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ABSTRACT
Dense stellar systems such as globular clusters, galactic nuclei and nuclear star clusters are
ideal loci to study stellar dynamics due to the very high densities reached, usually a million
times higher than in the solar neighbourhood; they are unique laboratories to study processes
related to relaxation. There are a number of different techniques to model the global evolution
of such a system. We can roughly separate these approaches into two major groups: the
particle-based models, such as direct N-body and Monte Carlo models, and the statistical
models, in which we describe a system of a very large number of stars through a one-particle
phase-space distribution function. In this approach we assume that relaxation is the result of
a large number of two-body gravitational encounters with a net local effect. We present two
moment models that are based on the collisional Boltzmann equation. By taking moments
of the Boltzmann equation one obtains an infinite set of differential moment equations where
the equation for the moment of order n contains moments of order n + 1. In our models
we assume spherical symmetry but we do not require dynamical equilibrium. We truncate
the infinite set of moment equations at order n = 4 for the first model and at order n = 5
for the second model. The collisional terms on the right-hand side of the moment equations
account for two-body relaxation and are computed by means of the Rosenbluth potentials. We
complete the set of moment equations with closure relations which constrain the degree of
anisotropy of our model by expressing moments of order n + 1 by moments of order n. The
accuracy of this approach relies on the number of moments included from the infinite series.
Since both models include fourth-order moments we can study mechanisms in more detail
that increase or decrease the number of high-velocity stars. The resulting model allows us to
derive a velocity distribution function, with unprecedented accuracy, compared to previous
moment models.
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1 IN T RO D U C T I O N

Statistical continuum models such as Fokker–Planck (FP) and mo-
ment models separate the treatment of the different astrophysical
processes that control the evolution of the system. This allows us
to isolate the effects of the distinct dynamical mechanisms. In par-
ticular, statistical moment models have provided us with important
contributions to the understanding of phenomena such as core col-
lapse and gravothermal oscillations (Bettwieser & Sugimoto 1984).

�E-mail: Justus@ari.uni-heidelberg.de

These models decompose the local velocity distribution function
(VDF) into the different contributions of the moments, allowing us
to study the influence of the different moments on the evolution
of star clusters and the impact of different dynamical mechanisms
on the moments of the distribution function. This has a bearing
in a number of crucial problems such as the contribution of high-
velocity stars to the evolution of star clusters, which we only can
address by including fourth-order moments.

We present in this paper two statistical moment models for
dense, non-rotational and spherically symmetric stellar systems,
such as globular clusters (GCs) or nuclear star clusters (NCs). The
models include fourth-order moments and thus allow us to study

C© 2010 The Authors. Journal compilation C© 2010 RAS



High-order moment models 433

astrophysical scenarios that affect the number of high-velocity stars.
The models describe the evolution of a stellar system that slowly
evolves due to the effects of two-body relaxation. Moment mod-
els have the advantage over particle-based techniques in that they
are computationally much cheaper, being based on the numerical
integration of a relatively small set of partial differential equations
with just one variable, the radius r. The numerical solution of the
model equations is usually very fast as they are equivalent to one-
dimensional hydrodynamical equations. Since the system is treated
as a continuum, all macroscopic quantities (such as density, pres-
sure and energy flux) are smooth functions of radius r and time
t and do not suffer from the characteristic noise of particle-based
approaches.

Moment models began with simple collisionless models and pro-
gressed to the anisotropic gaseous model (AGM) (Bettwieser &
Spurzem 1986; Louis & Spurzem 1991; Spurzem 1992; Giersz
& Spurzem 1994; Spurzem & Takahashi 1995). They have signifi-
cantly contributed to the understanding of stellar dynamical systems
by gradually adding new phenomena such as two-body relaxation,
three-body encounters and energy transport processes in stellar sys-
tems with a mass spectrum.

Moment models could quite easily be coupled with hydrodynam-
ical solvers to simulate the dynamical evolution of dense gas-star
systems (DGSS) in galactic nuclei (Langbein, Spurzem & Yorke
1990; Amaro-Seoane & Spurzem 2001; Amaro-Seoane, Spurzem
& Just 2002; Amaro-Seoane & Spurzem 2004; Spurzem et al. 2004).
In Langbein et al. (1990), it was shown that gaseous models of dense
star clusters can be regarded as a generalization of the Tolman–
Oppenheimer Volkoff equation for relativistic anisotropic gases.
Many years ago Bisnovatyi-Kogan & Sunyaev (1972), Vilkoviski
(1975) and Hara (1978) have proposed DGSS as energy sources
in galactic nuclei. Nowadays, the idea is being reconsidered that
supermassive stars are progenitors of the first supermassive black
holes in galactic nuclei (Begelman 2010), and that galactic nu-
clei in their variety of appearances could be determined by the
interplay of stellar and gas dynamics, including star formation and
feedback (Ciotti, Ostriker & Proga 2009, 2010; Shin, Ostriker &
Ciotti 2010). These topics deserve further investigation with im-
proved stellar dynamical modelling, as we provide it here with our
new momentum model. Therefore we think a fresh look at and
improvement of the momentum model are timely and very use-
ful. It should be noted that spherical symmetry yet has been a
limitation of gaseous or momentum models of star clusters. How-
ever, also here a generalization at least to axisymmetric models
is possible by describing viscosity through two-body relaxation
in analogy to heat conduction (Goodman 1983). We have demon-
strated that the aforementioned Goodman models can be used and
solved numerically with sufficient accuracy in the case of direct
solutions of the orbit averaged FP equation (Einsel & Spurzem
1999; Kim et al. 2002; Kim, Lee & Spurzem 2004; Kim et al. 2008;
Fiestas & Spurzem 2010a). There is no reason to assume that also
our momentum or gaseous model could not be extended to axial
symmetry in the future, using appropriate implicit hydrodynamic
solvers.

By extending the model with additional equations coupled with
collisional terms, we are in the position to address new problems.
Thus, we can investigate accretion theory (Amaro-Seoane, Freitag
& Spurzem 2004), stellar collision, gas dynamics and coupling
with the stellar system, including radiative transfer and turbulences,
the role of the loss-cone (Amaro-Seoane, Spurzem & Just 2003;
Amaro-Seoane 2004; Amaro-Seoane & Spurzem 2004) and tidal
fields (Spurzem et al. 2005). Higher-order moments are necessary

to have a more realistic description of the VDF and a more accurate
description of relaxation, reducing the number of approximations
necessary to the model.

The numerical models used to study dynamical processes have
to be constrained by comparison with observations. In order to
do so, both models and observations must fulfil certain accuracy
requirements. There are many methods for modelling GCs which
can be separated into particle-based methods such as N-body or
Monte Carlo simulations and continuum methods such as FP or
moment models (see the next section). In statistical moment models,
we employ velocity moments to characterize the local VDF. The
nth moment of a velocity distribution f (v) is defined as 〈vn〉 =∫

vnf (v) dv (see also definition 14). The accuracy of these models is
then limited by the order of the highest moment included to describe
the velocity distribution. A physical interpretation for each moment
up to the fourth order can be given. Since each stellar dynamical
process driving the evolution of a cluster has a different impact
on the local velocity distribution, this motivates us to construct a
distribution function that is able to reflect the effects of each of these
processes properly so as not to lose information that influences the
clusters evolution. The velocity distribution can be written as a
series expansion using a truncated Gauss–Hermite series (Gerhard
1993; van der Marel & Franx 1993) to illustrate the meaning of the
first four moments:

f (vr) ∝ exp

(
−vr − v̄r

2σ

) [
1 +

4∑
k=3

hkHk(vr − v̄r)

]
(1)

vr might be the velocity in radial direction (or the line-of-sight
velocity which is the velocity measured in the direction of an ob-
server). v̄r, σ , h3 and h4 are free parameters and will be explained
in the following.

(i) Zeroth moment:
The zeroth moment of a velocity distribution is 1 due to normaliza-
tion.

(ii) First moment:
The first moment of a velocity distribution is the mean velocity v̄r

and denotes the bulk mass transport velocity.
(iii) Second moment:

The second moment of a velocity distribution is the variance σ

and is equal to the velocity dispersion. It determines the width of
f (vr) and thus the scattering of stellar velocities around the mean
velocity v̄r. If f (vr) is fully determined by v̄r and σ and h3 = h4 =
0 it is a Gaussian (top panel in Fig. 1) corresponding to thermal
equilibrium. Then the symmetry of the one-dimensional velocity
distribution f (vr) to v̄r reflects isotropy.

(iv) Third moment:
The third moment denotes the transport of random kinetic energy
and depends on h3. If the third moment of the velocity distribution
does not vanish, implying that h3 �= 0, then the shape of the velocity
distribution is a skewed Gaussian (Fig. 1, upper middle panel). The
asymmetry indicates the direction of the energy flux, and the uneven
distribution of velocities in different directions denotes anisotropy.

(v) Fourth moment:
The fourth moment is a measure of the excess or deficiency of par-
ticles/stars with high velocities as compared to thermodynamical
equilibrium, and depends on the value of h4. An excess of particles
with high velocities results in thicker wings of the velocity distri-
bution and a more pointed maximum (Fig. 1, lower middle panel).
A deficiency of high velocities causes a broader shape around the
mean and thinner wings of the velocity distribution (Fig. 1, bottom
panel).
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Figure 1. These four plots show one-dimensional VDFs for different cases.
Top: Gaussian velocity distribution describing thermodynamical equilib-
rium with a variance of σ = 10 km s−1. The Gaussian appears in the sub-
sequent panels for comparison (black). Upper middle: velocity distribution
(grey) with a skewness in positive vr-direction indicating energy flow in
positive vr-direction. Lower middle and bottom: two velocity distributions
(grey) with an excess and deficit of high-velocity stars, respectively, as
compared to ‘thermodynamical equilibrium’.

Third- and fourth-order moments therefore denote deviations
from thermodynamical equilibrium. Modelling processes that lead
to the transport of random kinetic energy in a cluster or that strongly
affect the high-velocity wings of the distribution suggest the use of a
model that includes fourth-order moments. These processes are, for
example, the ‘evaporation’ of high-velocity stars from the cluster,
which reduces the number of high-velocity stars. On the other hand,
binaries and a mass spectrum transfer kinetic energy between dif-
ferent stellar components and thereby produce high-velocity stars.
These high-velocity stars then transfer their excess energy to their
environment in subsequent distant two-body encounters which can
lead to a transport of kinetic energy between different regions in
the GC.

Neglecting third- and fourth-order moments in these cases results
in a loss of information by failing to fully model the effect of the
processes they represent on the evolution of the cluster.

2 PARTI CLE-BA SED TECHNI QUES V ERS US
STATI STI CAL METHODS

The methods for studying star clusters can be divided into two types;
statistical continuum models, such as FP, or moment models and
particle-based techniques, such as direct N-body models and Monte
Carlo. They have different advantages and deliver complementary
information about the processes and mechanisms that drive the
evolution of star clusters.

2.1 Direct integration techniques

By using direct N-body we integrate Newton’s equations of motion.
In principle, all gravitational dynamics phenomena are naturally in-
cluded in the integration. Thus, this method is not subject to any
approximations nor restricted to any assumptions, such as spheri-
cal symmetry. In contrast to statistical methods, it does not require
additional physics in order to include gravitational interactions be-
tween pairs, triples (binary–star interactions) or quadruples (binary–
binary interactions) as they are inherent to the model. Including a
mass spectrum or tidal field is also, in principle, straightforward.
On the other hand, direct-summation methods of this type are com-
putationally expensive, and as a consequence it is not possible to
realistically model a stellar cluster with a typical number of 107−8

stars. This is due to the fact that the computation of all pairwise
interactions of a system consisting of N particles scales with N2−3.
Using modern hardware we are severely limited to integrations of
at most a few 106 particles for a very short time, typically a few
dynamical times. Another drawback of direct N-body is that it suf-
fers from noise, as an individual N-body calculation in star cluster
dynamics has exponential instabilities; nevertheless, the results can
be used in a statistical average (e.g. Miller 1964; Giersz & Heggie
1994a).

There exist many schemes for integrating Newton’s gravitational
equation, some of them are faster and more effective than others.
Among these we should mention the Euler scheme or an improve-
ment of this, the leapfrog scheme (e.g. Hut, Makino & McMillan
1995). We can gain more accuracy by the divided difference scheme
or the Hermite scheme (Makino & Aarseth 1992; Aarseth 1999),
which is used in the NBODY6 and NBODY6++ codes for the orbit
integration. Additionally, various N-body codes incorporate a num-
ber of approaches which are necessary for maintaining adequate
accuracy and efficiency over many dynamical times; these include
the use of many individual time-steps, computation of forces from
near neighbours and distant stars with different frequencies, special
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treatments of compact pairs (binaries) and other few-body configu-
rations (Mikkola & Aarseth 1990, 1993). Direct N-body simulation
is a powerful tool for realistically simulating a wide range of as-
trophysically interesting scenarios such as black holes in galactic
nuclei or GCs, binaries of massive black holes (MBHs) in (rotating)
clusters (Amaro-Seoane & Freitag 2006; Amaro-Seoane, Miller &
Freitag 2009; Amaro-Seoane et al. 2010) or binary black hole merg-
ers in galactic nuclei (Berentzen et al. 2009).

2.2 The Monte Carlo approach

Other powerful particle-based techniques are the Monte Carlo (MC)
methods, in which relaxation is treated using the FP approximation.
These methods also rely on the assumptions that the system is
spherically symmetric and that the gravitational potential can be
separated into two parts. The advantage of MC is that it is orders
of magnitude faster than direct N-body, yet it is still slower than
statistical methods and also suffers from numerical noise.

Spitzer and collaborators pioneered the MC scheme in a series of
papers, such as (Spitzer & Hart 1971a,b; Spitzer & Shapiro 1972;
Spitzer & Thuan 1972; Spitzer & Chevalier 1973; Spitzer & Shull
1975a,b; Spitzer & Mathieu 1980). The initial models were soon
improved by Shapiro and his collaborators (Shapiro & Marchant
1978; Marchant & Shapiro 1979, 1980; Duncan & Shapiro 1982;
Shapiro 1985). MC, being particle-based, follows the individual
stellar orbits and allows us to model processes occurring on both
relaxation and crossing time-scales. Spitzer’s method was used to
explore a variety of important phenomena, including mass segrega-
tion, anisotropy of the velocity distribution, tidal shocking and the
role of primordial binary stars, to mention a few.

The second MC approach was devised by Hénon (1971a,b, 1972,
1975) and later improved by Stodółkiewicz (1982, 1986). In con-
trast to the models of Spitzer, Hénon’s models assumed dynamical
equilibrium; the distribution function must also depend only on iso-
lated integrals of motion. It is worth mentioning that it was the first
scheme to break through the impasse of core collapse (Hénon 1975).
The algorithm was further improved by Stodółkiewicz (1985) by
including processes such as the formation of binaries by two- and
three-body encounters, mass loss from stellar evolution and tidal
shocking.

Giersz (1998, 2001) in a series of papers modelled ωCen (Giersz
& Heggie 2003), M4 (Heggie & Giersz 2008), M67 (Giersz, Heggie
& Hurley 2008) and NGC 6397 (Giersz & Heggie 2009) with MC
techniques. These works delivered several improvements towards
previous MC models by including two-body relaxation, most kinds
of three- and four-body interactions involving primordial binaries
and those formed dynamically, the Galactic tide and the internal
evolution of both single and binary stars. MC techniques can be
coupled with continuum models to describe the stochastic process
of binary formation, energy generation and movement (Spurzem
& Giersz 1996; Giersz & Spurzem 2000, 2003). This has been
successfully used to examine the gravitational radiation from binary
black holes in star clusters (Downing et al. 2010).

Joshi, Rasio & Portegies Zwart (2000), Joshi, Nave & Rasio
(2001), Fregeau et al. (2003), Fregeau & Rasio (2007) developed
an MC technique based on a modified version of Hénon’s algorithm
for solving the FP equation. Their scheme includes a mass spectrum,
stellar evolution, and primordial binary interactions and the direct
integration of binary scattering interactions. The Hénon-type MC
approach has been used by M. Freitag, who developed another MC
code with the special purpose of studying semi-Keplerian systems.

Applying this code he extensively studied the structure of galactic
nuclei containing a central MBH (Freitag 2000; Freitag & Benz
2002; Freitag, Amaro-Seoane & Kalogera 2006b).

2.3 A statistical model: the Fokker–Planck technique

FP models are based on the direct numerical solution of the orbit-
averaged FP equation. Cohn (1979, 1980) pioneered a direct nu-
merical finite-difference solution of the 1D FP equation [for a
phase-space distribution function: f = f (E)]. Similar methods had
been developed for a fixed potential by Ipser (1977) and by Cohn
& Kulsrud (1978), and since then different FP codes have been
written independently by Inagaki & Wiyanto (1984) and by Cher-
noff & Weinberg (1990). Whereas Cohn’s formulation assumes
spherical symmetry, codes which can handle a rotating cluster have
been devised by Goodman (1983) and Einsel & Spurzem (1996).
Takahashi (1995, 1996, 1997) has developed FP models for GCs,
based on the numerical solution of the orbit-averaged 2D FP equa-
tion [i.e. solving the FP equation for the distribution f = f (E, J2)] as
a function of energy and angular momentum, and thus accounting
for anisotropy.

Drukier et al. (1999) followed with results from another 2D
FP code based on the original idea of Cohn (1979). There have
been several comparative studies (Giersz & Heggie 1994a,b, 1997;
Giersz & Spurzem 1994; Spurzem & Takahashi 1995; Takahashi
1995; Freitag, Rasio & Baumgardt 2006a; Khalisi, Amaro-Seoane
& Spurzem 2007) showing that for isolated, non-rotating star clus-
ters the results of FP simulations are generally in good agreement
with those of N-body simulations. However, when a tidal bound-
ary is included, discrepancies between N-body and FP models
occur.

Also, Einsel & Spurzem (1999) found that rotating GCs collapse
faster than non-rotating ones with a 2D FP technique that had a
distribution function depending on the z-component of the angular
momentum, f = f (E, Jz). Kim et al. (2002) improved the approach
by including an energy source due to formation and hardening
of three-body binaries. These two studies only investigated single-
mass models. Later, Kim et al. (2004) extended this method to multi-
mass systems, finding interesting results concerning segregation of
mass and angular velocity with heavy stars in the cluster. Fiestas,
Spurzem & Kim (2006) have modelled rotating GCs and Fiestas
& Spurzem (2010b) included a star accreting black hole with a
loss-cone. Comparative studies for rotating star clusters between
FP and N-body methods have been done as well by Boily (2000),
Boily & Spurzem (2000), Ardi, Spurzem & Mineshige (2005), Ernst
et al. (2007) and Kim et al. (2008). They produced fairly similar
results, although there were small discrepancies in the core-collapse
time.

2.4 Advantages and disadvantages of statistical models
as compared to direct-summation techniques

From the three different techniques, direct N-body models appear
as the most realistic model. However, as mentioned before, it suffers
from exponential instabilities; small deviations in the initial condi-
tions result in exponential divergence of the phase-space distribu-
tion of the particles of the system (Miller 1964; Giersz & Heggie
1994a). These instabilities make it difficult to compare a realistic
model of GCs to observational data. Statistical models produce av-
eraged physical quantities and are better suited for comparison with
observations.
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Also, as N-body models are not restricted by boundary condi-
tions such as spherical symmetry, they can be applied to the widest
range of stellar dynamical systems to study them under the most
diverse scenarios. This relies on a microscopic description of dy-
namical processes and translates into a complexity that requires
a massive computational effort. As a consequence we depend on
the development of hardware to push the number of particles that
we can integrate forward. On the other hand, statistical continuum
models which are based on a comparatively small set of differential
equations are computationally cheap.

These algorithms have also the important property that the con-
tribution of various dynamical processes to the overall evolution
of a star cluster can be isolated. This is so because the different
mechanisms have to be included separately by additional terms
in the model equations. Therefore, it is possible to identify each
mechanism and its effect.

The downside of statistical moment models is that they are subject
to a large number of approximations. Some of these approximations
are inherent in the approach, such as the description of the phase-
space distribution function by a finite number of its velocity mo-
ments. Additional approximations consist of the limitation in the
number of processes included such as two-body relaxation, star–
binary deflections, binary–binary encounters or anisotropy. Such
processes are natural in N-body models. The bottom line is that
in order to build up a detailed understanding of stellar dynami-
cal systems we need the different properties of particle-based and
statistical models.

3 SE L F - G R AV I TAT I N G , C O N D U C T I N G
G A S SP H E R E S

In the previous section, we have given an overview on the differ-
ent numerical tools to address stellar dynamics including relaxation.
Now that we have highlighted the advantages of statistical methods,
we introduce an interesting alternative to FP. More than 35 yr ago,
Hachisu et al. (1978) and Lynden-Bell & Eggleton (1980) proposed
transport process in a self-gravitating, conducting gas sphere as a
way to mimic two-body stellar relaxation. Later, Bettwieser (1983),
Bettwieser & Sugimoto (1984), Bettwieser & Spurzem (1986),
Heggie (1984), Heggie & Ramamani (1989) and Louis & Spurzem
(1991) implemented anisotropy and Giersz & Spurzem (1994) and
Spurzem & Takahashi (1995) added a multi-mass distribution and
improved the detailed form of the conductivities to have better
accuracy. The resulting model is often called the AGM. This al-
lows us to compare with N-body models to calibrate the approach.
Amaro-Seoane et al. (2004) addressed the accretion of stars on
to a MBH by adding collisional terms corresponding to loss-
cone physics as well as tidal effects and Spurzem et al. (2005)
investigated the evolution and dissolution of star clusters under
the combined influence of internal relaxation and external tidal
fields.

In this approach, we emulate spherically symmetric systems as
a continuum; relaxation is treated as a diffusive process in phase
space using the FP equation. We employ the local approximation to
simplify the FP equation by neglecting the diffusion in position. The
idea behind this is that an encounter takes place in a volume that is
much smaller than the dimensions of the whole system. We model
energy transfer by a local heat flux equation with an appropriately
tailored conductivity.

The basis of the equations of the model is the FP equation which
describes the time evolution of the probability density function.

Using spherical polar coordinates, the Boltzmann equation takes
the form

∂f

∂t
+ vr

∂f

∂r
+ v̇r

∂f

∂vr
+ v̇φ

∂f

∂vφ

+ v̇θ

∂f

∂vθ

=
(

δf

δt

)
FP

. (2)

In the last equation, the right-hand side denotes that collisions are
given in terms of the FP approximation. Due to symmetry, we
can define a tangential velocity v2

t = v2
φ + v2

θ , so that we have
two velocities vt and vr to describe the system. The ‘centralized’
moments are defined by multiplying the velocity distribution f with
powers of vt and (vr − v̄r) and integrating over velocity space.

The term ‘centralized’ means that the moments are defined with
respect to the mean velocity components v̄r = 〈vr〉 = u and v̄t =
〈vt〉 = 0, because we assume spherical symmetry. The order of a
moment is defined by n + m where n and m are the powers of
velocities in the definition of moments, i.e.

∫
(vr − v̄r)nvm

t f d3v. The
moments defined this way correspond to the density of stars, ρ, the
bulk velocity, u, the radial and tangential pressures, pr and pt, and
the radial and tangential kinetic energy fluxes, Fr and Ft. In order
to obtain the set of differential moment equations, we multiply
equation (2) with powers of vt and (vr − v̄r) and integrate it in
velocity space. After some recasting the integrals can be substituted
by the moments. Up to second order the moment equations are
the continuity equation, the Euler equation (force) and radial and
tangential energy equations:

∂ρ

∂t
+ 1

r2

∂

∂r
(r2uρ) = 0

∂u

∂t
+ u

∂u

∂r
+ GMr

r2
+ 1

ρ

∂pr

∂r
+ 2

pr − pt

ρr
= 0

∂pr

∂t
+ 1

r2

∂

∂r

(
r2upr

) + 2pr
∂u

∂r
+ 1

r2

∂

∂r

(
r2Fr

) − 2Ft

r

= −3

5

pr − pt

λAtrx
+

(
δpr

δt

)
bin3

∂pt

∂t
+ 1

r2

∂

∂r

(
r2upt

) + 2pru

r
+ 1

2r2

∂

∂r
(r2Ft) + Ft

r

= 3

10

pr − pt

λAtrx
+

(
δpt

δt

)
bin3

. (3)

Here λA is a numerical constant related to the time-scale of colli-
sional anisotropy decay, necessary to describe the relaxation effects
on cluster evolution. It should become unity when describing GCs
using higher moment models. However, this can only be confirmed
by simulations. The value of λA is discussed in Giersz & Spurzem
(1994) and is chosen by calibrating with N-body simulations. The
authors found that λA = 0.1 is a physically realistic value within the
half-mass radius for all numbers of particles.

The two terms on the right-hand sides of the equations for ra-
dial and tangential energy equations are the collisional terms. The
fist term accounts for relaxation from uncorrelated two-body en-
counters and can be derived from the FP equation. The second
term, which is marked with ‘bin3’, refers to star–binary encounters.
Close three-body or star–binary encounters generate kinetic energy.
If the energy generation is high enough, this mechanism can reverse
core collapse.
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The radial and tangential pressure, pr and pt, are related to
the random velocity dispersions; pr = ρσ 2

r and pt = ρσ 2
t .

They are linked to observable quantities in stellar clusters such
as the radial velocity dispersion. The average velocity dispersion is
σ 2 = (σ 2

r + 2σ 2
t )/3, where the factor of 2 comes from the fact that

there are two tangential directions. The radial energy flux of random
kinetic energy is F = (Fr + Ft)/2. We can see this by adding the
two-moment equations for radial and tangential pressure to obtain
the gas-dynamical equation for the energy density. The velocities
for energy transport are defined by

vr = Fr

3pr
+ u

vt = Ft

2pt
+ u. (4)

In the case of weak isotropy, pr = pt everywhere and hence
Fr = 3

2 Ft, so that vr = vt. Therefore, the transport velocities for
radial and tangential random kinetic energy are equal.

In order to close the set of moment equations (3) three more
equations are set up, a mass relation and two equations accounting
for heat flux. The mass relation defines the mass Mr contained in a
sphere of radius r,

∂Mr

∂r
= 4πr2ρM, (5)

where ρM = M · ρ is the mass density and M the mass of the stellar
component. We thus obtain a set of gas dynamical equations (3) cou-
pled with the Poisson equation (25). Since the moment equations of
order n obtained from the Boltzmann equation contain moments of
the order n + 1, we need closure relations connecting the moments
of order n + 1 with lower-order moments. This is achieved with the
heat conduction closure, a phenomenological approach obtained in
an analogous way to gas dynamics. It is motivated by the resem-
blance between a star consisting of a large number of atoms and a
star cluster with large number of stars not only on the simple level
of the virial theorem but also due to similarities in heat transport,
energy generation and core-halo evolution. It was used by Lynden-
Bell & Eggleton (1980), initially restricted to isotropic systems. In
this approximation we assume that heat transport is proportional to
the temperature gradient

F = −κ
∂T

∂r
= −�

∂σ 2

∂r
. (6)

This equation describes the heat flux in gases and liquids and for
this reason the models using this closure are also called conducting
gas sphere models. Even though the use of equation (6) is based
on the assumption of small mean-free paths for the particles, which
is certainly questionable for stellar dynamical systems, models like
the AGM agree with other modelling methods (e.g. N-Body, FP)
(Giersz & Spurzem 1994; Spurzem & Takahashi 1995).

In the classical approach � ∝ ρλ̄2/τ , where λ̄ is the mean-
free path and τ the collisional time. Choosing the Jeans length
λ2

J = σ 2/(4πGρ) for λ̄2 and the standard Chandrasekhar local
relaxation time trx ∝ σ 3/ρ (Chandrasekhar 1942) for τ , we obtain
the conductivity � ∝ ρ/σ . More precisely, the conductivity takes

the form found in Lynden-Bell & Eggleton (1980):

� = 3CGmρN

σ
, (7)

where C is a dimensionless numerical constant of the order of unity.
By means of the velocities of energy transport the heat flux equation
can be recast to find the two closure relations in the anisotropic
case

vr − u + λ

4πGρtrx

∂σ 2

∂r
= 0 vr = vt, (8)

where

λ = 27
√

π

10
C. (9)

It should be emphasized that λ is a free parameter that has to
be determined by comparison with other models such as N-body
(Giersz & Spurzem 1994), Louis’ fluid dynamical model (Louis
& Spurzem 1991) or FP models. In the isotropic limit, λ is just a
scaling factor, but when taking into account anisotropy, λ prescribes
the relative speed of two processes: the decay of anisotropy and the
heat flow between warm and cold regions. With increasing λ heat
flows faster, so there is less time for gravitational encounters to
destroy anisotropy. A larger λ thus results in stronger anisotropy.

4 H I G H E R MO M E N T MO D E L S

In this section, we present a new higher-order moment model. We
derive the model equations which consist of differential equations
for the velocity moments of the phase-space distribution function,
a Poisson equation and three equations to close the system of equa-
tions. We first compute the left-hand sides of the differential mo-
ment equation and then use a polynomial ansatz for the phase-space
distribution function to obtain the right-hand sides. We define two
models, model a and model b, which differ in the number of differ-
ential (moment) equations and their closure relation.

4.1 Left-hand sides

Without collisions, the Boltzmann equation takes the form of a
conservation equation (df /dt = 0) and describes the advective rate
of change of the phase-space distribution function f . If we follow
the trajectory of a particle in a system described by the collisionless
Boltzmann equation, the number density in phase space around
the particle does not change. This implies that flow in phase space
is incompressible. It becomes compressible when collisions are
introduced with FP terms on the right-hand side of the Boltzmann
equation.

Assuming that the stellar system is spherically symmetric, we can
use spherical coordinates when we write the collisional Boltzmann
equation,

∂f

∂t
+ vr

∂f

∂r
+ v̇r

∂f

∂vr
+ v̇θ

∂f

∂vθ

+ v̇φ

∂f

∂vφ

=
(

δf

δt

)
enc

. (10)

Using the Lagrangian of a particle in a spherical symmetric po-
tential 
(r, t), we have that

L = 1

2
(ṙ2 + r2θ̇ 2 + r2 sin2 θ φ̇2) − 
(r, t). (11)
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We then apply the Euler–Lagrange equations to the Lagrangian
to derive the equations of motion

v̇r = −∂


∂r
+ v2

θ + v2
φ

r

v̇θ = −vrvθ

r
+ v2

φ

r tan θ

v̇φ = −vrvφ

r
− vθvφ

r tan θ
. (12)

After substituting equation (12) into the Boltzmann equation (10),
we use the approach of spherical symmetry to define the tangential

velocity vt =
√

v2
θ + v2

φ and obtain

∂f

∂t
+ vr

∂f

∂r
+

(
v2

t

r
− ∂


∂r

)
∂f

∂vr
− vrvt

r

∂f

∂vt
=

(
δf

δt

)
enc

.

(13)

We now define the velocity moments of the distribution function
f = f (r, vr, vt, t) by multiplying it by powers of vr and vt and
integrating over velocity space,

[n,m] =
∫

d3vf vn
r vm

t = 2π

∫ ∞

0
dvt

∫ ∞

−∞
dvrf vn

r vm+1
t . (14)

Again, the order of a moment is defined as k = n + m. To
obtain the differential equations for the moments [n, m] we multiply
equation (13) with powers of vr and vt and integrate over velocity
space. After some recasting we can substitute the integrals by [n, m]
which yields

∂

∂t
[n,m] + ∂

∂r
[n + 1, m] + m + 2

r
[n + 1, m]

− n

r
[n − 1, m + 2] + n[n − 1, m]

∂


∂r
=

(
δ

δt
[n, m]

)
enc

.

(15)

We now want to find a differential equation equivalent to equa-
tion (15) for centralized moments. The centralized velocity mo-
ments are defined with respect to their mean velocity. Due to the
assumed spherical symmetry of the system the mean velocities of
the tangential components v̄θ = v̄φ = 0 vanish. The mean velocity
is only given by the radial velocity component

v̄r = [1, 0] = u = 2π

∫ ∞

0
dvt

∫ ∞

−∞
dvrf vrvt. (16)

We hence obtain the definition for centralized moments by substi-
tuting vr in equation (14) with (vr −v̄r). Furthermore, the centralized
moments can be expressed in terms of the moments [n, m] and are
defined as

〈n,m〉 =
∫

d3v (vr − v̄r)
n vm

t f

= 2π

∫ ∞

0
dvt

∫ ∞

−∞
dvr (vr − v̄r)

n vm+1
t f

=
n∑

k=0

(
n

k

)
(−1)n−k [1, 0]n−k [k, m]. (17)

It is evident from the second line of (17) that the first centralized
moment 〈1, 0〉 = 0.

We adopt the following notation for the centralized moments:

ρ = 〈0, 0〉 〈1, 0〉 = 0

pr = 〈2, 0〉 2pt = 〈0, 2〉
Fr = 〈3, 0〉 Ft = 〈1, 2〉
κr = 〈4, 0〉 κrt = 〈2, 2〉 κt = 〈0, 4〉
Gr = 〈5, 0〉 Grt = 〈3, 2〉 Gt = 〈1, 4〉
Hr = 〈6, 0〉 Hr,t = 〈4, 2〉 Ht,r = 〈2, 4〉 Ht = 〈0, 6〉.

(18)

Again, ρ is the particle density, pr and pt are the radial and tan-
gential pressure and are related to the radial and tangential velocity
dispersion σ r = pr/ρ and σ t = pt/ρ, and Fr and Ft denote the radial
and tangential energy flux.

We obtain a linear system of equations which can be solved for
the moments [n, m] by computing all centralized moments 〈n, m〉
up to order n + m = 6 using equation (17):

[2, 0] = pr + ρu2

[0, 2] = 2pt

[3, 0] = ρu3 + 3upr + Fr

[1, 2] = 2upt + Ft

[4, 0] = ρu4 + 6u2pr + 4uFr + κr

[2, 2] = 2u2pt + 2uFt + κrt

[0, 4] = κt

[5, 0] = ρu5 + 10u3pr + 10u2Fr + 5uκr + Gr

[3, 2] = 2u3pt + 3u2Ft + 3uκrt + Grt

[1, 4] = uκt + Gt

[6, 0] = ρu6 + 15u4pr + 20u3Fr + 15u2κr + 6uGr + Hr

[4, 2] = 2u4pt + 4u3Ft + 6u2κrt + 4uGrt + Hrt

[2, 4] = u2κt + 2uGt + Htr

[0, 6] = Ht. (19)

To obtain the differential equations for the centralized moments,
we substitute the transformation from equation (19) into equa-
tion (15) and then successively use differential equations for lower-
order moments to simplify the differential equations for higher
orders. We divide the differential moment equations into three sets,
defined as follows

Set I:

∂ρ

∂t
+ div(ρu) =

(
δρ

δt

)
enc

∂ρu

∂t
+ div(ρu2) + ∂pr

∂r
+ 2

r
(pr − pt) + ρ

∂


∂r
=

(
δρu

δt

)
enc

∂pr

∂t
+ div(Fr + upr) + 2pr

∂u

∂r
− 2

r
Ft =

(
δpr

δt

)
enc

2
∂pt

∂t
+ div(Ft + 2upt) + 2

r
(Ft + 2upt) = 2

(
δpt

δt

)
enc

(20)
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Set II:

∂Fr

∂t
+ div(κr + uFr) + 3Fr

∂u

∂r

− 3
pr

ρ
divpr − 3

r

(
κrt − 2prpt

ρ

)
=

(
δFr

δt

)
enc

∂Ft

∂t
+ div(κrt + uFt) + Ft

∂u

∂r
− 2pt

ρ
divpr

− 1

r

(
κt − 2κrt − 2uFt − 4

p2
t

ρ

)
=

(
δFt

δt

)
enc

∂κr

∂t
+ div(Gr + uκr) + 4κr

∂u

∂r
− 4

Fr

ρ
divpr

− 4

r

(
Grt − 2ptFr

ρ

)
=

(
δκr

δt

)
enc

∂κrt

∂t
+ div(Grt + uκrt) + 2κrt

∂u

∂r
− 2

Ft

ρ
divpr

+ 2

r

(
Grt − Gt + uκrt + 2

ptFt

ρ

)
=

(
δκrt

δt

)
enc

∂κt

∂t
+ div(Gt + uκt) + 4

r
(Gt + uκt) =

(
δκt

δt

)
enc

(21)

Set III:

∂Gr

∂t
+ div(Hr + uGr) + 5Gr

∂u

∂r
− 5

κr

ρ
divpr

− 5

r

(
Hrt − 2

ptκr

ρ

)
=

(
δGr

δt

)
enc

∂Grt

∂t
+ div(Hrt + uGrt) + 3Grt

∂u

∂r
− 3

κrt

ρ
divpr

+ 1

r

(
2Hrt − 3Htr + 2uGrt + 6

ptκrt

ρ

)
=

(
δGrt

δt

)
enc

∂Gt

∂t
+ div(Htr + uGt) + Gt

∂u

∂r
− κt

ρ
divpr

− 1

r

(
Ht − 4Htr − 4uGt − 2

ptκt

ρ

)
=

(
δGt

δt

)
enc

. (22)

Note that the divergence operator in spherical symmetry reduces
to

div = 1

r2

∂

∂r
r2. (23)

We now define two models with different accuracies,

Model a – including (20) and (21)
Model b – including all, (20), (21) and (22).

The potential 
(r, t) is determined by the fraction of cluster mass
Mr(t) contained at radius r


 = −GMr

r
. (24)


 obeys the Poisson equation �
 = 4πρM, where ρM = Mρ is the
mass density of the cluster. This leads to the equation for Mr

∂Mr

∂r
= 4πr2ρM. (25)

We note that the moment equations of order n contain moments
of order n + 1. To close the system of equations we need closure

equation where moments of order n + 1 are expressed with lower-
order moments. We derive these relations in the next section.

4.2 FP collision terms

We now compute the right-hand sides of the differential moment
equations (20), (21) and (22), i.e. the collisional terms. Our starting
point is the collisional Boltzmann equation (10). We have to find an
expression for the term (δf /δt)enc. This can be done by approximat-
ing it with the FP equation, which requires that the evolution of the
stellar system is driven by uncorrelated distant encounters.

The FP equation is a diffusion equation that describes the diffu-
sion of the phase-space distribution function in position and velocity
space. We assume that the volume in which a stellar encounter takes
place is small when compared to the volume of the whole system.
As a consequence, we can assume that during an encounter only
the velocity of the particle is modified, but not the position. We
thus neglect the diffusion of the phase-space distribution function
in position space. This approach is usually referred to as the ‘lo-
cal approximation’. Therefore, the right-hand side of equation (10)
is(

δf

δt

)
enc

= −
3∑

i=1

[
∂

∂vi

(f (x, v)D(�vi))

]

+ 1

2

3∑
i,j=1

[
∂2

∂vi∂vj

(
f (x, v)D(�vi�vj )

)] (26)

where D(�vi) and D(�vi�vj) are the diffusion coefficients which
depend on position and velocity coordinates. They determine the
diffusion of the phase-space distribution function in velocity space
and describe the average change of the ith component of velocity
per unit time due to stellar collisions. This is expressed by their
dependence on the change of the ith velocity component �vi. Note
that there are no diffusion coefficients that depend on �xi as we
are using the local approximation. The diffusion coefficients are
(Rosenbluth, MacDonald & Judd 1957)

D(�vi) = 4πG2mf ln �
∂

∂vi

h(v)

D(�vi�vi) = 4πG2mf ln �
∂2

∂vi∂vj

g(v). (27)

ln � is the Coulomb logarithm, where � is the ratio between the
upper and lower cut-off impact parameter b in a stellar collision.
h(v) and g(v) are called the Rosenbluth potentials which are given
by

h(v) = (m + mf )
∫

f (vf )

|v − vf |d3vf

g(v) = mf

∫
f (vf )|v − vf |d3vf . (28)

Thus, m denotes the mass of a test star that moves through a distri-
bution f (Vf , μf ) of field stars with a mass mf . The FP equation then
takes the form(

δf

δt

)
enc

= −4πG2mf ln �

[
3∑

i=1

∂

∂vi

(
f (v)

∂h

∂vi

)

− 1

2

3∑
i,j=1

∂2

∂vi∂vj

(
f (v)

∂2g

∂vi∂vj

) ]
. (29)
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To compute this expression we need to know the phase-space
distribution function f (r, v, t). We approximate the distribution
function by a series expansion which accounts for the spherical
symmetry of the system (see e.g. Rosenbluth et al. 1957; Larson
1970). The expansion coefficients are expressed in terms of the
velocity moments needed to compute the collisional terms of the
moment equations. We then compute the phase-space distribution
function f to calculate the Rosenbluth potentials h and g, the right-
hand side of the FP equation, and thus the collisional terms of the
Boltzmann equation.

4.2.1 Construction of the distribution function

The phase-space distribution function in spherical symmetry only
depends on r, vr, v2

θ + v2
φ and t, i.e. f = f (r, vr, v

2
θ + v2

φ, t), which
implies that the system is axially symmetric in the velocity space
with axes vr, vθ and vφ . The velocity components can be written in
spherical coordinates

vr − v̄r = V cos θ ′

vθ = V sin θ ′ cos φ′

vφ = V sin θ ′ sin φ′, (30)

where V is the modulus of v, θ ′ the angle between v and the radial
direction, and φ′ the angle which defines the orientation of the
tangential component of v in the vθvφ-plane. Note that our model
describes non-rotational spherically symmetric systems and thus the
mean tangential velocities are v̄θ = v̄φ = 0. Thus, equations (30)
denote the components of the radial and tangential velocities with
respect to their means. As the phase-space distribution function f
only depends on v2

θ + v2
φ , it is independent on the angle φ′. We can

henceforth omit the prime from angle θ ′.
Since we are operating in velocity space, in the following we

refer to f as the (local) VDF. Substituting μ = cos θ yields

vr − v̄r = V μ, v2
t = v2

θ + v2
φ = V 2(1 − μ2). (31)

These coordinates are appropriate for a series expansion of the
VDF in Legendre polynomials (Larson 1970):

f (V ,μ) = g(V ) +
∞∑

l=0

al(V )Pl(μ)

=
∞∑

l=0

Al(V )Pl(μ), (32)

where A0(V) = g(V) + a0(V) and Al(V) = al(V) for l ≥ 1. In this
expansion

g(V ) = ρ
1√

2πσ 3
exp

(
−V 2

σ 2

)
.

Thus g(V)V2 is the Maxwell–Boltzmann (MB) VDF. Pl(μ) are
the Legendre polynomials, and the functions ai(V) are defined by

ai(V ) = g(V )
lmax∑
j=0

cijV
j

where lmax denotes the highest order of the Legendre polynomials
Pl(μ) in the expansion of the VDF. Due to axial symmetry in velocity

space the VDF can only depend on powers of vt and vr. Using
equations (31) and fully expanding the VDF we find the following
constraints for the coefficients cnm:

(i) n ≤ m
(ii) n and m are either both even or both odd

otherwise cij = 0.
We obtain for model b a VDF which extends to the order of l =

5 in the Legendre Polynomials Pl(μ) which reads

f (V , μ) = g(V ) + g(V )
(
c00 + c02V

2 + c04V
4
)
P0(μ)

+ g(V )
(
c11V + c13V

3 + c15V
5
)
P1(μ)

+ g(V )
(
c22V

2 + c24V
4
)
P2(μ)

+ g(V )
(
c33V

3 + c35V
5
)
P3(μ) + g(V )c44V

4P4(V )

+ g(V )V 5c55P5(μ). (33)

The VDF for model a only extends to the order l = 4 and can be
obtained from equation (33) by setting all coefficients cij with j > 4
to zero.

We can now calculate the coefficients cij using the definition of
the centralized moments from equation (17). However, we first have
to transform equation (17) to the new coordinate system (V , μ). The
volume element d3v in these coordinates is written as

d3v = V 2 dV d(cos θ ) dφ = V 2 dV dμ dφ where μ = cos θ.

(34)

Thus, we obtain for the centralized moments

〈n, m〉 =
∫

d3vf (vr − u)nvm
t

=
∫

V 2dV dμ dφ f (vr − u)nvm
t

= 2π

∫
V 2dV dμ f V nμn(V 2(1 − μ2))m/2

= 2π

∫
dV dμf V 2+n+mμn(1 − μ2)m/2. (35)

We can obtain a linear system of equations to be solved for the
coefficients cij by computing the different moments via this equation
with the expansion of the VDF from equation (33). It must be noted
that:

(i) the first centralized moment vanishes, since 〈vr − v̄r〉 = v̄r −
v̄r = 0, i.e.:

〈1, 0〉 = 0. (36)

(ii) since there are two tangential directions we add a factor of 2
in the definition below

2pt = 〈0, 2〉. (37)
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We obtain for the VDF of model a the coefficients cij:

c00 = 27

8
− 7(pr + 2pt)

4ρσ 2
+ κr + 2κrt + κt

8ρσ 4

c02 = − 7

4σ 2
+ pr + 2pt

ρσ 4
− κr + 2κrt + κt

12ρσ 6

c04 = 1

8σ 4
− pr + 2pt

12ρσ 6
+ κr + 2κrt + κt

120ρσ 8

c11 = −Fr + Ft

2ρσ 4

c13 = Fr + Ft

10ρσ 6

c22 = 3(pr − pt)

2ρσ 4
− 2κr + κrt − κt

12ρσ 6

c24 = −pr − pt

6ρσ 6
+ 2κr + κrt − κt

84ρσ 8

c33 = Fr − 3
2 Ft

15ρσ 6

c44 =
1
3 κr − κrt + 1

8 κt

35ρσ 8
.

(38)

Since the coefficients cij with i = 0, 1 only depend on sums of mo-
ments, we can find a definition for total moments (see Section 5.1).

The role of anisotropy comes into the open when going to higher-
order coefficients, like c2j ∝ (pr − pt) ∝ a, where a = 1 − pt/pr is the
anisotropy parameter. We envisage a system as isotropic in a ‘weak’
sense if a = 0 everywhere. Strong isotropy holds if the distribution
has the strict dependence f = f (r, (vr − v̄r)2 + (v2

θ + v2
φ)2, t) =

f (r, V , t) on the modulus of the velocity, which results in Fr = Ft =
0 for the radial and tangential energy flux, i.e. spherical symmetry
in velocity space. We now compute the moments of the fifth order
with the VDF of model a. In this case the expansion in Legendre
polynomials Pl(μ) expands up to l = 4 and the fifth-order moments
are

Gr = 10σ 2Fr, Grt = 2σ 2Fr + 3σ 2Ft, Gt = 8σ 2Ft. (39)

As we saw before, the system of differential moment equations (20)
and (21) combined with the mass relation (25) was not complete.
We can now close it by including the three relations in equation (39).
In these equations the fifth-order moments G are expressed through
lower-order moments. We now have a set of equations ((20), (21),
(25) and (39)) that is numerically solvable. This set describes our
model a.

Combining the three relations we have

Gr − 5Grt + 15

8
Gt = 0. (40)

We will see that the left-hand side of equation (40) appears in the
coefficient c55 when the coefficients cij of the VDF of model b are
computed. It then becomes clear that equation (40) is a result of
setting c55 = 0 since c44 is the highest coefficient of the VDF of
model a.

For the VDF of model b we find

c00 = 27

8
− 7(pr + 2pt)

4ρσ 2
+ (κr + 2κrt + κt)

8ρσ 4

c02 = − 7

4σ 2
+ (pr + 2pt)

ρσ 4
− (κr + 2κrt + κt)

12ρσ 6

c04 = 1

8σ 4
− (pr + 2pt)

12ρσ 6
+ (κr + 2κrt + κt)

120ρσ 8

c11 = −9(Fr + Ft)

4ρσ 4
+ Gr + 2Grt + Gt

8ρσ 6

c13 = 4(Fr + Ft)

5ρσ 6
− Gr + 2Grt + Gt

20ρσ 8

c15 = −Fr + Ft

20ρσ 8
+ Gr + 2Grt + Gt

280ρσ 10

c22 = 3(pr − pt)

2ρσ 4
− (2κr + κrt − κt)

12ρσ 6

c24 = − (pr − pt)

6ρσ 6
+ (2κr + κrt − κt)

84ρσ 8

c33 = 11(Fr − 3
2 Ft)

30ρσ 6
− Gr − 1

2 Grt − 3
2 Gt

30ρσ 8

c35 = −Fr − 3
2 Ft

30ρσ 8
+ Gr − 1

2 Grt − 3
2 Gt

270ρσ 10

c44 =
1
3 κr − κrt + 1

8 κt

35ρσ 8

c55 = Gr − 5Grt + 15
8 Gt

945ρσ 10
. (41)

We have the same dependencies of the coefficients cij on the sum
of moments and relations that determine the degree of anisotropy,
such as pr − pt, Fr − 3

2 Ft. As we predicted before, we can obtain
relation (40) by setting c55 = 0. Similarly, the relation 1

3 κr − κrt +
1
8 κt = 0 obtained by calculating the fourth-order moments with
the VDF used in Spurzem & Takahashi (1995) can be found in the
coefficient c44 of the VDF for l = 4 and l = 5 again.

Computing the moments of order n + m = 6 leads to the four
equations:

Hr = 15ρσ 6 − 45σ 4pr + 15σ 2κr

Hrt = 6ρσ 6 − 12σ 4pr − 6σ 4pt + 2σ 2κr + 6σ 2κrt

Htr = 8ρσ 6 − 8σ 4pr − 16σ 4pt + 8σ 2κrt + σ 2κt

Ht = 48ρσ 6 − 144σ 4pt + 18σ 2κt.
(42)

These equations are the closure relations for model b. The com-
plete set of equations of model b consists therefore of equations (20),
(21), (22), (25) and (42).

By means of equation (42) we also find the relation

8

15
Hr − 4Hrt + 3Htr − 1

6
Ht = 0, (43)

where the left-hand side of this equation appears in the coefficient
c66 if we take the Legendre expansion of the VDF up to l = 6.
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5 W EAK ISOTROPY, TOTA L MOMENTS
AND RO SENBLUTH POTENTIALS

In this section, we identify different degrees of isotropy. They are
specified by anisotropy parameters that can be found in the coeffi-
cients cij of the VDF. We start our discussion with the conducting
gas sphere model of Giersz & Spurzem (1994) and Spurzem &
Aarseth (1996). In these two studies the authors use a VDF of sec-
ond order l = 2 in Legendre polynomials Pl(μ) in order to compute
the collisional terms of their model equations.

f (V ,μ) = g(V )P0(μ) + pr − pt

2ρσ 2
g(V )P2(μ). (44)

As we explained before, the definition of weak isotropy is

pr = pt

Fr = 3

2
Ft. (45)

This concept of isotropy includes second- and third-order moments.
In the case of weak isotropy, the VDF becomes the MB distribution
g(V) since P0(μ) = 1. To generalize the definition of weak isotropy
we retake the MB VDF. This VDF describes thermal equilibrium
and is defined as

f (V ,μ) = g(V ) = ρ
1√

2πσ 3
e− V 2

σ2 . (46)

We then compute the two moments of the second order,

pr = ρσ 2

2pt = 2ρσ 2. (47)

The factor 2 in front of pt accounts for two tangential direc-
tions. We recover the known isotropy condition by dividing the
second equation by two and then subtracting the two resulting
equations,

pr − pt = 0. (48)

For a spherical symmetric stellar system this relation describes
the highest degree of isotropy. We define the lowest-order anisotropy
parameter as

ap = pr − pt. (49)

Thus, computing second-order moments with a zeroth-order
VDF produces the two relations in equation (47). This can be
used to derive the isotropy condition in equation (48) which ap-
pears as an anisotropy parameter ap in the second-order VDF of
equation (44).

We can now recover an expression for the velocity dispersion
σ by simply adding the two equations in (47) and solving for
ρσ 2:

ρσ 2 = pr + 2pt

3
. (50)

The random kinetic energy e is defined as e = (pr + 2pt)/2;
then, applying the isotropic condition p′ = pr = pt, we find that
e = 3

2 p′ = 3
2 ρσ 2. This is the equipartition theorem for f = 3

degrees of freedom, which states that in thermal equilibrium at a
temperature T every degree of freedom contains the same amount
of average energy ei = 1

2 kBT =̂ 1
2 ρσ 2.

In order to find isotropy relations for higher-order moments, we
use a second- and fourth-order VDF. The fourth-order VDF was
computed in the previous section. The second-order VDF is

f (V ,μ) = g(V ) + g(V )(c00 + c02V
2)P0(μ)

+ g(V )c11V P1(μ) + g(V )c22V
2P2(μ). (51)

We determine the coefficients cij and then compute the fourth-
order moments κ:

κr = −3ρσ 4 + 6σ 2pr

κrt = −2ρσ 4 + 2σ 2pr + 2σ 2pt

κt = −8ρσ 4 + 16σ 2pt. (52)

We can assume that these relations constrain our degree of
anisotropy, since the information contained in higher-order mo-
ments can be expressed by lower-order moments. Similarly, we use
now these relations to compute isotropy conditions that reappear
as linear combinations of the κs in the coefficients c22, c24 and c44

of the fourth-order VDF. These linear combinations should van-
ish in case of isotropy and thus can be identified as the anisotropy
parameters of the fourth order.

For the linear combination of κs in the coefficient c44 we directly
find by inserting equation (52)

κr − 3κrt + 3

8
κt = 0. (53)

For the linear combination of the κs in c22 and c24 we obtain in the
same way

2κr + κrt − κt = 0 ⇔ pr = pt. (54)

If the conditions for weak isotropy defined in equation (45) hold as
well, the fourth-order VDF only depends on the Legendre polyno-
mials P0(μ) and P1(μ) and sums of moments p, F and κ .

We thus conclude that linear combinations of moments in the
coefficients cij for 2 ≤ i describe anisotropy parameters. The or-
der of an anisotropy parameter is equal to the order of moments
it consists of. The degree of isotropy is hence determined by the
lowest-order anisotropy parameters that vanish. We therefore in-
troduce a new definition for weak isotropy by requiring that all
anisotropy parameters vanish, which corresponds to demanding
that the VDF depends only on the Legendre polynomials P0(μ) and
P1(μ).

5.1 Total moments

We are now in a position to define the total centralized moments of
the VDF, since this has been totally determined.

〈vn〉 =
〈(

(vr − v̄r)
2 + v2

φ + v2
θ

) n
2
〉

=
〈(

μ2V 2 + V 2(1 − μ2)
) n

2
〉

= 〈V n〉

= 2π

∫ ∞

0

∫ 1

−1
V n+2 f (μ, V ) dμ dV , (55)

since v̄θ = v̄φ = 0. With the help of (55) we calculate the even
moments, which we define as p, κ and H,

p = 〈V 2〉 = pr + 2pt

κ = 〈V 4〉 = κr + κrt + κt

H = 〈V 6〉 = 105(ρσ 6 − σ 4(pr + 2pt)) + 21σ 2(κr + κrt + κt)

= Hr + 3(Hrt + Htr) + Ht. (56)
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In the last line we have employed the relations given by (42). With
p and κ and VDF up to the order of l = 4 we find

〈V 1〉 = σ
1√
2π

(
9

2
ρ − 3

10
ρ

κ

p2

)

〈V 3〉 = σ

√
2

π

(
5

3
p + 3

5
ρ

κ

p

)

〈V 5〉 = σ

√
8

π

(
−7

3

p2

ρ
+ 3κ

)
, (57)

which is independent of the uneven moments Fr, Ft, Gr, Grt and Gt.
We thus define the uneven total moments

F = 1

2
(Fr + Ft)

G = Gr + 2Grt + Gt. (58)

The factor 1/2 in the definition of F is chosen in order to obtain
consistency with the physical interpretation of F. This becomes
clear when we add the two differential equations for the radial and
tangential pressure pr and pt in equation (20), where we find that
F = 1

2 (Fr + Ft) corresponds to the radial flux of random kinetic
energy.

With these definitions our coefficients of the VDF cij for i = 0, 1
now only depend on total moments.

5.2 Rosenbluth potentials

After having calculated the expansion coefficients for the VDF f (V ,
μ) in Section 4.2.1, we now can calculate the Rosenbluth potentials,
given by

h(V , μ) = (m + mf )
∫ 2π

0

∫ 1

−1

∫ V

0

f (Vf , μf )

|v − vf | V 2
f dVf dμf dφ

g(V , μ) = mf

∫ 2π

0

∫ 1

−1

∫ V

0
f (Vf , μf )|v − vf | V 2

f dVf dμf dφ.

(59)

So as to integrate for h(V , μ) we can make a multi-pole expansion,
i.e.

1

|v − vf | =
∞∑

l=0

l∑
m=−l

vl
<

vl+1
>

4π

2l + 1
Y �

l,m(θ, φ)Yl,m(θf , φf ) (60)

where

v< = min(v, v′)

v> = max(v, v′), (61)

and the spherical harmonics are defined in the usual way,

Yl,m(θ, φ) =
√

2l + 1

4π

(l − m)!

(l + m)!
P m

l (cos(θ )) eimφ

Yl,−|m|(θ, φ) = (−1)m Y �
l,|m|(θ, φ), (62)

with the associated Legendre polynomials P m
l (cos θ ).

We use μ = cos θ and insert equation (60) into the Rosenbluth
potential h(V , μ) of equation (59). After integrating over φ, the asso-
ciated Legendre polynomials are reduced to Legendre polynomials

Pl(μ) and we hence can apply the orthogonality relation

∫ 1

−1
Pl(μf )Pk(μf )dμf = δkl

2

2l + 1
. (63)

To compare our results with the lower-order estimation of
Spurzem & Takahashi (1995), we adopt their notation for the inte-
grals over V ,

In =
∫ V

0
V n

f g(Vf ) dVf

Kn =
∫ ∞

V

V n
f g(Vf ) dVf . (64)

With a VDF of order l = 5 we obtain the Rosenbluth potential
h(V , μ):

h(V , μ)

4π(m + mf )

=
[(

I2

V
+ K1

)
(1 + c00) +

(
I4

V
+ K3

)
c02

+
(

I6

V
+ K5

)
c04

]
P0(μ)

+
[(

I4

3V 2
+ 1

3
V K1

)
c11 +

(
I6

3V 2
+ 1

3
V K3

)
c13

+
(

I8

3V 2
+ 1

3
V K5

)
c1,5

]
P1(μ) +

[(
I6

5V 3
+ 1

5
V 2K1

)
c22

+
(

I8

5V 3
+ 1

5
V 2K3

)
c24

]
P2(μ) +

[(
I8

7V 4
+ 1

7
V 3K1

)
c33

+
(

I10

7V 4
+ 1

7
V 3K3

)
c35 + I10

7V 4
+ 1

7
V 3K3

]
P3(μ)

+
[(

I10

9V 5
+ 1

9
V 4K1

)
c44

]
P4(μ)

+
[

I12

11V 6
+ 1

11
V 5K1

]
c55P5(μ). (65)

If we set all coefficients cij = 0 with the exception of c22, we recover
the Rosenbluth potential h(V , μ) from Giersz & Spurzem (1994).
This confirms the correctness of our result. Moreover, we obtain
the Rosenbluth potential h(V , μ) for order l = 4 by setting the
coefficients c15 = c55 = 0.

To calculate g(V , μ) we write

|v − vf | = (|v − vf |)2

|v − vf | =
(
V 2 + V 2

f − 2V Vf cos χ
)

|v − vf | , (66)

where χ is the angle between the vectors v and vf . This can be
rewritten in terms of the angles θ , φ, θ f , φf with the general formula
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for Legendre polynomials

Pl(cos χ ) =
l∑

m=−l

(l − |m|)!
(l + |m|)! P

|m|
l (cos θ )P |m|

l (cos θf )e−im(φ−φf ).

(67)

Setting l = 1 we can substitute cos χ in equation (66) with Pl(cosχ )
from equation (67)and insert the result into the Rosenbluth potential
g(V , μ) of equation (59). This leads to an expression for g(V , μ)
depending on products of Legendre and associated Legendre poly-
nomials. After carrying out the integration over φ we use relations
between the Legendre and associated Legendre polynomials that
reduce the products and enable us to apply the orthogonality rela-
tion (63). We can now write the result in the notation of Spurzem &
Takahashi (1995) to verify that their lower-order potential g(V , μ)
is contained in our result by using a VDF up to order l = 5;

g(V , μ)

4πmf

=
[(

V I2 + 1

3V
I4 + V 2

3
K1 + K3

)
(1 + c00)

+
(

V I4 + 1

3V
I6 + V 2

3
K3 + K5

)
c02

+
(

V I6 + 1

3V
I8 + V 2

3
K5 + K7

)
c04

]
P0(μ)

+
[(

− 1

3
I4 + I6

15V 2
+ 1

15
V 3K1 − 1

3
V K3

)
c11

+
(

− 1

3
I6 + I8

15V 2
+ 1

15
V 3K3 − 1

3
V K5

)
c13

+
(

− 1

3
I + I10

15V 2
+ 1

15
V 3K5 − 1

3
V K7

)
c15

]
P1(μ)

+
[(

− I6

15V
+ I8

35V 3
+ 1

35
V 4K1 − 1

15
V 2K3

)
c22

+
(

− I8

15V
+ I10

35V 3
+ 1

35
V 4K3 − 1

15
V 2K5

)
c24

]
P2(μ)

+
[(

− I8

35V 2
+ I10

63V 4
+ V 5

63
K1 − V 3

35
K3

)
c33

+
(

− I10

35V 2
+ I12

63V 4
+ V 5

63
K3 − V 3

35
K5

)
c35

]
P3(μ)

+
[(

− I10

63V 3
+ I12

99V 5
+ V 6

99
K1 − V 4

63
K3

)
c44

]
P4(μ)

+
[

− I12

99V 4
+ I14

143V 6
+ V 7

143
K1 − V 5

99
K3

]
c55 P5(μ).

(68)

We again can set all coefficients cij = 0 with the exception of c22.
We find that this leads to the second-order result of Spurzem &
Takahashi (1995), which corroborates the correctness of our result
for g(V , μ). The fourth-order Rosenbluth potential g(V , μ) can be
recovered by setting the coefficients c15 = c55 = 0.

Eventually, we carry out the integration over V for both Rosen-
bluth potentials h(V , μ) and g(V , μ) which is needed for the further
computation of the right-hand sides of the moment equations.

6 C OLLI SI ON TERMS

With the coordinates in velocity space V and μ the FP equation (29)
transforms to (from Rosenbluth et al. 1957)

1

�

(
δf (V , μ)

δt

)
enc

=

− 1

V 2

∂

∂V

(
f (V , μ)V 2 ∂h(V , μ)

∂V
V

)

− 1

V 2

∂

∂μ

(
f (V , μ)

(
1 − μ2

)
∂h(V , μ)

∂μ

)

+ 1

2V 2

∂2

∂V 2

(
f (V ,μ)V 2 ∂2g(V , μ)

∂V 2

)

+ 1

2V 2

∂2

∂μ2

(
f (V , μ)

(
(1 − μ2)2

V 2

∂2g(V , μ)

∂μ2

+ (1 − μ2)

V

∂g(V , μ)

∂V
− μ

(1 − μ2)

V 2

∂g(V ,μ)

∂μ

))

+ 1

V 2

∂2

∂V ∂μ

(
f (V , μ)(1 − μ2)

(
∂2g(V , μ)

∂V ∂μ
− 1

V

∂g(V , μ)

∂μ

))

+ 1

2V 2

∂

∂V

(
f (V , μ)

(
− (1 − μ2)

V

∂2g(V ,μ)

∂μ2
− 2

∂g(V ,μ)

∂V

+ 2
μ

V

∂g(V , μ)

∂μ

))

+ 1

2V 2

∂

∂μ

(
f (V ,μ)

(
μ

(1 − μ2)

V 2

∂2g(V , μ)

∂μ2

+ 2
μ

V

∂g(V , μ)

∂V
+ 2

(1 − μ2)

V

∂2g(V , μ)

∂V ∂μ
− 2

V 2

∂g(V ,μ)

∂μ

))
,

(69)

where � = 4πG2mf ln � and ln � is the Coulomb logarithm. To
obtain the collision terms of the moment equations (20), (21) and
(22), we multiply the FP equation with powers of velocity compo-
nents and integrate over velocity space

(
δ〈n,m〉

δt

)
enc

=
∫

d3v

(
δf (V , μ)

δt

)
enc

(vr − v̄r)
n vm

t

= 2π

∫
V 2dV dμ

(
δf (V , μ)

δt

)
enc

V nμn(V 2(1 − μ2))m/2

= 2π

∫
dV dμ

(
δf (V , μ)

δt

)
enc

V 2+n+mμn(1 − μ2)m/2. (70)

For a single-mass model mf = m and some collisional terms must
vanish. These are the particle density ρ, due to particle/mass conser-
vation, the collision term of the bulk velocity u (or ρu since internal
collisions do not disturb the motion of the barycentre) and the colli-
sional term for the energy density defined as e = (pr + 2pt)/2, due
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to energy conservation;(
δρ

δt

)
enc

= 0,

(
δu

δt

)
enc

= 0,

(
δe

δt

)
enc

=
(

δpr

δt

)
enc

+ 2

(
δpt

δt

)
enc

= 0, (71)

as expected, which proves that our calculations are right. We define
the anisotropy parameters, which appear in the coefficients cij as

ap = pr − pt

aF = 2Fr − 3Ft

aκ1 = 2κr + κrt − κt

aκ2 = 8κr − 24κrt + 3κt

aG1 = 2Gr − Grt − 3Gt

aG2 = 8Gr − 40Grt + 15Gt (72)

and use the total moments

F = 1

2
(Fr + Ft)

κ = κr + 2κrt + κt

G = Gr + 2Grt + Gt. (73)

We then give the collisional terms for the two models a and b in
Appendix A.

7 TH E V E L O C I T Y D I S T R I BU T I O N FU N C T I O N

In this section, we investigate the influence of moments and
anisotropy parameters on the VDF. For that, we use a VDF with
moments up to the fifth order. We express the VDF with the total
moments F, κ and G and anisotropy parameters ap, aF , aκ1,2 and
aG1,2,

f (V , μ) = g(V )

+ g(V )

(
− 15

8
+ 5V 2

4σ 2
− V 4

8σ 4

+ κ

8ρσ 4
− V 2κ

12ρσ 6
+ V 4κ

120ρσ 8

)
P0(μ)

+ g(V )

(
− 9V F

2ρσ 4
+ 8V 3F

5ρσ 6
− V 5F

10ρσ 8

+ V G

8ρσ 6
− V 3G

20ρσ 8
+ V 5G

280ρσ 10

)
P1(μ)

+ g(V )

(
3V 2ap

2σ 2
− V 4ap

6σ 4
− V 2aκ1

12ρσ 6
+ V 4aκ1

84ρσ 8

)
P2(μ)

+ g(V )

(
11V 3aF

60ρσ 6
− V 5aF

60ρσ 8
− V 3aG1

30ρσ 8
+ V 5aG1

540ρσ 10

)
P3(μ)

+ g(V )
V 4aκ2

840ρσ 8
P4(μ) + g(V )

V 5aG2

7560ρσ 10
P5(μ). (74)

In order to obtain the MB VDF in the case of thermal equilibrium,
g(V)V2, we have to multiply f (V , μ) with V2. In the figures, the V-
axis denotes the modulus of the velocity and the μ-axis the direction
of the velocity vector. When μ = 0, the radial velocity component
is vr = μV = 0 and the tangential velocity component is vt =√

V 2(1 − μ2) = V and vice versa for μ = 1. The z-axis indicates

the phase-space probability density multiplied by V2, f (V , μ)V2.
If not stated otherwise, we choose σ = 10 km s−1 pc−3 and κ =
150 000 km4 s−4 pc−3. We normalize f (V , μ) by setting the particle
density ρ = 1 pc−3, and then

∫
f (V , μ)V2 dV dμ = 1 pc−3. We set to

zero the values of the moments F and G and the anisotropy param-
eters ap, aF , aκ1,2 and aG1,2. To emphasize the effects of moments
and anisotropy parameters, we choose very high and low values for
these quantities in some plots. This results in negative values of the
distribution function which is unphysical but reflects the polynomial
ansatz of the truncated series expansion of the VDF. We explore the
parameter space to analyse their influence on the VDF.

In order not to clutter the figures with the values for the set of
parameters listed in equations (72) and (73) the values for the plots
are collected in Table 1. The parameters that change the VDF with
respect to the MB distribution are denoted in the each plot.

Fig. 2 displays two plots of the VDF f (V , μ)V2. In the left plot
κ = 0 and it is clear due to the shape that this is not the MB VDF
for thermal equilibrium. To choose the right value for κ compute it
by means of equation (55) using the MB distribution g(V)V2 this
yields1

κ = 15ρσ 4 (75)

For given σ and ρ this is the value we have to choose for κ which
is in our case κ = 150 000 km4 s−4 pc−3. Then we obtain the MB
distribution as can be seen in the right plot of Fig. 2 where this value
was used.

The anisotropy ap describes the difference between the second-
order moments pr and pt which represent the radial and tangential
pressure (or equivalently energy density), respectively. In thermal
equilibrium we have pr = pt and thus ap = 0. The second-order
moments determine the width of the VDF given by the dispersion
σ . When the anisotropy ap < 0 the tangential pressure exceeds the
radial pressure. As a consequence, we observe in the left plot of
Fig. 3 that for μ → 1 the number of particles decreases whereas
for μ → 0 the number of particles increases. Since μ determines
the fraction of the radial and tangential velocity component this
physically means that we have more particles with circular orbits
when ap < 0. For ap > 0 we have the opposite behaviour.

A very similar effect is caused by the fourth-order anisotropy aκ1

as can be seen in Fig. 4. It appears together with P2(μ) and the same
powers of V as ap. However, since aκ1 and ap appear with a different
sign they have opposite effects. Consequently, we can assume that
the fourth-order anisotropy aκ1 is a correction of the second-order
anisotropy ap.

The same argument holds for the third-order anisotropy aF

(Fig. 5) and fifth-order anisotropy aG1 (Fig. 6). Both appear as
factors of the Legendre polynomial P3(μ) with the same powers of
V , but different sign. Thus aG1 can be seen as a correction of the
third-order anisotropy aF .

In equation (74), we observe that uneven moments appear with
uneven Legendre polynomials Pl(μ). However, these Legendre
polynomials vanish at μ = 0 and thus the VDF is independent
on uneven moments at μ = 0. In other words, since μ = 0 corre-
sponds to stars that have a vanishing radial velocity component vr,
the distribution of stars that move on circular orbits is not affected
by the third-order moments. This effect can be seen in Figs 5, 6, 7,
8, and 9.

1 This is also the reason why Louis (1990) defined κ ′ = κ/15 in his model.
Then thermodynamical equilibrium or isotropy yields κ ′ = ρσ 4. Never-
theless, this collides with equations (56), where the total moments were
computed giving a more natural definition.
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Table 1. An overview over the different values of the total moments and anisotropy parameters in each plot. The values for the density ρ = 1 pc−3 and the
velocity dispersion σ = 10 km s−1 pc−3 are constant over all plots and therefore do not appear in the table.

ap F aF κ aκ1 aκ2 G aG1 aG2

( km2

s2 pc3 ) ( km3

s3 pc3 ) ( km3

s3 pc3 ) ( km4

s4 pc3 ) ( km4

s4 pc3 ) ( km4

s4 pc3 ) ( km5

s5 pc3 ) ( km5

s5 pc3 ) ( km5

s5 pc3 )

Fig. 2 Left 0 0 0 0 0 0 0 0 0
Right 0 0 0 1.5 × 105 0 0 0 0 0

Fig. 3 Left −5 0 0 1.5 × 105 0 0 0 0 0
Right 3.3 0 0 1.5 × 105 0 0 0 0 0

Fig. 4 Left 0 0 0 1.5 × 105 −7.5 × 104 0 0 0 0
Right 0 0 0 1.5 × 105 1.35 × 105 0 0 0 0

Fig. 5 Left 0 1.0 × 10 −1.3 × 103 1.5 × 105 0 0 0 0 0
Right 0 1.0 × 102 2.0 × 103 1.5 × 105 0 0 0 0 0

Fig. 6 Left 0 0 0 1.5 × 105 0 0 2.0 × 102 −1.14 × 106 0
Right 0 0 0 1.5 × 105 0 0 2.0 × 102 2.0 × 106 0

Fig. 7 Left 0 −2.5 × 102 0 1.5 × 105 0 0 0 0 0
Right 0 3.5 × 102 0 1.5 × 105 0 0 0 0 0

Fig. 8 Left 0 0 0 1.5 × 105 0 0 −8.0 × 105 0 0
Right 0 0 0 1.5 × 105 0 0 1.0 × 106 0 0

Fig. 9 Left 0 0 0 1.5 × 105 0 0 2.0 × 10 0 2.0 × 10−3

Right 0 0 0 1.5 × 105 0 0 2.0 × 10 0 1.2 × 10−3

Fig. 10 Left 0 0 0 8.0 × 104 0 0 0 0 0
Right 0 0 0 2.0 × 105 0 0 0 0 0

Fig. 11 Left 0 0 0 1.5 × 105 0 −4.5 × 105 0 0 0
Right 0 0 0 1.5 × 105 0 6.0 × 105 0 0 0

Figure 2. Left: VDF where σ = 10 km s−1 pc−3; the remaining moments and anisotropy parameters are set zero. Right: VDF where σ = 10 km s−1 pc−3,
κ = 15ρσ 4; the remaining moments and anisotropy parameters are set zero. The right-hand plot shows the MB distribution in thermal equilibrium.

When including third-order moments the VDF depends on the
total moment F and the anisotropy aF , where F is related to the
total energy flux and aF describes differences between radial and
tangential energy fluxes. Negative values of the total moment F
result in an increase of the maximum of the VDF for μ → 1 (Fig. 7,
left plot). We thus find more stars with eccentric orbits for F < 0.
When F > 0 the maximum of the VDF shifts to higher velocities
V when μ → 1 (Fig. 7, right plot). This means that positive F
increases the radial velocity component vr, but leaves the tangential
component constant. As a consequence it increases the eccentricity
of orbits, but not the number of stars with eccentric orbits as it
does for F < 0. Note that the two plots in Fig. 7 have different
scaling in the z-axis with respect to each other in order to display
the distinct effects for F < 0 and F > 0. Whereas the maximum of

the VDF changes for F < 0 from ≈0.01 pc−3(km/s)−3 at μ = 0 to
≈0.015 pc−3(km/s)−3 at μ = 1 in the left plot of Fig. 7 it roughly
stays constant for all values of μ in the right plot corresponding to
F > 0. The effect of the third-order anisotropy aF is displayed in
Fig. 5. aF < 0 increases the number of stars with velocities above
the mean and directions corresponding to μ ≈ 0.5 whereas aF > 0
causes an inverse effect.

The fourth-order moments are related to the kurtosis of the ve-
locity distribution which gives a measure of high-velocity stars as
compared to thermal equilibrium. In Fig. 10 the VDF is plotted for
two different values of the total moment of fourth-order κ . In the left
plot κ is chosen to be smaller than 15ρσ 4. The VDF increases at its
mean at the expense of high and low velocities. This corresponds to
a deficiency of stars with high or low velocities but more stars with
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Figure 3. VDF with two different values for the anisotropy ap. Left: the effect of negative anisotropy ap on a MB distribution. Right: the effect of positive
anisotropy ap on a MB distribution.

Figure 4. VDF with two different values for the fourth-order anisotropy aκ1. Left: the effect of negative anisotropy aκ1 on a MB distribution. Right: the effect
of a positive anisotropy aκ1 on a MB distribution.

Figure 5. VDF with two different values for the third-order anisotropy aF . Left: the effect of negative anisotropy aF on the VDF. Right: the effect of positive
anisotropy aF on the VDF.

velocities near the mean, compared to thermal equilibrium. In the
right-hand plot the value of κ is chosen to be higher than 15ρσ 4. The
wing of the VDF towards high velocities becomes thicker whereas
the maximum of the VDF is smaller when compared to thermal
equilibrium. Here the number of high-velocity stars increases at the
expense of stars with intermediate velocities.

Although the anisotropy aκ1 should be viewed in combina-
tion with the second-order anisotropy ap as mentioned before, the
anisotropy aκ2 gives a new characterization of anisotropy at fourth
order, which is displayed in Fig. 11.

The effect of the total moment G on the VDF is illustrated
in Fig. 8. To get a physical understanding of this quantity we
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Figure 6. VDF with two different values for the fifth-order anisotropy aG1. Left-hand column: the effect of negative anisotropy aG1 on the VDF. Right-hand
column: the effect of positive anisotropy aG1 on the VDF.

Figure 7. VDF with two different values for the third-order total moment F corresponding to energy flux. Left: the effect of negative F on a MB distribution.
Right: the effect of positive F on a MB distribution.

Figure 8. VDF with two different values for the total moment G. Left: the effect of negative G on a MB distribution. Right: the effect of positive G on a MB
distribution.

compare it to the total moment of third-order F. F is an uneven
moment which was considered to denote the radial flux of ran-
dom kinetic energy. The random kinetic energy density e was
given by the second-order moments as e = (pr + 2pt)/2. Thus,
the third-order moment F is the corresponding flux quantity for
the second-order moment p. Equivalently, we can relate the fifth-

order moment G and the fourth-order moment κ . Since κ is re-
lated to the number of high-velocity stars G can be considered as
a measure for the flux of these stars. Again aG1 (Fig. 6) should be
viewed in the context of the third-order anisotropy aF whereas
aG2 (Fig. 6) determines a new type of anisotropy at the fifth
order.
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Figure 9. VDF with two different values for the fifth-order anisotropy aG2. Left: the effect of negative anisotropy aG2 on the VDF. Right: the effect of positive
anisotropy aG2 on the VDF.

Figure 10. VDF with two different values for the total moments κ . Left: VDF with lower value for κ with respect to the MB distribution. Right: VDF with
higher value for κ with respect to the MB distribution.

Figure 11. VDF with two different values for the fourth-order anisotropy aκ2. Left: the effect of negative anisotropy aκ2 on a MB distribution. Right: the effect
of anisotropy aκ2 on a MB distribution.

Thus, every moment and anisotropy parameter have its own ef-
fect on the VDF. They act on different velocity intervals and re-
distribute stars from distinct orbitals. If we only include moments
up to third order into our model, as it has been done in previous
studies, our VDF is strongly limited. We are then not able to de-

scribe areas in velocity space as is possible with moments of order
>3. More precisely, we obtain a much more detailed description of
the distribution of stars in velocity space for stars with high veloc-
ities and stars which have neither radial nor tangential orbits, i.e.
0 < μ < 1.
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8 D ISCUSSION

In this work, we develop two statistical moment models for dense
stellar dynamical systems. They are closed either at fifth or at sixth
order depending on the required accuracy. They describe in a self-
consistent way (including FP relaxation terms) local deviations of
the VDF from the MB distribution. The description of the VDF
includes third- and fourth-order moments. Third-order moments
represent energy fluxes equivalent to asymmetries of the velocity
distribution around its centre. Fourth-order moments denote devi-
ations from the MB distribution at high velocities. This cannot be
described by a velocity distribution that is fully determined by its
first two moments such as a Gaussian, commonly used to fit obser-
vational data. Due to the larger number of moments of the velocity
distribution, the two models we introduce have the potential to fit
detailed star–star and integrated light observations of GCs or NCs
in detail. However, they still underly a number of approximations,
such as assuming spherical symmetry, equal stellar masses, the FP
and the local approximation and they also require a system with a
high number of stars or high star densities so as to justify the statis-
tical treatment. As the model equations only account for two-body
relaxation, other mechanisms that drive the evolution of a stellar
system can be added as terms in the model equations later on (e.g.
unequal stellar masses and stellar evolution). In this work we have
focused on giving the first complete analytical derivation of the
relevant high-order moment equations.

One of our goals is also to improve previous models such as the
AGM or the moment model of Louis (1990). For that, we achieve a
more accurate modelling by including a larger number of moments.
As we explained in Section 7, increasing the number of moments
leads to both a more complex VDF and an increasing number of
differential moment equations (Section 4.1). This argument applies
to the AGM rather than Louis’ model.

We therefore can describe the state of the system in terms of
its phase-space distribution function more accurately. As explained
previously, GCs are in dynamic equilibrium but not in thermody-
namic equilibrium. While a system in thermodynamic equilibrium
can be represented by a VDF that is fully defined by its first two
moments, the number of non-vanishing moments increases for a
system which is not in thermodynamic equilibrium. In most cases,
it is impossible to exactly compute the VDF for a system that is
not in thermodynamic equilibrium. In a stellar dynamical system
such as GCs or NCs there are numerous mechanisms that force the
system away from thermodynamic equilibrium, raising the issue of
when to truncate the moment series. Mechanisms that affect the
high end of the VDF, such as the evaporation of stars from a stellar
system, close three-body encounters and mass segregation, suggest
that the inclusion of fourth- and fifth-order moments is important.
This is also fortified by observations such as in the findings of
high-velocity stars in the core of Milky Way GCs. The AGM, as a
third-order model, does not accurately describe these mechanisms.

The correct computation of the collisional terms is still a major
difficulty and the local approximation is applied and an ansatz for
the VDF is used to handle this problem. Even so, there are evi-
dent improvements over the previous models that stem from the
use of a larger number of moments (regarding the AGM) and a
self-consistent method for the computation of the collisional terms
(as compared to Louis 1990). In contrast to the previous models,
the collision term of a moment equation of order n does not only
depend on the corresponding nth-order anisotropy parameter but
instead exhibits more dependencies on anisotropy of the parame-
ters and moments of almost all orders as well. This leads to further

coupling between the different moments. In a comparative study be-
tween the AGM and FP and N-body models, Spurzem & Takahashi
(1995) concluded that in a multi-mass model a significant fraction
of small-angle encounters, which transfer energy from the heavy
to the light stars in the core, cause the light stars to move radially
outwards on elongated orbits. As a result, the energy taken from the
heavy particles is quickly redistributed over a much larger volume
than assumed by the local approximation. Even though the local
approximation is still applied in this model, the energy transfer due
to collisions should be improved due to a stronger coupling of the
moments. This will provide a better estimate for the impact of the
local approximation of the evolution of the system.

The choice of the closure relation is very important, in particular
at lower orders. In the AGM the system of equations is closed with
the heat flux equation, which relates the energy flux to the velocity
dispersion. It is not clear how well the heat conduction closure
of the AGM works. It obviously allows the model to handle heat
transfer, and there are certainly parallels to gas dynamics in GCs,
but the description of energy transfer via the gas-dynamical heat
conduction equation might nevertheless be too simple a description
of this process. The heat conduction closure and the third-order
differential moment equations seem to be two completely different
descriptions of a similar process. Even so, in the comparative study
by Louis & Spurzem (1991) between the AGM and the model of
Louis (1990) reasonable agreement in pre-core-collapse could be
achieved by proper choice of the free parameters of the AGM.
However, these values of the free parameters of the AGM are not in
agreement with the values resulting from the comparative study by
Giersz & Spurzem (1994), where the AGM was fitted and compared
to FP and N-body models. This indicates that Louis’ model does
not agree very well with FP and N-body models. Furthermore, it
has to be considered that the parameter λ determining the heat
conduction in gaseous models is just a scaling factor in isotropic
gaseous models. In AGMs λ prescribes the relative speed of the
two relevant processes – the decay of anisotropy and the heat flow
between warm and cold regions. With growing λ heat flows faster, so
there is less time for gravitational encounters to destroy anisotropy
(Louis & Spurzem 1991). In our model (as in the model of Louis
1990) this free parameter is absent.

The closure equation in the model of Louis (1990) is an algebraic
relation between the flux velocities of even moments κ , p and ρ. It
is based on the assumption that the flux velocities of moments of
order 2k increase with k.

The closure relations we use are basically a mathematical formu-
lation of the fact that our model cannot describe an arbitrary degree
of anisotropy, since its description of a stellar system is bounded
by the highest moment that it includes. It also reflects the limits of
variability of the VDF and, thus, is a very natural choice. The only
uncertainty of this closure relation is the error due to the polynomial
ansatz for the VDF. The closure limiting the VDF is derived from
the VDF itself. It does not stem from any other constraint that is
independent of the form of the VDF arising from the boundary con-
ditions like spherical symmetry and the absence of rotation. Hence,
this ansatz should not be seen as an additional approximation, but
rather as a consistency relation.

The model equations consist of the set of equations (20) and (21)
for model a where the right-hand sides are given by equations (A1)
to (A6) and the set of equations (20), (21) and (22) for model b with
the right-hand sides given in equations (A7) to (A15). Furthermore,
we need the Poisson equation (25) and the closure relations (39)
or (42) to complete the model equations. In order to exclude errors
in the computation of the collisional terms, several measures were
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taken. The higher-order Rosenbluth potentials were compared to the
second-order Rosenbluth potentials of Giersz & Spurzem (1994)
and showed exact agreement. Furthermore, the collisional terms for
the density, bulk velocity and energy density vanish as expected
according to mass and energy conservation and the fact that internal
collisions do not disturb the motion of the barycentre.

Eventually, several arguments have been given that predict im-
provements of the fourth- and fifth-order models developed in this
work in comparison with its predecessors but a final estimate of the
gained accuracy can only be obtained by means of numerical sim-
ulations and subsequent comparison with other models. The next
step will be to implement and test the model in a numerical code
such as the AGM.2 For that, the left-hand sides of the differential
moment equations (20), (21) and (22) have to be discretized as in the
appendix of Amaro-Seoane et al. (2004), and the collisional terms
which form the right-hand sides of the moment equations have to
be reformulated. They should be simplified and reordered to allow
an effective implementation into a numerical code.

AC K N OW L E D G M E N T S

JS visit to the AEI and Munich have been supported by the ARI.
He is thankful to the AEI for covering some of the expenses during
his visit. He is indebted to his colleagues at the ARI, in particular
to Jonathan Downing, for discussions. PAS is indebted to Dave
J. Vanecek for comments on the manuscript. This work has been
partially supported by the DLR programme ‘LISA Germany’.

RE F EREN C ES

Aarseth S. J., 1999, PASP, 111, 1333
Amaro-Seoane P., 2004, PhD thesis, Univ. Heidelberg, Heidelberg
Amaro-Seoane P., Freitag M., 2006, ApJ, 653, L53
Amaro-Seoane P., Spurzem R., 2001, in Knapen J. H., Beckman J. E.,

Shlosman I., Mahoney T. J., eds, ASP Conf. Ser. Vol. 249, The Central
Kiloparsec of Starbursts and AGN: The La Palma Connection. Astron.
Soc. Pac., San Francisco, p. 731

Amaro-Seoane P., Spurzem R., 2004, in Ho L. C., ed., Carnegie Ob-
ser. Astrophys. Ser. Vol. 1, Coevolution of Black Holes and Galaxies.
Cambridge Univ. Press, Cambridge

Amaro-Seoane P., Spurzem R., Just A., 2002, in Gilfanov M., Sunyaev
R., Churazov E., eds, Lighthouses of the Universe: The Most Luminous
Celestial Objects and Their Use for Cosmology. Springer-Verlag, Berlin,
p. 376

Amaro-Seoane P., Spurzem R., Just A., 2003, in Boily C. M., Pastsis P.,
Portegies Zwart S., Spurzem R., Theis C., eds, EAS Publ. Ser. Vol. 10,
JENAM 2002, Galactic and Stellar Dynamics. EDP Sci., Les Ulis, p.
189

Amaro-Seoane P., Freitag M., Spurzem R., 2004, MNRAS, 352, 655
Amaro-Seoane P., Miller M. C., Freitag M., 2009, ApJ, 692, L50
Amaro-Seoane P., Eichhorn C., Porter E. K., Spurzem R., 2010, MNRAS,

57, 2268
Ardi E., Spurzem R., Mineshige S., 2005, J. Korean Astron. Soc., 38, 207
Begelman M. C., 2010, MNRAS, 402, 673
Berentzen I., Preto M., Berczik P., Merritt D., Spurzem R., 2009, ApJ, 695,

455
Bettwieser E., 1983, MNRAS, 203, 811
Bettwieser E., Spurzem R., 1986, A&A, 161, 102
Bettwieser E., Sugimoto D., 1984, MNRAS, 208, 493
Bisnovatyi-Kogan G. S., Syunyaev R. A., 1972, Astron. Zh., 49, 243
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The Galactic Halo: From Globular Cluster to Field Stars. Univ. Liège,
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Hénon M. H., 1971a, Astrophys. Space Sci., 13, 284
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Stodółkiewicz J. S., 1985, in Goodman J., Hut P., eds, Proc. IAU Symp. Vol.

113, Dynamics of Star Clusters. Reidel, Dordrecht, p. 361
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The collisional terms for the model closing at sixth order are

(
δpr

δt

)
enc

= −2

(
δpt

δt

)
enc

= 1

trx

(
− 177ap

640

+ 1

ρσ 2

(
39a2

p

160
− 27ρaκ1

8960
+ 1

ρσ 2

(
243F 2

320

+ 729FaF

4480
+ 27a2

F

4480
− 33apaκ2

15680
− 33κap

640
− 33apaκ1

1568

+ 1

ρσ 2

(
3κaκ1

1280
− 39FaG1

3200
− 13aF aG1

14400
− 13aF aG2

177408

+ 3a2
κ1

6272
− 117FG

3200
− 351 GaF

89600
+ 3aκ1aκ2

31360
+ a2

κ2

413952

+ 1

ρσ 2

(
aG1aG2

177408
+ a2

G2

9225216
+ a2

G1

28800
+ 27 GaG1

89600

+ 81G2

179200

)))))
(A7)

(
δFr

δt

)
enc

= 1

trx

(
− 171F

80
− 5697aF

17920

+ 1

ρσ 2

(
1017ρaG1

89600
+ 27ρG

700
+ 351Fap

320

+ 1

ρσ 2

(
9Fκ

400
− 1269κaF

89600
− 2277 Gap

62720

− aG1ap

280
− 107aG2ap

68992
− 99Faκ1

4480
+ 9aF aκ1

3920

+ 81Faκ2

11200
− 1357aF aκ2

3449600
+ 1

ρσ 2

(
3κaG1

2560

+ 27 Gaκ1

25088
+ 9aG2aκ1

137984
− 9 Gaκ2

62720
+ aG1aκ2

25344

− aG2aκ2

1241856

))))
(A8)

(
δFt

δt

)
enc

= 1

trx

(
− 57F

40
+ 5697aF

17920

+ 1

ρσ 2

(
9ρG

350
− 1017ρaG1

89600
+ 1521Fap

1600
− 117aF ap

800

+ 1

ρσ 2

(
3Fκ

200
+ 1269κaF

89600
− 1167 Gap

62720
+ 11aG1ap

1120

+ 107aG2ap

68992
− 201Faκ1

4480
+ 99aF aκ1

15680
− 81Faκ2

11200

− 6269aF aκ2

10348800
+ 1

ρσ 2

(
117 Gaκ1

125440
− 3κaG1

2560
− aG1aκ1

2240

− 9aG2aκ1

137984
+ 9 Gaκ2

62720
+ 23aG1aκ2

532224
− aG2aκ2

338688

))))
(A9)

(
δκr

δt

)
enc

= 1

trx

(
− 93κ

400
− 18069aκ1

62720
− 6773aκ2

156800

+ 31a2
p

32ρ
+ σ 2

(
423ρσ 2

160
+ 11481ap

4480

)

+ 1

ρσ 2

(
27189F 2

8000
− 111apaκ1

1120
− 2697apaκ2

123200

+ 18861FaF

16000
+ 2713a2

F

176000
− 789κap

3200
+ 1

ρσ 2

(
3κ2

800

− 5319FG

31360
− 537 GaF

17920
− 1061FaG1

13440
− 643aF aG1

221760

+ 1499FaG2

517440
− 139aF aG2

149760
+ 699κaκ1

62720
+ 129a2

κ1

43904

− 37κaκ2

156800
+ 2567aκ1aκ2

2414720
− 181a2

κ2

313913600

+ 1

ρσ 2

(
2889G2

1254400
+ 587 GaG1

268800
+ 413a2

G1

2851200

− 97GaG2

2069760
+ 7643aG1aG2

103783680
− 53a2

G2

264176640

))))
(A10)

(
δκrt

δt

)
enc

= 1

trx

(
− 31κ

200
− 6023aκ1

125440

+ 6773aκ2

156800
− 647a2

p

1344ρ
+ σ 2

(
141ρσ 2

80
+ 3827ap

8960

)

+ 1

ρσ 2

(
3627F 2

3200
+ 291FaF

6400
− 3799a2

F

211200
− 263κap

6400

+ 509apaκ1

15680
− 6693apaκ2

1724800
+ 1

ρσ 2

(
− 17937FG

313600

+ κ2

400
+ 807 GaF

1254400
− 691FaG1

134400
+ 2179aF aG1

950400

− 1499FaG2

517440
− 67289aF aG2

484323840
+ 233κaκ1

125440
− 53a2

κ1

87808

+ 37κaκ2

156800
+ 509aκ1aκ2

4829440
− 28879a2

κ2

1883481600

+ 1

ρσ 2

(
1971G2

2508800
− 14947a2

G2

17435658240
+ 701aG1aG2

88957440

− GaG1

76800
+ 97GaG2

2069760
− 1279a2

G1

17107200

))))
(A11)

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 410, 432–454



454 J. Schneider, P. Amaro-Seoane and R. Spurzem

(
δκt

δt

)
enc

= 1

trx

(
− 31κ

50
+ 6023aκ1

15680
− 6773aκ2

156800

− 53a2
p

84ρ
+ σ 2

(
141ρσ 2

20
− 3827ap

1120

)
+ 1

ρσ 2

(
9F 2

2000

− 5079FaF

4000
− 8927a2

F

264000
+ 263κap

800
+ 23apaκ1

980

+ 6393apaκ2

215600
+ 1

ρσ 2

(
κ2

100
− 207FG

39200
+ 4497 GaF

156800

+ 1499FaG1

16800
+ 943aF aG1

237600
+ 1499FaG2

517440

− 233κaκ1

15680
+ 73013aF aG2

60540480
+ a2

κ1

5488
− 37κaκ2

156800

− 769aκ1aκ2

603680
− 15319a2

κ2

470870400
+ 1

ρσ 2

(
9G2

62720

− 29 GaG1

13440
− 19a2

G1

171072
− 97GaG2

2069760
− 6959aG1aG2

77837760

− 251a2
G2

136216080

))))
(A12)

(
δGr

δt

)
enc

= 1

trx

(
− 25009aG1

161280
− 35521aG2

1241856

+ ap

ρ

(
3231F

448
+ aF

168

)
− σ 2

(
1683F

560
+ 1013aF

2560

)

− 1161G

7840
+ 1

ρσ 2

(
− 351Fκ

2800
− 8207κaF

89600

− 16119 Gap

62720
− 181aG1ap

3465
− 45Faκ1

896
+ 59aF aκ1

4312

− 164105aG2ap

8072064
+ 4689Faκ2

61600
− 326083aF aκ2

44844800

+ 1

ρσ 2

(
9 Gκ

1120
+ 1247κaG1

161280
− κaG2

25344
+ 1143Gaκ1

175616

+ 11aG1aκ1

7056
+ 97805aG2aκ1

113008896
− 3303Gaκ2

2414720

+ 49523aG1aκ2

80720640
− 4027aG2aκ2

113008896

)))
(A13)

(
δGrt

δt

)
enc

= 1

trx

(
25009aG1

1612800
+ 35521aG2

1241856

+ ap

ρ

(
9669F

4480
− 3229aF

6720

)
− σ 2

(
1683F

1400
− 1013aF

25600

)

− 1161G

19600
+ 1

ρσ 2

(
− 351Fκ

7000
+ 8207κaF

896000
− 1557 Gap

25088

+ 5017aG1ap

221760
+ 210101aG2ap

80720640
− 12573Faκ1

313600

+ 34381aF aκ1

1724800
− 130341Faκ2

8624000
− 1572817aF aκ2

448448000

+ 1

ρσ 2

(
9 Gκ

2800
− 1247κaG1

1612800
+ κaG2

25344
+ 189857aG1aκ2

807206400

− 311aG1aκ1

282240
− 4483aG2aκ1

32288256
+ 309 Gaκ2

985600
+ 459 Gaκ1

250880

− 731aG2aκ2

32288256

)))
(A14)

(
δGt

δt

)
enc

= 1

trx

(
− 387G

4900
+ 25009aG1

201600
− 35521aG2

1241856

+ ap

ρ

(
1069F

560
− 533aF

1680

)
− σ 2

(
561F

350
− 1013aF

3200

)

+ 1

ρσ 2

(
− 117Fκ

1750
+ 8207κaF

112000
− 2229 Gap

78400
+ 2581aG1ap

277200

+ 76303aG2ap

5045040
− 3141Faκ1

39200
+ 5669aF aκ1

431200
− 197889Faκ2

4312000

− 505481aF aκ2

168168000
+ 1

ρσ 2

(
3 Gκ

700
− 1247κaG1

201600
− κaG2

25344

+ 309 Gaκ1

219520
− 31aG1aκ1

70560
− 8303aG2aκ1

14126112
+ 17889Gaκ2

24147200

+ 63001aG1aκ2

302702400
− 3119aG2aκ2

169513344

)))
(A15)

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 410, 432–454


