Galactic dark matter halo made of spin-zero bosons
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Abstract. Scalar Field Dark Matter models, in which the dark mattetipiaris a spin-0 boson, are becoming a serious
alternative to the Cold Dark Matter paradigm. In the preseork, we have constructed gravitational-bounded configpma
made of massive spin zero bosons that can be used as modegaldeotic dark matter halos. These configurations are
constructed in the context of Einstein’s General Relatiaitd contrary to previous studies, where the bosons p@patdy

the ground state, different excited states are coexistingltaneously. We show that these 'mixed states’ are stahdter
radial perturbations and that they provide more realigtiation curves than single configurations.
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INTRODUCTION

Despite the success of tiecold dark matter scenario at cosmological scale, therestsoaag controversy about its
viability at galactic scale. Two predictions of this moduwht are still considered as unsolved problems are:

1. the cusp in the density profile of the dark matter (DM) far tfalactic halos present at the center of the galaxy.
This prediction is in contradiction with the flat profiles abted by the analysis of the high resolution data of low
surface brightness galaxies [1, 2] and,

2. the large number of satellite galaxies around each galhato, which exceeds far beyond what is observed
around the Milky Way [3].

An alternative approach t6—CDM consists in describing the dark matter as a scalar field[#, 8]. In this
model, the dark matter particle is an ultra-light massipless bosonr ~ 10-23eV [7]). A virtue of SFDM is that
at cosmological scales it behaves as cold dark matter méddl,[ but it doesn't suffer its defects at galactic scale:
neither a cuspy profile [9], nor a over-density of satellidédagies [10].

The formation of the galactic halo in the frame of the SFDMsd@lows: as the universe expands, the scalar field
cools together with the rest of the particles until it dedesgrom the rest of the matter. After that, only the expamsio
of the universe will keep cooling the scalar field. If a scdileld fluctuations are under the critical temperature, those
will condensate leading to Boson-star (BS) like objectd.[BSs are solutions of the Einstein-Klein-Gordon equation
where the gravity attraction is balanced by the disperdinagacter of the scalar field. Considering the ultra-lighssa
of the dark matter particle, the boson’s Compton wave lersgthi the order of kilo-parsecs, and the resulting BSs will
look as structures with comparable length scales that qaaidthe role of galactic halos.

Does this theoretical galactic halo reproduce the obsergtadional curves? There have been several attempts
in matching the theoretical predictions with the obseoral data using Newtonian BSs, where all the bosons are
populating the same state, i.e. a ground or an excited gtake 15]. However, these models present problems, as the
configurations in the ground state produce RCs which are aipe¢flough at large radii. On the other hand, RCs from
excited BSs are in better agreement with the observed oneth)dexcited BSs are known to be unstable [16, 17]. A
promising alternative in modeling realistic dark mattelosaconsists in considering Newtonian configurations where
bosons in the ground and excited states are coexisting Th8fse configurations are stable and their RCs are flatter
at large radii than those produced by BSs in the ground s2die |

The objective of this work is to study in more detail this edtative. First, we review the generalized relativistic
BSs, the so called Multi-state Boson star (MSBS) [19], thiatabtained when the scalar field is allowed to populate
different energetic states. Special attention is pointgdrothe stability of MSBS, as this is a necessary conditamn f
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MSBS to be considered viable astrophysical objects. Se@snale are interested in modeling galactic halos which can
be considered Newtonian systems, we introduce the Newtdini of the relativistic MSBS and we show numerical
evidence of their stability under radial perturbationsafly, we construct RC for stable Newtonian MSBS that have a
flat profile at large radii. In the present work, we are not aeréng the contribution of the baryonic matter to the RC.
This is a reasonable assumption, as we compare these thabR& with the ones observed for low surface brightness
galaxies which are mainly composed by dark matter.

BOSON STARSAND MULTI STATE BOSON STARS

BSs were initially introduced by Kaup [20] as solutions te Einstein Klein-Gordon (EKG) equations, for a minimally
coupled classical complex and massive scalar field. RuffidiBonazzola [21] constructed BSs as self-gravitating
systems of spin-zero bosons. In this approach, the maniclgasystem is described by a quantum real free field
operator that satisfies the Klein-Gordon equation in a aisgace-time. The metric coefficients of this space-time are
solutions to the Einstein equations where the source tegivés by the mean value of the energy momentum tensor
operator constructed from the scalar field operator. Thisapproaches are equivalent as they yield to the same EKG
equations and consequently the same macroscopic resliiiBfause BS are bounded solutions, regular everywhere
and stable, they have been considered candidates of agsioplhobjects in different contexts, depending mainly on
the mass and the self-interaction potential of the scallt. flevo extensive reviews on BS are [22] and [23].

It was already pointed out in [21] that a possible genertimeof BSs can be done by considering that the scalar
field is not only populating a single state, but rather se\stages. This generalized relativistic MSBS were consédic
and shown to be stable in [19]. The Newtonian limit of MSBS wassidered in [18] and their stability under finite
perturbations studied in [24]. Our current study, based r@wipus works, is focused on a comparison between the
relativistic and Newtonian approaches in dealing with MS3B8figurations. We present in the following subsections
the equations that govern the behavior of MSBS and the prwesdised for obtaining solutions to these equations.
This study allows us to draw conclusions about the regimehicivMSBS are well described using the Newtonian
limit.

General relativistic MSBS

We start by considering the semiclassical limit of the Eitsequations
Gap = 81G(Q[Tap|Q). (1)

Where<Q|'fa,3|Q> denotes the mean value of the stress energy te‘?@oover a system of bosons which are in the
state|Q). The many-particle system is described by the real, secoadtized scalar field

&3 = r;n [Bnlmq)nlm(tax) + Bglmq:';lm(tax)} . (2)

The operatorﬁmm andB m are the usual creation and respectively annihilation dpesavhich satisfy the commuta-

tion relatlons[bmm, n’I’rﬂ] [b;lm, b;,l,m] 0 and[bnlm, n,l,m] St A1 O -

From operatofb it is possible to construct the energy-momentum tensoralpeT“V just by inserting eg. (2) into
the classical expression for the energy-momentum tenberstatgdQ) = |N1og, N2oo..-Npim...) is composed of many
scalar particles distributed in setsNfi, particles of masgt, angular momenturhand azimuthal momentum.

Due to orthogonality of the quantum states, it is found that

o n-—1

Q|TaB|Q z Z Z anm|faB|anm>a (3

=1l=1m=—I|

where [Noym) = 10,0, ...Nym..0,0), i.e. the stress energy tensors of the system is the lingmrsosition of the
expectation values of the energy-momentum tensor for eaditidual state. Finally, the Einstein equations (1) with
the stress energy tensor (3) can be written as

Gap = 161G Z Nnim Tag(nim) - 4)
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FIGURE 1. Typical solutions to the relativistic MSBS (egs. 8a) and l®vian MSBS (eqgs. 9) configurations. In both cases the
number of excited particles, is equal to the number of ground state partidles

On the other hand, we are dealing with a system of bodowich satisfy the Klein-Gordon equation, and due to
eqg. (2) each field coefficient satisfies its own Klein-Gordqoation:

(0 — p?) ®rim(t, X) = 0. (5)

whered = (1/,/=0)du[v/—09""V0,] andp is the mass of the scalar field.

Summarizing, we have shown that in the case where partidpslgate various excited levels, the source of the
Einstein equations (4) is equivalent to the energy momené&nsor of many (independent) classical complex scalar
fields ®nm(t,x) minimally coupled to gravity. Each one of these scalar fieldsounts for only one of the excited
single state$N,m), and its dynamics is given by its own KG equation (5).

In the spherically symmetric cade= m= 0, when the fields have an harmonic dependence

VBTG Ppim(t,X) — e~ g(r), (6)
the line element can be written as
ds = —a?(r)dt? 4+ a%(r)dr? +r2dQ. 7)
Then the Einstein egs. (4) and the KG egs. (5) take the form
a) a@-1 [k 2 2
da = 5{— . +4mrgl[<?+mz>a¢ﬁ+¢n] , (8a)
a | a?—-1 Z/af ) 5
ga = 5{ - +4nrnzl{<ﬁ—mz)a¢ﬁ+¢n} : (8b)
0(% = q)n; (8C)
g q)n OJ,%
oy = —qliad—amiaint |y ¢ T—<?—mz)qqqa2. (8d)
s=1

where the indexes andsrun from 1 to.#, .# the number of states populated in the MSBS.
In order to obtain a solution of this system, we impose as Bannconditions regularity at origin and asymptotic
flatness for the metric components.

Newtonian MSBS

The Newtonian limit of the coupled Einstein-Klein-GorddeKG) equations (4-5) is the so-called Schrédinger-
Poisson (SP) system [27]

U = Zwmmﬁ, (9a)
nim
. 1
I0tl'|"nlm = _EDZWnIm+UWnIm; (9b)
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whereWy, is related tob,m by .
VBNG ®pym(t,Xx) = e MW n(t,x). (10)

Then, the Newtonian version of the EKG equations describeslynamics of the non-relativistic parts of the scalar
fields, which are coupled among themselves through the Nearigyravitational potentid) [25]. We constructed so-
lutions to the SP system (9) whe# bosons are allowed to occupy different levels, which for simplicity of the dis-
cussion will have zero angular momentgim= 0,m = 0). Hence, the states are of the fof@) = [N;,No, N3, ...,N.7).

We are assuming spherical symmetry and an harmonic timendepee for the scalar fiell, = e '“ntg,(r). Then
the system (9) reads

1 d?(r’g)

2 are (U + an)en, (11a)
1d2(rlv) Z

2 arz T n;\%l : (11b)

Given appropriate boundary conditions in order to obtagular and bounded solutions, the system (11) becomes an
eigenvalue problem for the temporal frequencirs

Solving M SBS

Starting from the semiclassical limit of the Einstein eduas, we have derived the static, spherically symmetric
equations for the case when a massive spinless boson wignetif and coexisting energy states is considered. We
have arrived to the general relativistic Einstein-Kleinr@on equations 8a and from that system, we deduced the
Newtonian limit of those equations arriving to the Schr@dinPoisson system eqs. 9. There is no analytical solution
except to the case where the scalar field is massless. Howevarre interested in the self-gravitating system and the
only way of obtaining solutions is through numerical saus. The solutions were calculated numerically using finite
differencing and a shooting routine that searchrdTypical solutions are shown in Fig. 1. Details of the edmilim
configurations for the particular case when only two statescansidered, the ground and the first excited state, can
be found in [19] and in [24] for the relativistic MSBS and thewtonian MSBS respectively.

Equivalence of M SBS vs.Newtonian M SBS

The complete description of MSBS is given by the Einsteinatigns while the Newtonian equations provide
a reasonable approximation in some cases. Nevertheléssa ijood cross-check exercise to verify that under the
specific conditions, relativistic MSBS and Newtonian MSRfihcide.

A quantity that measures the importance of relativisticections is the compactness of the object. In Fig. 2 the
compactness of relativistic equilibrium BS in the grourateis shown. This compactness is definedMgRyg where
M is the BS’s ADM mass anBlgg is the radius containing 99% of the total particle numbethindefinition above, we
considetRyg instead of the physical radius of the star which extendsftoity, as we consider th&gyg is a reasonable
distance where for measuring the gravitational field of tae s

It is clear from Fig. 2 that Newtonian configurations whicle &xpected to have a very small compactness (as a
reminder, the compactness of the Sur-i$0-°) corresponds to the those solutions for which the centiakevaf the
scalar field satisfies the conditigri0) < 1.

We have computed configurations of two-state boson stakdngahe full relativistic EKG equations (8a), for
which the number of particles in the ground state is equdiéanumber of particles in the first excited state and with
the central value of the ground sta#g0) < 1. In Fig. 3 we show the ADM mass of these configurations andoeom
it with the mass of the corresponding configurations obthiog solving the Schrodinger-Poisson system (11). We
found no difference between those masses for small valueg(0f. Fig. 3 shows the radial functions of the scalar
fields for the populated states(r) and @ (r) obtained from the EKG system and from the SP systems. In the sa
figure, the Newtonian potentigl(r) is compared againsi(r) — 1 which is the “equivalent” potential for the general
relativistic case. From this set of plots shown in Fig. 3 we canclude that Newtonian solutions describe with a good
approximation MSBS with small values of the scalar field ia tenter.
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FIGURE 3. Left: Total mass for relativistic ground state BS and Newdanground state BS. Centegy(r) and ¢(r) for
relativistic MSBS (solid line) and Newtonian MSBS (dottedel) for ¢1(0) << 1 andn = 1. Right:a(r) — 1 of a relativistic
MSBS (solid line) and Newtonian potentlalr) (dotted line) forgy (0) << 1 andn = 1.

STABILITY OF MSBS

In order to extend the importance of the MSBS beyond the madtieal context, it is first necessary to prove their
stability. The previous stability studies of BS can be dfess$in two types:

1. studies that consider infinitesimal perturbations foichithe number of particles is conserved and,
2. studies that consider finite perturbations and there ongervation in the number of particles.

In the first type of studies the methods employed have beeadiperturbation theory [29, 30, 16] and catastrophe
theory [31]. On the other hand, when finite perturbationscamsidered, the final state of the perturbed BS can be
known only through its numerical evolution. Furthermores tesults obtained for infinitesimal perturbations have
been cross-checked using numerical techniques [32, 17, 33]

From those studies, it is known that BSs in the ground statstable against radial perturbations if the amplitude of
the scalar field at the origi@(0) is smaller than a critical valu@:(0), for which the maximum mad€émaxis reached.
However in the case of excited BSs, namely those in which thdéasfield is in an excited state, there are some
differences: if infinitesimal perturbations are considemxcited BSs withp(0) smaller than the central value of the
field for which the maximum mass is reached, are stable [1J6(2the other hand, under finite perturbations, excited
BSs are intrinsically unstable even f@(0) < @(0), since these perturbations drive the star either into argtstate
BS, or into a black hole [16, 17].

Since MSBS contains at least one excited state, one cowdtimit MSBS would be unstable under finite perturba-
tions. The stability of relativistic MSBS composed of twatsts, the ground and the first excited state, was studied in
[19] using numerical techniques. These two-state bosas ate characterized by): the fractionn = N,/N;, where
N, is the number of particles in the excited state Akds the number of particles in the ground state, @nthe central
amplitude of one of the scalar fields (eitfigf0) or ¢»(0)). A set of MSBS with different values af was selected for
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FIGURE 4. Left: Time evolution ofg(r = 0) for two perturbed relativistic MSBS (solid ling = 1.6, dashed ling) = 0.4).
Right: Time evolution ofg,(r = 0) for two perturbed Newtonian MSBS (solid lime= 1.5, dashed ling) = 1.0).

this numerical stability study.

The perturbation consisted in an additional masslessrsitald, which contains @1% of the total energy density
of the MSBS. The numerical evolution of the perturbed comfijons shown that for MSBS with > 1 the pertur-
bations grow exponentially. However, for configurationhwj < 1, the perturbations only oscillate without growing.
Comparing these two behaviors it is possible to infer thatstate BSs with) < 1 are stable, while those with > 1
are not. A systematic study was done perturbing configuratigth different values af in order to find the maximum
fraction for which the configurations can be stable and it feasid thatmax~ 1 .

The first plot in Fig. 4 shows the central value of the excitedla fieldg,(r = 0,t), for the caseg) = 0.4 and
n = 1.6. These models exhibit different It is clear that there ave different behaviors: foN, > N; there is an
exponential growth of the amplitude, while filp < N; the amplitude ofp, (r = 0,t) remains constant, despite the fact
that both have been affected by the same type of finite pextiorn More details about those results and about the fate
of the unstable configurations can be found in [19].

In [24], a similar study regarding the stability of two-&&S in the Newtonian limit was performed and the results
of the stability conditions for those configurations are sistent with the obtained for their relativistic counteatpa
This comparison can be seen in the right plot of Fig. 4 whicbwshthe temporal behavior af(r = 0,t) for
configurations wittn = 1.0 andn = 1.5, namely stable and respectively unstable Newtonian MSBS.

ROTATION CURVES FROM M SBS

In this section, we show that mixed ground-excited stateslyre flat rotation curves at large radii, so they can be
considered realistic models for dark matter halos [18, 24]
A typical DM halo mass isv 10*M® and its radius iR ~ 100 Kpc therefore its compactness is
2M
— ~1077, (12)
Rog
then it is reasonable to consider the halo as a Newtoniaersyahd therefore, in accordance with our previous
discussion, Newtonian MSBS should be appropriate in modéi
We calculate the velocity of test particles moving alonguwiar orbits in the gravitational potential sourced by the
MSBS configurations via the Newtonian formula

v(r) = v A (En)/r, (13)

where.#/(t,r) is the total number of particles inside the radiusbtained from the numerical equilibrium configura-
tions of the SP system (11).

The results for a MSBS with = 1 are shown in Fig. 5. We can see a significant improvemengfidtness of the
rotation curve at large radii compared when compared wighR@ for a BS in the ground state.

Nevertheless, there is room for further improvements. kangle, we can consider a MSBS with the ground, first
and second states populated, and compute its associaatiomaturve, as presented in Fig. 5. One can notice that the
configurations with more excited states lead to flatter RC.
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FIGURE 5. Rotation curve for: ground state BS (dotted line), NewtorfidSBS with two states ang = 1 (dashed line) and
Newtonian MSBS with three states aNg > N, > N3 (solid line).

There is another particular feature we would like to mentibime introduction of multi states provides additional
free parameters which allow a better fit to the observediomtaturves. The extra parameters are the occupation
numbers of the mixed state, namély, Np, N3, etc., which are related to th#,(0,0) values. These values could be
determined by the local environment to which the scalar hale subjected during its formation.
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