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Abstract

We present data analysis methods used in detection and the estimation of parameters of gravita-

tional wave signals from the white dwarf binaries in the mock LISA data challenge. Our main focus

is on the analysis of challenge 3.1, where the gravitational wave signals from more than 6 × 107

Galactic binaries were added to the simulated Gaussian instrumental noise. Majority of the signals

at low frequencies are not resolved individually. The confusion between the signals is strongly

reduced at frequencies above 5 mHz. Our basic data analysis procedure is the maximum likelihood

detection method. We filter the data through the template bank at the first step of the search,

then we refine parameters using the Nelder-Mead algorithm, we remove the strongest signal found

and we repeat the procedure. We detect reliably and estimate parameters accurately of more than

ten thousand signals from white dwarf binaries.

PACS numbers: 95.55.Ym, 04.80.Nn, 95.75.Pq, 97.60.Gb
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I. INTRODUCTION

The Galaxy contains a numerous population of the ultra-compact binaries which have

orbital periods shorter than one hour. The observations of those binaries carry important

astrophysical information about the internal stellar structure, formation of binaries and

their evolution [1]. Due to the short period and proximity, the ultra-compact Galactic

binaries will be an important source of gravitational waves (GW) for the future space borne

interferometer LISA. LISA is planned to be launched in the next decade jointly by ESA and

NASA. The bandwidth of the LISA detector is expected to be from 0.1 mHz to 100 mHz. In

this frequency range we expect around 6 × 107 ultra-compact binaries. These binaries will

be dominated by the population of the white dwarf binaries. The number of the observed

ultra-compact binaries will be so large below 3 mHz that they are not individually resolvable

and form a cyclo-stationary background which dominates over the instrumental noise above

0.1 mHz [2, 3]. The number of binaries drops significantly above 7-8 mHz.

The most common sources are white-dwarf/white-dwarf binaries emitting gravitational

wave signals of nearly constant frequency and amplitude. We also expect to observe few

white-dwarf/neutron star binaries. The binaries could be of two major types:

(i) Detached, separated white-dwarf/white-dwarf binaries whose evolution is driven by

radiation reaction. They are the end points of many binary evolution scenarios. The gravi-

tational wave carry information about the mass of the binary and the distance.

(ii) Interacting binaries. Those are close systems with a significant tidal interaction

and/or with the Roche lobe overflow. In those systems the gravitational radiation reaction

competes against mass transfer and the orbital period can either increase or decrease. Cur-

rently there are 22 known accreting binaries, so called AM CVn stars, with periods between

5.4 and 65 min [4]. The radiation from those binaries fall into the LISA band and they will

serve as verification binaries [5].

It was demonstrated [6] that one can detect and remove a few tens of thousand of those

signals. The resolved systems will provide the map of the compact binaries in the Galaxy

and will allow us to constrain the evolutionary pathways of those systems.

A series of mock LISA data challenges (MLDC) was organized in order to foster develop-

ment of LISA data analysis algorithms and to compare the performance of different methods

[7–10]. The simulated Galaxy consists of only white dwarf binaries (of both types detached
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and interacting) in circular orbit and it is based on the population synthesis described in

[11, 12]. It is expected that white dwarf binaries will largely dominate over more heavy bina-

ries like neutron stars and/or black holes. Eccentric white dwarf binaries could be generated

in globular clusters but their number is a tiny fraction of the total population [13, 14]. The

gravitational wave signals produced by white dwarf Galactic binaries span the whole LISA

band, they stand above the instrumental noise starting at 0.1 mHz and propagate all the

way up to few tens of mHz.

Let us give a brief overview of currently available methods. The fully coherent methods

employing matched filtering techniques can be split in two groups: stochastic search and

grid-based search.

The stochastic search does not map uniformly the whole parameter space, instead it

concentrates on the regions with high likelihood. The first type of the stochastic search

is suggested in [15] and it is based on the genetic algorithm. The genetic algorithm is

an optimization method which evolves the set of templates (a colony of organisms) in the

direction of increasing likelihood (improving fitness of organisms) using a certain rules (selec-

tion, breeding, mutation). Another stochastic method is based on constructing the (Markov)

chains using Metropolis-Hastings acceptance/rejection rule. The Bayesian methods are pow-

erful tools to get posterior probability distribution function. A pure MCMC (Markov chain

Monte-Carlo) algorithm does not perform well due to presence of quite strong (and well sep-

arated in the parameter space) secondary maxima in the likelihood. Two currently available

Bayesian algorithms differ mainly in the way they explore the parameter space. BAM algo-

rithm suggested in [16] uses multiple proposal distributions reflecting possible correlations

in the parameter space in combination with the simulated annealing. At the search stage

(the search for the global maximum in the parameter space) the Markovian properties of

the chain are quite often not respected, and, once the search is completed, the sampling

stage starts during which the classical MCMC algorithm is used. The key feature of BAM is

blocking: the search is conducted in the several frequency bands each split in several small

blocks. The algorithm steps through these blocks updating all sources within a given band

simultaneously. After all blocks have been updated, they are shifted by one-half the width

of a blocks for the next round of updates to eliminate boundary effect. The results from

the different frequency bands are glued together using the overlapped buffer zones. Another

MCMC-based method is described in [17]. The authors suggest to use delayed rejection
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MCMC to explore the parameter space, find the global maximum and sample the posterior

distribution. The basic idea behind ”delayed rejection” is an extended acceptance/rejection

rule: we allow several jumps before rejecting/accepting the next point in the chain, and each

following trial jump learns the property of the parameter space explored by the previous

jumps. An additional advantage of the ”delayed rejection” is that the variance of an esti-

mate made from a chain using delayed rejection is always smaller than that produced with

a standard Markov chain.

The grid-based search maps the whole parameter space by computing the (log) likelihood

(usually in the form of F -statistic) on the uniformly distributed grid points (often referred

as a template bank). A particular implementation of this method is presented in this paper.

Another version of the grid based method is described in [18]. There the authors adopt

the software used for searching continuous GW signals in the LIGO/VIRGO/GEO600 data

to construct the grid in the parameter space (in four Doppler parameters: sky location,

frequency of GW signals and its derivative at some fiducial time) and to compute F - statistic.

Besides that, the authors in [18] attempt to detect several signals at once while we are

dealing with one (the strongest) signal at the time. They separate the secondary maxima

from the primary by requiring the coincidence in the parameters recovered from the analysis

of different time delay interferometry (TDI) streams (for more information on TDI, see [19]

and references therein). Once the prime maxima are identified, the grid mesh is refined

by zooming in onto them to improve the parameter estimation. The detected signals are

removed from the data and the procedure is repeated.

The last type of search uses Radon transform to identify the frequency of the signal and

the source’s sky location [20]. The basis of this method is that the LISA response function

can be seen as a Radon transform of binary distribution in those three parameters.

Galactic binaries were present in all four challenges conducted so far. In this article we

report our results of the analysis of challenge 3.1 data set. This data set contains approx-

imately 6 × 107 Galactic binaries with simulated instrumental noise. The GW signals had

measurable frequency evolution at high frequencies. The participants of the challenge have

returned the parameters of the detected signals: the sky position in ecliptic coordinates, fre-

quency of GW and its first derivative, inclination of the orbit to the line of sight, polarization

angle, initial GW phase and the amplitude.

The paper is organized as follows. In Section 2 we shall present an analytic approximation
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to the response of the LISA detector to a gravitational wave signal from a binary system.

We shall not give details of the derivation, these can be found in the original papers [21],

[22], and [23]. In Section 3 we shall present the maximum likelihood method in application

to detection and estimation of parameters of the GW signal from a binary system imbedded

in stationary Gaussian noise. In Section 4 we describe our data analysis tools and algorithms

that we have implemented our computer codes for challenge 3.1 search. We describe the

search strategy in Section 5 and discuss the results of the search in Section 6.

II. RESPONSE OF THE LISA DETECTOR TO THE GRAVITATIONAL-WAVE

SIGNAL FROM A BINARY SYSTEM

The LISA detector consists of 3 satellites forming a constellation of an approximately

equilateral triangle. The constellation rotates around the Sun with a period of 1 year trailing

the Earth by 20 degrees. The triangular constellation is inclined at 60 degrees to the ecliptic

and rotates itself around its center with a period of 1 year in the direction opposite to the

rotation around the Sun. The LISA detector in general will produce 3 independent data

streams. In the long wavelength approximation, when the length of the gravitational wave

is much longer than the distance between the spacecraft, the number of independent data

streams degenerates into 2. There are various combinations of the responses of the LISA

detector (see [21] for details). The data simulated for the mock LISA data challenge are

the first-generation TDI Michelson combinations that we denote by X, Y, and Z. TDI is a

software technique ([21]) by which we remove the dominant frequency noise from the LISA

instrumental noise, first generation means that in the TDI procedure we assume that the

distances between the spacecraft are constant, independent of time. In this Section we shall

summarize approximate analytic formulas for the first TDI generation Michelson responses

of the LISA detector to a gravitational wave signal from a binary system. The formulas are

essentially the same as in Appendix C [23] except that they are given using the conventions

used in the Synthetic LISA numerical software [24]. The GW response of the first-generation

TDI Michelson observable X is given by a linear combination of the four time-dependent

functions X(k)(t).

X(t) = 2ωL sin(ωL)
4
∑

k=1

a(k)X(k)(t), (1)
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where ω is the angular gravitational wave frequency and L is the distance between the

spacecrafts of the LISA detector.

Before we give functions X(k)(t) let us introduce few notations. First we define the

polarization basis in the solar system barycenter frame (following [25]):

û = {sin(β), cos(λ), sin(β)} ∼ ∂k̂

∂β
(2)

v̂ = {sin(λ),− cos(λ), 0} ∼ ∂k̂

∂λ
, (3)

where β and λ are, respectively, the latitude and the longitude of the source in ecliptic coor-

dinates and k̂ = −{cos(β) cos(λ), cos(β) sin(λ), sin(β)} is direction of the wave propagation.

Then we introduce the LISA motion used in the production of MLDC data. The position

of each spacecraft can be split in the position of the guiding center ~R and position of the

spacecraft with respect to that center:

~ri = ~R + L~qi, i = 1, 2, 3, (4)

here we have assumed LISA to be a rigid equilateral triangle: L = L1 = L2 = L3, and the

~qi are as follows

~qi =
1

2
√

12

{

cos(2Ωt− χi) − 3 cos(χi), sin(2Ωt− χi) − 3 sin(χi),−
√

12 cos(Ωt− χi)
}

, (5)

where χi = 2(i − 1)π/3. The unit vectors along the arms can be defined via vectors ~qi:

n̂1 = ~q2 − ~q3, and others are obtained by cyclic permutation of indices: 1 → 2 → 3 → 1.

Now we are ready to write X(k):





X(1)

X(2)



 =





u2(t)

v2(t)





{

sinc
[

(1 + k̂n̂2)x/2
]

cos
[

φ(t) + (x/2)k̂~q2 − 3x/2
]

+ sinc
[

(1 − k̂n̂2)x/2
]

cos
[

φ(t) + (x/2)k̂~q2 − 5x/2
]}

−





u3(t)

v3(t)





{

sinc
[

(1 + k̂~n3)x/2
]

cos
[

φ(t) + (x/2)k̂~q3 − 5x/2
]

+ sinc
[

(1 − k̂~n3)x/2
]

cos
[

φ(t) + (x/2)k̂~q3 − 3x/2
]}

(6)
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and X(3), X(4) are obtained by replacing cos with sin in X(1) and X(2) respectively. In the

above equation we have used:

ui = −1

2

[

(ûn̂i)
2 − (v̂n̂i)

2
]

(7)

vi = (ûn̂i)(v̂n̂i), (8)

where x = ωL and sinc(. . .) = sin (...)
(...)

. The GW responses for Y and Z can be obtained by

cyclical permutation of the spacecraft indices.

The phase modulation function φ(t) is given by

φ(t) = ωt+
1

2
ω̇t2 + (ω + ω̇t)R cos β cos(Ωt + ηo − λ), (9)

where Ω = 2π/1year, ηo is the position of the constellation on the orbit around the Sun at

time t = 0, and R is 1 astronomical unit. The small eccentricity of the Earth orbit (e =

0.017) can be neglected because it contributes less than one cycle to the phase φ(t) above

for gravitational wave frequencies from 0.1 mHz to 12 mHz for which we analyze the data.

The parameter ω̇ is the frequency drift which may occur either due to the gravitational

radiation reaction or as a result of the tidal interaction between the components of the

binary system. In the case of a detached binary system evolving only due to the gravitational

radiation reaction the frequency drift ω̇ is approximately given by (see Section IID of [23]

for discussion).

ω̇ =
48

5

(

GMc

2c3

)5/3

ω11/3, (10)

where Mc = m
3/5
1 m

3/5
2 /(m1 +m2)

1/5 is the chirp mass (m1 and m2 are the individual masses

of the components of the binary).

Finally the constant amplitudes a(k) take the form

a(1) = h+0 cosφ0 cos 2ψ − h×0 sinφ0 sin 2ψ, (11)

a(2) = h+0 cosφ0 sin 2ψ + h×0 sin φ0 cos 2ψ, (12)

a(3) = − h+0 sinφ0 cos 2ψ − h×0 cosφ0 sin 2ψ, (13)

a(4) = − h+0 sinφ0 sin 2ψ + h×0 cos φ0 cos 2ψ, (14)

where

h+0 = h0(1 + cos2 ι)/2, (15)

h×0 = h0 cos ι. (16)
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The parameters h0, φ0, ψ, and ι are constant amplitude, the constant phase of the signal, the

polarization angle, and the inclination angle respectively. In the case of a detached binary

system evolving only due to the gravitational radiation reaction the constant amplitude h0

is given by

h0 =
4(GMc)

5/3

c4DL

[ω

2

]2/3

, (17)

where DL is the luminosity distance to the source.

One can invert the equations (11) for amplitudes to obtain formulas for astrophysical

parameters h0, φ0, ψ, and ι. We first introduce the quantities

A = (a(1))2 + (a(2))2 + (a(3))2 + (a(4))2, (18)

D = a(1)a(4) − a(2)a(3). (19)

Then the constants h+0 , h+0 , h0, and φ0 can be uniquely determined.

h+0 =

√

(A+
√
A2 − 4D2)/2, (20)

h×0 = sign(D)

√

(A−
√
A2 − 4D2)/2, (21)

h0 = h+0 +

√

h+2
0 − h×2

0 , (22)

ι = acos(h×0 /h0). (23)

Finally the constant phase φ0 and the polarization angle ψ can be obtained from the following

equations:

tan 2φ0 =
2(a(1)a(3) + a(2)a(4))

(a(3))2 + (a(4))2 − (a(1))2 − (a(2))2
, (24)

tan 4ψ =
2(a(1)a(2) + a(3)a(4))

(a(1))2 + (a(3))2 − (a(2))2 − (a(4))2
. (25)

The long-wavelength (LW) approximation to the GW responses is obtained by taking the

leading-order terms of the generic expressions in the limit of ωL→ 0:

XLW (t) ≃ 4(ωL)2{[u2(t) − u3(t)]
[

a(1) cosφ(t) + a(3) sinφ(t)
]

(26)

+[v2(t) − v3(t)]
[

a(2) cosφ(t) + a(4) sinφ(t)
]

} (27)

and YLW , ZLW responses are obtained by cyclical permutation of the indices.

In Fig. 1 we have compared the power spectra of the signal generated using the analytic

formulas given above by equation (1) with the power spectrum of noise free response gener-

ated by Synthetic LISA software for one of the training sets provided in MLDC. Synthetic

LISA software was used to generate the analyzed MLDC data sets.

8



0.0107

−18

−17.5

−17

−16.5

Frequency [Hz]

 

 

Synth. LISA
Analytic approx.

FIG. 1: Comparison of the power spectra of the gravitational-wave signal response using the

analytic formulas presented in this paper and Synthetic LISA [24].

III. MAXIMUM LIKELIHOOD DETECTION AND PARAMETER ESTIMATION

To detect the signal and estimate its parameters we use the maximum likelihood (ML)

estimation method which consists of maximizing the likelihood function Λ with respect to

the parameters of the signal [26]. Let us first consider the Michelson X combination given

in the previous section. We assume that the noise in the detector is a stationary Gaussian

random process. Moreover we assume that over the bandwidth of the signal the spectral

density of the noise is approximately constant and equal to So = S(ωo). This condition

should be well fulfilled for the case of a gravitational wave signal from a white dwarf binary
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in LISA detector noise. Then we can approximate the log likelihood function by

log Λ = 2
To
So

[〈yXX〉 − 1

2
〈X2〉], (28)

where yX , is the noisy data in the X channel, So is one-sided spectral density of the noise,

To is the observation time, and the time-averaging operator 〈·〉 is defined by

〈g〉 :=
1

To

∫ To

0

g(t) dt. (29)

By introducing the variables

h(k) = 2ωL sin(ωL)X(k) (30)

the X combination can be written in a compact form

X =

4
∑

k=1

a(k)h(k). (31)

The ML estimators â(k) of the amplitudes are found by maximizing log Λ with respect to

parameters a(k), that is by solving
∂ log Λ

∂a(k)
= 0. (32)

The equations (32) above are equivalent to the following set of linear equations

4
∑

k=1

M (l)(k)a(k) = N (l), l = 1, . . . , 4, (33)

where

M (l)(k) = 〈h(k) h(l)〉, (34)

N (l) = 〈yX h(l)〉. (35)

Thus the maximum likelihood estimators â(k) of the amplitudes are explicitly given by

â(k) =

4
∑

l=1

(

M−1
)(l)(k)

N (l). (36)

Substituting the above estimators â(k) for amplitudes a(k) in the log likelihood function logΛ

yields the reduced log likelihood function that we denote by F :

F = To

So

4
∑

l=1

4
∑

k=1

(

M−1
)(l)(k)

N (l)N (k). (37)
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We call the above function the F -statistic.

One can show that the following relations hold approximately for the components of the

matrix M (l)(k)

〈h(1) h(3)〉 = 〈h(2) h(4)〉 = 0, (38)

〈h(1) h(1)〉 = 〈h(3) h(3)〉, (39)

〈h(2) h(2)〉 = 〈h(4) h(4)〉, (40)

〈h(1) h(2)〉 = 〈h(3) h(4)〉, (41)

〈h(1) h(4)〉 = −〈h(2) h(3)〉. (42)

It is convenient to introduce the following variables

U = 2〈h(1) h(1)〉, (43)

V = 2〈h(2) h(2)〉, (44)

Q = 2〈h(1) h(2)〉, (45)

P = 2〈h(1) h(4)〉. (46)

Let us introduce the complex amplitude parameters

a(u) = a(1) + ia(3), (47)

a(v) = a(2) + ia(4), (48)

where a(k) are given by Eqs. (11)–(14). Let us also define the complex modulation functions

m(u) and m(v) by




m(u)

m(v)



 =





u2(t)

v2(t)





{

sinc
[

(1 + k̂~n2)x/2
]

exp i
[

(x/2)k̂~q2 − 3x/2
]

+ sinc
[

(1 − k̂~n2)x/2
]

exp i
[

(x/2)k̂~q2 − 5x/2
]}

−




u3(t)

v3(t)





{

sinc
[

(1 + +k̂~n3)x/2
]

exp i
[

(x/2)k̂~q3 − 5x/2
]

+ sinc
[

(1 − k̂~n3)x/2
]

exp i
[

(x/2)k̂~q3 − 3x/2
]}

.

(49)

Introducing further complex quantities

W = Q + iP, (50)

N (u) = N (1) + iN (3), (51)

N (v) = N (2) + iN (4), (52)
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where N (k), Q and P are given by Eqs. (35), (45), and (46) respectively and using the

approximate relations given by Eqs. (38), (39), (40), (41), and (42)) we can write the ML

amplitude estimators of the complex amplitudes and the F -statistic in the following compact

form




â(u)

â(v)



 =
2

∆





V −W ∗

−W U



 ·





N (u)

N (v)



 , (53)

F = 2
To
So

{

V
∣

∣N (u)
∣

∣

2
+ U

∣

∣N (v)
∣

∣

2 − 2 Re
[

W N (u)(N (v))∗
]

}

∆
. (54)

where ∆ = UV − |W |2. The integrals N (u) and N (v) can be expressed as

N (u) = 2ωL sin(ωL)〈yX(t)m(u)(t) exp iφ(t)〉, (55)

N (v) = 2ωL sin(ωL)〈yX(t)m(v)(t) exp iφ(t)〉. (56)

As we shall see in the next section the above form of the F -statistic is very suitable for

a numerical implementation. In a similar manner one can derive the F -statistic for other

Michelson variables.

In order to extract information about the signal from all three independent variables we

need to derive the F -statistic for the whole LISA network. It is then useful to consider the so

called ”optimal” combinations of the responses. These combinations have the property that

their instrumental noises are uncorrelated (see [27]) and consequently their cross-spectrum

matrix is diagonal. In this case the log likelihood function for the whole network is the sum

of log likelihood functions for the individual combinations, For the Michelson variables the

optimal combination are given by [28]

A =
Z −X√

2
, (57)

E =
X − 2Y + Z√

6
, (58)

T =
X + Y + Z√

3
. (59)

The noisy data, yA, yE and yT are obtained as the analogous combination of the Michelson

observables yX, yY and yZ , where yY , yZ are data in the Y and Z channels respectively. The

log likelihood function for the network takes the form

logL = 2 To

{

1

SA(ωo)
[〈yAA〉 − 1

2
〈A2〉]+

1

SE(ωo)
[〈yEE〉 − 1

2
〈E2〉] +

1

ST (ωo)
[〈yTT 〉 − 1

2
〈T 2〉]

}

.

(60)
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The power spectral densities SA, SE, ST are given by

SA(ω) = SE(ω) = 32 cos (ωL/2)2 sin (ωL/2)2 {[6 + 4 cos (ωL)+

2 cos (2ωL)]Spm + [2 + cos (ωL)]Sop}
ST (ω) = 128 cos (ωL/2)2 sin (ωL/2)4

[

4 sin (ωL/2)2Spm + Sop
]

,

(61)

where Spm and Sop are spectral densities of proof-mass noise and optical path noise respec-

tively. It turns out that the ML estimators of the amplitudes and the F -statistic can be

written in the same form as for a single detector. To do this we introduce the following

noise-weighted average procedure. For any two vectorial quantities p and q,

p(t) =
(

pA(t), pE(t), pT (t)
)

,

q(t) =
(

qA(t), qE(t), qT (t)
)

,
(62)

the noise-weighted average operator 〈·〉
S

is defined as follows,

〈pq〉
S

:= wA 〈pA qA〉 + wE 〈pE qE〉 + wT 〈pT qT 〉, (63)

where the weights wI (I = A,E, T ) are defined by

wI :=
S−1
I

S−1
, I = A,E, T, with S−1 = S−1

A + S−1
E + S−1

T . (64)

With the above definitions the log likelihood function of Eq. (60) defined for data

y = (yA, yE, yT ) and response R = (A,E, T ) can be written in a compact form

logL = 2
To

S(ωo)
[〈yR〉

S
− 1

2
〈R2〉

S
]. (65)

Having now defined h(k) by [see Eq. (31)]

R =
4
∑

k=1

a(k)h(k) (66)

and M(k)(l), N (l) by [see Eqs. (34),(35)]

M(k)(l) = 〈h(k) h(l)〉
S
, (67)

N (l) = 〈yh(l)〉
S
. (68)

it is straightforward to get the maximum likelihood estimators of the complex amplitudes

and the F -statistic for the LISA network




â
(u)
opt

â
(v)
opt



 =
2

∆





V −W∗

−W U



 ·





N (u)

N (v)



 , (69)
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Fopt = 2
To
S

{

V
∣

∣N (u)
∣

∣

2
+ U

∣

∣N (v)
∣

∣

2 − 2 Re
[

WN (u)(N (v))∗
]

}

∆
, (70)

where ∆ = UV − |W|2 and W = Q + iP. The quantities V, U, Q, P in Eqs. (69) and (70)

above are defined in the same way as quantities V, U,Q, P in Eqs. (43)–(46), but with the

time-averaging operator 〈·〉 replaced everywhere by noise-weighted averaging operator 〈·〉S
and scalar functions h(k) by their vectorial counterparts h(k). The two functions N (u) and

N (v) are explicitly given by

N (u) = N (1) + iN (3) = 2ωL sin(ωL)〈y(t)m(u)(t) exp iφ(t)〉
S
,

N (v) = N (2) + iN (4) = 2ωL sin(ωL)〈y(t)m(v)(t) exp iφ(t)〉
S
,

where two vector functions m(u) and m(v) are the relevant combinations of m(u)’s and m(v)’s

defined for X , Y and Z [see Eq. (49)].

IV. DATA ANALYSIS ALGORITHMS

A. Use of the FFT algorithm

The detection statistic, F [Eq. (54) or (70)], involves integrals N (u) and N (v) of the form

I =

∫ T0

0

y(t)m(t;ω, β, λ) exp[iφmod(t;ω, ω̇, β, λ)] exp[iωt] dt (71)

where m is one of the two complex modulation functions (49), while the phase modulation

φmod is given by

φmod(t;ω, β, λ) =
1

2
ω̇t2 + ωR cos β cos(Ωt + η0 − λ) (72)

[see Eq. (9)]. In order to evaluate the integral (71) efficiently we would like to use the FFT

algorithm. The integral (71) is not a Fourier transform because both the phase modulation

function φmod and the amplitude modulation function m depend on the angular frequency ω.

We overcome these problems in the following way. Firstly we introduce a new representation

of the phase, namely we introduce two new parameters

A = ωR cos β cos(λ− η0),

B = ωR cos β sin(λ− η0). (73)
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In this new parametrization the phase modulation takes the form

φmod(t; ω̇, A, B) =
1

2
ω̇t2 + A cos(Ωt) +B sin(Ωt), (74)

and it is independent of the angular frequency parameter ω. A similar parametrization

has been used in the search of the resonant bar NAUTILUS detector detector data for

gravitational waves from spinning neutron stars (see [29]). (As we shall see in the fol-

lowing section the above parametrization by the coordinates {ω, ω̇, A,B} will also prove

useful in the construction of our grid.) Secondly we assume that the bandwidth [ω1 ω2]

of the data is small so that the amplitude modulation function m varies little over the

interval of angular frequency from lower edge of the band ω1 to the upper edge of the

band ω2. In order to satisfy the above approximation, in our search we have divided the

data into narrow bands of ∆f ≡ (ω2 − ω1)/(2π) = 0.1 mHz by passing them through

narrowband filters (see Section V for details) and each narrow-banded data were an-

alyzed separately. Then we can approximate the modulation function m(t;ω, β, λ) by

m(t;ωmid, A, B) = m(t;ωmid, βmid(A,B, ωmid), λmid(A,B, ωmid)) where ωmid = (ω2 − ω1)/2

and where βmid(A,B, ωmid) and λmid(A,B, ωmid) are obtained by inverting Eqs. (73) for

ω = ωmid. They are explicitly given by

βmid(A,B, ωmid) = ± arccos

(√
A2 +B2

ωmidR

)

, (75)

λmid(A,B, ωmid) = η0 + arctan

(

B

A

)

. (76)

Note that there are two values of the ecliptic latitude β for each pair of the values A and B.

Consequently the integral (71) can be approximated by

I ≃
∫ T0

0

y(t)m(t;ωmid, A, B) exp[iφmod(t; ω̇, A, B)] exp[iωt] dt, (77)

For discrete data y(t) the above integral can be converted to a discrete Fourier transform

which can be calculated by the FFT algorithm.

B. Metric on the intrinsic parameters space

In our method the detection of weak, quasi-monochromatic GW signals relies on an

efficient placement of the templates in the bank. It should minimize the number of templates
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for a certain accepted loss of a signal-to-noise ratio. Here we follow the geometric approach

initialized in [30, 31] and introduce a metric on the intrinsic parameters space to measure the

mismatch between the true signal and the template. In order to construct the metric and a

grid on the intrinsic parameter space over which we calculate the F -statistic we introduce

an approximation to the signal that we call the linear model [32]:

s(t) = A0 cos (ωt+
1

2
ω̇t2 + A cos Ωt +B sin Ωt + φ0), (78)

where A0 is a constant amplitude and φ0 is a constant phase and where A and B are parame-

ters given by Eqs. (73). The phase modulation of the linear model is exactly the same as that

of the exact model whereas the amplitude is constant. This is a reasonable approximation

because the amplitude modulation functions vary very slowly, they are periodic functions of

one year.

The metric on intrinsic parameter space is defined by the reduced Fisher matrix which

is obtained from the full Fisher matrix of the linear model by projecting on the intrinsic

parameters space and normalizing it. The reduced Fisher matrix Γ̃ determines the loss

of signal-to-noise ratio when parameters of the signal, ~θ = (ω, ω̇, A,B), differ from the

parameters of the template by ∆~θ = (∆ω,∆ω̇,∆A,∆B) [33, 34]:

Γ̃~θ(∆
~θ,∆~θ) = r2 =

ρ2~θ(0) − ρ2~θ(∆
~θ)

ρ2~θ(0)
+ Ø(|∆~θ|3), (79)

where ρ~θ(0) is the optimal signal-to-noise ratio and ρ~θ(∆
~θ) is the signal-to-noise ratio for

the mismatch ∆~θ. The quantity r2 is usually called the mismatch and it is denoted by m

in [34]. For the calculations of the reduced Fisher matrix we refer the reader to Appendix

A. We show there that the approximation of the linear model leads to a particularly simple

forms of the reduced Fisher matrices on 3-dimensional intrinsic parameter space {ω,A,B}
(A16),

Γ̃3 =











1
12

0 − 1
2πn

0 1
2

0

− 1
2πn

0 1
2











(80)
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and 4-dimensional intrinsic parameter space {ω, ω̇, A,B} (A11),

Γ̃ =















1
12

1
24

0 − 1
2πn

1
24

1
45

1
4π2n2 − 1

4πn

0 1
4π2n2

1
2

0

− 1
2πn

− 1
4πn

0 1
2















. (81)

We will use the reduced Fisher matrices (80) and (81) to build the grid in such a way

that the distance defined by Γ̃3 or Γ̃ from any point of the parameter space to the nearest

node of the grid is not larger than some fixed value r. We also see that not only the metrics

Γ̃3 and Γ̃ are flat but in the coordinates {ω,A,B} and {ω, ω̇, A,B} their coefficients are

constant, independent of the values of the parameters.

C. Construction of the grid in the parameter space

1. Covering problem on lattices

The problem of constructing a grid in a d-dimensional parameter space is equivalent

to the problem of covering d-dimensional space with equal overlapping spheres of a given

radius. The optimal covering would have minimal possible thickness or density of covering

defined as the average number of spheres that contain a point of the space (see [35] and

below). When the metric is flat, as in the linear model, centers of the spheres can lie on a

d-dimensional lattice. In this case one can take advantage of the theory of lattice coverings.

In the rest of the chapter we briefly sketch the basic definitions from the theory of lattices

that will be used in the construction of the grid.

In general for any discrete set of points S = {~s1, ~s2, . . .} in R
n the covering radius R of

S is defined as the least upper bound for any point of Rn to the closest point ~si:

R(S) = sup
~x∈Rn

inf
~s∈S

|~x− ~s|.

Then spheres of equal radius r centered at the points ~si will cover R
n only if r ≥ R.

A lattice Λ is a discrete subset of Rn. Any lattice has a basis b =
{

~b1, ...,~bn

}

of linearly

independent vectors on R
n such that the lattice is the set of all linear combinations of ~bi’s

with integer coefficients:

Λ =

{

n
∑

i=1

ci~bi : ci ∈ Z, i = 1, 2, . . . , n

}

. (82)
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A lattice basis is not unique, in dimensions d > 1 there are infinitely many of them, but all

the bases have the same number of elements called the dimension of the lattice. To specify

a basis b of a lattice we will use the notation Λ(b).

A lattice Λ1 is equivalent to a lattice Λ2 if Λ1 can be transformed into Λ2 by a rotation

reflection and change of scale.

The parallelotope consisting of points c1~b1 + . . .+ cn~b1 with 0 ≤ ci < 1 is a fundamental

parallelotope and is an example of an elementary cell, that is the building block containing

one lattice point which tiles the whole R
n by translations of lattice vectors. There are

infinitely many elementary cells but the volume of each elementary cell is unique for a given

lattice Λ.

The Voronoi cell around any point ~v of Λ is the set of vectors ~x of Rn which are closer

to ~v than to any other lattice vector:

V (~v) = {~x : |~x− ~w| ≥ |~x− ~v| for all ~w ∈ Λ} . (83)

All Voronoi cells of a given lattice are congruent convex polytopes and are another examples

of elementary cells sometimes referred to as Wigner-Seitz cells or Brillouin zones.

For the lattice Λ having Voronoi cells congruent to polytope V (~v), where ~v is any of the

lattice points, the covering radius R(Λ) is the circumradius of V (~v) i.e. the largest distance

between ~v and the vertices of V (~v).

The thickness Θ of the lattice covering is given by

Θ(Λ) =
volume of d-dimensional sphere of radius R(Λ)

volume of the elementary cell of Λ
(84)

The covering problem asks to find a lattice with the lowest thickness. The thinnest lattice

coverings are known in dimensions up to 5. They are given by the so called Voronoi’s

principal lattices of the first type and are denoted by A∗
d. A

∗
2 is equivalent to the hexagonal

lattice and is proved to be thinnest covering of the plane, A∗
3 is equivalent to the body-

centered-cubic (bcc) lattice. For the results of the best known coverings in higher dimensions

we refer readers to [35].

2. Covering problem with constraints

In our search scheme the calculation of the F -statistic involves two Fourier transforms

that can be computed efficiently using the fast Fourier transform algorithm. For this reason
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we want the nodes of the grid to coincide with Fourier frequencies: ∆ω, 2∆ω, 3∆ω, . . . for

some fixed frequency resolution ∆ω. This imposes a condition that one of the lattice basis

vectors has a fixed length

|~l| =

√

Γ̃ [(∆ω, 0, . . . , 0), (∆ω, 0, . . . , 0)]

and forbids an immediate use of the general results of the theory of lattice coverings. Instead

one can formulate the covering problem with constraint: to find the thinnest lattice covering

of the d-dimensional space with spheres of radius r and one of the basis vectors of the lattice

having fixed length |~l|. As far as we know the general solution to the problem is not known.

We present a construction of a nearly optimal lattice that satisfies the constraint with a

good accuracy.

Let a vector ~v0 define the frequency resolution. We search for a lattice Λ(w′) of covering

radius R(Λ(w′)) = r with lattice basis w′ satisfying the constraints that can be expressed as

w′ =
{

~v0, ~w
′
1, . . . , ~w

′
d−1

}

. We find the thinnest constrained lattice starting with an optimal

unconstrained lattice in d-dimensions. The idea is to shrink the optimal lattice as little

as possible such that one of the basis vectors of the resulting lattice coincides with the

constraint vector ~v0. We notice that the orientation of the constraint vector ~v0 has no effect

on the optimal constrained lattice, it is only the length of ~v0 and assumed value of covering

radius that matters (and more precisely: only their ratio because the overall scale can be

taken arbitrarily).

For a given lattice Λ there always exists the lattice vector ~l such that ||~v0| − |~l|| takes

minimum value that we denote by ~l(Λ). We define Algorithm 1:

Listing 1. ”Minimal” deformation of a lattice. One of the nodes

of the final lattice coincides with the resolution vector

Input: Lattice Λ; vector ~v0.

Output: Lattice Λ′; ~l(Λ′) = ~v0

A1. Find ~l(Λ).

A2. Contract Λ along ~l(Λ) to obtain Λc with |~l(Λc)| = |~v0|.

A3. Rotate Λc to obtain a lattice Λrc with ~l(Λrc) = ~v0.

A4. Return Λ′ = Λrc.

19



For optimal initial lattices Algorithm 1 defines the following function f~v0 : R → R: for

x = R(Λ), f~v0(x) = R(Λ′). For a given r ∈ R we denote by ri the value of x for which

the function |f~v0(x) − r| reaches its minimum. The optimal constrained lattice is obtained

by application of Algorithm 1 to an optimal (unconstrained) lattice Λ with covering radius

R(Λ) = ri.

In dimensions d = 2, 3, 4, 5 as the initial lattices one takes A∗
d lattices but the procedure

can be generalized to any number of dimensions by taking as the input the best known lat-

tice covering in a given dimension [35]. Fig. 2 illustrates the procedure for two–dimensional

A∗
2 hexagonal lattice. It is seen there that contraction of the lattice can change the initial

Voronoi cell and covering radius. However when the vector ~l(Λ) initially lies on the ”con-

w1

w2

Υ
Ó

0

l
Ó
HLL

Υ
Ó

0

l
Ó
HLcL

Υ
Ó

0=l
Ó
HLrcL Υ

Ó
0

w’1

FIG. 2: Illustration of Algorithm 1 in two dimensions. Initial optimal lattice (top left) with the

basis {~w1, ~w2}, resolution vector ~v0 defining constraint surface and vector ~l is contracted along the

vector ~l (top right) and rotated (bottom left) such that for the new lattice ~l = ~v0. Final suboptimal

lattice has basis {~v0, ~w′
1} (bottom right).

straint surface” depicted by the dashed circle in the Fig. 2 the procedure acts trivially (no

contraction only rotation) leaving the final lattice optimal. One often encounters trivial

procedures when the vector ~l(Λ) is large as compared to the Voronoi cell and moreover in

20



these cases contractions are small. On the other hand the last trivial procedure occurs when

the resolution vector and the shortest lattice vector have equal lengths.

One can determine the values of covering radii for which the final lattices are opti-

mal. As an example we find the values of four largest covering radii having this prop-

erty. To do this we consider the sequence of the shortest vectors of the lattice. In three

and four dimensions the first nonzero shortest vectors of A∗
3 and A∗

4 lattices have lengths

2
√

3/5R(A∗
3), 4/

√
5R(A∗

3), 4
√

2/5R(A∗
3), 2

√

1/11R(A∗
3), . . . and

√
2R(A∗

4),
√

3R(A∗
4),√

5R(A∗
4),

√
7R(A∗

4), . . . respectively. The length of the resolution vector which in dimension-

less units has the from ~v0 = (2π, 0, . . .) is equal to
√

Γ̃(~v0, ~v0) = π/
√

3 in both dimensions.

This gives the following squares of the largest covering radii for optimal constrained lattices:

R(A∗
3)

2: 5/36π2 ≈ 1.3708, 5/48π2 ≈ 1.0281, 5/96π2 ≈ 0.514, 5/132π2 ≈ 0.3739, . . . and

R(A∗
4)

2: π2/6 ≈ 1.6450, π2/9 ≈ 1.0966, π2/15 ≈ 0.6580, π2/21 ≈ 0.4700 [points a, b, c, d on

Fig.(3)]. For larger values of R thickness of final lattices grows monotonically with covering

radius.

These features are seen in the Fig. 3 which shows the results of application of the

construction to the model (A1) in 3 and 4 dimensions for different covering radii. The

resolution vector is ~v0 = (2π, 0, . . .) and the observation time is 2 years. As for a fixed

volume of the parameter space the number of points needed to cover the space with balls of

a given radius (i.e. for allowed loss of signal-to-noise ratio) is proportional to the thickness,

the diagram demonstrates that the excess of points due to constraints is minor for the wide

range of radii which makes the search strategy based on FFT effective.

D. Number of false alarms

In order to estimate the number of false alarms expected in our search we use a general

approach consisting of dividing the parameter space into elementary cells defined by the

autocorrelation function of the F -statistic ([33] and [36] Chapter 6.1.3). We use the Taylor

expansion of the autocorrelation function around the true values of the parameters θk and

moreover we use an approximate response of the detector given by the linear model (Eq.

(A14) or (A15)). In this case the hypervolume of the elementary cell is given by the volume

Vc of the hyperellipsoid defined as

Γ̃kl∆θk∆θl ≤ 1/2. (85)
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FIG. 3: Thickness of the lattices in 3 and 4 dimensions compared to the optimal thickness of A∗
3 ≈

1.4635 and A∗
4 ≈ 1.7655. The upper diagram shows also the optimal lattice with covering radius

R(A∗
3)2 = 5/48π2. The Voronoi cell, basis vectors, resolution vector and part of the constraint

surface are depicted; for this specific value of R the head of the resolution vector lies on the

constraint surface.

Thus Vc is given by

Vc =
(π/2)m/2

Γ(m/2 + 1)
√

det Γ̃
, (86)

where m is the dimension of the parameter space and Γ denotes the Gamma function. The

determinants of the reduced Fisher matrix in 3 and 4 dimensional cases read

det Γ̃3 =
T 2
o

48

π2n2 − 6

π2n2
(87)
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det Γ̃ =
T 6
o

34560

(π2n2 − 6)(π4n4 − 90)

π6n6
, (88)

where it is assumed that the observation time To is an integer multiple n of years. As for

the linear model the reduced Fisher matrix has components independent of the values of the

parameters and the number of cells is simply given by

Nc =
V

Vc
, (89)

where V is the hypervolume of the parameter space. We assume that we search a narrow

band of bandwidth ∆ω with upper frequency ωmax. Then the volume of the parameter space

V3 when the frequency drift is not included in the search is given by

V3 = 2∆ω π ω2
maxR

2 (90)

whereas the hypervolume V4 when it is included is given by

V4 = V3 ∆ω̇, (91)

where ∆ω̇ is the range of the frequency drift parameter ω̇. The factor of 2 in Eq. (90) is

because we search the space spanned by parameters ω, ω̇, A, and B twice - both for positive

and negative values of the ecliptic latitude β.

The expected number of the false alarms NF is given by

NF = NcPF (Fo), (92)

where PF is the probability of false alarm. In the case of linear model PF is the χ2 probability

distribution with two degrees of freedom i.e.

PF (Fo) = exp(−Fo) (93)

E. Computation of the F-statistic

The F -statistic is computed approximately taking advantage of the speed of the FFT

algorithm as described in Section IV A. The F is calculated on the grid constructed in

Section IV C. For each parameter pair (A,B) the F -statistic is computed for both positive

and negative value of the ecliptic latitude βmid (see Eq. (75)). Approximate calculation of the
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F -statistic on the grid described above is called the coarse search. Using the coarse search

we identify signals for which the F -statistic crosses a certain threshold. The coarse search is

then followed by the second step which we call the fine search. Fine search consists of a search

for the maximum of the F -statistic around the parameters identified by the coarse search.

To find the maximum we use the Nelder-Mead maximization algorithm [37]. In the fine step

we use accurate expressions for the F -statistic [Eq. (54) or (70)], without approximations

described in Section IV A. As initial values for the Nelder-Mead algorithm we use the

parameters obtained in the coarse search. The values of the parameters corresponding to

the maximum of F -statistic are our final estimates of the parameters of the signal.

V. SEARCH STRATEGY

In our entry for challenge 3.1 we have used the following procedure to extract GW signals

from white dwarf/white dwarf binaries in the mock LISA data. We search the band from

frequency f = 0.1 mHz to frequency 12 mHz where f = ω/2π. We do not go to higher

frequencies because with our search strategy it would involve much more computing time

than we could afford. Also above 12 mHz the expected number of white dwarf binaries in

our Galaxy is very small. We first divide the data into bands of 0.1 mHz each. To obtain

narrowband data in the frequency band [f1 f2] we first pass the data through 3rd order

Butterworth filter with passband of [f1 − ǫ f2 + ǫ] where we choose the edge parameter ǫ

equal to 0.005 mHz. Then we shift the data to DC by frequency f1 − ǫ and we pass it

again through the 3rd order Butterworth filter with passband of [f2 − f1 + 2ǫ]. After each

Butterworth filter we downsample the data. This reduces the number of data points by a

factor of around 300. Each Butterworth filter is applied twice: forward and backward in

time. In this way there is no phase shift of the narrowbanded data with respect to the

original one. In the search of each narrow band for signals we neglect the edges of the band

of ǫ = 0.005 mHz and therefore we only search the band [f1 f2]. We have included in our

search the frequency drift parameter ω̇. Analysis of the accuracy of estimation of ω̇ have

shown (see Section VI below) that it is useful to include the ω̇ parameter in the search for

frequencies above 3mHz. We have selected the range of the ω̇ parameter using a fit from

the values of the ω̇ parameter in the key of the challenge 3.1 training data set. In each band

we search for the signals calculating the F -statistic over the constrained grid constructed
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in Section IV C. This enables application of the FFT algorithm in F -statistic computation.

We select the strongest signal and to this signal we apply the fine search described in Section

IV E to estimate its parameters. We use the Nelder-Mead algorithm with the initial values

provided by the parameters of the template with the largest value of the F -statistic over

the grid. We reconstruct the signal in the time domain and remove it from the data. We

then search for the next strongest signal and so on until the signal-to-noise ratio (SNR) of

the detected signal estimated as

SNR =
√

2(F − 2) (94)

falls below a certain threshold. We have chosen the threshold for the F -statistic equal to

18. This corresponds to SNR threshold of around 5.7 (see Eq. (94)). The number of signals

increases as the signal-to-noise ratio decreases. At a sufficiently low signal-to-noise ratio the

signals are so close to each other in the parameter space that they interfere with each other.

The F -statistic (Eq. 70) that we use in our search was derived under the assumption that

there was only one signal present in the data so it can be used to detect multiple signals

when they are sufficiently separated in the parameter space so that the F -statistic for the

multiple signals is a sum of the F -statistics for individual signals. Thus when there are

many signals present we neglect the interference between the signals. Our choice of 18 of

the threshold for the F -statistic was a convenient choice that, as we shall see in the following

section, led to a detection and accurate estimation of over 104 signals.

In the Figs. 4 and 5 we have presented application of the above strategy to the challenge

3.1 data set in the bandwidth from 5 mHz to 5.1 mHz.

In this bandwidth we have identified 132 signals altogether out of 168 present. The

accuracy of estimation of most of the signals is one sigma where sigma is calculated from

the Fisher matrix. For several signals the error was very large indicating that either noise

mimicked the signal or the residuals of removed signals remained significant. This could

happen as a result of interference of the signals.

VI. MLDC RESULTS

Here we present results of our entry for challenge 3.1 [7]. The challenge 3.1 consisted

of a two-year data set with 15 s sampling time with signals from around 6 × 107 binaries.
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FIG. 4: Estimation of the signals from white dwarf binaries in the challenge 3.1 data set for the

band from 5 mHz to 5.1 mHz. Black color denotes the original data and the light blue color is the

data after signals removed.

Our aim was to detect as many as possible from the 40628 brightest binaries present in the

data. We have performed a self-evaluation of our search by the following procedure. In our

procedure we have used the correlation C(s1, s2) between the two signals s1 and s2 defined

as

C(s1, s2) :=
〈s1, s2〉S

√

〈s1, s1〉S
√

〈s2, s2〉S
. (95)

The first step of our self-evaluation consisted of selection of the true detected signals from

the set of all submitted data. For a submitted signal s with parameters θs we considered set

Bs of all key signals within the frequency bins about fs, i.e. signals satisfying

|fs − fk| < 1/Tobs ≈ 1.6 × 10−8Hz,

where parameters θk of the key signals were taken from the set of 40628 bright Galactic

binaries [7]. Next, each signal s was paired with the key signal ks from Bs that maximizes

the correlation:

s 7→ ks : ks = arg max
k∈Bs

C (s, k) ; (96)

we interpreted θs as the parameters estimates of the key signal ks. In the case of multiple

detection of a key signal k0, that is when ks1 = ks2 = . . . = k0 for different s1, s2, . . ., as the
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FIG. 5: The zoom of the Fig. 4 around the strongest signal identified.

main signal sk0 we singled out the one that maximizes the correlation with k0,

sk0 = arg max
s: ks=k0

C (s, k0) , (97)

and we rejected the remaining secondary signals.

A. Original results

Our original entry for challenge 3.1 contained a bug in our data reading procedure. Our

analysis for frequencies above 3mHz was performed on the challenge data set shifted in

time by 1440s. In the original search we have detected 14838 signals altogether and we have

estimated their parameters. Results of detection are displayed in Fig. 6 which shows detected

(main) signals and the correlations with signals from the key. We see that the histogram

of the correlations shows an excess of anticorrelations due to the bug in our data reading

procedure. Effects of this systematic error can be seen in the Fig. 7 displaying correlations

as the function of the frequency. Peculiar oscillations of the correlation with frequency are

easily explained by noticing that the phase difference between nearly monochromatic signal

and the same signal shifted in time by t0 is equal to 2πft0 and gives periodically changing

overlap between the two functions which oscillates with respect to f with ”frequency” t0
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FIG. 6: Detection and correlations for the blind challenge 3.1 data set in the original run. The left

panel shows number of the signals detected by our search and selected by the procedure described

in the text as a function of the frequency. The right panel displays the histogram of the correlation

functions (Eq. (95)) between our estimated signals and the ones form the key.
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FIG. 7: Correlations vs. frequency. The periodic variation of the correlation function was due a

time shift in reading of the challenge data set.

or by explicitly computing correlation of two monochromatic waves cos [2πf(t− t0)] and

cos (2πf). This explains the excess of signals with anticorrelations in Fig. 6.
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B. Corrected results

We have corrected the bug in the reading procedure and have made a second run of the

challenge 3.1 data set. Here we present results of this second run. In our search we have

detected 17051 signals altogether and we have estimated their parameters.

In the band from 0.1mHz to 3mHz we have made two runs - one with and the other

without the ω̇ parameter included. We have used these two runs to investigate at what

frequency it is useful to start estimating the frequency drift of the GW signal. In the

search including the ω̇ parameter, we have found that we can start estimating it only above

frequency of 0.5 mHz because below this frequency the cell of our 4-dimensional grid is

bigger than our parameter space. Including the frequency derivative from 0.5mHz we have

identified 16785 signals and including ω̇ starting only from 3mHz we have found 17051

signals. We have compared the absolute values of the errors in ω̇ when we include it in the

search and when we do not include it. When we do not include it we take as the error the

absolute value of the ω̇ parameter from the challenge key signal. We calculate the mean

values of the these absolute errors in each band. We find that slightly below the frequency

of 3mHz the mean error for the case when we include ω̇ parameter becomes less than when

we do not include it. Thus we find that our initial choice of threshold frequency equal to

3 mHz to include the ω̇ is a reasonable one. Therefore, as our final result, we consider the

signal found using the search that turns on the frequency derivative at 3mHz frequency. We

have also estimated the expected number of false alarms using the formula (92) in Section

IV D. We find that for low frequencies where we detect most of our signals the number of

false alarms is negligible. The number of false alarms increases quadratically with frequency

and linearly with the range of ω̇ parameter. The expected number of false alarms exceeds

one only at the frequency f = 8 mHz.

In Fig. 8 we present the number of signals detected against all the challenge 3.1 signals

and the correlations of the estimated signals with the key signals in the second run. We see

that there is still an excess of correlations with correlation parameter around zero. We have

investigated the number of correlations as a function of signal-to-noise ratio (see Fig. 9). We

find that the excess of low correlations originates from frequencies below 3 mHz. Moreover

for SNR > 10 the number of small correlations considerably decreases. The number of

selected signals after we discarded signals below SNR = 10 and for frequency less than 3
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FIG. 8: Detection and correlations for the blind challenge 3.1 data set in the second run.

-0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

correlations

sn
r

FIG. 9: Number of correlations of estimated signals with key signals as a function of the signal-to-

noise ratio for signals with frequency below 3 mHz.

mHz is 12805. We quote this number as the number of signals which we detect and accurately

estimate the parameters. We need to refine our data analysis methods in order to extract

reliable estimates of the parameters for the signals of SNR less than 10 and frequency less

than 3 mHz.

The excess of zero correlation signals arises either because for some low signal-to-noise

ratio the parameter estimation was not accurate or/and because at low signal-to-noise ratio

there are much more signals that interfere causing biases in the parameter estimators. Fig.

10 demonstrates the results of the parameter estimations for our search of challenge 3.1 data
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FIG. 10: Errors of the parameters of the signals detected and verified in our search of the challenge

3.1 data set.
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FIG. 11: Errors of the estimation of parameters as in Fig. 10 but normalized by the variances

obtained from the inverse of the Fisher information matrix.

set. Errors are defined as differences between the key and the recovered signal parameters,

∆θ := θkey−θrec. Histograms in Fig. 11 show the parameter estimation errors divided by the

standard deviations σθkey obtained from the Fisher matrix for the key signals. In Fig. 12

we have presented the power spectrum of the challenge 3.1 data against the power spectrum

of the data after the detected signals were removed. We plot two power spectra: one when

all the signals identified are removed and the other one when only the ones selected by our

procedure are removed form the challenge data set. We notice two effects. One is that
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FIG. 12: Amplitude square of the Fourier transformed data. Upper signal is original challenge

data (A-channel, includes full Galaxy and instrumental noise), middle is the data with selected

removed signals, and lower is the data with all identified signals removed.

periodically our identification procedure gets worse. This because we were not estimating

parameters of the signal very well at the edges of the narrow bands. We have found that this

is because our narrowband filtering procedure was not perfect. The other effect is that when

we remove all identified signals (lower signal on the Fig. 12) we are doing a much better job

then when we remove only signals identified as true signals by our procedure (middle signal

on the Fig. 12). Thus we fit quite a large number of signals well but with wrong parameters.

In Fig. 13 we have compared smoothed spectrum of the challenge 3.1 data set with that

of data with identified signals removed and we have compared them with spectrum of the

LISA detector instrumental noise. From this figure we conclude that above frequency of 6

mHz we resolve all the white-dwarf binary systems well.
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FIG. 13: Power spectral density. Upper signal is the original challenge data, middle is reduced

data (after removing all found signals), and lower is the instrumental noise.

VII. CONCLUSION

From the analysis of our challenge 3.1 results we see that in order to increase substantially

the number of signals with good parameter estimation we need to assume in deriving our

filters that there are more than one signal present in the data. However even with the current

procedure that estimates signals one by one we can still make the following improvements.

1. Improve the splitting of the time series into narrow bands.

2. Lower the threshold for detection.

3. For high frequencies bands where signals are well separated identify all the signals at

one scan of the parameter space instead extracting only one and scanning the whole

parameter space again to go to the next.
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Appendix A: Linear model

In this appendix we consider the linear model, an approximation of the full gravitational

wave signal introduced in order to construct a metric and a grid on the intrinsic parameter

space. It has the form:

s(t) = A0 cos (ωt+
1

2
ω̇t2 + A cos Ωt +B sin Ωt + φ0), (A1)

with constant amplitude A0, constant phase φ0 and two parameters A, B (related to ω, β

and λ).

Following the general case (1) we rewrite the signal (A1) in the form

s(t) = A1X1(t) + A2X2(t), (A2)

where

X1 = cos (ωt+
1

2
ω̇t2 + A cos Ωt +B sin Ωt),

X2 = sin (ωt+
1

2
ω̇t2 + A cos Ωt +B sin Ωt)

and where we have introduced the extrinsic amplitudes A1 = h0 cosφ0 and A2 = −h0 sinφ0.

The Fisher matrix,

Γij =
2To
S(ωo)

〈∂is ∂js〉, (A3)

for the linear model (A2) with respect to the parameters (A1, A2, ω, ω̇, A, B) takes the form

Γ =





G1 G2

G2
T G3



 , (A4)

where

G1 = ρ2





1
A1

2+A2
2 0

0 1
A1

2+A2
2



 (A5)

G2 = ρ2





ToA2

2(A1
2+A2

2)
To

2A2

6(A1
2+A2

2)
0 0

− ToA1

2(A1
2+A2

2)
− To

2A1

6(A1
2+A2

2)
0 0



 (A6)

G3 = ρ2















To
2

3
To

3

8
0 − 1

Ω

To
3

8
To

4

20
1
Ω2 − To

2Ω

0 1
Ω2

1
2

0

− 1
Ω

− To

2Ω
0 1

2















, (A7)
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and where the optimal signal-to-noise ratio,

ρ2 =
2To
S(ωo)

〈s2〉, (A8)

is given by ρ2 = To(A1
2+A2

2)
S(ωo)

and the observation time To is assumed to be an integer n of

years. In the derivation of Eqs. (A5) - (A8) we have used the following approximations

〈X1
2〉 ≃ 〈X2

2〉 ≃ 1

2
, 〈X1X2〉 ≃ 0 (A9)

corresponding to approximations (38)-(46) for the case of the full signal.

The reduced Fisher matrix obtained from the full Fisher matrix Γ by projecting Γ on the

intrinsic parameters space and normalizing it is explicitly given by ([33])

Γ̃ =
1

ρ2
(

G3 −G2
T G1

−1G2

)

(A10)

The coefficients of the reduced Fisher matrix Γ̃ of the linear model (A2) in the dimen-

sionless units with To = 1 are given by

Γ̃ =















1
12

1
24

0 − 1
2πn

1
24

1
45

1
4π2n2 − 1

4πn

0 1
4π2n2

1
2

0

− 1
2πn

− 1
4πn

0 1
2















. (A11)

For a network of detectors s = (sA, sE, sT ) with uncorrelated noises the Fisher matrix

and the optimal signal-to-noise ratio can be written in terms of the noise-weighted averaging

operator and vectorial response [see Sect.(III)]:

Γopt ij =
2To
S(ωo)

〈∂is ∂js〉S , (A12)

ρopt
2 =

2To
S(ωo)

〈s2〉
S
. (A13)

In the case of network of LISA detectors the optimal responses A, E, and T can be approx-

imated by the linear model of the form

sI(t) = cIh0 cos (ωt+
1

2
ω̇t2 + A cos Ωt+B sin Ωt + φ0 + dI), I = A,E, T, (A14)

where constants cI and dI have been introduced in order to take into account different am-

plitude and phase modulations for each observable. The reduced Fisher matrix for network
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turns out to be exactly the same as the reduced matrix for a single response. This is the spe-

cial case of the general property discovered by R. Prix ([34], Ch. IIIC) that grid resolution

in the parameter space is independent of the number of detectors.

For low frequencies the frequency derivative ω̇ is small and there is no need to include

this parameter in the search. Then the linear model simplifies to

s3I(t) = cIh0 cos (ωt+ A cos Ωt +B sin Ωt + φ0 + dI), I = A,E, T (A15)

and the corresponding reduced Fisher matrix Γ̃3 reads

Γ̃3 =











1
12

0 − 1
2πn

0 1
2

0

− 1
2πn

0 1
2











. (A16)
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