean l and covariance
r. For small times this integral is similar to that for the initial state, whereas for long times the nor-
malized Gaussian distribution becomes increasingly close to a delta function.

For a Gaussian initial state:
Wrð0;k0Þ ¼ exp �kT
0r0k0 � ıkT

0hzi0
� �

; ð102Þ
the integral in Eq. (99) can be explicitly computed:
SL ¼ 1� 1
2p

Z
d2ke�kT UðtÞr0UTðtÞþrT ðtÞð Þk ¼ 1� 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det UðtÞr0U

TðtÞ þ rTðtÞ
� �q : ð103Þ
For these Gaussian states, reasonable linear entropy is synonymous with reasonable uncertainty func-
tions (i.e., the linear entropy will be positive if and only if the Heisenberg uncertainty principle is sat-
isfied). We will find that the late time uncertainty is well behaved. The uncertainty at the initial and
intermediate times should not violate the Heisenberg uncertainty principle either.

4.1.4. Decoherence of a quantum superposition
In this section we will illustrate how one can get a useful qualitative picture of the phenomenon of

environment-induced decoherence from the solutions of the master equation given by Eqs. (81) and
(82). In order to do that we will consider a quantum superposition, jwi ¼ ðjwþi þ jw�iÞ=

ffiffiffiffi
K
p

, of a pair
of states jw±i which correspond to a pair of Gaussian wavefunctions in position space separated by
a distance 2dx and where K is an appropriate normalization constant. Specifically, we have:
w�ðxÞ ¼ w0ðx	 dxÞ; ð104Þ

w0ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nð0;rxx

0 ; xÞ
q

: ð105Þ
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where N(l,r2;x) is a normalized Gaussian distribution for the variable x with mean l and variance r2,
and w0(x) is a reference Gaussian state centered at the origin.

Taking into account the definition of the Wigner function:
Fig. 2.
superp
Wðx; pÞ ¼ 1
2p

Z þ1

�1
dyeipyq x� y=2; xþ y=2ð Þ; ð106Þ
and applying it to the density matrix q(x,x0) = hxjwihwjx0i we get:
WðzÞ ¼ 1
K

WþðzÞ þW�ðzÞ þ 2 cosð2dxpÞW0ðzÞ½ �; ð107Þ
where W+, W� and W0 are respectively the Wigner functions of the states jw+i, jw�i and jw0i. This
Wigner function, plotted in Fig. 2, exhibits oscillations of size 1/dx along the p direction. These oscil-
lations are closely connected to the coherence of the quantum superposition (and the existence of
non-diagonal terms in the density matrix) and are absent in the Wigner function for the incoherent
mixture W(z) = (1/2)[W+(z) + W�(z)].

In this context the decoherence effect due to the interaction with the environment corresponds to
the washing-out of the oscillations in the reduced Wigner function as it evolves according to the mas-
ter equation. This can be seen rather simply from the result for the solutions of the master equation
obtained in this section and given by Eqs. (81) and (82). Taking into account that the inverse Fourier
transform of Eq. (81) corresponds to a convolution of the homogeneously evolving initial state and a
Gaussian function with the thermal covariance rT(t) as its covariance matrix, the Wigner function can
then be expressed as:
Wrðt; zÞ ¼
Z

dz0
Nð0;rTðtÞ; z� z0Þ

det½UðtÞ� Wr 0;U�1ðtÞz0
� �

; ð108Þ
where the thermal Gaussian acts as a Gaussian smearing function which starts as a delta function at
the initial time and broadens with the passage of time until it eventually reaches its asymptotic
thermal-equilibrium value. Therefore, several aspects will be at play. On the one hand, the initial state
evolves as a phase-space distribution with trajectories corresponding to the homogeneous solutions of
the Langevin equation (19) and with the same qualitative behavior depicted in Fig. 1 for the
X

p

Wigner function associated with a state jwi ¼ ðjw1i þ jw2iÞ=
ffiffiffiffi
K
p

which corresponds to the coherent quantum
osition of two Gaussian wavefunctions in position space shifted by a distance dx.
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trajectories of hxi and hpi. On the other hand, by diagonalizing rT(t) at each instant of time one gets the
principal directions and the widths (r1,r2) of the Gaussian smearing function, which will average out
any details of those sizes along the corresponding directions. When rT(t) along the direction of the
interference oscillations of the Wigner function becomes comparable to their wavelength, they get
washed out and the Wigner function becomes equivalent to that of the completely incoherent mix-
ture. The time it takes for this to happen is known as the decoherence time tdec.

Knowledge of the qualitative behavior of rT(t), combined with the fact that the phase-space distri-
bution det[U(t)]�1Wr(0,U�1(t)z0) is rotating with the characteristic oscillation frequency and shrink-
ing with the characteristic relaxation time is all that one needs to understand how different initial
states decohere as time goes by. In particular, if the decoherence timescale, given by tdec, is much
shorter than the characteristic oscillation period and the relaxation time (but sufficiently longer than
1/K), one can approximate the phase-space distribution by the initial reduced Wigner function (after
any possible initial kick). For instance, for an Ohmic environment in the high-temperature regime one
can, under those circumstances, approximately take rpp

T ðtÞ � D1ppt with D1pp � 2Mc0T and from the con-
dition

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rppðtÞ

p
� 1=dx obtain an estimated decoherence time tdec � 1=ð2Mc0Td2

x Þ, in agreement with
the standard result for this situation [33,34]. On the other hand, if M, c0 or dx are very small tdec can
become comparable or larger than the dynamical timescales 1/X or 1/c, and the previous estimate
can no longer be applied because one needs to take into account the evolution of rT(t), which is then
less simple (it will roughly oscillate with frequency X around a central value which increases with a
characteristic timescale 1/c until it approaches the asymptotic thermal value), as well as the rotation
and shrinking of the initial Wigner function under the homogeneous evolution. Note also that if we
had considered an initial superposition of Gaussian states peaked at the same location but with differ-
ent momenta, which corresponds to a Wigner function along the position rather than momentum
direction, the decoherence time would typically be much longer, since rxx

T ðtÞ vanishes at the initial
time and grows with a characteristic timescale of order 1/X. In that case, the rotation of the Wigner
function becomes important since the oscillations can then be averaged out due to the larger values of
rpp

T ðtÞ.
The zero-temperature regime for an Ohmic environment is also qualitatively different. There is a

substantial contribution to rpp
T ðtÞ from a jolt of the diffusion coefficient Dpp for times of order 1/K.

However, this is actually regarded as an unphysical consequence of having considered a completely
uncorrelated initial state for the system plus environment, and this kind of highly cut-off sensitive fea-
tures at early times of order 1/K should disappear if one considers a finite (cut-off independent) prep-
aration time for the initial state of the system coupled to the environment [35]. For further discussion
on this point as well as a possible way of avoiding these spurious effects and generating a properly
correlated initial state by using a finite switch-on time for the system-environment interaction see
Appendix C.2. For sufficiently weak coupling, M, or dx, tdec can become comparable or larger than
the relaxation time more easily than at high temperatures since the components rT(t) are much smal-
ler in this case. For example, the asymptotic thermal value of rpp is of order MX (for weak coupling),
much smaller than the high-temperature results, which is of order M T. In such situations, the main
effect of considering a sufficiently long time is through the shrinking of det[U(t)]�1Wr(0,U�1(t)z0)
and the size of its oscillations.

We have focused in this subsection on describing the qualitative features of the environment-in-
duced decoherence of an initial coherent superposition that can be easily inferred from our general
result for the evolution of the reduced Wigner function. A much more quantitative study is possible
by using the exact analytical results for the diffusion coefficients and, especially, rT(t), which will
be presented in Sections 5 and 6. We expect agreement with the numerical results obtained in Ref.
[34], although significant deviations may appear when the nonlocal effects of dissipation are impor-
tant (such as in the sub-ohmic case) since previously obtained master equations are not valid in those
regimes.

4.2. Late-time dynamics

We now focus our attention on the dynamics generated by the stationary limit of the master equa-
tion, assuming that one exists. For an Ohmic spectrum with a large cut-off the pseudo-Hamiltonian H
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will reach its asymptotic value within the cut-off timescale, whereas the diffusion D within the typical
system timescales (although certain terms contributing to the diffusion coefficients will decay at a
temperature-dependent rate whenever this is faster); see Section 5 for a detailed analysis of all these
questions. In the weak-coupling regime this leaves the majority of the system evolution within this
late-time regime wherein the master equation is effectively stationary. However, the existence of such
a regime is not guaranteed in general. For instance, in the sub-ohmic case the evolution can be persis-
tently nonlocal and the effectively local late-time regime discussed here need not exist, as will be
shown in Section 6.1.

4.2.1. Late-time propagator
If the late-time stationary limit of the master equation exists, the late-time pseudo-Hamiltonian

operator will take the form:
H ¼
0 � 1

M

MX2
R 2C

" #
; ð109Þ
and can be effectively represented as arising from the propagator:
bGRðsÞ ¼
1
M

s2 þ 2CsþX2
R

; ð110Þ

GRðtÞ ¼
1

M eXR

sinðeXRtÞe�Ct; ð111Þ
with eXR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

R � C2
q

. This effective propagator GR(t) is not equivalent to the late time limit of the true
propagator G(t), but they should share the same asymptotic dynamics. Specifically if one can take the
asymptotic expansion:
GðtÞ ¼ G1ðtÞ þ dGðtÞ; ð112Þ
where G1(t) contains the asymptotic limiting behavior and dG(t) contains the early time corrections,
which decay faster at late times, then G1(t) should directly yield eXR and C in its arguments, although a
phase and amplitude difference between G1(t) and GR(t) may exist. This can be rigorously justified if
ĉðsÞ and, thus, bGðsÞ are rational, which implies that the time dependence of G(t) corresponds to
damped oscillations with various timescales. On the other hand, the sub-ohmic spectral distribution
that will be studied in Section 6.1 provides a pertinent counter-example [in that case G(t) decays as
a negative power-law rather than exponentially] which shows that this situations does not necessarily
exist when the spectral density function is not meromorphic.

If we indeed have a rational spectral density, then from the nonlocal propagator one only needs to
solve the characteristic equation:
f 2 þ 2ĉðf Þf þX2 ¼ 0; ð113Þ

to obtain all the rates f associated with the propagator (this is the same equation whose roots need to
be found when decomposing the propagator in Laplace domain into simple fractions). From Eq. (113)
and the positivity of the damping kernel, it follows that the real part of f will always be negative def-
inite. Those with the smallest real part in absolute value give the late-time coefficients: the real part
corresponds to �C and the imaginary one to XR. A specific example can be found in Section 5, where
the Ohmic case with a finite cut-off is studied in detail. On the other hand, if one treats the system-
environment interaction perturbatively, one can show that the late-time weak-coupling coefficients
take the following form:
f� ¼ �C� ıXR; ð114Þ
C ¼ Re ĉðıXÞ½ � þ Oðc2Þ; ð115Þ
XR ¼ X� Im ĉðıXÞ½ � þ Oðc2Þ; ð116Þ
which is in agreement with the results for the weak-coupling master equation obtained in Ref. [31].
Any additional timescales would then be perturbations of the cut-off or other timescales intrinsic
to the spectral function.



1228 C.H. Fleming et al. / Annals of Physics 326 (2011) 1207–1258
It should be noted that in general the late-time propagator discussed here cannot be employed to
calculate the diffusion coefficients or the thermal covariance, not even at late times. This is because
both quantities evaluated at an arbitrary time t get non-negligible contributions involving the propa-
gator at early times, as can be seen for instance from Eqs. (58) and (82). Nevertheless, one can still em-
ploy the late-time propagator to obtain the late-time evolution of the thermal covariance (and the
diffusion coefficients) provided that one already has an accurate result for its constant asymptotic
value (obtained for example with Eq. (96)), as will be illustrated next. In addition, one can also use
the propagator GR(t) given by Eq. (111), which corresponds to the limit of local dissipation, to calculate
the thermal covariance and diffusion coefficients for an Ohmic environment with a sufficiently large
cut-off, since in that case the contribution from the extra early-time term of the propagator can be
neglected when calculating these quantities for times later than K�1, as will be shown in Section 5.

4.2.2. Late-time diffusion and covariance
Given late-time master equation coefficients which have all taken their asymptotic values, one can

show that the evolution of the covariance in that regime is given by
rðtÞ ¼ r1T þUðt � tiÞ rðtiÞ � r1T
� �

UT t � tið Þ; ð117Þ
which is a solution of Eq. (80) as long as one assumes HðtÞ and D(t) to be time-independent after some
time ti in the late-time regime. Note that we have assumed that the master equation coefficients
reached their asymptotic values much faster than the relaxation time (as illustrated in Appendix F
with the example of the ohmic distribution, this may be the case for finite temperature, but not nec-
essarily so for zero temperature).

The asymptotic value of the late-time thermal covariance r1T has been reduced to a single integral
in Appendix E. From this single integral formulation, it is actually easier to obtain first r1T , and then
obtain the late-time diffusion coefficients using the Lyapunov equation (67). However, it is interesting
to note the inverse relation:
r1T ¼
1

MX2
R

1
2C D1pp � D1xp

� �
0

0 M
2C D1pp

24 35; ð118Þ
for the following reason. As we have pointed out in Section 4.1.2, only the momentum covariance can
contain the highest frequency sensitivities. From the Lyapunov solution we can see that the regular
diffusion coefficient would also contain such high-frequency sensitivities as it alone determines the
late-time momentum covariance. Therefore, the anomalous diffusion coefficients must act as an
‘‘anti-diffusion’’ coefficient in keeping the position covariance free of such sensitivities. On the other
hand, only the position covariance can contain the lowest frequency sensitivities and these must,
therefore, be entirely contained in the anomalous diffusion coefficient if they exist.

In summary, any specific features of the initial distribution decay away and at late times the state
tends generically to a Gaussian with a covariance matrix given by Eq. (96). As follows from Eq. (86),
the late-time position and momentum uncertainties are, therefore, entirely given by the asymptotic
values of the thermal covariance:
ðDxÞ2 ¼ ðr1T Þxx; ð119Þ
ðDpÞ2 ¼ ðr1T Þpp: ð120Þ
5. Ohmic case with finite cut-off

5.1. The nonlocal propagator

The arguably simplest example of ohmic dissipation with finite cut-off that one can construct cor-
responds to the following damping kernel:
ĉðsÞ ¼ c0

1þ s
K

: ð121Þ
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This damping kernel is constant at frequencies much smaller than the cut-off, but vanishes in the high
frequency limit. The corresponding spectral density also exhibits a rational cut-off function, which de-
cays quadratically for large frequencies:
IðxÞ ¼ 2
p

Mc0x 1þ x
K

� �2
	 
�1

: ð122Þ
Calculating the Green function amounts to factoring a cubic polynomial. Specifically, one needs to fac-
tor (s2 + X2)(s + K) + 2c0Ks in the denominator of the Green function bGðsÞ. For the underdamped sys-
tem the effect of a large finite cut-off is to shift the system relaxation and oscillation timescales
slightly:
c
H
¼ c0 1þ 2

c0

K
þO 1

K2

� �	 

; ð123Þ

X2
H
¼ K

K� 2c
H

X2: ð124Þ
and to add an additional relaxation timescale comparable to the cut-off:
KH ¼ K� 2c
H
: ð125Þ
If we parametrize everything in terms of these phenomenological frequencies, the Green function for
the fully nonlocal damping kernel can always be expressed as:
bGðsÞ ¼ 1
M

sþK

ðsþKHÞ s2 þ 2c
H

sþX2
H

� � ; ð126Þ
without the need to explicitly factor a cubic polynomial, while the original parameters are given by
c0 ¼
K2

H
þ 2c

H
KH þX2

H

ðKH þ 2c
H
Þ2

c
H
; ð127Þ

X2 ¼ KH

KH þ 2c
H

X2
H
; ð128Þ

K ¼ KH þ 2c
H
; ð129Þ
then we never have to actually factor the cubic polynomial.
After using partial fraction decomposition in Eq. (126), one can easily transform back to the time

domain and obtain the exact propagator for the nonlocal case:
GðtÞ ¼ K2
H
þX2

H

ðKH � c
H
Þ2 þ eX2

H

GRðtÞ �
2c

H

K2
H
þX2

H

_GRðtÞ �
e�KHt

M

� �" #
; ð130Þ
where GR(t) is the late-time local propagator introduced in Eq. (111). Note that as long as Kw > cw the
term proportional to e�KHt can be neglected at sufficiently late times, when the terms involving GR(t)
dominate. This corresponds to the late-time regime discussed in Section 4.2.1 (the term proportional
to ĠR(t) simply causes a phase shift) and the late-time master equation coefficients are, therefore:
C ¼ c
H
;XR ¼ XH: ð131Þ
In the high cut-off limit one recovers the usual coefficients c0 and X. Furthermore, in that limit one can
approximate G(t) by GR(t) since the extra terms are suppressed by inverse powers of K2. For G(t) this is
true even at arbitrarily early times of order K�1: although the exponential factor is not suppressed, the
prefactor 1=K2

H
is sufficient to suppress its contribution to G(t). This is not true, however, for €GðtÞ (or

higher-order derivatives), which also appears in U(t). From Eqs. (36) and (24) we can see that the
component involving €GðtÞ does not contribute to the thermal covariance, but whether it contributes
to its time derivative _rTðtÞ as well as to the diffusion coefficients, which are related to _rTðtÞ through
Eq. (61), is a bit more subtle. In order to analyze this point it is convenient to consider Eq. (58). On the
one hand, the time derivative acting on U(t � s) in the second term on the right-hand side of that
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equation will give rise to €Gðt � sÞ and an unsuppressed contribution from e�KHðt�sÞ. (Analogously to
what was explained above for Eq. (36), there is no contribution from the components of the transition
matrix involving €GðtÞ, and it can only arise when time derivatives act on other components.) On the
other hand, the additional time integral in that term when considering such a contribution will gen-
erate an extra 1/Kw factor as compared to the first term on the right-hand side of Eq. (58). Thus, the
final conclusion is that we can use the approximate local propagator GR(t) to calculate the diffusion
coefficients at arbitrary times in the large cut-off limit. Comparison of the results evaluated using
the exact expressions and plotted in Section 5.2 and the approximate results for the large cut-off limit
also support this conclusion.

We close this subsection with a brief discussion of the possible dissipative regimes when consid-
ering finite values of the cut-off in our spectral function, since the presence of this new scale can give
rise to a richer set of possibilities. For our rational cut-off function we have three different dissipative
regimes corresponding to the three shaded regions in Fig. 3. The boundary between different regions
corresponds to the values of the parameters for which a pair of roots of the denominator of bGðsÞ
degenerate and change character, i.e. they change from a complex conjugate pair to two real ones.
Atop the diagram where K
X, lies the regime of local dissipation, whereas along the bottom of
the diagram where K�X, lies an effectively sub-ohmic regime as K becomes an IR cut-off. The white
shaded vertical stripe to the left lies completely in the weak coupling regime and constitutes the
underdamped regime. This regime is as described previously with slowly decaying oscillations and a
cut-off-dependent decay rate. The grey shaded middle region denotes the overdamped regime. This re-
gime is also analogous to that of the simple and overdamped harmonic oscillator but with an addi-
tional cut-off-dependent decay rate. The black shaded region to the right denotes a new nonlocal
strong-coupling regime that emerges for a sufficiently strong coupling (such that c0 is large compared
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Fig. 3. Dissipative phases for Ohmic damping with finite rational cut-off. From left to right they are underdamped in white,
overdamped in grey, and strong coupling in black.
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to the cut-off). Specifically, as derived from Eqs. (127)–(129), the relevant scales for this regime in the
limit of very strong coupling are:
Fig. 4.
uncerta
KH ¼
X2

2c0
� X4

4Kc2
0

þO 1
c3

0

� �
; ð132Þ

c
H
¼ K

2
� X2

4c0
þO 1

c2
0

� �
; ð133Þ

XH ¼ 2Kc0 þX2 þO 1
c0

� �
: ð134Þ
Hence, we can see that one has moderately damped, rapid oscillations plus an additional slow decay
rate.

5.2. Initial jolts

Early studies by Unruh and Zurek [16] as well as HPZ [17] already revealed that at low tempera-
tures the normal diffusion coefficient Dpp(t) of an ohmic environment exhibited a strong cut-off
sensitivity for very early times of order 1/K. As shown in the next section and Appendix F, in the large
cut-off limit where the use of the local propagator is a good approximation one can obtain relatively
simple analytic results. They confirm that for zero temperature the normal diffusion coefficient, which
vanishes at the initial time, exhibits an initial jolt with an amplitude of order K peaked around a time
of order 1/K and then decays roughly like 1/t (for times much earlier than 1/X and 1/c0).

Alternatively, one can obtain the exact analytic results for finite cut-off by computing _rTðtÞ using
Eqs. (92)–(94), as explained in Section 4.1.2. The resulting expressions are rather lengthy and not par-
ticularly insightful, and will not be reported here, but they have been employed to plot some examples
of exact results for the diagonal components of _rTðtÞ and rT(t) in Figs. 4 and 5. From the different com-
ponents of the thermal covariance and its time derivative one can obtain the diffusion coefficients
using Eq. (80), and in particular one can see from Fig. 5 the presence of the jolt mentioned above.

It is important to emphasize that such kind of behavior, as well as an associated rapid growth of
rpp(t) and a slower growth of rxx(t) (which eventually decays exponentially within the relaxation
timescale 1/C) until they both reach values which depend logarithmically on K for large values of
K, is a consequence of having started with a completely uncorrelated initial stated. A possible way
of generating a properly correlated initial state is by smoothly switching on the system-environment
interaction within a timescale much longer than 1/K, but longer than the other relevant timescales of
the system. This is discussed in some detail in Appendix C.2. It also contains a number of technical de-
tails concerning the effects of the switch-on function appearing in the dissipation kernel, which can be
mainly reabsorbed in redefinition of the initial sate. The key point, however, is the role played by the
switch-on function appearing in the noise kernel, which eliminates the strong cut-off sensitivities and
jolts mentioned above when calculating correlation functions (the covariance matrix) and its
derivatives.
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Fig. 5. Same plot as in the previous figure, but with a much larger time resolution, which reveals the presence of the initial jolt
in _rppðtÞ peaked around t � 1/K⁄, while rxx(t) and _rxxðtÞ remain essentially zero at those timescales.
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We conclude this subsection briefly mentioning some generally applicable bounds on the growth of
the different thermal covariance components. First, we note from Eq. (82) that the thermal covariance
is positive definite as the noise kernel is a positive definite function. We also note that the thermal
covariance begins with rT(0) = 0 and _rTð0Þ ¼ 0. Given that this matrix is positive definite, the off-diag-
onal entries must be smaller than the average (arithmetic or geometric) diagonal entries. But the off-
diagonal rxp

T ðtÞ is proportional to _rxx
T ðtÞ and we have, therefore, the constraint:
_rxx
T ðtÞ

�� �� 6 2
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rxx

T ðtÞr
pp
T ðtÞ

q
; ð135Þ
which is also generally less than the late-time uncertainty as both rxx
T ðtÞ and rpp

T ðtÞ begin increasing
and then proceed to undergo damped oscillations, wherein each cycle there is a net increase in uncer-
tainty. This constrains the growth of position uncertainty. If the uncertainty function takes reasonable
values, then the position uncertainty must have reasonable growth.

An analogous constraint can be placed upon the growth in momentum uncertainty by considering
the positive definite matrix _U � m � _UT which yields:
_rpp
T ðtÞ

�� �� 6 2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rpp

T ðtÞð€G � m � €GÞðtÞ
q

: ð136Þ
So while the growth in position uncertainty is well constrained, growth in momentum is much less
constrained. Corresponding to this, we show in Section 4.2.2 that the late-time momentum uncer-
tainty has much more sensitivity to the high frequency modes of the bath. In terms of ohmic coupling,
the initial linear jolts, _rT

pp � K, and late-time logarithmic cut-off sensitivity only occurs in the momen-
tum uncertainty. The position uncertainty is relatively well behaved in both respects, having only ini-
tial logarithmic jolts and no late-time cut-off sensitivity at all. The (linear) momentum jolting occurs
only for a short period of time, Dt �K�1. The result is a rapid momentum dispersion near the initial
time, but bounded logarithmically.

5.3. Full-time diffusion coefficients for large cut-off

Full-time solutions for finite cut-off are completely possible given our analytic spectrum, the exact
nonlocal propagator in Section 5.1, and the contour integrals detailed in Section 4.1.2. Such resulting
solutions were used to plot the early time evolution in Fig. 4, but they are a bit cumbersome for pub-
lishing. Therefore, for pedagogical reasons we will restrict ourselves to the high cut-off regime in this
subsection since substantial additional simplifications can be employed in that case. For nonlocal dis-
sipation it is in general much easier to calculate first the thermal covariance than the diffusion coef-
ficients, but the situation will be different here. The key point that will be exploited in this subsection
is that for large cut-off the propagator in the ohmic case can be approximated by the local one, GR(t), as
discussed in Section 5.1. The advantage of using the local propagator GR(t) is that only the term involv-
ing a single time integral contributes to the expression for the diffusion coefficients in Eq. (58). On the
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other hand, if one is only interested in the late-time asymptotic values of the diffusion coefficients, one
can obtain simple analytic results without the need to restrict oneself to large values of the cut-off by
using the results that will be presented in the next subsection.

The details of the derivation and the complete results for the diffusion coefficients at arbitrary
times are provided in Appendix F. Here we simply highlight the main results and discuss some of their
implications. Both diffusion coefficients can be written in the following compact form:
DxpðtÞ ¼ Dxpð1Þ �Mc0
_GRðtÞ þ GRðtÞ 2c0 �

d
dt

� �
 �
DFðtÞ; ð137Þ

DppðtÞ ¼ Dppð1Þ �Mc0
_GRðtÞ c0 þ

d
dt

� �
þ GRðtÞX2


 �
DFðtÞ; ð138Þ
where Dxp(1) and Dpp(1) are immediately obtained by multiplying Eqs. (F.3) and (F.4) by s and taking
the limit s ? 0. The general expression for DF(t) is given by Eq. (F.11), but a simple result for the zero
temperature case is provided in Eq. (F.14). Essentially, DF(t) decays in a manner slightly more compli-
cated than that of exponential integrals with system, coupling, and temperature timescales but such
that temperature is the most dominant.

It is important to note that the coefficients Dxp(t) and Dpp(t) both exhibit logarithmic divergences in
the limit K ?1. This has been pointed out for Dxp(t) in Ref. [36], where the coefficients of the master
equation were calculated perturbatively to second order in the system-environment coupling con-
stants (linear order in c0). The fact that there is also a logarithmic divergence in Dpp(t) was not seen
in that reference because it is quartic in the system-environment coupling constants (quadratic in
c0). Moreover, strictly speaking such kinds of perturbative calculations cannot be employed to study
the long time behavior since they are only valid for t � c�1

0 and they miss for instance the exponential
decay of the second and third terms on the right-hand side of Eqs. (F.7) and (F.8).

We close this subsection with some remarks about the late-time diffusion coefficients in the weak
coupling regime. Expanding Eqs. (F.3) and (F.4) perturbatively in c0 we get:
Dxpð1Þ ¼
2
p

c0Re H
K

2pT

� �
� H

ıX
2pT

� �	 

þOðc2

0Þ; ð139Þ

Dppð1Þ ¼ c0X coth
X
2T

� �
þOðc2

0Þ: ð140Þ
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Fig. 6. Late time Dxp for � high temperature or equivalently Caldeira, � HPZ at K = 103X and K = 104X.
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In comparison to the weak coupling master equation of Caldeira et al. [15], the normal diffusion coef-
ficient is the same to lowest order in the coupling, but the anomalous diffusion coefficient is com-
pletely absent there. The largest contribution (in the weak coupling regime) to the anomalous
diffusion coefficient comes from the cut-off and it does not vanish at finite temperature (see Fig. 6).
This logarithmic sensitivity does not enter into the normal diffusion coefficient until second order,
but in the anomalous diffusion coefficient it is only proportional to one power of the coupling con-
stant, which is the order to which the master equation of Caldeira et al. [15] should be valid. In this
weak-coupling perturbative expansion, both diffusion coefficients are of order c0 plus higher-order
corrections, but they give contributions of different orders to the late-time thermal covariance r1T ,
Section 4.2.2. Whereas D1pp gives contributions of order 1 because it appears multiplied by a factor
1/c0, D1xp gives contributions of order c0. That is why the correct thermalization in the weak-coupling
limit was obtained in Ref. [15] despite having completely neglected the anomalous diffusion coeffi-
cient. The origin of the mixed orders in c0 appearing on the right-hand side of Eq. (118) can be ulti-
mately traced to the fact that H contains terms both of order 1 and c0, whose implication for r1T
can be straightforwardly seen from the Lyapunov equation (67).

5.4. Late-time covariance for finite cut-off

In Section 5.1 the late-time dissipation and renormalized frequency coefficients were directly in-
ferred from the nonlocal propagator to be cw and Xw, the result of factoring a cubic polynomial in
the nonlocal Green function. These coefficients are entirely nonperturbative in both coupling and
cut-off and completely determine the late-time propagator. The remaining part of the solution per-
tains to the emergence of the thermal covariance, whose late-time dynamics can be described as in
Section 4.2.2, given the late-time propagator and the late-time thermal covariance. The late-time ther-
mal covariance can also be related to the late-time diffusion coefficients through the Lyapunov equa-
tion, Eq. (67), but the thermal covariance is an easier quantity to compute. If interested in the diffusion
coefficients, one can then obtain them straightforwardly using Eq. (67).

For our spectral density the simplified integrals derived in Appendix E are contour integrals and can
be evaluated via the residue theorem after using the rational expansion of the hyperbolic cotangent,
Eq. (95). The result for the late-time, but nonperturbative thermal covariance obtained in this way is
rxx
T ¼

T

MX2 þ
1

2M eXH

Im½R�; ð141Þ

rpp
T ¼ MT þM eXH

2
Im 1� ı

c
HeXH

 !2

R

24 35; ð142Þ

R � 2
p

KH þ c
H
� ıeXH

KH � c
H
� ıeXH

H
c

H
þ ıeXH

2pT

 !
� H

KH

2pT

� �( )
; ð143Þ
where we assumed, as before, that eXH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

H
� c2

H

q
is real and H(z) denotes the harmonic number

function defined in Section A.1. If one expands those expressions, and the expressions below, under
the assumption that eXH is real, e.g. using Im½z� ¼ ðz� �zÞ=ð2ıÞ, then one will have the more general
expressions which will apply even in the overdamped regime.

At high temperature all of the harmonic number functions vanish, leaving only the first terms in
Eqs. (141) and (142), which are proportional to temperature:
rxx
T ¼

T

MX2 þOðT
0Þ; ð144Þ

rpp
T ¼ MT þOðT0Þ: ð145Þ
This corresponds to the high-temperature result of classical statistical mechanics. It is interesting that
this can happen for a finite cut-off and, therefore, outside the strict Markovian limit.

At zero temperature the first terms in Eqs. (141) and (142) vanish and all of the harmonic number
functions can be equivalently evaluated as logarithms, so that R simplified as follows:
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H
c

H
þ ıeXH

2pT

 !
� H

KH

2pT

� �
¼ ı cos�1 c

H

XH

� �
� log

KH

XH

� �
þOðTÞ: ð146Þ
This generalizes the results of Unruh and Zurek [16], who explored the zero temperature regime in the
limit of local dissipation.

Finally, in the weak coupling limit these expressions correctly reproduce the free thermal
state:
rxx
T ¼

1
2MX

coth
X
2T

� �
þOðc0Þ; ð147Þ

rpp
T ¼

MX
2

coth
X
2T

� �
þOðc0Þ: ð148Þ
One can also see that at weak coupling the uncertainty function agrees with the weak coupling
approximation for moderate values of the cut-off scale, as shown in Fig. 7. Had one naively tried to
have finite diffusion in the limit K ?1, subtracting by hand the log (K/X) term, one would find a vio-
lation of the Heisenberg uncertainty principle at low temperature and strong coupling (see Fig. 8),
which renders the theory unphysical. Of course this does not happen with the unsubtracted theory,
as seen in Fig. 9. It is, thus, clear that the logarithmic dependence on the ultraviolet cut-off that ap-
pears in the diffusion is a physically important parameter and not something that can be subtracted
away.

While the logarithmic sensitivity appears in both diffusion coefficients, it is suppressed in the
position uncertainty by inverse powers of the cut-off. For the momentum uncertainty, the logarith-
mic sensitivity appears already to first order in c0 (which is itself quadratic in the system-environ-
ment coupling constant) and is otherwise unsuppressed. This behavior had already been noticed
for Gaussian wave-packets in the Ohmic environment [37,16], and as we have discussed in Section
4.2.2, the position uncertainty will be free of the highest cut-off sensitivities for any spectral
density.

Finally, given that our results are nonperturbative, it is also interesting to point out what happens in
the highly nonlocal strong coupling regime mentioned Section 5.1. The late-time thermal covariance
for this case essentially corresponds to taking the large Xw limit of Eqs. (141) and (142):
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Fig. 9. Late time DxDp for the K = 103X theory.
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rxx
T ¼

T

MX2 þ
1

2MXH

þO 1
X2

H

 !
; ð149Þ

rpp
T ¼

MXH

2
þO X0

H

� �
: ð150Þ
For this model of strong coupling to the environment, and yet finite cut-off, the Brownian particle will
become strongly localized in position at late time and sufficiently low temperatures. And although the
particle is localized in position, the uncertainty principle is not violated but at most minimized in the
zero temperature limit.
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6. Sub-ohmic and supra-ohmic cases

6.1. Sub-ohmic with no cut-off

As an example where the nonlocal effects of dissipation are important, we will consider one of the
most common and well-behaved sub-ohmic spectral densities, IðxÞ /

ffiffiffiffiffi
x
p

, which requires neither a
UV nor an IR cut-off in the final results (although one still needs to renormalize the frequency intro-
ducing a logarithmically divergent bare counterterm). Our formulas will take a simpler form if we ex-
press our spectral density in terms of a quadratic coupling constant cw as follows:
IðxÞ ¼ 2
p

Mc
H

ffiffiffiffiffiffiffiffiffiffiffiffi
xHx
p

; ð151Þ

x2
H
� X2 þ c2

H
: ð152Þ
It is then a straightforward calculation to find the propagator:
bGðsÞ ¼ 1
M

s2 þ 2C
ffiffiffiffiffiffiffiffiffiffiffiffi
2xHs
p

þX2 ; ð153Þ
which is amenable to partial fraction decomposition in
ffiffi
s
p

since s is strictly positive. As we have de-
fined our nonlinear coupling strength in anticipation of this polynomial, the roots of the quartic
denominator rk: k 2 {1,2,3,4} can be shown to be the conjugate pairs:
r1;2 ¼
1ffiffiffi
2
p þ

ffiffiffiffiffiffiffi
xH

p
� ı

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xH þ 2c

H

q� �
; ð154Þ

r3;4 ¼
1ffiffiffi
2
p �

ffiffiffiffiffiffiffi
xH

p
� ı

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xH � 2c

H

q� �
: ð155Þ
After partial fraction decomposition, we may cast our propagator in the form:
bGðsÞ ¼X4

k¼1

Ak

M
1ffiffi

s
p
� rk

; ð156Þ

Aj ¼
Y4

k¼1
k–j

1
rj � rk

; ð157Þ
with inverse Laplace transform:
GðtÞ ¼
X4

k¼1

Ak

M
rker2

k
terfc �rk

ffiffi
t
p� �

; ð158Þ
where erfc(z) is the cumulative error function of the normal distribution, defined in Appendix A.3.
There are additional terms from the individual Laplace transforms, like t�1/2, but they vanish in the
sum. Using Eq. (A.15) for the asymptotic expansion of erfc(z) in order to expand the Green function
in Eq. (158) at late times, we obtain terms of the form:
zez2
erfcðzÞ ¼ 1ffiffiffiffi

p
p

X
k¼0

ð�1Þk ð2kÞ!
k!

1

ð2zÞ2k
þ

0 Re½z�P 0

2zez2 Re½z� 6 0

(
; ð159Þ
which we can use to expand the Green function in Eq. (158). After grouping all the contributions to-
gether, we will find exponential terms with characteristic frequencies f ¼ �C� ı

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

H
þ 2c

H
xH

p
,

which are actually the solutions to the characteristic rate Eq. (113) with smallest negative real part.
These are the only terms that one would have considered if the local propagator GR(t) within the
late-time approximation of Section 4.2 had been employed. In addition, and more importantly are
the power-law decay terms which admit no local representation.



1238 C.H. Fleming et al. / Annals of Physics 326 (2011) 1207–1258
This sub-ohmic model provides a perfect example showing when effectively local treatments,
such as that in Section 4.2, will fail completely. At first the local contribution will dominate and
the master equation coefficients will appear to trend towards C 
 cw and XR 
xw + cw. However,
as shown in Fig. 10, the nonlocal contribution (the power-law terms) will eventually dominate the
more swiftly decaying local contribution (the exponential terms) and a correct treatment of the non-
local dynamics will be required. In fact, as the nonlocal contribution becomes comparable to the lo-
cal contribution, the master equation coefficients will become periodically divergent [this is related
to the fact that detU(t) vanishes and changes sign at those times.]. The underlying homogeneous
evolution is well behaved and strictly dissipative (the damping kernel is positive definite), but the
localizing perspective of the master equation becomes divergently unnatural. Any errors, numeric
or analytic, can be catastrophic in the master equation perspective. In this respect, the subtleties
missed in previous derivations of the master equation, as pointed out in Section 3.2 and which
are relevant whenever nonlocal effects are important, will likely give rise to substantial discrepan-
cies in this case.

The full-time evolution is rather complicated, but the late-time limit is very manageable. For exam-
ple, from Eq. (96) we can express the late-time thermal position uncertainty as:
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Fig. 10.
c

H
¼ X

4.
rxx
T ð1Þ ¼ 2

Z 1

0
IðxÞ coth

x
2pT

� � bGðıxÞ��� ���22
ffiffiffiffiffi
x
p

d
ffiffiffiffiffi
x
p

; ð160Þ
where we have used the relation dx ¼ 2
ffiffiffiffiffi
x
p

d
ffiffiffiffiffi
x
p

. The integrand is amenable to partial fraction
decomposition, after a rational expansion of the hyperbolic cotangent with Eq. (95), and can therefore
be integrated without resorting to numerics. Additionally, and in contrast to the ohmic case, the inte-
grand is even in

ffiffiffiffiffi
x
p

for all temperatures, including zero, and contour integration techniques are more
generally applicable.

Strictly speaking we cannot compare exact sub-ohmic solutions to those obtained with an incorrect
master equation since the master equation will yield nonsense, but we can compare the exact nonlocal
dynamics to those obtained by extracting the local dynamics and assuming it to be the dominant
behavior. Obviously the effectively local approximation is incorrect, but it should be good to zeroth
order in the coupling and one might naively expect that it might also behave reasonably for finite cou-
pling strength. However, in Fig. 11 we compare the late-time uncertainty functions and show there to
be sharp disagreement to the first two orders in the coupling constant squared (the slope and the cur-
vature of the curves on the plot).

6.2. Supra-ohmic with finite cut-off

The conventional wisdom has been to consider supra-ohmic spectral densities of the form:
InðxÞ ¼
2
p

Mcnx
x
K

� �n

v x
K

� �
; ð161Þ
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The local contribution is initially more significant, but the nonlocal contribution dominates eventually.
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Fig. 11. Late-time sub-ohmic uncertainty function at zero temperature with the � exact nonlocal solution and � � � fictitious
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where v : [0,1) ? [1,0) denotes the cut-off regulator. Without a cut-off regulator, all supra-ohmic
couplings have greater than logarithmic high frequency divergence in the diffusion and thermal
covariance integrals (see Appendix E for exact integrals in the infinite time limit). Even when regu-
lated, the mere potential for divergence therefore corresponds to cut-off sensitivity from the high fre-
quency portion of noise integrals, which is balanced by the extra inverse powers of the cut-off in the
prefactor of the above spectral density.

Here we will restrict our investigation to the following spectral density:
IðxÞ ¼ 2
p

Mc2x
x
K

� �2

1þ x
K

� �2
� �2 ; ð162Þ
because this example is exactly solvable. The corresponding damping kernel in Laplace space is
ĉðsÞ ¼ c2

2

s
K

1þ s
K

� �2 : ð163Þ
One might be inclined to view this damping kernel as a tiny mass renormalization plus even less sig-
nificant higher order terms, but the effect quite different from that, as we will see. After factoring the
fourth-order polynomial, the fully nonlocal propagator can be decomposed by partial fractions into
two sets of timescales. Expanding perturbatively in c2, the first set of timescales correspond to the sys-
tem frequency with weak damping:
c
H
¼ c2

X
K

� �2

1þ X
K

� �2
� �2 þOðc

2
2Þ; ð164Þ

XH ¼ X 1� c2

K
1� X

K

� �2

1þ X
K

� �2
� �2 þOðc

2
2Þ

0B@
1CA; ð165Þ
while the second set of timescales correspond to quickly decaying nonlocal contributions associated
with the cut-off scale:
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cK ¼ K� c
H
; ð166Þ

XK ¼
X
XH

K: ð167Þ
The situation is analogous to ohmic case with a finite cut-off except that the nonlocal part of the prop-
agator is also oscillating at the rate eXK 


ffiffiffiffiffiffiffiffiffi
c2K

p
, for weak coupling and high cut-off.

This form of spectral density was constructed only with well-behaved high frequency contributions
in mind. Nevertheless, as shown in Fig. 12, we find the conventional form of spectral density to be
inadequate. There is clearly some cut-off sensitivity in the thermal covariance which is remedied by
introducing an additional power of cut-off suppression. E.g. the conventional form of spectral density
is not well behaved, but the substitution.
c2 !
X
K

c2; ð168Þ
is well behaved.
An explanation only emerges after a more thorough examination of the contour integrals. The high-

frequency regime, x
K, is already rendered well behaved by the conventional cut-off-dependent pre-
factor. The near-resonance regime, x 
X, which produces the weak coupling limit, also appears to be
well behaved. There is only one remaining suspect and it proves to be the culprit. The previously unac-
counted for cut-off sensitivity arises here from the nonlocal timescales of the propagator, i.e. the x 
K
regime. This is quite surprising as unlike sub-ohmic coupling, supra-ohmic coupling does yield a well-
behaved local representation for its late-time dynamics. But residues of the contour integral which cor-
respond to the nonlocal timescales reveal the correct dominant behavior rpp 
 1

2 M eXK ¼ 1
2 M

ffiffiffiffiffiffiffiffiffi
c2K

p
, for

weak coupling and high cut-off. Therefore the conventional, linear coupling c2 must be suppressed
by an additional factor of the cut-off, else the momentum covariance will be plagued by a

ffiffiffiffi
K
p

sensitivity.

7. Generalizations of the theory

7.1. Influence of a classical force

In this section we consider the case of a classical force F(t) acting on the quantum oscillator. This is
done by adding a time-dependent potential �F(t)x to the system Lagrangian:
Ls ¼
1
2

Mð _x2 �X2x2Þ þ FðtÞx; ð169Þ
which gives rise to the following additional source on the right-hand side of Eq. (19):
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Late-time supra-ohmic uncertainty function at zero temperature for cut-offs between 100X and 500X. The left plot is
conventional coupling scale, while the right plot has decreased the coupling strength by an extra power of the cut-off.
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FðtÞ ¼
0

FðtÞ

	 

: ð170Þ
Following our master equation derivation in Section 3.2, it is easy to see that such a deterministic
source in the Langevin equation simply adds a driving term to the master equation, which becomes:
o

ot
Wrðz; tÞ ¼ $T

zHðtÞz� $T
zFeffðtÞ þ $T

zDðtÞ$z

n o
Wrðz; tÞ; ð171Þ
where the effective force Feff(t) is given by
FeffðtÞ � FðtÞ þ
Z t

0
ds d

dt
þHðtÞ

	 

Uðt � sÞ


 �
FðsÞ: ð172Þ
Note that the last term in Eq. (172) is a consequence of having nonlocal dissipation and, as we saw in
Section 3.2, it vanishes for local dissipation.

Similarly, the method of Section 2.3, based on the solutions of the Langevin equation, can be
straightforwardly generalized to this case and one obtains the following result for the time evolution
of the reduced Wigner function:
Wr t;k½ � ¼ Wr 0;UTðtÞk
� �

e�
1
2kTrT ðtÞke�ıkThziF ðtÞ; ð173Þ
with a driven mean hziF(t) given by
hziFðtÞ ¼ U � Fð ÞðtÞ: ð174Þ
On the other hand, one can alternatively use the method of characteristic curves to solve the master
equation, as done in Section 3.3.1. Fourier-transforming Eq. (171), one gets an equation analogous to
Eq. (65) but with an extra term �ıkTFeff(t) on the right-hand side. Following the same procedure as in
Section 3.3.1, one finally obtains the same result as in Eq. (173) but with:
hziFðtÞ ¼
Z t

0
dsUðt; sÞFeff ðsÞ: ð175Þ
Eqs. (174) and (175) can be shown to be equivalent as follows. First, one rewrites Eq. (172) as:
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Feff ðsÞ ¼
d

ds
þHðsÞ

	 
 Z s

0
dsUðs� s0ÞFðs0Þ: ð176Þ
Next, one substitutes Eq. (176) into Eq. (175) and performs an integration by parts of the derivative
term. Finally, one takes into account that ðd=dsÞðU�1ðsÞÞ ¼ U�1ðsÞHðsÞ, which follows from Eq. (55),
and the result in Eq. (174) is recovered. Hence, we see that although U(t,s) and U(t � s) are different
for nonlocal dissipation, this is exactly compensated by the contribution from the second term on the
right-hand side of Eq. (172), which does not vanish in that case.

Note that just as all the temperature dependence appears entirely in the second cumulant, or
covariance, the external force only affects the first cumulant, or mean. Eq. (173) shows that the mean,
hzi(t), is shifted by hziF(t), which characterizes the response to the driving force. In fact, using Eq. (22)
one can immediately see that it corresponds to shifting hxi and hpi respectively by (G � F)(t) and
(MĠ � F)(t), as one would expect.

7.2. N-Oscillator master equation

Our compact matrix notation allows a number of generalizations in a fairly straightforward fashion.
As an illustration we present the generalization of our results for the master equation and its solutions
to the case of multiple system oscillators {xa} (which includes the case of a higher dimensional oscil-
lator) with arbitrarily bilinear coupling to themselves and to the bath oscillators {yj}. We consider the
system Lagrangian for N oscillators and a generic bilinear term for the system-bath interaction:
Ls ¼
1
2

_xTM _x� xTKx
� �

ð177Þ

¼ 1
2

_xaMab _xb � xaKabxb
� �

; ð178Þ

Lint ¼ yTcx ¼ yicibxb; ð179Þ
where we used Einstein’s summation convention for repeated indices and the matrix c connects sys-
tem positions (denoted by Greek indices) to bath positions (denoted by Latin indices). The matrices M
and K are symmetric and positive definite. The eigenvalues of X2 �M�1/2 K M�1/2 correspond to the
normal-mode frequencies.

The effects of the environment for the generalized situation described by Eqs. (178) and (179) can
be entirely encoded in a simple generalization of the spectral density as well as the noise and
(massless) damping kernels:
IabðxÞ ¼
X

k

dðx�xkÞ
ckackb

2mkxk
; ð180Þ

mðt; sÞ ¼
Z 1

0
dxIðxÞ coth

x
2T

� �
cos xðt � sÞ½ �; ð181Þ

cðt; sÞ ¼
Z 1

0
dx

IðxÞ
x

cos xðt � sÞ½ �: ð182Þ
In fact, one can directly specify the system-environment coupling by giving the spectral density matrix
I(x), which must be symmetric and positive semi-definite, as implied by Eq. (180). After taking the
Laplace transform, the Langevin equation in position space is then given by
ðs2Mþ 2sĉðsÞ þ KÞx̂ðsÞ ¼ ðsMx0 þ p0Þ þ n̂ðsÞ; ð183Þ
which can be solved via matrix inversion to find ĜðsÞ, with which one can construct U(t) and rT(t).
However, closed-form evaluation of G(t) can be rather involved: even for local dissipation the two-
oscillator problem requires factoring a fourth-order polynomial. In general, the N-oscillator problem
will require factoring a polynomial of order 2N for local dissipation and of order 2N + 1 or more for
nonlocal dissipation. We leave more thorough discussion to future work, where we will derive
block-matrix equations for the position and momentum parts in the phase-space representation anal-
ogous to those herein.
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8. Discussion

Quantum Brownian motion of an oscillator coupled to a thermal reservoir of quantum oscillators
has been the canonical model for the study of open quantum systems where one can use it to inves-
tigate all the environmental effects on an open quantum system it interacts with, even of macroscopic
scale, such as quantum dissipation, diffusion, decoherence and entanglement. It also provides impor-
tant information on quantum measurement, such as noise, fluctuations, correlations, uncertainty rela-
tion and standard quantum limit in mesoscopic systems. Many experiments have been carried out for
testing these processes. An exact master equation was reported some years ago [17] governing the re-
duced density matrix of an open quantum system coupled to a general environment of arbitrary spec-
tral density and temperature. Subsequently there have also been claims of exact solutions [21]. We
have found many previous derivations to be correct for local dissipation, but containing errors or
omissions for nonlocal dissipation; in their place we have presented the most complete and correct
derivation of the QBM master equation to date. In this paper we report on solutions to this equation
for a fairly general set of physical conditions and a generalization of the QBM master equation to a sys-
tem with an arbitrary number of oscillators. Most of the previous results required one to solve integro-
differential equations numerically, whereas we have reduced everything to quadrature, which can be
further simplified in many cases using contour integration techniques. We expect these results to be
useful in realistic settings for the analysis of many problems which can be described by this model.

More specifically, we have found a compact expression for the general solution of this master equa-
tion, showing that at late times it tends to a Gaussian state entirely characterized by its asymptotic
covariance matrix. For odd meromorphic spectral densities, and many others, the result for this
late-time covariance matrix can be evaluated as a simple contour integral. As an example we provide
explicit exact nonperturbative results for an ohmic environment with a finite cut-off which are valid
for an arbitrarily strong coupling. At sufficiently low temperatures and strong coupling this equilib-
rium state becomes highly squeezed and the system becomes extremely localized in position space,
a phenomenon with potentially interesting applications in the realm of mesoscopic systems.

The general solution of the master equation involves the matrix propagator of a linear integro-dif-
ferential equation. We have been able to solve these equations exactly for several ohmic, sub-ohmic
and supra-ohmic environments with a finite cut-off and studied the evolution of the system for finite
times. This is achieved using Laplace transforms and eventually transforming back to time domain.
From such exact (and simple) solutions for the propagator one gains highly valuable information.
For instance, one can justify that using the local propagator is a valid approximation for the ohmic
environment in the large cut-off limit. This approximation leads to great simplifications and we are
then able to provide relatively simple analytic expressions for the diffusion coefficients of the master
equation at all times. Similarly, our exact solutions for the propagator in specific examples of sub-oh-
mic and super-ohmic environments reveal a dominant contribution from nonlocal dissipation effects.
In the first case it is a consequence of long-time correlations, due to the low-frequency modes of the
environment, that become important at late times. In contrast, the source of nonlocality in the supra-
ohmic case is the UV regulator function, and it gives rise to a marked cut-off sensitivity of the momen-
tum covariance which had not been noticed so far. On the other hand, it should be pointed out that
although the results for the exact propagator of the integro-differential equation are rather simple,
some of the general expressions for the solutions of the master equation are rather lengthy and have
not been reported here. They have, nevertheless, been employed to evaluate and plot the exact time
evolution of the thermal covariance for an ohmic environment with a finite cut-off in Section 5.2.

It is important to discuss the cut-off sensitivity of the late-time covariance and diffusion coeffi-
cients for an ohmic environment in the weak coupling regime. While r1xx is finite in the infinite cut-
off limit, r1pp depends logarithmically on K for large K already at order c0 (Eq. (142)). This means that
it is absolutely necessary to consider a finite cut-off. The kind of divergences that appear otherwise
cannot be dealt with by renormalizing the frequency or other bare parameters of the theory. In fact,
as shown in Section 5.4, subtracting the divergent term would lead to inconsistencies (violation of
Heisenberg’s uncertainty principle). Furthermore, from the late-time thermal covariance one can
immediately obtain the late-time diffusion coefficients as well (see the discussion at the end of Section
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5.3). One finds then that both the normal and anomalous diffusion coefficients are logarithmically sen-
sitive to large cut-offs. However, while this dependence appears in Dxp (Eq. (139)) at order c0, in Dpp it
only appears at order c2

0, and it had been missed in previous analytic studies which treated c0 pertur-
batively to lowest order.

We would also like to stress the following point. When studying an ohmic environment with a
finite but large cut-off, it can be a good approximation to consider local dissipation (infinite cut-off
limit for the damping kernel) while keeping the cut-off finite in the noise kernel. This has already been
discussed above and justifies calculations like those of Ref. [16] up to corrections suppressed by in-
verse powers of the cut-off. However, the opposite is not true: it is essential to keep a finite cut-off
in the noise kernel to avoid the divergences discussed in the previous paragraph. This is precisely
the origin of the divergences and pathological behavior found in Ref. [21], where a finite cut-off
was employed in the damping kernel but not in the noise kernel. Instead one should use the same
spectral function everywhere, which means having a finite cut-off in both kernels, and everything
would be well defined then. Note that these divergences would appear in the momentum covariance
even at asymptotically late times, as discussed in the previous paragraph. There is a different kind of
sensitivity to large values of the cut-off that is due to having started with a uncorrelated state for the
system and the environment. This gives rise to a jolt in the normal diffusion coefficient at early times
of order 1/K with an amplitude proportional to K, as well as a logarithmic dependence on the cut-off
of rxx (and rpp) that decays exponentially with the relaxation timescale 1/C. They would not be pres-
ent if one had started with an appropriately correlated initial sate, and then prepared the system in a
finite time (not suddenly). Alternatively, this can be implemented by switching on the system-envi-
ronment interaction smoothly in a finite time much larger than 1/K, but shorter than the other
dynamical scales of the system.2

As a further generalization of the QBM master equation we have included the influence of external
forces. This modifies the dynamics by driving the mean position and momentum just as with a clas-
sical driven system (even for nonlocal dissipation). In this model we found that the force has no effect
upon the width of the wave-packet or any cumulant other than the mean. These results may be useful
for the study of low-temperature measurements of driven oscillators, which are relevant for experi-
ments with nanomechanical resonators [11,12]. They also play a crucial role in future schemes for
the detection of gravitational waves with high-intensity laser interferometers, where the radiation
pressure effects on the cavity mirrors are important [38,39].

Finally, we have extended the model of one quantum oscillator bilinearly coupled to a thermal res-
ervoir of oscillators to a model of multiple oscillators bilinearly coupled to themselves and the bath in
an arbitrary fashion. With this generalization, the potential for application [40,41] becomes almost
endless and we leave further study to future research [42].
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Appendix A. Special functions

A.1. Harmonic number

The harmonic number H(n) is a function similar to a logarithm, whose definition and main proper-
ties are:
2 A d
of the s
when e
etailed discussion is provided in Appendix C.2. There are plenty of technical details concerning the initial kick and the effect
witch-on function on the damping kernel, but the real key point is the effect of the switch-on function in the noise kernel
valuating either the diffusion coefficients or the correlation functions (the covariance matrix).
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HðnÞ ¼
Xn

k¼1

1
k
; n 2 Zþ; ðA:1Þ

Hð0Þ ¼ 0; ðA:2Þ
cE ¼ lim

n!1
HðnÞ � logðnÞÞ½ �; ðA:3Þ
where cE is known as the Euler–Mascheroni constant. Its generalization to the complex plane exhibits
similar properties and is given by
HðzÞ ¼ cE þ wðzþ 1Þ; z 2 C; ðA:4Þ
where w(z) is the digamma function, defined as:
wðzÞ ¼ C0ðzÞ
CðzÞ : ðA:5Þ
It satisfies the recurrence relation:
wðzþ 1Þ ¼ wðzÞ þ 1
z
; ðA:6Þ
and its Taylor expansion around 1 as well as its asymptotic expansion for jzj?1 are given respec-
tively by
wðzþ 1Þ ¼ �cE þ
X1
k¼1

fðkþ 1Þð�zÞk for jzj < 1; ðA:7Þ

wðzÞ � ln z� 1
2z
� 1

12z2 þ � � � if j argðzÞj < p; ðA:8Þ
where f(n) is the Riemann zeta function.

A.2. Exponential integral

The exponential integral is a special function which is defined for jarg(z)j < p as:
E1ðzÞ ¼
Z 1

z

e�z0

z0
dz0; ðA:9Þ
and has a branch cut along jarg(z)j = p. Its series expansion is
E1ðzÞ ¼ �cE � ln z�
X1
n¼1

ð�1Þn

nn!
zn; ðA:10Þ
and its asymptotic expansion for jzj?1 is given by
E1ðzÞ ¼
e�z

z
1� 1

z
þ 2

z2 þ � � �
� �

: ðA:11Þ
A.3. Error function

The error function is defined as
erfðzÞ ¼ 2ffiffiffiffi
p
p

Z z

0
e�w2

dw; ðA:12Þ
where the path integration is subject to the restriction limjwj?1jarg(w)j < p/4. In addition, the comple-
mentary error function is defined as
erfcðzÞ ¼ 2ffiffiffiffi
p
p

Z 1

z
e�w2

dw ¼ 1� erfðzÞ: ðA:13Þ
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The series expansion is
erfðzÞ ¼ 2ffiffiffiffi
p
p

X1
n¼1

ð�1Þn

ð2nþ 1Þn!
z2nþ1; ðA:14Þ
and the asymptotic expansion for jzj?1 (and jarg(z)j < 3p/4) is given by
erfcðzÞ ¼ e�z2ffiffiffiffi
p
p

z
1� 1

2z2 þ
3

4z4 þ � � �
� �

; ðA:15Þ
which along with the fact that erf(z) is odd, is sufficient to create an accompanying asymptotic expan-
sion for jarg(z)j > 3p/4

Appendix B. Some properties of Laplace transforms

Given a real function f(t), defined for all real numbers t P 0, its Laplace transform is defined as:
f̂ ðsÞ ¼ Lff ðtÞgðsÞ ¼
Z 1

0�
e�st f ðtÞdt; ðB:1Þ
where the one-sided limit from the left for the lower limit of integration is chosen so that the trans-
form of the Dirac delta function is one, i.e. LfdðtÞg ¼ 1. The main properties used in the paper are the
following. First, the Laplace transform of a derivative is given by
Lf _f ðtÞgðsÞ ¼ sf̂ ðsÞ � f ð0Þ: ðB:2Þ
And from this one can easily infer that the Laplace transform of an integral:
L
Z t

0
dsf ðsÞ


 �
ðsÞ ¼ 1

s
f̂ ðsÞ: ðB:3Þ
Second, multiplying f(t) by an exponential corresponds to a translation of the Laplace transform:
Lfeatf ðtÞgðsÞ ¼ f̂ ðs� aÞ: ðB:4Þ
Third, if the inverse Laplace transform of f̂ ðsÞ is f(t) h(t), multiplying f̂ ðsÞ by an exponential corresponds
to a translation of the inverse Laplace transform:
L�1feasf̂ ðsÞgðsÞ ¼ f ðt þ aÞhðt þ aÞ: ðB:5Þ
Fourth, the Laplace transform of a Laplace convolution is given by the product of the Laplace
transforms:
Lfðf � gÞðtÞgðsÞ ¼ f̂ ðsÞĝðsÞ; ðB:6Þ
where
ðf � gÞðtÞ ¼
Z t

0
dt0f ðt � t0Þgðt0Þ: ðB:7Þ
Fifth, the initial value theorem relates the initial value of a function f(t) and the infinite limit of its La-
place transform as follows:
f ð0þÞ ¼ lim
s!1

sf̂ ðsÞ: ðB:8Þ
Sixth, the final value theorem relates the infinite limit of a function f(t) and the initial value of its La-
place transform as follows:
f ð1Þ ¼ lim
s!0

sf̂ ðsÞ; ðB:9Þ
provided that all the poles of f̂ ðsÞ are on the Re(s) < 0 half of the s complex plane.
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Seventh, the inverse Laplace transform of f̂ ðsÞ can be calculated using Bromwich’s integral, which
involves an analytic continuation of f̂ ðsÞ in the complex plane:
f ðtÞ ¼ L�1ff̂ ðsÞgðsÞ ¼ 1
2pı

Z aþı1

a�ı1
est f̂ ðsÞds; ðB:10Þ
where a is a real number chosen so that the integration path lies within the region of convergence of
f̂ ðsÞ, i.e., a > Re(sj) for every singularity sj of f̂ ðsÞ.

Bromwich’s integral illustrates the close relationship between the Laplace transform and the
Fourier transform through analytic continuation. However, even if all the singularities of f̂ ðsÞ lie on
the Re(s) < 0 half of the complex plane, the relation is not direct because the Laplace transform in-
volves an integral with domain [0,1) rather than (�1,1). The precise relationship can be understood
as follows. Consider a real function f(t) defined for all real values of t and whose Fourier transform is
~f ðxÞ: It is useful to define the following additional Fourier transforms:
~f�ðxÞ ¼
Z þ1

�1
dte�ıxtf ðtÞhð�tÞ; ðB:11Þ
such that ~f ðxÞ ¼ ~fþðxÞ þ ~f�ðxÞ and which satisfy the property ~f�ð�xÞ ¼ ð~f�ðxÞÞ� since f(t) is real.
Assuming that the Laplace transform f̂ ðsÞ has no singularities for Re(s) > 0, it can be related by analytic
continuation to ~fþðxÞ:
~fþðxÞ ¼ lim
�!0

f̂ ð�þ ıxÞ: ðB:12Þ
If f(t) is an even function, one has ~f�ðxÞ ¼ ~fþð�xÞ, and using Eq. (B.12) one can then write:
~f ðxÞ ¼ ~fþðxÞ þ ~fþð�xÞ ¼ lim
�!0

f̂ ð�þ ıxÞ þ f̂ ð�� ıxÞ
h i

: ðB:13Þ
Similarly, if f(t) is an odd function, one has ~f�ðxÞ ¼ �~fþð�xÞ, which implies:
~f ðxÞ ¼ ~fþðxÞ � ~fþð�xÞ ¼ lim
�!0

f̂ ð�þ ıxÞ � f̂ ð�� ıxÞ
h i

: ðB:14Þ
Appendix C. System-environment interaction and renormalization

C.1. Frequency renormalization and the damping kernel

In this subsection we discuss the relationship between the Lagrangians in Eqs. (1) and (2). The
question of frequency renormalization plays a central role in this discussion and it will be analyzed
by rewriting the equation of motion in terms of the damping kernel, given by Eq. (8), rather than
the dissipation kernel. Here we will take hs(t) = 1 and leave the examination of effects due to a non-
vanishing switch-on time for the next subsection.

If one starts with the Lagrangian in Eq. (1), the homogeneous part of the Langevin integro-differ-
ential equation analogous to Eq. (7) is then:
ðL � xÞðtÞ ¼ M€xðtÞ þMX2
barexðtÞ þ 2

Z t

0
dslðt � sÞxðsÞ: ðC:1Þ
Using the expression for the dissipation kernel in terms of the damping kernel, l(t � s) =
M(o/ot)c(t � s), and integrating by parts, one obtains:
ðL � xÞðtÞ ¼ M€xðtÞ þ 2M
Z t

0
dscðt � sÞ _xðsÞ

þM X2
bare � dX2

� �
xðtÞ þ 2McðtÞxð0Þ; ðC:2Þ
where the time-independent frequency renormalization dX2 is given by
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dX2 ¼ 2cð0Þ ¼ 2
M

Z 1

0
dx

IðxÞ
x

: ðC:3Þ
By choosing a bare frequency with an appropriate counterterm in order to cancel the frequency ren-
ormalization, X2

bare ¼ X2 þ dX2, one would be finally left with Eq. (9) and an effective frequency for the
system oscillator X. This is the same equation that one obtains if one starts with the Lagrangian in Eq.
(2) and takes hs(t) = 1, which can be easily understood as follows. Recalling the definition of the spec-
tral function I(x) in terms of the coupling constants cn, it is immediate to see that the square of the last
term on the right-hand side of Eq. (2) gives �(1/2)MdX2x2. Therefore, the Lagrangians in Eqs. (1) and
(2) are equivalent provided that one makes the choice mentioned above for X2

bare.

C.2. Initial-time divergences, coupling switch-on and initial-state distortion

C.2.1. Initial-time divergences and coupling switch-on
The derivation of the HPZ master equations relies upon the key assumption that the system and

environment are initially uncorrelated. For an ohmic environment, this gives rise to an initial ‘‘jolt’’
in the normal diffusion coefficient of the master equation with a characteristic timescale of order
K�1 and an amplitude proportional to K. Similarly, the frequency X2

RðtÞ in the master equation starts
with a large value of the order of K and decreases to moderate values in a time of order K�1.

The physical origin of the jolts in the coefficients of the master equation as well as other initial time
divergences, such as the divergent contributions to correlation functions of system observables that
are due to divergent boundary terms at the initial time (see Appendix D in Ref. [43]), can be under-
stood as follows. In general when a system couples to an environment with an infinite number of
modes, well-behaved states exhibit correlations with arbitrarily high-frequency modes. In contrast,
states that are uncorrelated for sufficiently high frequencies (such as completely factorizable states)
are pathological. For instance, in the limit of infinite cut-off they have infinite energy (even with an
origin of energies such that the ground state of the whole interacting system has vanishing energy)
and their Hilbert space is unitarily inequivalent to the space of physical states, spanned by the basis
of energy eigenvectors of the whole system Hamiltonian including the system-environment interac-
tion. (Of course for a finite UV cut-off there are no divergences or unitary inequivalence, but the poten-
tially divergent terms are very sensitive to changes in the value of the cut-off.) Physically acceptable
initial states that correspond to the thermal equilibrium state for the whole system can be obtained
using Euclidean path integrals [44]. However, the instantaneous preparation functions employed in
Ref. [44] to produce other states in addition to the thermal equilibrium state still give rise to initial
divergences, as explained in Ref. [45]. In order to obtain finite results, one needs to prepare the
new initial state within a non-vanishing time [35], which corresponds to a physically more realistic
situation. The alternative approach that we follow here is to switch on the system-environment inter-
action smoothly within a time ts much longer than K�1 but shorter than any other relevant timescale
of the problem. In this way the factorized initial state, which is perfectly acceptable in the uncoupled
case, becomes adequately correlated with the arbitrarily high-frequency modes in a regular fashion.

When adding the short time switch-on function to the system-environment coupling to turn on the
interaction gradually, as in Eq. (2), the initial jolt is no longer present in the results for the diffusion
coefficients, which behave smoothly during the switch-on time. Furthermore, for times much longer
than ts the contribution to Eq. (58) from the switch-on period is negligible and one can simply use that
equation without including any switch-on function. This point is implicitly exploited throughout the
paper: unless explicitly stated, our calculations of the diffusion coefficients do not take into account
the switch-on functions and the results for those coefficients should only be regarded as valid for
times sufficiently larger than ts, while their values during that period should be smoothly interpolated
so that they vanish at the initial time.

Either the quick transition from the bare frequency to the renormalized one (in the absence of a
smooth switch-on function) or switching on the interaction in a finite time ts can have a non-negligible
effect on the homogenous solutions of the Langevin equation even for times much larger than K�1 or
ts. Fortunately, as we will show in the remaining subsections, the effect can be entirely accounted for
by a finite shift of the initial momentum and the corresponding transformation of the initial state.
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C.2.2. Initial kick (finite cut-off, vanishing switch-on time)
We start by considering the case in which there is no switch-on time and analyze the effect of the

slip term, which corresponds to the last term on the right-hand side of Eq. (9) for the Langevin oper-
ator. It can be interpreted as a transient driving force:
FcðtÞ ¼ 2cðtÞx0; ðC:4Þ
whose contribution to the solution is simply adding a term (G ⁄ Fc)(t). The infinite cut-off limit can be
analyzed using distributions in the time domain or working with Laplace transforms. As derived in
Eqs. (13) and (14), the solution of Eq. (9) (including the slip term) is given in Laplace space by
x̂ðsÞ ¼ M sx0 þ _x0ð ÞbGðsÞ þ bGðsÞn̂ðsÞ; ðC:5Þ
whereas one can easily infer that the solution without the slip term would be:
ŷðsÞ ¼ M sy0 þ _y0 þ 2ĉðsÞy0ð ÞbGðsÞ þ bGðsÞn̂ðsÞ: ðC:6Þ
In the limit of local dissipation (large cut-off limit) ĉðsÞ ¼ c0 and one can see that the effect of the slip
term is an initial kick to the homogeneous solutions, whose values before and after the kick can be
related via:
y0 ¼ x0; ðC:7Þ
_y0 ¼ _x0 � 2c0x0: ðC:8Þ
This induces a distortion of the reduced Wigner function associated with the transformation
_x0 ! _x0 � 2c0x0 which occurs within the cut-off timescale. The effect of such an initial kick can be en-
tirely absorbed in a redefinition of the initial state, as will be discussed in Section C.2.4.

C.2.3. Initial kick (large cut-off, non-vanishing switch-on time)
Next, we consider the case with a non-vanishing switch-on time ts and smooth switch-on function

such that hs(0) = 0 and hs(t) = 1 for t P ts. Integrating the dissipation kernel by parts in Eq. (7), the
homogeneous part of the Langevin equation becomes:
€xðtÞ þ 2
Z t

0
dscPðt; sÞ _xðsÞ þX2xðtÞ ¼ �2hsðtÞ

Z t

0
dscðt � sÞ _hsðsÞxðsÞ; ðC:9Þ
in terms of the positive-definite kernel:
cPðt; sÞ � cðt � sÞhsðtÞhsðsÞ; ðC:10Þ
where we have not made any approximations concerning the timescales of the dissipation kernel and
switch-on function yet, but have expressed our result in terms of the damping kernel defined in Eq. (8)
and taken into account Eq. (C.3). Either in the limit of local dissipation or vanishing switch-on time,
the term on the right-hand side of Eq. (C.9) gives rise to a slip term analogous to that found in the pre-
vious subsection. This is because for x(t) evolving slowly compared to K�1 or ts, one has a convolution
of the distributions c(t) and _hsðtÞ, which is also a distribution localized near the initial time. In partic-
ular, it is immediate to see that the results of Section C.2.2 are recovered in the limit of vanishing ts

(see the remark below about _hsðtÞ in that limit).
If we take the high cut-off limit c(t � s) = c0 d(t � s), which should be a good approximation for

K
 t�1
s , the right-hand side of Eq. (C.9) takes a simple form and we are left with:
€xðtÞ þ 2c0h
2
s ðtÞ _xðtÞ þX2xðtÞ ¼ �c0dsðtÞxðtÞ ðC:11Þ

dsðtÞ �
d
dt

h2
s ðtÞ; ðC:12Þ
where ds(t) is a representation of the delta function in the limit of vanishing switch-on time; however,
its support is entirely contained in the t P 0 interval, so that

R1
0 dsðtÞdt ¼ 1. (We also took the local

dissipation limit on the left-hand side of Eq. (C.12) for simplicity, but we need not have done so: that
is a slowly varying term which does not play an important role here.) For a very rapid switch-on func-
tion we have ds(t)x(t) 
 ds(t)x(0) and this term produces an initial kick, _x0 ! _x0 � c0x0, analogous to
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that described in the previous subsection. This kick of the homogeneous solutions will produce a dis-
tortion of reduced Wigner function which occurs within the switch-on timescale. For times much lar-
ger than ts, this effect can also be entirely absorbed into a redefinition of the initial state, as described
in the next subsection.

C.2.4. Initial-state distortion
In Section C.2.2 we calculated that in a particular limit of X� K� t�1

s one obtains a kick to the
initial state of _x0 ! _x0 � 2c0x0 which occurs within the slower cut-off timescale. Whereas in Section
C.2.3 we calculated that in a particular limit of X� t�1

s � K one obtains a kick to the initial state of
_x0 ! _x0 � c0x0 which occurs within the slower switch-on timescale. From the exact relation in Eq.
(C.9), if one tries to enforce both high cut-off and short switch-on time then there will be a kick
_x0 ! _x0 � cc0x0 which occurs in the slower of the cut-off and switch-on timescales. And if the station-
ary damping kernel c(t) and switch-on function’s derivative _hsðtÞ are suitably well-behaved distribu-
tions, then this kick is bounded so that 0 6 c 6 2.

From these results one might be tempted to consider modifying the Lagrangian by introducing a
suitable time-dependent frequency renormalization counterterm dX2

kickðtÞ ¼ �cc0dðtÞ. However, even
though an appropriate choice of time-dependent counterterm could compensate and effectively re-
move the effect of the initial kick in either case, a truly finite cut-off is still necessary to have a finite
thermal covariance, and the switch-on function for the system-environment interaction is still essen-
tial to avoid the highly cut-off sensitive initial jolt in the normal diffusion coefficient and other irreg-
ularities associated with an uncorrelated initial state (the key point in these cases is the dependence
on the switch-on function of the noise kernel shown in Eq. (5)).

Moreover, the effect of any such kick can easily be accounted for by simply distinguishing between
the ‘‘bare’’ initial state before the kick and the ‘‘renormalized’’ state immediately after the kick. Follow-
ing the approach in Ref. [19] one can easily see that this initial kick translates into a distortion of the
Wigner distribution from the bare initial state to a shifted one:
Wbareðx;pÞ !W renðx; pÞ ¼Wbare x;p� cMc0xð Þ: ðC:13Þ
This phase-space transformation has a Jacobian matrix K with determinant equal to one:
K ¼
1 0

�cMc0 1

	 

; det K ¼ 1: ðC:14Þ
Therefore, it is simple to calculate renormalized expectation values in terms of bare expectation values
and vice versa:
hAðx; pÞi ren
or

bare

¼
ZZ

dxdpAðx;pÞW ren
or

bare

ðx; pÞ; ðC:15Þ

hAðx; pÞiren ¼ hA x; pþ cMc0xð Þibare: ðC:16Þ
We can immediately see that the normalization, linear entropy (see Section 4.1.3) and state overlap
are all unchanged by the kick. We can also check explicitly that the Heisenberg uncertainty relation
is preserved as follows. First, we start with the covariance matrix for x and p corresponding to the Wig-
ner distribution:
r ¼
rxx rxp

rpx rpp

	 

; ðC:17Þ
with rxx = hxxiren, rxp = rpx = hxpiren and rpp = rpp = hppiren, and which transforms in the following way
under linear phase-space transformations:
r! KrKT: ðC:18Þ
Hence, from Eq. (C.14) we have:
det rbare ¼ det rren: ðC:19Þ
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Finally, one takes into account that:
3 Usi
correlat
Howeve
equival
of the t
system
ðdet rÞP �h2

4
; ðC:20Þ
corresponds to the formulation in terms of the Wigner function of the generalized Heisenberg uncer-
tainty relation due to Schrödinger [46,47]:
hDx2ihDp2i � 1
2
fDx;Dpg

� �2

P
�h2

4
; ðC:21Þ
where fbA; bBg � bAbB þ bBbA.
Furthermore, by switching to the density matrix formalism, we can see that pure states are mapped

to pure states and positivity is preserved. It is a straightforward calculation to show that:
qbareðx; yÞ ! qrenðx; yÞ; ðC:22Þ

qrenðx; yÞ ¼ eþı
cMc0

2 x2qbareðx; yÞe�ı
cMc0

2 y2
: ðC:23Þ
Therefore, if we start in a pure state, which acts as a projection operator:
q2
bare ¼ qbare; ðC:24Þ
then it is fairly easy to see that this will hold for the distorted state. Additionally, given the positivity
condition:
hwjqbarejwiP 0; ðC:25Þ
for all vectors jwi, then it is easy to see that the distorted state will also fulfill this condition by simply
considering the vectors eıcMc0x2=2wðxÞ in position representation.

In summary, the new Wigner function that results from the transformation defined by Eq. (C.13)
always corresponds to a physical density matrix since the transformation preserves the normalization
and the real-valuedness of the Wigner function (implying the normalization and hermiticity of the
density matrix) as well as the positivity of the associated density matrix. Therefore, if one is interested
in analyzing the evolution of a certain state of the system better correlated with the environment, one
can simply take such a state as Wren(x,p) and study its evolution for t
max[ts,K�1] by considering
the Langevin equation without the term that gives rise to the initial kick. However, given any Wren(x,p)
it is always possible to follow in detail the evolution during the switch-on time by inverting Eq. (C.13)
to obtain the corresponding initial Wigner function before the interaction was switched on and using
the full Langevin equation with the contribution from the right-hand side of Eq. (C.9) included. In gen-
eral this approach can be regarded simply as a formal procedure to generate a better correlated initial
state, but the explicit construction involving unitary evolution for the whole system at all times guar-
antees that the result is well defined (i.e. the exact solutions of the master equation obtained in this
way preserve the positivity of the density matrix).3

Appendix D. Peculiarities of propagators and Green functions associated with integro-differential
equations

In this appendix we discuss a subtle mathematical point which, to the best of our knowledge, has
been missed in the existing literature on master equations of QBM models. It has to do with properties
of Green functions which are satisfied for ordinary differential equations but not for integro-differen-
tial equations. Thus, it becomes particularly relevant whenever the nonlocal aspects of the dissipation
kernel cannot be neglected.
ng this approach the system-environment correlations at high frequencies will be the same as those of other properly
ed states (such as the global equilibrium states considered in Ref. [44] or states prepared from those in a finite time).
r, in general the correlations for low frequencies will differ and the states of the whole system plus environment will not be

ent even if their reduced Wigner functions are the same. In particular this implies that even if the reduced Wigner functions
wo states coincide at some given time, they will in general evolve differently (until thermal equilibrium for the whole
is reached).
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Consider an integro-differential equation of the form:
4 Not
_zðtÞ þ
Z t

0
dsHðt � sÞzðsÞ ¼ nðtÞ; ðD:1Þ
with the kernel H(t � s) given by Eq. (20). Its solutions can be written as:
zðtÞ ¼ UðtÞz0 þ U � nð ÞðtÞ; ðD:2Þ
where z0 specifies the initial conditions and the matrix propagator U(t) is given by Eq. (24). As far as
the homogeneous solutions are concerned, the values of a solution at two different times s and t are
related by the transition matrix U(t)U�1(s). On the other hand, for some given initial conditions the
inhomogeneous solutions are obtained by integrating the source with the retarded matrix propagator
Uret(t � s) = U(t � s) h(t � s), as shown in Eq. (D.2).

In the case of a linear differential equation (i.e. for a local damping kernel), the retarded matrix
propagator and the transition matrix are related in a simple way: Uret(t � s) = U(t) U�1(s)h(t � s).
This can be seen by realizing that U(t)h(t � s) satisfies the differential equation except for a delta func-
tion that results from differentiating the theta function, and that the two expressions are equal to the
identity matrix at t = s. In contrast, for an integro-differential equation (a nonlocal damping kernel)
U(t) U�1(s)h(t � s) no longer corresponds to the retarded matrix propagator because U(t)h(t � s)
does not satisfy the integro-differential equation, which can be seen (for t > 0) as follows:
_U tð Þ ¼ �
Z t

0
ds0H t � s0ð ÞU s0ð Þ–�

Z t

s
ds0H t � s0ð ÞU s0ð Þ; ðD:3Þ
where the right-hand side equates to:
�
Z t

s
ds0H t � s0ð ÞU s0ð Þ ¼ �

Z t

0
ds0H t � s0ð ÞU s0ð Þh s0 � sð Þ: ðD:4Þ
The discrepancy is due to a term of the form
R s

0 ds0Hðt � s0ÞUðs0Þ (with t > s), which vanishes in the
case of nonlocal damping kernel and hence a nonlocal kernel H(t � s0), but does not vanish in the non-
local case. On the other hand, Uret(t � s) does satisfy the integro-differential equation with a delta
source, as it should. This point, which can be alternatively seen in Laplace space fairly easily, follows
from the fact that U(t) is a solution of the integro-differential equation by construction, together
with the translational invariance of this kind of solutions (i.e. if U(t) is a solution, U(t � s) is also a
solution4). Such a translational invariance follows quite straightforwardly from the causal and transla-
tionally-invariant nature of the kernel H(t � s0) as well as the matrix propagator’s support only for
non-negative values of its argument:
_Uret t � sð Þ ¼ �
Z t�s

0
ds0H t � s� s0ð ÞU s0ð Þ þ Id t � sð Þ

¼ �
Z t

s
ds00H t � s00ð ÞU s00 � sð Þ þ Id t � sð Þ

¼ �
Z t

0
ds00H t � s00ð ÞU s00 � sð Þ þ Id t � sð Þ; ðD:5Þ
where I is the identity matrix and we used the fact that U(s0) = 0 for s0 < 0 in the last equality.
From the previous discussion it immediately follows (taking t > s) that, contrary to the local case,

the matrix propagator does not factorize in the nonlocal case, i.e.
Uðt � sÞ– UðtÞU�1ðsÞ: ðD:6Þ
This lack of factorizability also implies that the Green function or, equivalently, the matrix propa-
gator Uf(t,s) for the integro-differential equation when the boundary conditions are specified at some
final time (and given by Eq. (28)) is no longer an advanced propagator, i.e. it is no longer true
that Uf(t,s) = 0 for t > s. This can be proved by contradiction. If one considers s > t > s0 in Eq. (28)
and assumes that Uf(s,s0) = 0, one is left with:
e that if one uses a convention according to which U(t) = 0 for t < 0, then the notation U(t)h(t) is redundant.
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0 ¼ �Uðs; tÞUðt � s0Þ þUðs� s0Þ: ðD:7Þ
Taking the limit s0 ? t� of Eq. (28) and taking into account that limu!0þUðuÞ ¼ I, one finally
obtains U(s � t) = U(s)U�1(t), which is in contradiction with Eq. (D.6). Therefore, the assump-
tion Uf(s,s0) = 0 for s > s0 cannot be true in the nonlocal case.

These facts or closely related ones have been missed in the existing literature on master equations
for QBM models. As a consequence, the existing results for the coefficients of the master equation are
mathematically incorrect unless strictly local dissipation is considered, and can give rise to significant
discrepancies whenever nonlocal effects are important. We close this appendix by briefly describing
how this affects the different existing approaches to deriving the exact master equation for QBM mod-
els. One class of derivations [18–20] involve an intermediate step where the solution of an integro-dif-
ferential equation like Eq. (D.1) with specified boundary conditions (position and velocity) at a final
time is needed. The previous discussion directly applies to this class of derivations and the main con-
sequences are that the Green functions appearing there are not advanced and the explicit expressions
which were provided, based on the assumption that those Green functions were advanced, are incor-
rect. Nevertheless, the results in those references can be easily corrected by removing the qualification
of ‘‘advanced’’ propagator and discarding the explicit expressions for that Green function. The results
would then become equivalent to the general result that we have obtained in Section 3.2, although
one would need to find a way to construct the Green function explicitly. We provide such an explicit
construction of the corresponding matrix propagator Uf(s,s0) in Eq. (28), where it is expressed in
terms of known quantities, namely, U(t) as given by Eq. (24). Note, by the way, that if one had truly
advanced propagators, one could show that the terms involving triple time integrals in the results for
the diffusion coefficients [such as Eqs. (B.17)–(B.18) in Ref. [19]] actually vanish. In fact, these terms
correspond to the last term on the right-hand side of our Eq. (51), which only vanishes for local dis-
sipation, as can be seen from Eqs. (58), (55) and the discussion above.

A second class of derivations, including HPZ’s original derivation for arbitrary temperature and
spectral function, relies on the use of Green functions for the same integro-differential equation,
but associated with mixed boundary conditions which correspond to specifying the position at the ini-
tial and final times. Explicit expressions are provided for those Green functions G(t,s) in terms of
homogeneous solutions u1(s) and u2(s) which vanish at the final and initial times respectively. Unfor-
tunately, although those expressions are standard results for ordinary differential equations, they are
not valid for nonlocal integro-differential equations. This is because they involve the sum of two
terms, each one of them being a certain solution of the homogeneous integro-differential equation
times h(t � s) and h(s � t) respectively [see Eq. (2.34) in Ref. [17]]. However, for similar reasons to
those given above and illustrated by Eq. (D.3), when multiplied by the theta functions those solutions
cease to satisfy the integro-differential equation.

Finally, a third class of derivations [21] are based on showing that the solutions of the Langevin
equation can be equivalently understood as solutions of a local ordinary differential equation rather
than an integro-differential one. This is true for the homogenous solutions of the Langevin equation
and corresponds to the equivalence (after inverting and transposing) between the matrix propa-
gator U(t) associated with the Langevin equation and the matrix propagator Uk(t) associated with
the ordinary differential Eq. (71), which we found in Section 3.3.1. However, such an equivalence is
not true for inhomogenous solutions of the nonlocal Langevin equation. One way of seeing this is
by realizing that since Eq. (71) is an ordinary differential equation, its retarded matrix propagator does
factorize. But if the inhomogeneous solutions of the local equation constructed with that propagator
were also solutions of the inhomogeneous Langevin equation, it would imply that the retarded prop-
agator associated with the latter also factorizes, which is not true for nonlocal dissipation, as we
showed above.5 In particular, the derivation of Eq. (2.18) in Ref. [21] is valid if one takes a vanishing
inhomogeneous source F(t). Nevertheless, when deriving Eq. (2.18) for a non-vanishing source, the
authors implicitly assumed that if the homogenous solutions of the Langevin equations satisfy a local
use this argument directly one should consider the equation satisfied by ½UT
kðtÞ�

�1 rather than Eq. (71), which is satisfied by
hat equation can be easily obtained by transposing and taking the matrix inverse of Eq. (71) applied to Uk(t), and it is still a
ear differential equation.
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differential equation, the inhomogeneous solutions of the Langevin equation should also satisfy the inho-
mogeneous version of the same local equation. As we have explained, it turns out that this is only true for
local dissipation. Not surprisingly, making use of Eq. (2.18) the authors derive a master equation with
diffusion coefficients lacking the terms with triple time integrals mentioned above, which in reality
should only vanish for strictly local dissipation.

Appendix E. Derivation of the late-time thermal covariance

Here we present the derivation of the general single-integral representation of the late-time ther-
mal covariance. For the sake of brevity we will work out the explicit case of the late-time position
uncertainty. The late-time momentum uncertainty is analogous and the cross-correlation vanishes
at late times, as implied by rxp

T ðtÞ ¼ ðM=2Þ _rxx
T ðtÞ if rxx

T ðtÞ tends to a constant asymptotic value.
We start with the full-time, exact expression:
rxx
T ðtÞ ¼

Z 1

0
dxIðxÞ coth

x
2T

� �Z t

0
ds1

Z t

0
ds2Gðs1Þ cos xðs1 � s2Þ½ �Gðs2Þ; ðE:1Þ
where we have made the simple change of variables s0i ¼ t � si for i = 1,2. Introducing the additional
change of variables �s ¼ s1 þ s2, the result can be rewritten as:
rxx
T ðtÞ ¼

Z 1

0
dxIðxÞ coth

x
2T

� �Z t

0
ds2

Z s2þt

s2

d�sGð�s� s2Þ cos x �s� 2s2ð Þ½ �Gðs2Þ: ðE:2Þ
The double time integration can then be split into two parts:
Z t

0
ds2

Z s2þt

s2

d�s ¼
Z t

0
ds2

Z t

s2

d�sþ
Z t

0
ds2

Z tþs2

t
d�s: ðE:3Þ
At sufficiently late times the contribution form the second integration domain can be neglected and
we can approximate the whole integral as follows:
Z t

0
ds2

Z s2þt

s2

d�s 

Z t

0
ds2

Z t

s2

d�s ¼
Z t

0
d�s
Z �s

0
ds2; ðE:4Þ
The next step is to express the cosine in complex form with exponential functions. Once that is done, it
is not difficult to manipulate the result into the form of a Laplace convolution:
rxx
T ðtÞ 


Z 1

0
dxIðxÞ coth

x
2T

� �Z t

0
dsRe e�ıxsGðsÞ½ � � eþıxsGðsÞ½ �f g; ðE:5Þ
where we renamed �s as s. Using the property of frequency shifting in the Laplace domain, i.e.
Lfekt f ðtÞg ¼ f̂ ðs� kÞ, we obtain:
r̂xx
T ðsÞ 


Z 1

0
dxIðxÞ coth

x
2T

� �1
s
bGðsþ ıxÞbG s� ıxð Þ: ðE:6Þ
Application of the final value theorem, as given by Eq. (B.9), then immediately reveals the exact late-
time covariance:
rxx
T ð1Þ ¼

Z 1

0
dxIðxÞ coth

x
2T

� �bGðþıxÞbGð�ıxÞ: ðE:7Þ
Proceeding in a completely analogous way, one can obtain the result for the momentum covariance
and the cross correlation. For the cross correlation, the time derivative of one of the propagators gives
an extra factor (s + ıx) in the expression in Laplace space. When taking the real part, as in Eq. (E.6), one
is left only with s, which cancels out the factor 1/s in Eq. (E.7). Application of the final value theorem,
as given by Eq. (B.9), gives then a vanishing result for the asymptotic value of the cross-correlation:
rxp

T ð1Þ ¼ 0. As for the momentum covariance, the two time derivatives, one for each propagator, give
an extra factor (s2 + x2) in the expression in Laplace space. When taking the real part and applying the
final value theorem, one is left with:



6 Ma

used fo

(F.3) an

Im½z� ¼

C.H. Fleming et al. / Annals of Physics 326 (2011) 1207–1258 1255
rpp
T ð1Þ ¼ M2

Z 1

0
dxIðxÞ coth

x
2T

� �
x2bG þıxð ÞbG �ıxð Þ: ðE:8Þ
Taking into account Eqs. (E.7) and (E.8) and the vanishing value of the asymptotic cross correlation, the
asymptotic value of the thermal covariance matrix can be written as:
rTð1Þ ¼ Sy
Z 1

0
dxIðxÞ coth

x
2T

� �
Û þıxð Þ

0 0
0 1

	 

ÛTð�ıxÞ; ðE:9Þ
where Sy denotes matrix symmetrization.

Appendix F. Moderate-time diffusion for ohmic case with large cut-off

In this appendix we calculate the diffusion coefficients for the ohmic case using the local propaga-
tor GR(t) instead of the exact one, which is a valid approximation in the high cut-off regime, as dis-
cussed in Section 5.1. The big advantage of using GR(t) is that only the first term on the right-hand
side of Eq. (58), which involves a single time integral, will give a non-vanishing contribution. Further-
more, the Laplace transforms of the corresponding equations for the diffusion coefficients exhibit a
rather simple form if one takes the following steps. First, one writes the cosine of the noise kernel
in exponential form; next, manipulates the time integral until one has a Laplace convolution; and then
uses frequency shifting in the Laplace domain, i.e. ekt f ðtÞ ! f̂ ðs� kÞ. After some algebraic manipula-
tions one finally gets:
bDxpðsÞ ¼ �
1
s

Z 1

0
dxIðxÞ coth

x
2T

� �
Re bGRðsþ ıxÞ
h i

; ðF:1Þ

bDppðsÞ ¼ þ
1
s

Z 1

0
dxIðxÞ coth

x
2T

� �
Re _̂GRðsþ ıxÞ
h i

: ðF:2Þ
Our late-time Green function (111) is rational in the Laplace domain (with late-time coefficients
given by Eq. (131)). Moreover, the spectral density I(x) in Eq. (122) is meromorphic with a finite num-
ber of poles. Together with the rational expansion of the hyperbolic cotangent in Eq. (95), this implies
that the frequency integrals over x in the above diffusion coefficients become sums over k of trivial
contour integrals in the Laplace domain. Still in the Laplace domain, these sums can be identified as
harmonic number functions (or, equivalently, digamma functions)6:
bDxpðsÞ ¼ �
2c0T
Ks
F s þ

c0

s
Im I s½ �; ðF:3Þ

bDppðsÞ ¼
2c0T

s
1þ s

K

� �
F s þ

c0

s
Im c0 þ ıeX� �

I s

h i
; ðF:4Þ
in terms of the dimensionless quantities F s and I s defined as:
F s � 1þ cs

K

� �2
þ

eX
K

 !2
24 35�1

; ðF:5Þ

I s �
2
p

ıþ cseX
1� csþıeX

K

� �2 H
K

2pT

� �
� H

cs þ ıeX
2pT

 !( )
; ðF:6Þ
and where cs = c0 + s. Note that by making use of the final value theorem in Eq. (B.9), we only need to
discard the overall 1/s factor and replace cs with c0 in Eqs. (F.3) and (F.4) to obtain the late-time
asymptotic values Dxp(1) and Dpp(1).
ny of the expressions derived throughout this paper assume underdamping, i.e. c0 < X with eX ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � c2

0

q
. They can be

r the overdamping regime by making the following analytical continuation: eX ! ı~c with ~c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

0 �X2
q

real. Therefore, Eqs.

d (F.4) can be applied to the overdamping case if the Im and Re terms are first expanded assuming that eX is real, e.g. using

ðz� �zÞ=ð2ıÞ, and then the analytical continuation eX ! ı~c is made.
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The H(z) functions are the harmonic number function discussed in Appendix A.1. These terms make
up, among other things, the well known log (K/X) divergence. They behave asymptotically like loga-
rithms but with H(0) = 0, making both their high and zero temperature limits trivial. At high temper-
ature, all of the harmonic number functions vanish, leaving only the second terms which are
proportional to the temperature. At zero temperature, all of the harmonic number functions can be
equivalently evaluated as logarithms.

The diffusion coefficients can be expressed in the time domain as their asymptotic values plus
damped oscillating differential operators acting on the same decay function DF(t) (although the sums
over k cannot in general be identified with any simply behaved special functions):
DxpðtÞ ¼ Dxpð1Þ �Mc0
_GRðtÞ þ GRðtÞ 2c0 �

d
dt

� �
 �
DFðtÞ; ðF:7Þ

DppðtÞ ¼ Dppð1Þ �Mc0
_GRðtÞ c0 þ

d
dt

� �
þ GRðtÞX2


 �
DFðtÞ; ðF:8Þ
with the thermal decay function
DFðtÞ ¼ �
cot K

2T

� �
e�Kt

1þ c0
K

� �2 þ eX
K

� �2 þ
2
p

TSðtÞ; ðF:9Þ

TSðtÞ ¼
X1
k¼1

K
2pT

� �2

K
2pT

� �2 � k2

ke�2pTkt

kþ c0
2pT

� �2 þ eX
2pT

� �2 : ðF:10Þ
For numerical evaluation purposes, it is useful to express this thermal sum in terms of Lerch transcen-
dent functions:
TSðtÞ ¼ Re
1� ı c0eX

1� c0þıeX
K

� �2 U1
c0 þ ıeX

2pT
; 2pTt

 !26664
37775� SyK

U1
K

2pT ; 2pTt
� �

1� c0
K

� �2 þ eX
K

� �2

26664
37775; ðF:11Þ
with the definitions of U1(z;k), which is related to the Lerch transcendent function by U1(z;k) =
U (e�k,1,z) � 1/z, and of the symmetric part being:
U1ðz; kÞ ¼
X1
k¼1

e�kk

kþ z
; ðF:12Þ

Syz½f ðzÞ� ¼
f ðþzÞ þ f ð�zÞ

2
: ðF:13Þ
The decay function is such that at the initial time it causes cancelation with the asymptotic values
and the diffusion coefficients vanish. In this (asymptotic) high temperature perspective, the decay
function contains two terms. The first decays at a cut-off dependent rate and can be expressed in
closed form. The second decays with primarily temperature dependent rates and cannot be ex-
pressed in closed form with intuitive functions. It contains the initial time cancelation of the
log(K/X) divergence. Although well convergent at moderate times, the sum’s contribution to the
regular diffusion coefficient is very slow to converge at the initial time, even for moderate temper-
atures; see Fig. 14.

While our expressions (F.3) and (F.4) can easily give us the zero temperature diffusion coefficients
at asymptotically late time, they cannot easily give us the corresponding moderate time behavior in
closed form. Moreover, the zero temperature limit of coth (x/2T) ? sgn (x) means that our diffusion
coefficient integrals cannot be cast as closed contour integrals. Nevertheless, the frequency integrals
can be performed and the results expressed in terms of exponential integrals with predictable time
scales. At zero temperature (and in the high cut-off limit) we find the decay function to take the fol-
lowing form:
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Fig. 14. Moderate temperature decay functions for � a sequence of the first 50 high temperature sums, � � � qualitative
approximations for ki ¼ 1

2 ;1;1
1
2 at K = 105 X. The high temperature sums are very slow to converge at the initial time.
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lim
T!0

DFðtÞ ¼ 2
p

d
dt

Re
E1 c0 þ ıeXh i

t
� �
ıeXe� c0þıeX� �

t

24 35� SyK
E1ðKtÞ
Ke�Kt

	 
8<:
9=;; ðF:14Þ
where E1(z) is the exponential integral, defined in Appendix A.2, which behaves like e�z/z for large z. It
should be noted that unlike the asymptotic limits of the diffusion coefficients, the full time behavior is
highly sensitive to the form of the cut-off regulator at low temperature. For our smooth regulator, we
find relatively smoothly evolving diffusion coefficients (similar to the result in Ref. [17] at T = 10X) all
the way down to zero temperature. In contrast, a sharp cut-off of the form I(x) / h(x �K) would pro-
duce the same average behavior, but with a slowly decaying envelope modulating of considerable
oscillations at the cut-off frequency.

Analogous functions appear when we approximate the thermal sum in (F.10) (together with the
first term on the right-hand side of (F.9), which cancels any spurious poles at K = 2 pTk) as an integral
with a comparably soft cut-off:
X1
k¼1

K
2pT

� �2

K
2pT

� �2 � k2
f ðkÞ 


Z 1

ki

dk
K

2pT

� �2

K
2pT

� �2 þ k2
f ðkÞ; ðF:15Þ
where ki 
 1. Still in the high cut-off limit, we find this qualitative approximation of the decay function
to be:
DFðtÞ 
 2
p

d
dt

Re
E1 2pTki þ c0 þ ıeXh i

t
� �

ıeXe� c0þıeX� �
t

24 35� SyK
E1 2pTki þ ıK½ �tð Þ

ıKe�ıKt

	 
8<:
9=;; ðF:16Þ
where we have discarded all finite terms at the initial time which decay at cut-off rates, as our approx-
imation ultimately ruins the behavior of DF (t) there. Thus, when using this approximate decay func-
tion, the time-dependent, decaying part of the diffusion coefficients must be ‘‘clamped’’ at the initial
time. At moderate times, our approximation reveals the exact same form of exponential integral
behavior as in the zero temperature limit, and the two functions are compared in Fig. 13. But the tem-
perature enters in such a way that the exponential decay inherent in E1 is not balanced out with a
e�2pTkit factor. Therefore, temperature is an inherently stronger relaxation scale here (although there
are additional e�c0t factors from GR(t) functions in the full diffusion coefficients).
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