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Approximate solutions to the Einstein field equations are valuable tools to investigate gravitational

phenomena. An important aspect of any approximation is to investigate and quantify its regime of validity.

We present a study that evaluates the effects that approximate puncture initial data, based on skeleton

solutions to the Einstein constraints as proposed by [G. Faye, P. Jaranowski, and G. Schäfer, Phys. Rev. D

69, 124029 (2004).], have on numerical evolutions. Using data analysis tools, we assess the effectiveness

of these constraint-violating initial data for both initial and advanced LIGO and show that the matches of

waveforms from skeleton data with the corresponding waveforms from constraint-satisfying initial data

are * 0:97 when the total mass of the binary is * 40M�. In addition, we demonstrate that the differences

between the skeleton and the constraint-satisfying initial data evolutions, and thus waveforms, are due to

negative Hamiltonian constraint violations present in the skeleton initial data located in the vicinity of the

punctures. During the evolution, the skeleton data develops both Hamiltonian and momentum constraint

violations that decay with time, with the binary system relaxing to a constraint-satisfying solution with

black holes of smaller mass and thus different dynamics.
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I. INTRODUCTION

With the developments of the past few years, numerical
relativity simulations of binary black hole (BBH) systems
from inspiral to merger are now feasible, almost routine.
Most importantly, they are quickly becoming a potent tool
to study highly relevant astrophysical phenomena.
Approximations such as those provided by post-
Newtonian (PN) theory have also proven to be valuable
tools. They have the appeal of avoiding the computational
complexities associated with finding exact solutions to the
Einstein field equations. As the demand for more efficient
simulations increases, it is desirable to consider approxi-
mate methodologies in conjunction with numerical relativ-
ity approaches. A natural ‘‘marriage’’ in this regard, which
is the focus of this work, is to consider full Einstein
evolutions of approximately constraint-satisfying initial
data.

In general relativity, constructing initial data requires
solving the Einstein constraints, a coupled set of elliptic
equations (see Baumgarte and Shapiro [1] for a review on
the mathematical foundations of numerical relativity and
Cook [2] for constructing initial data). Thus, in general
obtaining solutions to the Einstein constraints necessitates
solving elliptic equations, which is a complex numerical
problem. When black hole (BH) excision is used, the
solvers are nontrivial [3–5] because of the excision
boundaries. Even without excision, developing constraint
solvers is demanding [6] and often requires introducing
simplifying assumptions such as spatial conformal flatness.

Flexibility is also a very important issue. The family of
problems addressed by numerical relativity is quickly ex-
panding, involving nontraditional BH systems beyond the
two-body problem [7,8]. Without modifications to the
standard initial data methodology, there will be limitations
on the class of problems one is able to consider.
The focus of the present work is on the full Einstein

numerical evolution of constraint-violating or approximate
initial data. Evolutions of constraint-violating BBH initial
data have been considered in the past. They were mostly
done in the context of superposed Kerr-Schild BHs [9–12],
but there was also the study on the superposed ‘‘puncture
Kerr’’ of Hannam et al. [13] as well as several studies
evolving approximate post-Newtonian initial data [14–16].
More recently, constraint-violating initial data for punctu-
res has been used for multiple BH evolutions [7,8].
The difference with previous studies is in the building

blocks used to construct the data. In Refs. [7,8,17], the
initial data sets were built from perturbative solutions of
single punctures (boosted and/or spinning). Our approach,
on the other hand, follows closely the skeleton solutions of
the Einstein equations introduced by Faye et al. [18]. These
solutions are derived from the full Arnowitt-Deser-Misner
(ADM) Hamiltonian with the BHs represented by pointlike
sources modeled by Dirac delta function distributions. We
consider configurations of nonspinning, equal-mass BBHs
in quasicircular orbits and investigate how well the evolu-
tion of these initial data is able to reproduce the corre-
sponding results of constraint-satisfying initial data. We
assess the effectiveness of the skeleton initial data by
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computing the matches with waveforms from constraint-
satisfying initial data evolutions. We find that the differ-
ences in the evolutions, and thus waveforms, are due to
negative Hamiltonian constraint violations present in the
skeleton initial data. We observe that, during the course of
the evolution, the skeleton data develops both Hamiltonian
and momentum constraint violations which both propagate
away and decay over time while the binary system relaxes
to a constraint-satisfying solution with BHs of smaller
mass and thus different dynamics.

In Sec. II, we derive the procedure for constructing
skeleton puncture initial data. In Sec. III, we focus on
quasicircular configurations of equal-mass, nonspinning
BBHs, and, using the effective potential method [2], we
compare binding energies between skeleton and corre-
sponding constraint-satisfying initial data. In Sec. IV, we
investigate the structure of the Hamiltonian constraint
violations in the skeleton data. In Sec. V, we present results
of the evolutions. Sec. VI presents an analysis of the nature
of the constraint violations with a model involving a single
puncture. In Sec. VII, we discuss the impact of using
waveforms from skeleton evolutions on data analysis.
Conclusions are given in Sec. VIII.

The numerical simulations and results were obtained
with the MayaKranc infrastructure as described in
Refs. [19–22].

II. SKELETON INITIAL DATA

The traditional approach to constructing initial data in
numerical relativity involves specifying the pair f~gij; ~Kijg,
where ~gij is the intrinsic 3-metric to a t ¼ constant hyper-

surface �t, and ~Kij denotes its extrinsic curvature. We use

the index convention that Latin indices in the first part of
the alphabet denote 4-dimensional spacetime indices and
those from the middle denote 3-dimensional spatial indi-
ces. The pair f~gij; ~Kijg must satisfy the Einstein constraint

equations:

~Rþ ~K2 � ~Kij
~Kij ¼ 16�~� (1)

~r j
~Kij � ~ri ~K ¼ 8�~ji: (2)

Equations (1) and (2) are, respectively, known as the

Hamiltonian and momentum constraints. The operator ~ri

denotes covariant differentiation with respect to ~gij and ~Rij

its associated Ricci tensor. We follow the notation ~K �
~gij ~Kij and ~R � ~gij ~Rij.

Although we are interested in vacuum spacetimes of BH
systems, we have kept the matter sources ~� (total energy
density) and ~ji (momentum density). This is so we are able,
as in Ref. [18], to represent the BHs as pointlike sources
modeled with Dirac delta distributions.

The constraints Eqs. (1) and (2) yield four equations;
there are, thus, eight freely specifiable pieces in the data
f~gij; ~Kijg. These free data can be used to single out the

physical system under consideration (e.g. orbiting binary
BHs) as well as to simplify solving the Einstein constraints.
An elegant approach to identify the four pieces in f~gij; ~Kijg
that are fixed from solutions to the constraints was given in
[23], based on work by Lichnerowicz [24] and others. The
method is based on the following conformal transforma-
tions and tensorial decompositions:

~g ij ¼ c 4gij (3)

~K ij ¼ ~Aij þ 1
3
~gij ~K (4)

~A ij ¼ c�10Aij (5)

~K ¼ K (6)

Aij ¼ Aij
� þ ðLWÞij; (7)

where ~Ai
i ¼ Ai

i ¼ 0 and riA
ij
� ¼ 0 with ri covariant

differentiation with respect to the conformal metric gij.

In the tensorial decomposition of Aij given by Eq. (7), Aij
�

gives the transverse part of Aij, with the longitudinal part
given by

ðLWÞij � 2rðiWjÞ � 2
3gijrkW

k: (8)

With the transformations Eqs. (3)–(7), the constraint
Eqs. (1) and (2) become:

8�c � cR� 2
3c

5K2 þ c�7AijA
ij ¼ �16�c 5 ~� (9)

ð�LWÞi � 2
3c

�6riK ¼ 8�c 10~ji; (10)

with R the Ricci scalar associated with the conformal 3-
metric gij and ð�LWÞi � rjðLWÞij.
At this point, we introduce the assumptions of conformal

flatness gij ¼ �ij and vanishing of both K and Aij
� . These

assumptions exhaust the eight freely specifiable conditions
at our disposal on f~gij; ~Kijg; five are in gij, one in K and

two in Aij
� . The constraints then take the form:

�c þ 1
8c

�7ðLWÞ2 ¼ �2�c 5 ~� (11)

ð�LWÞi ¼ 8�c 10~ji; (12)

where ðLWÞ2�ðLWÞijðLWÞij. In the absence of matter

sources, or if one sets ji¼ c 10~ji, the constraints
Eqs. (11) and (12) decouple. That is, one can solve first
Eq. (12) for Wi and use this solution to solve Eq. (11) for
c .
Following Ref. [18] albeit with considerably different

notation, with the help of the momentum constraint
Eq. (12), we notice that
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ðLWÞ2 ¼ 2ðLWÞijriWj

¼ 2ri½ðLWÞijWj� � 2WjriðLWÞij
¼ 2ri½ðLWÞijWj� � 16�c 10Wj

~jj: (13)

Substitution of Eq. (13) into the Hamiltonian constraint
Eq. (11) yields

�c þ 1
4c

�7ri½ðLWÞijWj� ¼ �2�½c 5 ~�� c 3Wi
~ji�:
(14)

We address now the matter sources. The stress-energy
tensor for a set of noninteracting pointlike particles with
rest mass MA, 4-velocity Ua

A, and comoving number den-
sity N A is given by

Tab ¼ X
A

MAN AU
a
AU

b
A; (15)

where the sum is understood to run over all the particles.
For each particle A located at xiA, the comoving number
density is given by a �-function as

N A ¼
Z 1ffiffiffiffiffiffiffiffiffiffiffiffi

�ð4Þg
q �4½xa � xaAð�Þ�d�

¼ 1

�Ut
A

ffiffiffi
~g

p �3½xi � xiAðtÞ� ¼
�A

�A

ffiffiffi
~g

p ; (16)

with ð4Þg the determinant of 4-dimensional spacetime
metric, �A � �3ðxi � xiAÞ, � the lapse function, �A ¼
�Ut

A ¼ �NaU
a
A, and Na the future-directed unit normal

to the hypersurface �t. The stress-energy tensor can then
be rewritten as

Tab ¼ X
A

MA�A

�A

ffiffiffi
~g

p Ua
AU

b
A: (17)

Given Eq. (17), the matter sources take the form:

~� ¼ NaNbT
ab ¼ X

A

MA�A�A

c 6 ffiffiffiffi
�

p ; (18)

and

~j a ¼ � ?a
b NcT

bc ¼ X
A

MA ?a
b U

b
A�A

c 6 ffiffiffiffi
�

p ¼ X
A

Pa
A�A

c 10 ffiffiffiffi
�

p ;

(19)

where we have used
ffiffiffi
~g

p ¼ c 6 ffiffiffiffi
�

p
, gab ¼ ð4Þgab þ NaNb

and ?a
b¼ ð4Þgacgcb. In deriving Eq. (19), we have also

introduced the spatial momentum vector Pa
A � MAc

4 ?a
b

Ub
A. The vector Pa is related to the spatial part of the 4-

momentum pa ¼ MUa of the pointlike particles by Pa ¼
c 4 ?a

b p
b. Substitution of the source Eqs. (18) and (19)

into Eqs. (12) and (14) yields

�c þ 1

4c 7
ri½ðLWÞijWj� ¼ �2�

X
A

mA�Affiffiffiffi
�

p (20)

ð�LWÞi ¼ 8�
X
A

Pi
A�Affiffiffiffi
�

p ; (21)

where

mA ¼ MA�A

c
�WiP

i
A

c 7
: (22)

The solution to Eq. (21) representing BHs with linear
momentum Pi

A is

Wi ¼ �X
A

1

4r
ð7Pi þ ninjP

jÞ
��������A

; (23)

with ni the unit normal of constant r spheres in flat space.
As demonstrated by Faye et al. [18], this solution is iden-
tical to the Bowen-York [25] solution of the homogeneous
equation ð�LWÞi ¼ 0. In terms of Eq. (23), ðLWÞij takes
the form:

ðLWÞij ¼ X
A

3

2r2
½2PðinjÞ � ð�ij � ninjÞnkPk�A (24)

In Eqs. (23) and (24), rA ¼ jjxi � xiAjj, niA ¼ ðxi � xiAÞ=rA
with xiA the coordinate location of BHA. It can be shown
that the total ADM linear momentum is Pi ¼ P

AP
i
A.

We now turn our attention to the Hamiltonian constraint
Eq. (20). As pointed out in Ref. [18], the term
c 7ri½ðLWÞijWj� in Eq. (20) is a ‘‘flesh’’ term that provides

the field between the particles and has the following con-
tribution to the Hamiltonian:

Z 1

c 7
ri½ðLWÞijWj�d3x ¼ �7

Z 1

c 8
ðLWÞijWjric d3x:

The only approximation that goes into defining the skel-
eton initial data is to neglect the contribution from this
term. With this approximation, the Hamiltonian constraint
Eq. (20) reads:

�c ¼ �2�
X
A

mA�Affiffiffiffi
�

p (25)

with mA given by Eq. (22). Notice that mA is singular at
xi ¼ xiA because c and Wi are singular at xiA. Following
Ref. [18], we solve Eq. (25) by means of Hadamard’s
‘‘partie finie’’ procedure [26]; that is,

c ¼ 1� 4���1

�X
A

mAðxiÞ�A

2
ffiffiffiffi
�

p
�

¼ 1� 4���1

�X
A

mðregÞ
A ðxiAÞ�A

2
ffiffiffiffi
�

p
�

¼ 1� 4�
X
A

m
ðregÞ
A ðxiAÞ
2

��1 �Affiffiffiffi
�

p ¼ 1þX
A

m
ðregÞ
A

2rA
;

(26)

where
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m
ðregÞ
A � MA�A

�A

�WA
i P

i
A

�7
A

(27)

�A ¼ 1þ X
B�A

mðregÞ
B

2rAB
(28)

�A ¼
�
1þ PiPi

M2�4

�
1=2

A
(29)

WA
i P

i
A ¼ X

B�A

� �1

4rAB

�
½7Pi

BP
A
i � ðnABi Pi

AÞðnABi Pi
BÞ�; (30)

with rAB ¼ jjxiA � xiBjj and niAB ¼ ðxiA � xiBÞ=rAB. The pa-
rameter mðregÞ

A is commonly known as the bare mass of the

BH. On the other hand, M is known as the irreducible
mass of the BH. �A is the regularized value of c ðxiAÞ. In
summary, the skeleton initial data f~gij; ~Kijg is then given by
~gij ¼ c 4�ij and ~Kij ¼ c�2ðLWÞij with c given by

Eq. (26) and ðLWÞij given by Eq. (24).
For comparison, the exact or constraint-satisfying punc-

ture initial data method [27] consists also of ~gij ¼ c 4�ij

and ~Kij ¼ c�2ðLWÞij with ðLWÞij given by Eq. (24), but in
this case

c ¼ 1þX
A

mA

2rA
þ u; (31)

with u a regular solution to

�uþ 1

8c 7
ðLWÞ2 ¼ 0 (32)

andmA is another mass parameter similarly called the bare
mass.

III. QUASICIRCULAR INITIAL DATA

We restrict our attention to initial data configurations

representing two equal mass (M1 ¼ M2 � M, mðregÞ
1 ¼

mðregÞ
2 � m), nonspinning BHs in quasicircular orbits. That

is Pi
1 ¼ �Pi

2 � Pi, r12 ¼ jjxi1 � xi2jj � d, and n12i Pi ¼ 0.
Under these assumptions:

c ¼ 1þ m

2r1
þ m

2r2
(33)

where

m ¼ M�

�
� 7

4

P2

d�7
(34)

� ¼ 1þ m

2d
(35)

� ¼
�
1þ P2

M2�4

�
1=2

: (36)

While deriving Eq. (34), we used that for circular orbits

WiP
i ¼ 7P2=ð4dÞ with P2 ¼ PiPi ¼ PiPj�ij as can be

seen from Eq. (30).
We focus now on the differences between the constraint-

satisfying and skeleton initial data for quasicircular se-
quences using the effective potential method [2]. The
general idea of this method is to find configurations that
satisfy the condition:

@Eb

@l

��������M;J
¼ 0; (37)

with Eb ¼ E�M the binding energy of the system. The
distance l is a measure of the proper separation between the
BHs (e.g. horizon to horizon), and M ¼ 2M is the sum of
the irreducible masses. The quantities E and J are, respec-
tively, the total ADM mass and angular momentum of the
system [28], which can be computed from:

E ¼ � 1

2�

I
1
ric d2Si (38)

Ji ¼
�ijk
8�

I
1
xj ~Kkld2Sl: (39)

It is not too difficult to show from Eq. (39) that, given
~Kij ¼ c�2ðLWÞij, the ADM angular momentum for bi-

naries initially in quasicircular orbits is J ¼ dP. On the
other hand, with c given by Eq. (33) the total ADM mass
from Eq. (38) is given by the sum of the bare masses of the
BHs, namely E ¼ 2m; thus, the binding energy becomes
Eb ¼ 2m� 2M. The bare masses for the skeleton initial

-0.06

-0.04

-0.02

0.8 0.9 1 1.1 1.2
0

50

100

150

FIG. 1. Comparison of the binding energy Eb as a function of
the total ADM angular momentum J between the initial data
from Tichy and Brügmann [29] (squares) and the skeleton initial
data (triangles).
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data are obtained by solving the implicit Eq. (34) using a
Newton-Raphson method.

Figure 1 (top panel) shows the comparison of the bind-
ing energy Eb as a function of the total ADM angular
momentum J between the constraint-satisfying initial
data from Tichy and Brügmann [29] (squares) and the
skeleton initial data in this work (triangles). The lower
panel in Fig. 1 shows the corresponding % relative differ-
ence between both results. Not surprisingly, as the binary
separation increases (i.e. larger angular momentum), the
differences diminish. For reference, the vertical lines de-
note the angular momentum for typical data sets consid-
ered in the literature: QC0 in Ref. [30], R1 in Ref. [31] and
D10 in Ref. [29]. The differences in binding energy be-

tween the skeleton and the constraint-satisfying initial data
are �20% for QC0, �6% for R1, and �2% for D10.
Table I provides the parameters of the initial configura-

tions for both the skeleton and constraint-satisfying data
sets. The cases of exact or constraint-satisfying initial data
are labeled with the letter ‘‘e’’ and the corresponding
skeleton or approximate case with the letter ‘‘a.’’
As mentioned before, the only fundamental difference

between the two initial data sets is in the conformal factor
c . For the constraint-satisfying data set c is computed
from Eq. (31) by solving the Hamiltonian constraint in the
form given by Eq. (32) and for the skeleton the conformal
factor c is constructed using Eq. (26). In Fig. 2, we show
the relative difference �c =c ¼ ðc a � c eÞ=c e from the
two data along the axis joining the punctures (x-axis) for
the D10, R1 and QC0 cases. Notice the large differences in
the immediate vicinity of the punctures. In the next section,
we will investigate how these differences translate into
constraint violations.

IV. HAMILTONIAN CONSTRAINT VIOLATIONS

For the remainder of the paper we will concentrate our
attention on the D10 case: a situation in which the BHs are
not too close to the merger and with an initial separation
that permits a reasonable overlap with the post-Newtonian
regime [32,33]. It is important to point out that the numeri-
cal data D10e, although called exact, also violate the con-
straints initially. The violations in the exact initial data,
however, are a consequence of numerical errors which can
be made arbitrarily small in the limit to the continuum. On
the other hand, the constraint violations in the skeleton data
are strongly dominated by resolution-independent effects,
converging at fourth order to some nonzero initial con-
straint violations.
In order to understand the nature of the constraint vio-

lations in the skeleton initial data and, in particular, their
dynamics in the course of the evolution, we take the point
of view that the violations introduce ‘‘spurious’’ sources ~�
and ~ji in Eq. (1) and (2), respectively. Notice that initially
we do not have a spurious momentum density ~ji because
the skeleton initial data by construction are an exact solu-
tion to the momentum constraint. It is important to keep in
mind that one should not assign physical properties to ~�
and ~ji. They are only used to quantify constraint violations.
In particular, the violations ~� are not restricted to satisfy
energy conditions and thus are free to take negative values.
Figure 3 shows a surface plot of ~� for the BBH skeleton

initial data in the neighborhood of one of the punctures.
Notice that the puncture seems to be embedded in a
‘‘cloud’’ or a pocket of negative ~�. Furthermore, the cloud
is more negative in the direction aligned with the linear
momentum of the puncture (in this case the y-axis). This
effect is more evident from Fig. 4 where we plot ~� in the
top panel along the x-axis (the direction joining the BHs)
and in the bottom panel along the y-axis. The features at

TABLE I. Initial data parameters: The punctures have bare
massesm, linear momenta�P along the y-axis and are separated
by a distance d along the x-axis. The irreducible mass of each
BH frommðregÞ isM. The ADMmasses and angular momenta of
the spacetimes are given, respectively, by E and J.

Run d=M P=M m=M M=M E=M J=M2

QC0e 2.337 0.333 20 0.453 00 0.519 071 1.0195 0.7787

QC0a 2.337 0.333 20 0.489 50 0.519 071 0.9790 0.7787

R1e 6.514 0.133 00 0.483 00 0.505 085 0.9957 0.8664

R1a 6.514 0.133 00 0.497 17 0.505 085 0.9943 0.8664

D10e 10.00 0.095 43 0.485 95 0.500 000 0.9895 0.9530

D10a 10.00 0.095 43 0.494 58 0.500 000 0.9891 0.9530

FIG. 2. The relative difference in the conformal factor c
between the skeleton initial data and the corresponding
constraint-satisfying data along the x-axis joining the punctures
for the three cases labeled in Fig. 1. The solid vertical lines
represent the location of the AHs.

BINARY BLACK HOLE EVOLUTIONS OF APPROXIMATE . . . PHYSICAL REVIEW D 80, 024008 (2009)

024008-5



the bottom of the constraint violation pockets are due to
refinement boundaries.

V. SKELETON EVOLUTIONS

Given the initial data, we turn our attention now to
evolutions. The evolution runs were done on a computa-
tional grid with 9 refinement levels, the finest 5 levels
containing 243 grid points in radius and the remaining 4
with 483 grid points in radius. To check the dependence of
the results with resolution, we considered grid spacings at
the finest level ofM=38:4,M=44:8, andM=51:2 and found
the skeleton waveforms converge at the same order as the
exact waveforms. The results presented here were done at
the resolution of M=51:2.

Figure 5 shows the trajectory of one of the BHs from the
skeleton initial data (dashed line) as well as its constraint-

satisfying counterpart (solid line). Both trajectories are
very close to each other during the first quarter orbit.
Beyond that point, the BH from the skeleton initial data
follows an eccentric orbit. Finally, near merger or at the
plunge, the trajectories once again lie very closely together.
In Fig. 6, we compare the waveforms of the skeleton

initial data with its constraint-satisfying counterpart as

FIG. 4. Sources ~� corresponding to Fig. 3 along the x-axis
joining the BHs (top panel) and along the y-axis (bottom panel),
the linear momentum direction. The sources along the z-axis
would overlap those along the x-axis at the scale shown. The
solid vertical lines mark the mean coordinate radius of the AH.

FIG. 5. Trajectory of one of the BHs from the skeleton initial
data (dashed line) as well as its constraint-satisfying counterpart
(solid line).

500 600 700 800 900 1000

-0.001

0

0.001

FIG. 6. Real parts of the waveform, ro�
2;2
4 M, extracted at

ro ¼ 50M for both the skeleton (dashed line) and the
constraint-satisfying (solid line) initial data.

 4 4.5  5 5.5  6 6.5 -1 -0.5  0  0.5  1  1.5

-0.0003
-0.0002
-0.0001

 0
 0.0001

x/M y/M

FIG. 3. Surface plot of ~�, as derived from the Hamiltonian
constraint violations, in the xy-plane surrounding one puncture
for the skeleton initial data, D10a.
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detected at 50M. The presence of a phase shift between the
two waveforms is evident. The constraint-satisfying initial
data evolution reaches the merger approximately 10M
before the skeleton initial data evolution. This difference
remains within 1M of this between different resolutions.
Another difference in the two evolutions is in the inspiral.
As mentioned before, the skeleton data yields a larger
eccentricity in the inspiral. This can be clearly observed
from Fig. 7 where the same comparison as in Fig. 6 is
shown but in terms of the amplitude (top panel) and phase
(bottom panel). Here we have applied a time shift of 10M
to align the point at which the waveforms reach their
maximum values. The inspiral and plunge of the binary
is before the ‘‘knee’’ in the phase or the maximum in the
amplitude. The inspiral amplitudes in Fig. 7 clearly show
differences in the level of eccentricity as seen by the
oscillations in the amplitude. The quasinormal ringing of
the final BH takes place after the knee in the phase and the
maximum in the amplitude. Notice that the phases are
practically identical for both cases. Furthermore, both the
post-knee phase and post-maximum amplitude are almost
the same for skeleton and constraint-satisfying evolutions,
which is an indication that the final BHs are almost iden-
tical [34].

From the waveforms, we have computed the energy Erad

and angular momentum Jrad radiated. For the constraint-
satisfying initial data, we obtained Erad ¼ 0:0354M and
Jrad ¼ 0:3060M2 and for the skeleton data Erad ¼
0:0359M and Jrad ¼ 0:3063M2, which correspond to dif-

ferences of 1.4% and 0.1%, respectively. These differences
are consistent with the differences in amplitude of the
ADM energy and angular momentum in the initial data (<
10�4).
To better understand the change in trajectories and the

corresponding phase shift reflected in the waveforms (see
Fig. 6), we have tracked the evolution of the AH masses.
The AH mass for one of the BHs is plotted in Fig. 8 where
the error due to grid spacing resolution is below the nu-
merical error of order 10�5M in calculating the AH mass.
While the AH mass for the constraint-satisfying evolution
stays relatively constant (solid line), the AH mass for the
skeleton evolution varies significantly (dashed line). In
fact, the mass starts 1.4% higher than the constraint-
satisfying value and monotonically decreases.
Empirically, the AH masses decrease as 1=t at late times.
By fitting a polynomial in 1=t to the AH evolution at late
times, we find the mass asymptotes to 0:501� 0:001M,
within 0.2% of the constraint-satisfying initial AH mass.
However, at a time of 800M, when the BHs are about to
merge, the AH mass in the skeleton evolution is 0:5013M.
Thus, by the time the BHs merge, 19% of the mass differ-
ence still remains. We are currently investigating how the
skeleton evolution’s changing eccentricity compares to
that of the Newtonian two-body problem with variable
mass.

VI. SINGLE PUNCTURE ANALYSIS

As noted in Sec. III, the Hamiltonian constraint viola-
tions are negative in the vicinity of the punctures. To better
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FIG. 7. Amplitude (top panel) and phase (bottom panel) of the
waveforms ro�

2;2
4 M in Fig. 6, skeleton data (dashed line) and

constraint-satisfying data (solid line). The time axis has been
shifted by 10M to align the point at which the amplitudes reach
their maximum values.
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FIG. 8. The evolution of the AH mass of one of the BHs shown
for both the constraint-satisfying initial data D10e (solid line)
and its skeleton counterpart (dashed line). The numerical errors
are of order 10�5M.
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understand the evolutions of the skeleton initial data, we
consider a test case where we evolve a single, nonspinning
puncture and add by hand negative constraint violations
surrounding it. That is, we solve the Hamiltonian constraint
as if there were an additional matter field ~� present, namely

�c ¼ �2�~�c 5: (40)

For ~� > 0, the existence of a solution is not in general
guaranteed as discussed in [23,35]. For such ~�, one needs
to rescale the source according to the conformal rescaling
~� ¼ �c�s, with s > 5. In our case, however, we are
mostly interested in ~� < 0, which does not require any
rescaling for guaranteed existence of a solution.

Following the procedure for multiple BHs, see Eq. (31),
we use the ansatz c ¼ c o þ u, with c o ¼ 1þm=2r the
solution to the homogeneous equation (i.e. the single
puncture solution). With this ansatz, Eq. (40) becomes

�u ¼ �2��ðc o þ uÞn (41)

where n must be of opposite sign compared to �. We
choose s such that n ¼ �3 for ~� > 0, as is common, and
n ¼ 5 for ~� < 0.

For simplicity, we choose

� ¼ c m
o Fe

�ðr�roÞ2=ð2	2Þ (42)

where r0 is the position with respect to the puncture,m ¼ 0
for ~� > 0, and m ¼ �5 for ~� < 0. The factor c m

o is
necessary for regularity of the solution u at the puncture.
We also assume that the source ~� does not have initial
momentum (i.e. ~ji ¼ 0); thus, the momentum constraint
remains satisfied as in the vacuum case.

Table II lists the results from the evolutions for ro ¼
	 ¼ 1M. The choice of centering the Gaussian at ro ¼ 1M
was aimed at having the source ~� shaped similarly to that
in the skeleton initial data. The distribution, like the skel-
eton initial data, is thus peaked at twice the horizon coor-
dinate radius. Unlike the dumbbell-like configuration of
the skeleton initial data’s constraint violations, the intro-
duced constraint violations in these cases are spherically
symmetric. Notice that case F1 has a positive source (i.e.
F > 0) yielding positive constraint violations while the
other two have negative sources yielding negative
Hamiltonian constraint violations. The effect of the source

� is evident in the ADM mass (E) and initial AH mass
(Mi

AH). For the positive source, the masses are larger than

the puncture mass in vacuum, 1M, and smaller for the
negative sources. Also in Table II, we include E� ¼ E�
Mi

AH, which gives a measure of the extra energy content in

the initial data due to �. The strength of F3 was chosen
such that the strength of the constraint violations and the
change of the initial MAH are comparable to those in the
skeleton initial data. As the geometry of the constraint
violations create a much larger change in the ADM energy,
cases F1 and F2 have more modest constraint violations
which yield more modest changes in ADM mass.
We evolved the models in Table II for 300M. Figure 9

shows how the AH mass evolves during the evolution. We
have evolved the model F3 at different resolutions and
estimated the AH masses to have an approximate relative
error due to resolution to be�0:009%. We observed that at

late times the AHmass evolves asMf
AH þ C=t. The values

reported in Table II are those extrapolated to t ! 1.
The evolutions of the single puncture models clearly

demonstrate that depending on the signature of �, the
mass of the BH, as measured from the AH, will increase
or decrease. That is, over the course of the evolution, the
AH masses evolve to approach the ADM energy, decreas-
ing for a negative � and increasing for positive �. In other
words, the source ~� initially hovering near a puncture will
fall into the BH, increasing or decreasing its mass as the
system becomes stationary depending on the sign of ~�. The
extent to which the final mass of the BH approaches the
total ADM energy depends on howmuch of the density � is
‘‘accreted’’ by the BH. Since in our case we do not impose

TABLE II. Models: Results of evolutions a single puncture in
the presence of a Gaussian source � with ro ¼ 	 ¼ 1M and
amplitude F. The initial AH mass and ADM energy are Mi

AH

and E, respectively.Mf
AH=M is the asymptotic final AH mass as

extrapolated to t ¼ 1 from the end of the simulation, and E� ¼
E�Mi

AH.

Model F=M2 E=M Mi
AH=M Mf

AH=M E�=M

F1 0.001 1.0046 1.0012 1.0041 0.0034

F2 �0:001 0.9902 0.9973 0.9911 �0:0071
F3 �0:010 0.9102 0.9858 0.9183 �0:0756

0 100 200 300
0.92

0.94

0.96

0.98

1

1.02

FIG. 9. Evolution of the AH mass for the models described in
Table II. The error between resolutions for F3 was within the
numerical errors for calculating the AH mass, of order 10�5M.
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the restriction of positivity on �, the BH is free to decrease
its mass. Notice also that the final AHmass does not satisfy

the condition Mf
AH ¼ Mi

AH þ E�, which means that a

fraction (< 15% in our cases) of E� is radiated away.

Figure 10 shows the Hamiltonian constraint violation ~�
near the beginning of the simulation at t ¼ 0:078M (top
panel) and at the end, t ¼ 300M, of the simulation (bottom
panel). Solid lines represent the constraint-satisfying case
and dashed lines the F3 model. Figure 11 shows the cor-
responding results for the momentum constraint violations
~ji along the x-axis. By construction, initially there are only
Hamiltonian constraint violations in the F3 model.
However, it is evident from the top panel in Fig. 11 that
constraint violations in the momentum constraint develop
also very early in the evolution. The growth of momentum
constraint violations proceed up to a time t� 3M. The
subsequent dynamics of the constraint violations consists
of ingoing and outgoing waves. Because of the proximity
to the puncture, the outgoing waves are a little bit weaker,
with most of the constraint violations accreted by the BH.
After approximately t� 50M of evolution, the F3 model
relaxes to the configuration of the constraint-satisfying
puncture and remains there as seen in the bottom panels
in Figs. 10 and 11. The final constraint violations in the
system arise from numerical errors.

An important aspect to point out is that although the
constraint-violating cases relax to a constraint-satisfying
solution, it is for a puncture spacetime with a smaller mass.

A similar situation occurs in the binary case; the system
relaxes to a binary solution, but this solution is different
than the vacuum case. The reason for this relaxation to a
similar constraint-satisfying solution is thought to be con-
nected to the constraint damping nature of the BSSN
formulation, but is not fully understood.

VII. IMPACT ON DATA ANALYSIS

Finally, we want to address the extent to which the
waveforms from evolutions of skeleton initial data may
be of use in exploring gravitational wave astronomy. We
will focus on computing the matches between the skeleton
and the constraint-satisfying waveforms. In principle, the
match would be between the detector output, h1 and the
template, h2. Here h1 is the waveform from the constraint-
satisfying evolution and h2 from the skeleton initial data
evolution. Specifically, we will compare the waveforms
using the minimax match given by [36–38].

Match � max
t0

min
�2

max
�1

hh1jh2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i
p ; (43)

where the inner product of two templates is defined by

hh1jh2i ¼ 4Re
Z fmax

fmin

~h1ðfÞ~h�2ðfÞ
ShðfÞ df: (44)

The match is maximized over the time of arrival of the
signal, t0, and minimized/maximized over the initial phase,
�1 and�2, of the orbit when the signal/template enters the
LIGO band. The variable ShðfÞ denotes the noise spectrum
for which we use the initial [39] and advanced [40] LIGO
noise curves. The domain ½fmin; fmax� is determined by the

FIG. 10. Hamiltonian constraint violation ~� near the beginning
of the simulation at t ¼ 0:078M (top panel) and at the end, t ¼
300M, of the simulation (bottom panel). Solid lines represents
the constraint-satisfying case and dashed lines the F3 model. The
vertical lines are the mean coordinate radii of the AH at the
specified time for both F3 (dashed) and the constraint-satisfying
(solid) cases. The constraint violations still present at late times
are due to discretization around the punctures.

FIG. 11. Same as in Fig. 10 but for the momentum constraint
violation ~jx. The constraint violations still present at late times
are due to discretization around the puncture.
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detector bandwidth and the masses of our signal – set such
that the initial frequency of the numerical waveform just
enters the LIGO band. We have chosen to study the match
for values of the total mass of the BBH system greater than
20M� because of the limited number of cycles that our
waveforms include, stopping at 130M� for initial LIGO
and 250M� for advanced LIGO as the ring-down-
dominated match at larger masses is close to unity. A
more detailed description of our minimax match calcula-
tion is given in [21].

The match between the constraint-satisfying and skel-
eton data versus mass is plotted in Fig. 12 for both noise
curves. In general, the match between the waveforms in-
creases with increasing total mass, reaching >0:99 at
60M�=100M� for initial/advanced LIGO. At such large
total mass, the signal is dominated by the plunge and ring-
down. Comparisons of the plunge and ring-down show (see
Fig. 7) that the difference between the skeleton and
constraint-satisfying evolution are very small. At masses
lower than about 40M�, the match drops below 0.97 due to
the difference in the binary dynamics prior to merger.
Overall, advanced LIGO is more sensitive to differences
in the data, but these differences still remain above 0.98 for
most of the mass range investigated indicating that it is
unlikely to have an impact on detection. Despite the high
match, the differences between the data due to constraint
violations would likely impact the accuracy of parameter
estimation. We note that our calculation of match did not
maximize over the mass of the two waveforms.
Maximizing over the mass would have diminished the
differences between the two waveforms.

VIII. CONCLUSIONS

We have carried out a study of the evolution of skeleton,
puncture BBH initial data as proposed by Faye et al. [18].

We focused on nonspinning punctures at initial separations
of 10M, where the difference in binding energy with the
constraint-satisfying initial data is <2%. We showed
that during the inspiral the skeleton data yields different
dynamics; however, this difference significantly dimin-
ishes as the binary enters the plunge, merger and ring-
down.
We tested the match between the constraint-satisfying

and skeleton data for a series of total masses between
20M� and 130M�=250M� for initial/advanced LIGO, re-
spectively. Our results indicate that gravitational wave data
analysis would have some tolerance for constraint-
violating data, especially for those binaries in which the
signal is plunge-merger dominated, as is the case of high
mass BHs. We conclude that although the two systems
were different, with one clearly violating the Einstein
equations, the differences were not enough to impact the
match statistics for the mass ranges we included in our
study and for the number of cycles present in our numerical
waveforms. Clearly, the advanced LIGO detector was more
sensitive to the errors that are introduced into the system by
the constraint violations. If these systems were evolved
starting with a larger initial BH separation, the constraint
violations would be smaller and, therefore, the waveforms
generated could be useful for detection over the complete
BBH mass range for initial LIGO. If, however, larger
constraint violations are present in the data that drive the
early BH masses lower, the differences may lead to errors
in parameter estimation.
We also analyzed the impact of the Hamiltonian con-

straint violations. We showed that the main feature of the
skeleton data is two packets of negative constraint viola-
tions in front of and behind the BH, along the direction of
its momentum. We conjectured that these negative con-
straint violations acted as a source density that gets ab-
sorbed by the BHs during evolution. To test our conjecture,
we considered a model consisting of a single, nonrotating
puncture in which we artificially added a stationary
Gaussian shell source that mimics the Hamiltonian con-
straint violations in the skeleton data. The evolutions of
this single puncture model reproduce the decrease in the
mass of the BH observed in the evolution of the skeleton
data.
One remarkable aspect of our study is the ability of the

BSSN equations and moving puncture gauges to stably
evolve data offthe constraint surface. What is even more
remarkable is how the evolution brings the data back to the
Einstein constraint surface. We are currently investigating
a broader class of solutions with this property.
Our results suggest that for the class of constraint vio-

lations found in the above studies, the evolutions of such
systems with the BSSN formulation approach a constraint-
satisfying system with BHs of different AH masses. For
general classes of constraint violations we cannot conclude
anything from this study.
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FIG. 12. Waveform matches between the waveform extracted
from the standard, D10e, and that extracted from the skeleton
initial data evolution, D10a, using both the initial and advanced
LIGO noise curves.
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In summary, our numerical evolutions show that the
skeleton initial data proposed by Faye et al. [18] embeds
the BHs in a cloud of negative constraint violations. These
constraint violations act as a source field that when ac-
creted by the BHs decreases their masses. The change in
the masses modifies the binding energy of the binary and
thus affects its orbital dynamics (e.g. adding eccentricity)
but had little effect on the match of the two waveforms for
initial or advanced LIGO for high mass black holes. The
observed effects will decrease as the initial binary separa-
tion increases.
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