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Abstract. Scalar Field Dark Matter models, in which the dark matter particle is a spin-0 boson, are becoming a serious
alternative to the Cold Dark Matter paradigm. In the presentwork, we have constructed gravitational-bounded configurations
made of massive spin zero bosons that can be used as models forgalactic dark matter halos. These configurations are
constructed in the context of Einstein’s General Relativity and contrary to previous studies, where the bosons populate only
the ground state, different excited states are coexisting simultaneously. We show that these ’mixed states’ are stableunder
radial perturbations and that they provide more realistic rotation curves than single configurations.
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INTRODUCTION

Despite the success of theΛ-cold dark matter scenario at cosmological scale, there is astrong controversy about its
viability at galactic scale. Two predictions of this model that are still considered as unsolved problems are:

1. the cusp in the density profile of the dark matter (DM) for the galactic halos present at the center of the galaxy.
This prediction is in contradiction with the flat profiles obtained by the analysis of the high resolution data of low
surface brightness galaxies [1, 2] and,

2. the large number of satellite galaxies around each galactic halo, which exceeds far beyond what is observed
around the Milky Way [3].

An alternative approach toΛ−CDM consists in describing the dark matter as a scalar field [4, 5, 6, 8]. In this
model, the dark matter particle is an ultra-light massive, spinless boson (m∼ 10−23eV [7]). A virtue of SFDM is that
at cosmological scales it behaves as cold dark matter model [5, 4], but it doesn’t suffer its defects at galactic scale:
neither a cuspy profile [9], nor a over-density of satellite galaxies [10].

The formation of the galactic halo in the frame of the SFDM is as follows: as the universe expands, the scalar field
cools together with the rest of the particles until it decouples from the rest of the matter. After that, only the expansion
of the universe will keep cooling the scalar field. If a scalarfield fluctuations are under the critical temperature, those
will condensate leading to Boson-star (BS) like objects [11]. BSs are solutions of the Einstein-Klein-Gordon equations
where the gravity attraction is balanced by the dispersive character of the scalar field. Considering the ultra-light mass
of the dark matter particle, the boson’s Compton wave lengthis of the order of kilo-parsecs, and the resulting BSs will
look as structures with comparable length scales that couldplay the role of galactic halos.

Does this theoretical galactic halo reproduce the observedrotational curves? There have been several attempts
in matching the theoretical predictions with the observational data using Newtonian BSs, where all the bosons are
populating the same state, i.e. a ground or an excited state [4, 5, 15]. However, these models present problems, as the
configurations in the ground state produce RCs which are not flat enough at large radii. On the other hand, RCs from
excited BSs are in better agreement with the observed ones, but the excited BSs are known to be unstable [16, 17]. A
promising alternative in modeling realistic dark matter halos consists in considering Newtonian configurations where
bosons in the ground and excited states are coexisting [18].Those configurations are stable and their RCs are flatter
at large radii than those produced by BSs in the ground state [24].

The objective of this work is to study in more detail this alternative. First, we review the generalized relativistic
BSs, the so called Multi-state Boson star (MSBS) [19], that are obtained when the scalar field is allowed to populate
different energetic states. Special attention is pointed out in the stability of MSBS, as this is a necessary condition for
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MSBS to be considered viable astrophysical objects. Second, as we are interested in modeling galactic halos which can
be considered Newtonian systems, we introduce the Newtonian limit of the relativistic MSBS and we show numerical
evidence of their stability under radial perturbations. Finally, we construct RC for stable Newtonian MSBS that have a
flat profile at large radii. In the present work, we are not considering the contribution of the baryonic matter to the RC.
This is a reasonable assumption, as we compare these theoretical RC with the ones observed for low surface brightness
galaxies which are mainly composed by dark matter.

BOSON STARS AND MULTI STATE BOSON STARS

BSs were initially introduced by Kaup [20] as solutions to the Einstein Klein-Gordon (EKG) equations, for a minimally
coupled classical complex and massive scalar field. Ruffini and Bonazzola [21] constructed BSs as self-gravitating
systems of spin-zero bosons. In this approach, the many particle system is described by a quantum real free field
operator that satisfies the Klein-Gordon equation in a curved space-time. The metric coefficients of this space-time are
solutions to the Einstein equations where the source term isgiven by the mean value of the energy momentum tensor
operator constructed from the scalar field operator. This two approaches are equivalent as they yield to the same EKG
equations and consequently the same macroscopic results [21]. Because BS are bounded solutions, regular everywhere
and stable, they have been considered candidates of astrophysical objects in different contexts, depending mainly on
the mass and the self-interaction potential of the scalar field. Two extensive reviews on BS are [22] and [23].

It was already pointed out in [21] that a possible generalization of BSs can be done by considering that the scalar
field is not only populating a single state, but rather several states. This generalized relativistic MSBS were constructed
and shown to be stable in [19]. The Newtonian limit of MSBS wasconsidered in [18] and their stability under finite
perturbations studied in [24]. Our current study, based on previous works, is focused on a comparison between the
relativistic and Newtonian approaches in dealing with MSBSconfigurations. We present in the following subsections
the equations that govern the behavior of MSBS and the procedures used for obtaining solutions to these equations.
This study allows us to draw conclusions about the regime in which MSBS are well described using the Newtonian
limit.

General relativistic MSBS

We start by considering the semiclassical limit of the Einstein equations

Gαβ = 8πG〈Q|T̂αβ |Q〉 , (1)

where〈Q|T̂αβ |Q〉 denotes the mean value of the stress energy tensorT̂αβ over a system of bosons which are in the
state|Q〉. The many-particle system is described by the real, second quantized scalar field

Φ̂ = ∑
nlm

[

b̂nlmΦnlm(t,x)+ b̂†
nlmΦ∗

nlm(t,x)
]

. (2)

The operatorŝbnlm andb̂†
nlm are the usual creation and respectively annihilation operators which satisfy the commuta-

tion relations[b̂†
nlm, b̂†

n′l ′m′ ] = [b̂−nlm, b̂−n′l ′m′ ] = 0 and[b̂†
nlm, b̂−n′l ′m′ ] = δnn′δll ′δmm′ .

From operator̂Φ it is possible to construct the energy-momentum tensor operatorT̂µν just by inserting eq. (2) into
the classical expression for the energy-momentum tensor. The state|Q〉 = |N100,N200...Nnlm...〉 is composed of many
scalar particles distributed in sets ofNnlm particles of massµ , angular momentuml and azimuthal momentumm.

Due to orthogonality of the quantum states, it is found that

〈Q|T̂αβ |Q〉 =
∞

∑
n=1

n−1

∑
l=1

l

∑
m=−l

〈Nnlm|T̂αβ |Nnlm〉 , (3)

where |Nnlm〉 = |0,0, ...Nnlm..0,0〉, i.e. the stress energy tensors of the system is the linear superposition of the
expectation values of the energy-momentum tensor for each individual state. Finally, the Einstein equations (1) with
the stress energy tensor (3) can be written as

Gαβ = 16πG ∑
n,l ,m

NnlmTαβ (nlm) . (4)
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FIGURE 1. Typical solutions to the relativistic MSBS (eqs. 8a) and Newtonian MSBS (eqs. 9) configurations. In both cases the
number of excited particlesN2 is equal to the number of ground state particlesN1.

On the other hand, we are dealing with a system of bosonsΦ̂ which satisfy the Klein-Gordon equation, and due to
eq. (2) each field coefficient satisfies its own Klein-Gordon equation:

(

�− µ2)Φnlm(t,x) = 0. (5)

where� = (1/
√−g)∂µ [

√−ggµν∂ν ] andµ is the mass of the scalar field.
Summarizing, we have shown that in the case where particles populate various excited levels, the source of the

Einstein equations (4) is equivalent to the energy momentumtensor of many (independent) classical complex scalar
fields Φnlm(t,x) minimally coupled to gravity. Each one of these scalar fieldsaccounts for only one of the excited
single states|Nnlm〉, and its dynamics is given by its own KG equation (5).

In the spherically symmetric case,l = m= 0, when the fields have an harmonic dependence
√

8πGΦnlm(t,x) → e−iωntφn(r) , (6)

the line element can be written as
ds2 = −α2(r)dt2 +a2(r)dr2 + r2dΩ . (7)

Then the Einstein eqs. (4) and the KG eqs. (5) take the form

∂ra =
a
2

{

−a2−1
r

+4πr
I

∑
n=1

[(

ω2
n

α2 +m2
)

a2φ2
n + Φ2

n

]

}

, (8a)

∂r α =
α
2

{

a2−1
r

+4πr
I

∑
n=1

[(

ω2
n

α2 −m2
)

a2φ2
n + Φ2

n

]

}

, (8b)

∂r φn = Φn, (8c)

∂r Φn = −
{

1+a2−4πr2a2m2

(

I

∑
s=1

φ2
s

)}

Φn

r
−
(

ω2
n

α2 −m2
)

φna2. (8d)

where the indexesn ands run from 1 toI , I the number of states populated in the MSBS.
In order to obtain a solution of this system, we impose as boundary conditions regularity at origin and asymptotic

flatness for the metric components.

Newtonian MSBS

The Newtonian limit of the coupled Einstein-Klein-Gordon (EKG) equations (4-5) is the so-called Schrödinger-
Poisson (SP) system [27]

∇2U = ∑
nlm

|Ψnlm|2 , (9a)

i∂tΨnlm = −1
2

∇2Ψnlm+UΨnlm, (9b)
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whereΨnlm is related toΦnlm by √
8πGΦnlm(t,x) = e−iµtΨnlm(t,x) . (10)

Then, the Newtonian version of the EKG equations describes the dynamics of the non-relativistic parts of the scalar
fields, which are coupled among themselves through the Newtonian gravitational potentialU [25]. We constructed so-
lutions to the SP system (9) whenN bosons are allowed to occupyI different levels, which for simplicity of the dis-
cussion will have zero angular momentum(l = 0,m= 0). Hence, the states are of the form|Q〉 = |N1,N2,N3, ...,NI 〉.
We are assuming spherical symmetry and an harmonic time dependence for the scalar fieldΨn = e−iωntφn(r). Then
the system (9) reads

1
r2

d2(r2φn)

dr2 = (U + ωn)φn , (11a)

1
r2

d2(r2U)

dr2 =
I

∑
n=1

|φn|2 . (11b)

Given appropriate boundary conditions in order to obtain regular and bounded solutions, the system (11) becomes an
eigenvalue problem for the temporal frequenciesωn.

Solving MSBS

Starting from the semiclassical limit of the Einstein equations, we have derived the static, spherically symmetric
equations for the case when a massive spinless boson with different and coexisting energy states is considered. We
have arrived to the general relativistic Einstein-Klein-Gordon equations 8a and from that system, we deduced the
Newtonian limit of those equations arriving to the Schrödinger-Poisson system eqs. 9. There is no analytical solution
except to the case where the scalar field is massless. Howeverwe are interested in the self-gravitating system and the
only way of obtaining solutions is through numerical solutions. The solutions were calculated numerically using finite
differencing and a shooting routine that searchedωn. Typical solutions are shown in Fig. 1. Details of the equilibrium
configurations for the particular case when only two states are considered, the ground and the first excited state, can
be found in [19] and in [24] for the relativistic MSBS and the Newtonian MSBS respectively.

Equivalence of MSBS vs.Newtonian MSBS

The complete description of MSBS is given by the Einstein equations while the Newtonian equations provide
a reasonable approximation in some cases. Nevertheless, itis a good cross-check exercise to verify that under the
specific conditions, relativistic MSBS and Newtonian MSBS coincide.

A quantity that measures the importance of relativistic corrections is the compactness of the object. In Fig. 2 the
compactness of relativistic equilibrium BS in the ground state is shown. This compactness is defined as 2M/R99 where
M is the BS’s ADM mass andR99 is the radius containing 99% of the total particle number. Inthe definition above, we
considerR99 instead of the physical radius of the star which extends to infinity, as we consider thatR99 is a reasonable
distance where for measuring the gravitational field of the star.

It is clear from Fig. 2 that Newtonian configurations which are expected to have a very small compactness (as a
reminder, the compactness of the Sun is∼ 10−5) corresponds to the those solutions for which the central value of the
scalar field satisfies the conditionφ(0) ≪ 1.

We have computed configurations of two-state boson stars, solving the full relativistic EKG equations (8a), for
which the number of particles in the ground state is equal to the number of particles in the first excited state and with
the central value of the ground stateφ1(0)≪ 1. In Fig. 3 we show the ADM mass of these configurations and compare
it with the mass of the corresponding configurations obtained by solving the Schrödinger-Poisson system (11). We
found no difference between those masses for small values ofφ1(0). Fig. 3 shows the radial functions of the scalar
fields for the populated statesφ1(r) andφ2(r) obtained from the EKG system and from the SP systems. In the same
figure, the Newtonian potentialU(r) is compared againsta(r)−1 which is the “equivalent” potential for the general
relativistic case. From this set of plots shown in Fig. 3 we can conclude that Newtonian solutions describe with a good
approximation MSBS with small values of the scalar field in the center.
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FIGURE 2. Compactness (M/R99) of BS in the ground state.
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FIGURE 3. Left: Total mass for relativistic ground state BS and Newtonian ground state BS. Center:φ1(r) and φ2(r) for
relativistic MSBS (solid line) and Newtonian MSBS (dotted line) for φ1(0) << 1 andη = 1. Right: a(r)− 1 of a relativistic
MSBS (solid line) and Newtonian potentialU(r) (dotted line) forφ1(0) << 1 andη = 1.

STABILITY OF MSBS

In order to extend the importance of the MSBS beyond the mathematical context, it is first necessary to prove their
stability. The previous stability studies of BS can be classified in two types:

1. studies that consider infinitesimal perturbations for which the number of particles is conserved and,
2. studies that consider finite perturbations and there is noconservation in the number of particles.

In the first type of studies the methods employed have been linear perturbation theory [29, 30, 16] and catastrophe
theory [31]. On the other hand, when finite perturbations areconsidered, the final state of the perturbed BS can be
known only through its numerical evolution. Furthermore, the results obtained for infinitesimal perturbations have
been cross-checked using numerical techniques [32, 17, 33].

From those studies, it is known that BSs in the ground state are stable against radial perturbations if the amplitude of
the scalar field at the originφ(0) is smaller than a critical valueφc(0), for which the maximum massMmax is reached.
However in the case of excited BSs, namely those in which the scalar field is in an excited state, there are some
differences: if infinitesimal perturbations are considered, excited BSs withφ(0) smaller than the central value of the
field for which the maximum mass is reached, are stable [16, 22]. On the other hand, under finite perturbations, excited
BSs are intrinsically unstable even forφ(0) ≤ φc(0), since these perturbations drive the star either into a ground state
BS, or into a black hole [16, 17].

Since MSBS contains at least one excited state, one could infer that MSBS would be unstable under finite perturba-
tions. The stability of relativistic MSBS composed of two states, the ground and the first excited state, was studied in
[19] using numerical techniques. These two-state boson stars are characterized by:i) the fractionη = N2/N1, where
N2 is the number of particles in the excited state andN1 is the number of particles in the ground state, andii) the central
amplitude of one of the scalar fields (eitherφ1(0) or φ2(0)). A set of MSBS with different values ofη was selected for
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FIGURE 4. Left: Time evolution ofφ2(r = 0) for two perturbed relativistic MSBS (solid lineη = 1.6, dashed lineη = 0.4).
Right: Time evolution ofφ2(r = 0) for two perturbed Newtonian MSBS (solid lineη = 1.5, dashed lineη = 1.0).

this numerical stability study.
The perturbation consisted in an additional massless scalar field, which contains 0.01% of the total energy density

of the MSBS. The numerical evolution of the perturbed configurations shown that for MSBS withη > 1 the pertur-
bations grow exponentially. However, for configurations with η < 1, the perturbations only oscillate without growing.
Comparing these two behaviors it is possible to infer that two-state BSs withη < 1 are stable, while those withη > 1
are not. A systematic study was done perturbing configurations with different values ofη in order to find the maximum
fraction for which the configurations can be stable and it wasfound thatηmax≈ 1 .

The first plot in Fig. 4 shows the central value of the excited scalar fieldφ2(r = 0,t), for the casesη = 0.4 and
η = 1.6. These models exhibit different It is clear that there are two different behaviors: forN2 > N1 there is an
exponential growth of the amplitude, while forN2 < N1 the amplitude ofφ2(r = 0,t) remains constant, despite the fact
that both have been affected by the same type of finite perturbation. More details about those results and about the fate
of the unstable configurations can be found in [19].

In [24], a similar study regarding the stability of two-state BS in the Newtonian limit was performed and the results
of the stability conditions for those configurations are consistent with the obtained for their relativistic counterparts.
This comparison can be seen in the right plot of Fig. 4 which shows the temporal behavior ofφ2(r = 0,t) for
configurations withη = 1.0 andη = 1.5, namely stable and respectively unstable Newtonian MSBS.

ROTATION CURVES FROM MSBS

In this section, we show that mixed ground-excited states produce flat rotation curves at large radii, so they can be
considered realistic models for dark matter halos [18, 24]

A typical DM halo mass is∼ 1012M⊙ and its radius isR∼ 100 Kpc therefore its compactness is

2M
R99

∼ 10−7 , (12)

then it is reasonable to consider the halo as a Newtonian system and therefore, in accordance with our previous
discussion, Newtonian MSBS should be appropriate in modeling it.

We calculate the velocity of test particles moving along circular orbits in the gravitational potential sourced by the
MSBS configurations via the Newtonian formula

v(r) =
√

N (t, r)/r , (13)

whereN (t, r) is the total number of particles inside the radiusr obtained from the numerical equilibrium configura-
tions of the SP system (11).

The results for a MSBS withη = 1 are shown in Fig. 5. We can see a significant improvement in the flatness of the
rotation curve at large radii compared when compared with the RC for a BS in the ground state.

Nevertheless, there is room for further improvements. For example, we can consider a MSBS with the ground, first
and second states populated, and compute its associated rotation curve, as presented in Fig. 5. One can notice that the
configurations with more excited states lead to flatter RC.
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FIGURE 5. Rotation curve for: ground state BS (dotted line), Newtonian MSBS with two states andη = 1 (dashed line) and
Newtonian MSBS with three states andN1 > N2 > N3 (solid line).

There is another particular feature we would like to mention. The introduction of multi states provides additional
free parameters which allow a better fit to the observed rotation curves. The extra parameters are the occupation
numbers of the mixed state, namelyN1, N2, N3, etc., which are related to theΨn(0,0) values. These values could be
determined by the local environment to which the scalar halowas subjected during its formation.
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