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1 Introduction

In this article we want to study the relation between two different and complementary
descriptions of B-type boundary conditions in N = (2, 2) supersymmetric two-dimensional
field theories: the description in terms of matrix factorisations of a superpotential, and the
description in terms of boundary states. Such field theories arise as world-sheet theories of
open strings which end on B-type D-branes. To motivate our investigation let us look at
the moduli space of string theory compactified on a six-dimensional Calabi-Yau manifold.
This moduli space is in general very complicated and consists of different phases [1]. In
a large volume regime we have a description in terms of a non-linear sigma-model on the
background geometry, and we can use geometric tools. At some other region of the moduli
space we might have a description in terms of Landau-Ginzburg models governed by some
holomorphic superpotential W . At special points of the moduli space, the superconformal
field theory that is described by the Landau-Ginzburg model is in fact a rational conformal
field theory (CFT), which means that it has a large chiral symmetry algebra that turns
the theory solvable. A typical example is the Gepner point in moduli space.

When we discuss D-branes in such backgrounds, a natural question to ask is how they
behave when the closed string moduli are deformed. We shall focus in this paper on B-type
D-branes. In the aforementioned regimes, one has different descriptions for the branes. In
the geometric regime they are described by holomorphic submanifolds, or more generally
by complexes of coherent sheaves (see e.g. [2]). In the Landau-Ginzburg models the B-
type boundary conditions are described by factorisations of the superpotential in terms of
matrices (see e.g. [3]). The connection between these descriptions has been clarified in [4]
using gauged linear sigma models as a description in the whole moduli space.

It is less clear how to connect the description in terms of matrix factorisations to
the formulation of B-type boundary conditions at the points where we have a rational
conformal field theory description. Such a connection would be desirable to have, because
both descriptions have their advantages. Matrix factorisations easily allow to discuss the
dependence on the moduli, whereas the rational CFT description is only available at one
point. On the other hand, in the Landau-Ginzburg formulation, one can only access few
data directly, namely topological data such as RR charges, but not e.g. the mass of the
brane, whereas in the rational CFT we know the couplings of all fields to the brane.

We are looking for some dictionary between matrix factorisations and rational bound-
ary states, not only for the case of Calabi-Yau backgrounds, but for the general situation
where a supersymmetric rational CFT admits a Landau-Ginzburg description. Setting
up such a dictionary is a highly non-trivial problem. To get from the Landau-Ginzburg
formulation to the CFT description one has to follow a renormalisation group flow to the
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infrared, but these flows are usually not under good control. Only some ’topological’ data
is protected under renormalisation.

The other problem we have to face is that on the CFT side, our tools only allow us to
construct rational boundary states, i.e. boundary states which preserve the chiral symmetry
algebra. In general, this will only be a subset of all superconformal boundary states.
Therefore we should not expect to find a simple prescription of how to obtain a boundary
state from any matrix factorisation. More realistically, one can hope to find answers to the
following two questions: Can we determine a matrix factorisation from a given boundary
state? Can we understand on the matrix factorisation side what distinguishes the ’rational’
boundary conditions from the rest?

One approach to these questions is to study the relation of matrix factorisations and
rational boundary states in a large class of models, and to look for general patterns. Up
to now, most comparisons have been performed in minimal models [5–8]. Minimal models
are very special in the sense that we only have a finite number of elementary boundary
states and matrix factorisations that have to be matched. Also products of minimal models
have been considered [9, 10]. Here one encounters for the first time the situation that the
rational boundary states only present a subset of all boundary states.

A more general class of rational N = (2, 2) supersymmetric rational CFTs is provided
by the Kazama-Suzuki models [11], which are based on a coset construction G/H. Not all
of these models, however, have a description as a Landau-Ginzburg theory. A subclass with
this property is given by those models where the group G is simply laced, the corresponding
level is 1, and G/H is a Hermitian symmetric space [12]. A two-parameter family of such
models is given by the Grassmannian cosets, where G = SU(n+k) and H = S(U(n)×U(k)).
For n = 1 one recovers the minimal models. The first non-minimal family of Grassmannian
models is given by n = 2. For these models we want to extend the connection between the
coset and the Landau-Ginzburg description to the case when B-type boundary conditions
are present.1

In the Grassmannian models SU(3)k/U(2), we explicitly identify the matrix factorisa-
tions that correspond to a set of B-type boundary states that form a basis of the Ramond-
Ramond charge lattice. To do the identifications between matrix factorisations and bound-
ary states we compare the open string spectra, the RR charges and also information on
boundary renormalisation group flows. We expect to find all other boundary states and
matrix factorisations from tachyon condensation of the basic ones. We illustrate and con-
firm this idea, and construct matrix factorisations that correspond to another subset of
boundary states. For low levels (k = 1, 2), this means that we can identify matrix fac-
torisations for all rational boundary states, for higher levels we believe that by performing
more tachyon condensations we would eventually identify all remaining factorisations.

The paper is organised as follows: In section 2 we shall discuss the Grassmannian
Kazama-Suzuki models, in particular their field content and their B-type boundary states.
For the model SU(3)/U(2) we then go more into detail and evaluate the spectra of the

1For A-type boundary conditions in the SU(3)/U(2) models, the relation between rational boundary

states and Landau-Ginzburg solitons has been investigated in [13].
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boundary theories and the RR charges. In section 3 the Landau-Ginzburg description
is introduced. First we review the identification of the superpotential that corresponds
to the Grassmannian cosets, then we study factorisations of the superpotentials for the
SU(3)/U(2) series. A number of basic factorisations is given and the corresponding RR
charges are determined. Section 4 then deals with the comparison between CFT and LG
description. By analysing spectra and RR charges, it is shown how to identify some of
the boundary states with matrix factorisations. We then discuss boundary renormalisation
group flows and tachyon condensation. On the one hand, we can use these to compare the
CFT and LG description, on the other hand we can use them to find factorisations for the
remaining boundary states. This is exemplified for another family of boundary states. For
low levels, where our models are equivalent to minimal models, we compare in section 5
our findings to results in the literature. In the concluding section 6 we discuss some open
problems and possible routes to solve them. Two appendices contain the details of the
calculations that form the basis of our identifications between CFT and LG description.

2 Kazama-Suzuki models

Kazama and Suzuki [11, 14] constructed a large class of rational CFTs with N = 2 super-
conformal symmetry as coset models of the form

Gk × SO(2d)1

H
. (2.1)

Here, G is a simple, compact Lie group, k the corresponding level, 2d is the difference of
the dimensions of G and of the regularly embedded subgroup H (which we take to have
the same rank as G). To have N = 2 supersymmetry, G/H has to be Kähler and hence
the difference of dimensions, 2d, is even.

Of particular interest are the models where G is simply laced, the level is k = 1,
and G/H is a Hermitian symmetric space. In this case, the CFTs have a description as
Landau-Ginzburg models [12]. These theories have been classified [11], and a prominent
family of such models is provided by the Grassmannians, where G = SU(n + k) and
H = S(U(n)×U(k)).

2.1 Grassmannians: the bulk theory

The Grassmannian cosets are of the form

SU(n+ k)1 × SO(2nk)1

SU(n)k+1 × SU(k)n+1 ×U(1)
∼= SU(n+ 1)k × SO(2n)1

SU(n)k+1 ×U(1)
. (2.2)

with central charge c = 3nk
k+n+1 . The equivalence used here is known as level-rank dual-

ity [11, 12, 15–20].
We shall most of the time work in the formulation on the right hand side. The ’em-

bedding’ homomorphism of the denominator group into the numerator group is

i(h, ζ) =

(
hζ 0
0 ζ−n

)
∈ SU(n+ 1) , (2.3)
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where h ∈ SU(n) is a n× n-matrix, and ζ ∈ U(1) is a phase. Note that this is not a one-
to-one mapping, because i(ξ−11, ξ) = 1 for ξn = 1. This just means that the denominator
group only becomes a subgroup of the numerator group after taking a Zn quotient,

U(n) =
(
SU(n)×U(1)

)
/Zn . (2.4)

This will become important shortly when we discuss selection and identification rules.
The sectors of the theory are labelled by quadruples (Λ,Σ;λ, µ), where Λ is a dominant

weight of su(n+ 1)k, λ is a dominant weight of su(n)k+1, µ is an integer labelling a u(1)-
representation, and finally Σ labels a dominant weight of so(2n)1, so it labels either the
trivial representation 0, the vector (v), the spinor (s) or the anti-spinor (s̄) representation.
Representations with Σ = 0, v belong to the Neveu-Schwarz sector, Σ = s, s̄ belong to the
Ramond sector.

As usual, the representation labels are restricted by selection rules, and we have an
equivalence relation on the allowed labels given by identification rules [12, 21, 22]. The
appearance of selection and identification rules is connected to the existence of a non-
trivial common center Z of the numerator and denominator theory, or better the preimage
Z = i−1(ZG) of the center of the numerator group G = SU(n + 1). Here, ZSU(n+1) =
{η1|ηn+1 = 1}, so that Z = {(ξ−11, ξη)|ξn = 1, ηn+1 = 1}. This is a cyclic group Zn(n+1)

with generator (e−2πi/n1, e2πi/ne2πi/(n+1)).
Corresponding to the center Z, there is a cyclic simple current group Gid that acts on

the weights [23, 24]. It is generated by the simple current J0 = (Jn+1, v; Jn, k + n), where
Jn+1 = kω1 generates the simple current group of su(n+1)k, and Jn = (k+1)ω1 generates
the simple current group of su(n)k+1 (here, we denote for both su(n) and su(n + 1) the
first fundamental weight by ω1). In the u(1)-part, the simple current acts as µ→ µ+k+n.
Since Jn(n+1)

0 should act as the identity, the u(1) labels µ should be periodically identified
with period n(n+ 1)(k+n). This means that the u(1) Heisenberg algebra can be enlarged
to u(1)n(n+1)(k+n).

The simple current group Gid acts without fixed-points on the quadruples of weights
and generates the identification rules. On the other hand, the selection rules are encoded
in the requirement that the monodromy charges of the numerator and denominator parts
should be equal,

QJn+1(Λ) +Qv(Σ) != QJn(λ) +Qk+n(µ) . (2.5)

The monodromy charges are defined as usual as differences of conformal weights, QJ(φ) =
hJ + hφ − hJφ mod 1.

The sectors of the theory are labelled by equivalence classes [Λ,Σ;λ, µ] of allowed
labels. An important subset of representations of the coset algebra is the set of chiral
primary states. It can be shown [15] that in the Grassmannian models a chiral primary
can be represented as

[Λ, 0;PnΛ, PUΛ] . (2.6)

Here Pn and PU are the projection matrices that map su(n+ 1) weights to su(n) and u(1)
weights, respectively. In terms of Dynkin labels they are explicitly given as

Pn(Λ1, . . . ,Λn) = (Λ1, . . . ,Λn−1) PU (Λ1, . . . ,Λn) = Λ1 + 2Λ2 + · · ·+ nΛn . (2.7)

– 4 –



J
H
E
P
1
1
(
2
0
1
0
)
1
3
6

The above statement about the form of the chiral primaries makes it easy to obtain the
number of chiral primary states — it is just given by the number of dominant highest
weights of su(n+ 1)k, i.e.

number of chiral primaries =
(
k + n

n

)
. (2.8)

Up to now we have only discussed representation theoretic aspects. When we want to
consider a conformal field theory (without boundaries for the moment), we have to specify
the spectrum, which we shall take to be of (almost) diagonal form,

H =
⊕

[Λ,Σ;λ,µ]

H[Λ,Σ;λ,µ] ⊗H[Λ,Σ+;λ,µ] . (2.9)

Two comments are in order. The most natural thing would be to consider the charge
conjugated spectrum. It turns out, however, that the diagonal spectrum is the one that is
related to the Landau-Ginzburg models that we shall discuss later. Of course, we can use
the mirror automorphism to map one spectrum into the other, but then we would also map
B-type boundary conditions to A-type, and if we want to relate B-type conditions in the
coset model to B-type in the Landau-Ginzburg theory, it is the diagonal spectrum that we
have to choose. The other comment concerns the small deviation from the diagonal theory,
namely the charge conjugation on the so(2n)1 representation. This is the right choice to
obtain the Landau-Ginzburg theories with the standard potentials that we introduce later.
If we twist the spectrum by applying the outer automorphism that exchanges spinor and
anti-spinor, we obtain the theory where we add a quadratic term z2 to the superpotential.

2.2 Boundary conditions

We now want to discuss the theory on a world-sheet with a boundary,2 which we take to be
the upper half plane. At the real axis, we impose B-type gluing conditions for the energy
momentum tensor T , the current J and the supercurrents G±,

T (z) = T̄ (z̄) J(z) = J̄(z̄) G±(z) = ηḠ±(z̄) (2.10)

at z = z̄. Here, η is a sign corresponding to the choice of a spin structure. The sign of η
does of course not affect the gluing conditions for the fields of the bosonic subalgebra of
the N = 2 superconformal algebra.

In general, the classification and construction of boundary states with the above gluing
conditions is a difficult and unsolved problem. We need to restrict our focus on highly
symmetric boundary conditions, which satisfy gluing conditions on more fields of our chiral
symmetry algebra. Denoting by W (z) any chiral field of the coset algebra, we can impose
the gluing condition [27]

W (z) = ω(W̄ )(z̄) at z = z̄ . (2.11)

Here, ω is an automorphism of the coset algebra. The coset algebra contains the bosonic
subalgebra of the N = 2 superconformal algebra, so the gluings we choose for the coset
theory should be consistent with the B-type gluing conditions.

2Boundary conditions in (non-minimal) Kazama-Suzuki models have been discussed before in [13, 25, 26].
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The classification of automorphisms of coset algebras is not known, but there is a
particularly nice class of automorphisms that we can use. An automorphism of this class is
induced by an automorphism ωG of the group G that can be restricted to an automorphism
ωH of H, in the sense that i(ωH(h)) = ωG(i(h)) for all h ∈ H. In [26] the automorphisms
of this type have been classified, and it is also analysed which automorphisms correspond
to B-type gluing conditions. In the Grassmannian models, only the trivial automorphism
is possible.

This, however, still means that we have to deal with twisted boundary conditions,
because we chose a diagonal bulk spectrum which is twisted (by conjugation) with respect
to the standard theory with charge conjugated spectrum. In particular this means that
only those sectors of the bulk theory can couple to the branes which are invariant under
charge conjugation.

Our discussion leads to the conclusion that only those bulk fields can couple to the
boundary that belong to H[Λ,Σ;λ,µ] ⊗H[Λ,Σ+;λ,µ] satisfying

[Λ,Σ;λ, µ] = [Λ+,Σ;λ+,−µ] . (2.12)

Note that because of our choice of the spectrum, the so(2n)1-label Σ appears without
conjugation on the right hand side.

To analyse the condition (2.12), we have to take into account that only the equivalence
classes of labels have to agree. Let us denote the quadruples by α and the automorphism
appearing on the right hand side of (2.12) by C. Solving [α] = [C(α)] then means to find
all equivalence classes [α] such that

α = JC(α) (2.13)

for some simple current J of the identification group Gid. If α is a solution to the above
equation, then of course J ′α is also a solution, but possibly for a different J . In our case,
commuting the charge conjugation with the action of a simple current just inverts the
current, so that we get

J ′α = J ′JC(α) = J ′JJ ′C(J ′α) . (2.14)

Hence, J ′α satisfies (2.13) if J is replaced by J ′JJ ′. In other words we only have to
investigate (2.13) for one representative J of each orbit CJ = {J ′JJ ′|J ′ ∈ Gid}. In our case
where Gid is just a cyclic group of even order, there are two orbits: one generated by 1
(containing the even powers of J0) and one generated by J0 (consisting of the odd powers
of J0). So we are led to consider solutions to the condition

(Λ,Σ;λ, µ) = (Λ+,Σ;λ+,−µ) (2.15)

and solutions of
(Λ,Σ;λ, µ) = (Jn+1Λ+, vΣ; Jnλ+,−µ+ k + n) . (2.16)

As is obvious from the condition on the so(2n)1-label, the latter equation does not have
a solution, so the only sectors that couple to the boundary correspond to solutions of the
first condition. On the set of labels that satisfy this condition, we still have the action
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of a subgroup of the identification group; it is clear from the discussion above and (2.14)
that apart from the identity only the element Jn(n+1)/2

0 maps this set to itself. We can
use this identification to set the U(1)-label to µ = 0, since the other solution, namely
µ = ±n(n+1)

2 (k + n+ 1), is mapped to µ = 0 by Jn(n+1)/2
0 .

There is one further issue that we have to take into account, namely that some sec-
tors are forbidden by selection rules. As we have said, the selection rule is encoded in
the monodromy charges (2.5). For a self-conjugate representation λ = λ+ of su(n), the
monodromy charge with respect to the generating simple current J(n) is either zero (if n is
odd) or given by 1

2λn/2 (for even n).3 For the so(2n)1 representation Σ, the monodromy
charge is 0 for Σ = 0, v and 1

2 for Σ = s, s̄. So for given λ and Λ, the selection rules restrict
the choice of Σ to two values.

In each allowed sector that couples to the brane, there is (up to normalisation) a unique
(twisted) Ishibashi state [28] that implements the gluing conditions in that sector. The
set of Ishibashi states |Λ,Σ;λ, 0〉〉 is labelled by self-conjugate labels Λ = Λ+, λ = λ+ and
an so(2n)1-label Σ (that is constrained by the selection rule). The gluing conditions are
satisfied for any linear combination of Ishibashi states of the different sectors. The true
boundary states are those linear combinations that lead to correlation functions satisfying
the correct sewing constraints (similar to the requirement of modular invariance of the par-
tition function for a bulk theory). The problem of constructing twisted boundary states in
coset models has been analysed in [26, 29–31] (see also [32–34]). In the case at hand, we are
in a standard situation where the set of Ishibashi labels is just given by a tuple of twisted
Ishibashi labels of the constituent models, acted upon by an identification group without
fixed-points. In this case the Ansatz of factorised boundary states [29] works, i.e. we take
the coefficients of the twisted boundary states of the constituent theories, and multiply
them,

|L, S; l〉 = N
∑

(Λ,Σ;λ,0)∈V

ψ
(n+1)
LΛ S

(so)
SΣ ψ̄

(n)
lλ√

S
(n+1)
0Λ S

(so)
0Σ S

(n)
0λ

|Λ,Σ;λ, 0〉〉 . (2.17)

Here, S(n) is the modular S-matrix of su(n)k+1, ψ(n) is its twisted S-matrix (similarly for
n+1). S(so) is the modular S-matrix of so(2n)1, and V denotes the set of labels (Λ,Σ;λ, 0)
with Λ = Λ+, λ = λ+ and which in addition satisfy the selection rules. The normalisation
N will be determined shortly.

The label S is a usual so(2n)1-representation. The labels L, l denote representations
of the twisted affine algebras A(2)

n and A(2)
n−1, respectively. Let us for a moment concentrate

just on the numerator part, A(2)
n . The label L can be represented as a tuple (L1, . . . , Lbn+1

2
c)

with the condition that 2
∑n/2

i=1 Li ≤ k for n even, and L1 +
∑(n+1)/2

i=2 Li ≤ k for n odd.
Also for n odd, there is a simple current like action on the label, L 7→ JL, that replaces
L1 by (JL)1 = k − L1 − 2

∑(n+1)/2
i=2 Li. The twisted S-matrix satisfies

ψ
(n+1)
JLΛ = ψ

(n+1)
LΛ (−1)Λ(n+1)/2 . (2.18)

The discussion for the denominator part su(n)k+1 is similar.
3Similarly for su(n + 1)
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The selection rules on the Ishibashi states induce identifications of labels of boundary
states, namely we have that

|L, S; l〉 = |JL, vS;J l〉 , (2.19)

where it is understood that J acts trivially on L when n is even, and trivially on l when
n is odd.

Having identified the set of Ishibashi states and boundary states, we can now determine
the spectra. This will then also fix the normalisation constant N .

For the closed string overlap amplitude between two boundary states, or equivalently
the one-loop open string partition function, we have (q = e2πiτ , q̃ = e−2πi/τ )

〈L1, S1; l1|q̃ 1
2

(L0+L̄0− c
12

)|L2, S2; l2〉

= N 2

(
n(n+ 1)
k + n+ 1

)1/2 ∑
(Λ,Σ;λ,0)∈V

∑
[Λ′,Σ′;λ′,µ′]

1
2

(
ψ̄

(n+1)
L1Λ ψ

(n+1)
L2Λ S

(n+1)
Λ′Λ

S
(n+1)
0Λ

ψ
(n)
l1λ
ψ̄

(n)
l2λ
S̄

(n)
λ′λ

S
(n)
0λ

S̄soS1ΣS
so
S2ΣS

so
Σ′Σ

Sso0Σ

+
(
(L1, S1, l1)→ (JL1, vS1,J l1)

))
χ[Λ′,Σ′;λ′,µ′](q) (2.20)

=
∑

[Λ′,Σ′;λ′,µ′]

(
n

(n+1)
Λ′L2

L1n
(n)
λ′l2

l1N so
Σ′S2

S1

+
(
(L1, S1, l1)→ (JL1, vS1,J l1)

))
χ[Λ′,Σ′;λ′,µ′](q) . (2.21)

The sum over the orbit of (J , v;J ) has been introduced to take care of the selection
rules for Ishibashi states. The factor (n(n + 1)(k + n + 1))−1/2 comes from the modular
transformation of the u(1)-part (see (A.6)), the factor n(n + 1) comes from the relation
of the coset modular S-matrix to the product of the S-matrices of the constituent models.
In the last step we have used the Verlinde formula and its twisted version to get the
(twisted) fusion rules n(n+1), n(n) and N so. The normalisation factor has been set to
N 4 = 4(k+ n+ 1)/(n(n+ 1)) in (2.21) such that the vacuum state has multiplicity one in
the self-spectra.

The boundary states that we have introduced are consistent with the B-type gluing
conditions for the supercurrents with either sign for η in (2.10). By restricting to boundary
state labels S = 0, v, we fix one sign of η, i.e. we fix the spin-structure. From now on,
we only allow S to be either of the two values. On the other hand, changing the so-label
from 0 to v and vice versa means to exchange brane and anti-brane (the RR part of the
boundary state changes sign). In the following we shall use the notation

|L, l〉 ≡ |L, 0; l〉 and |L, l〉 ≡ |L, v; l〉 . (2.22)

The identification rule on the boundary states is then

|L, l〉 = |JL,J l〉 . (2.23)
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We are particularly interested in the chiral primary fields that appear in the open string
spectrum, because their multiplicities can be compared to the computations in the Landau-
Ginzburg models. Chiral primaries are of the form (2.6), so in the overlap of |L1, l1〉 and
|L2, l2〉 we find a chiral primary state (Λ, 0;PnΛ, PUΛ) with multiplicity n(n+1)

ΛL2

L1n
(n)
PnΛ l2

l1 .
The number of chiral primaries (Λ, 0;PnΛ, PUΛ) in the spectrum minus the number of
superpartners (Λ, v;PnΛ, PUΛ) of chiral primaries defines the intersection index between
two boundary states,

I(L1, l1|L2, l2) =
∑

Λ

(
n

(n+1)
ΛL2

L1n
(n)
PnΛ l2

l1 − n(n+1)
ΛL2

JL1n
(n)
PnΛ l2

J l1
)
. (2.24)

The intersection index carries information about the RR charges of the D-branes, and it is
conserved in dynamical processes like tachyon condensation.

This ends our discussion of B-type boundary states in the Grassmannian series. We
have identified the maximally symmetric boundary states |L, l〉, and determined the spectra
in terms of twisted fusion rules that can be found in [35]. In the following sections we shall
concentrate on the case n = 2 and work out the explicit formulae.

2.3 The SU(3)/U(2) series

In the Kazama-Suzuki model based on SU(3)/U(2), the sectors are labelled by quadruples
(Λ,Σ;λ, µ) where Λ = (Λ1,Λ2) with Λ1 + Λ2 ≤ k is a dominant weight of su(3)k, Σ labels
a representation of so(4)1, λ ∈ {0, . . . , k + 1} labels a dominant weight of su(2)k+1 and µ

is a 6(k + 3)-periodic integer labelling representations of u(1)6(k+3). The selection rule for
a quadruple reads

Λ1 + 2Λ2

3
+
|Σ|
2
− λ

2
+
µ

6
∈ Z , (2.25)

where |Σ| is defined to be 1 for Σ = s, s̄ and 0 for Σ = 0, v. The simple current

J0 = ((k, 0), v; k + 1, k + 3) (2.26)

that generates the identification group Gid leads to the following identification of labels,

((Λ1,Λ2),Σ;λ, µ) ∼ ((k − Λ1 − Λ2,Λ1), vΣ; k + 1− λ, µ+ k + 3) . (2.27)

The order of the identification group is 6. The selection rules restrict the total number

Ntot =
(k + 1)(k + 2)

2
· 4 · (k + 2) · 6(k + 3) = 12(k + 1)(k + 2)2(k + 3) (2.28)

of quadruples to Ntot/6, and due to the identifications we only find Ntot/36 inequivalent
representations.

The conformal weight h and the U(1)-charge q (with respect to the U(1) of the super-
conformal algebra) of a representation labelled by (Λ,Σ;λ, µ) are given by

h =
1

2(k + 3)

(
(Λ,Λ + 2ρ)− λ(λ+ 2)

2
− µ2

6

)
+ hΣ mod 1 (2.29)

q = −qΣ +
µ

k + 3
mod 2 . (2.30)
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Here, ρ denotes the Weyl vector of su(3), hΣ and qΣ are the contributions from the so(4)1-
part, they are given as

h0 = 0 hv =
1
2

hs =
1
4

hs̄ =
1
4

(2.31)

q0 = 0 qv = 1 qs = 1 qs̄ = 0 . (2.32)

The chiral primary states are labelled by ((Λ1,Λ2), 0; Λ1,Λ1 +2Λ2). They have U(1)-charge
q = Λ1+2Λ2

k+3 and conformal weight h = 1
2q. In total there are (k+1)(k+2)/2 chiral primaries.

The set of chiral primaries has a ring structure, and we shall discuss this chiral ring when
we discuss the connection to the Landau-Ginzburg models in section 3.1 .

An important property of the N = 2 superconformal algebra is the existence of a
spectral flow. The spectral flow automorphism extends to the coset algebra, and the action
of a flow by half a unit on a representation (Λ,Σ;λ, µ) is given by

(Λ,Σ;λ, µ) 7→ (Λ, s× Σ;λ, µ+ 3) , (2.33)

so it is generated by the simple current (0, s; 0, 3) (for a general Grassmannian model, 3
is replaced by n(n+1)

2 ) [12, 36]. The flow by half a unit maps the Ramond sector to the
Neveu-Schwarz sector and vice versa.

In the SU(3)/U(2) Grassmannian model, the boundary label L and l are just integers
ranging from L = 0, . . . , bk2c and l = 0, . . . , k + 1. The identification is

|L, l〉 = |L, k + 1− l〉 . (2.34)

The explicit formula for the boundary states can be found in appendix A.1. For the
denominator part su(2)k+1, charge conjugation is trivial, so the relevant fusion rules that
appear in the open string spectra are the ordinary untwisted ones that we denote by
N

(k+1)
λl2

l1 . The twisted fusion rules for the numerator theory su(3)k have been explicitly
computed in [35], their expressions involve either the fusion rules of su(2) at level 2k + 4
or (for odd k) at level (k− 1)/2. For our purposes, however, it is convenient to write them
in terms of su(2) fusion rules at level k + 1,

nΛL2
L1 =

∑
γ

bΛγ
(
N

(k+1)
γ L2

L1 −N (k+1)
k+1−γ L2

L1
)
. (2.35)

Here Λ = (Λ1,Λ2) is a dominant weight of su(3)k, γ denotes a dominant weight of su(2)
and bΛγ is the branching rule of the regular embedding of su(2) ⊂ su(3) with embedding
index x = 1. This expression for the twisted fusion rules appears to be new (although
closely related to the results of [35]) and is proved in appendix A.2.

The open string spectrum is now obtained by specialising the formula (2.21) for the
spectrum in a general Grassmannian model to the case of SU(3)/U(2). For the intersection
index, we find

I(L1, l1|L2, l2) =
∑

Λ=(Λ1,Λ2)

nΛL2
L1

(
N

(k+1)
Λ1l2

l1 −N (k+1)
Λ1l2

k+1−l1
)

=
∑
Λ,γ

bΛγ

(
N

(k+1)
γL2

L1 −N (k+1)
k+1−γ L2

L1

)(
N

(k+1)
Λ1l2

l1 −N (k+1)
k+1−Λ1 l2

l1
)
. (2.36)
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We observe that the labels Li and li enter the formula in a similar, but not symmetric way.
Some explicit results for the spectra of chiral primaries are collected in appendix A.3.

2.4 RR charges and g-factors

D-branes can be charged under RR fields. B-type D-branes can only couple to RR ground
states that have opposite U(1)-charge for the left and right-movers. In our case where we
consider a diagonal bulk spectrum, the B-type condition thus only allows a coupling to RR
ground states with vanishing U(1)-charge.

Let us first look at the left-movers. Ramond ground states are obtained from chiral
primary states by the application of spectral flow by half a unit, so the set of Ramond
ground states is given by

RGS = {[(Λ1,Λ2), s; Λ1,Λ1 + 2Λ2 + 3]} . (2.37)

The U(1)-charge is given by q = −1 + Λ1+2Λ2+3
k+3 , so the uncharged Ramond ground states

correspond to labels satisfying Λ1 + 2Λ2 = k. We are now looking for representatives of
these states that have a symmetric su(3)-weight. Applying J5

0 = J−1
0 to the labels, we

obtain the following form of the set of uncharged Ramond ground states,

RGS0 = {[(Λ2,Λ2), s̄; 2Λ2 + 1, 0]} . (2.38)

Combining such Ramond ground states from left- and right-movers, we obtain the RR
ground states that can couple to our B-type branes. The RR charges of the brane described
by a boundary state |L, l〉 are then given by the coefficients in front of the corresponding
RR ground states in (2.17). The charge chj(|L, l〉) with respect to the RR ground state
with symmetric su(3) weight (j, j) is given by

chj(|L, l〉) = N
ψ

(3)
L (j,j)S

so
0s̄S

(2)
l 2j+1√

S
(3)
(0,0)(j,j)S

so
0s̄S

(2)
0 2j+1

. (2.39)

Employing the explicit formulae for the (twisted) S-matrices (see appendix A.1), we get

chj(|L, l〉) =
1√
2

sin
(

2π(L+1)(j+1)
k+3

)
sin
(
π(l+1)(2j+2)

k+3

)
sin
(
π(j+1)
k+3

)
sin
(

2π(j+1)
k+3

) . (2.40)

As there are only bk2c + 1 uncharged Ramond ground states, it is clear that the charge
vectors of the boundary states are not linearly independent. A basis is for example given
by the charge vectors of the boundary states |L, 0〉; it is straightforward to verify that

chj(|L, l〉) =
b k

2
c∑

L′=0

(
N

(k+1)
LL′

l −N (k+1)
LL′

k+1−l)chj(|L′, 0〉) (2.41)

for all j = 0, . . . , bk2c. Let us briefly remark that this fits nicely with an analysis of the
dynamics of such branes in the limit of large level k along the lines of [37–39]. In this limit,
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the branes are labelled by a representation L of the invariant subgroup SU(2) ⊂ SU(3) and
a representation l of the numerator group SU(2). The dynamics at large level k suggest
that the charge of the branes (L, l) is measured by the representation L⊗l of the diagonally
embedded SU(2). This matches precisely with the charge formula in (2.41).

Another useful information on the D-branes is provided by their mass, or in the CFT
language, the g-factor of the boundary condition. It is given by the coefficient of the
boundary state |L, l〉 in front of the vacuum state, which — up to an overall normalisation
— is given by

g̃L,l = sin
(

2π(L+ 1)
k + 3

)
sin
(
π(l + 1)
k + 3

)
. (2.42)

We chose the notation g̃ to emphasise that this is an unnormalised g-factor. The g-factor
has the symmetry

g̃L,2L′+1 = g̃L′,2L+1 , (2.43)

and also, because of the identification rule, g̃L,l = g̃L,k+1−l (brane and anti-brane have of
course the same g-factor). For odd k, there is in addition the symmetry g̃L,l = g̃ k−1

2
−L,l.

For odd k, the smallest g-factor (corresponding to the lightest D-brane) is carried by |0, 0〉
and |k−1

2 , 0〉 (and their-anti-branes). For even k, the lightest D-brane corresponds to |k2 , 0〉
and its anti-brane.

This concludes our presentation of the CFT results on boundary states in Grassman-
nian Kazama-Suzuki models. We shall now turn towards the Landau-Ginzburg description.

3 Landau-Ginzburg theory

In this section we shall discuss the description of B-type boundary conditions in Landau-
Ginzburg models that correspond to Grassmannian coset models. We shall first introduce
the bulk models in section 3.1, and then discuss the concept of matrix factorisations in
section 3.2. Sections 3.3 and 3.4 then analyse factorisations in the SU(3)/U(2) model.

3.1 Landau-Ginzburg description of Kazama-Suzuki models

A Landau-Ginzburg theory is a theory of chiral scalar superfields Φi with action (in super-
space notation)

SLG =
∫
d2zd4θK(Φ, Φ̄) +

∫
d2z
(
d2θW (Φ) + c.c.

)
, (3.1)

where K(Φ, Φ̄) denotes the Kähler potential and W (Φ) is the superpotential. This theory
is in general not scale invariant, and one can study its behaviour under renormalisation
group (RG) flow. Due to non-renormalisation theorems, the superpotential is not renor-
malised [40, 41], but only the D-term involving the Kähler potential. In this way, one can
obtain some information on the behaviour of the theory in the infrared.

In the course of the RG flow, the fields Φi undergo wavefunction renormalisation, so
they are rescaled during the flow, and in that sense there is a change in the superpotential.
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In the infrared, where one expects a scale-invariant theory, the superpotential therefore
has to be quasi-homogeneous,

W (eiλqiΦi) = e2iλW (Φi) , (3.2)

where the fields can have different weights qi under scaling. The infrared fixed-points of
Landau-Ginzburg theories are therefore characterised by such quasi-homogeneous super-
potentials. The central charges of the fixed-point theories are completely determined by
the weights qi (see e.g. [40]),

c =
∑
i

3(1− qi) . (3.3)

The superpotential now determines the ring of chiral primary operators, the chiral ring

R =
C[x1, . . . , xn]
〈∂iW 〉 . (3.4)

It is this chiral ring that we can compare to the chiral ring in the superconformal coset
models to get the identification of the theories.

From the CFT side, the multiplication in the chiral ring is given by the non-singular
term in the operator product expansion (OPE) of two chiral primary operators, which
again has to be chiral primary. The OPEs consist of the fusion rules that essentially gov-
ern the representation theoretic constraints on the operator products, and some structure
constants, which in general are rather difficult to compute. To obtain the ring structure,
one is however allowed to rescale the chiral primary fields to have simpler coefficients. In
the case of the Grassmannian coset models SU(n + 1)/U(n), Gepner has shown [42] that
the structure constants involved in the definition of the chiral ring can be set to 1, so that
the chiral ring structure is given by the appropriate truncation of the fusion rules to chiral
primary fields.

That being said, we can now review how to obtain the corresponding chiral rings. As
we have discussed in section 2.1 (see eq. (2.6)), the chiral primary fields are labelled by
representations of su(n+1). These representations can all be generated by tensor products
from the fundamental representations that we denote by y1, . . . , yn. Any representation
Λ = (Λ1, . . . ,Λn) can be written as a polynomial UΛ(yi) in the yi. These polynomials are
given by Giambelli’s formula

UΛ(y) = det
(
yai+i−j

)
1≤i,j≤|Λ| . (3.5)

Here, |Λ| = Λ1 + · · ·+ Λn, and the integers ai describe the decomposition of Λ in terms of
the fundamental weights ωi, Λ =

∑|Λ|
j=1 ωaj , with 1 ≤ a1 ≤ · · · ≤ a|Λ| ≤ n. In (3.5) we have

set yj = 1 for j ≤ 0 or j ≥ n+ 1.
Let us denote the chiral primary fields corresponding to the fundamental representa-

tions of su(n + 1) also by yi. The chiral primary field corresponding to a representation
Λ can then be written as a polynomial ŨΛ(yi) in the chiral primary fields yi. The poly-
nomial ŨΛ is in general different from UΛ, because when we describe the chiral ring, we
have to truncate the fusion to chiral primary fields. The chiral primary labelled by Λ has
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U(1)-charge qΛ =
P
i iΛi

k+n+1 , hence in the polynomial UΛ(yi), only the term that under the
transformation yi 7→ yiλ

i scales with λ
P
j jΛj corresponds to a chiral primary field. In other

words, to obtain ŨΛ we truncate UΛ to the term with the highest U(1) charge,

ŨΛ(yi) = lim
λ→∞

λ−
P
j jΛjUΛ(λiyi) . (3.6)

Until now, the level k did not enter. The polynomial expressions do not change when
we consider fusion in the affine theory instead of tensor products. Of course there is a
truncation in that we have to set to zero some of the polynomials, namely those that lie in
the fusion ideal (the ideal that one has to divide out from the representation ring to obtain
the fusion ring). For su(n+1)k, a basis for this fusion ideal is given by {(k+ i, 0, . . . , 0)|i =
1, . . . , n} [43]. Dividing out the corresponding polynomials Ũ results in the chiral ring.

Let us see how this works in detail. From the su(n + 1) tensor product rules, we see
that the polynomials U(Λ1,0,...,0)(y) satisfy the recursion relation

U(Λ1,0,...,0)(y) =
n+1∑
j=1

(−1)j−1yjU(Λ1−j,0,...,0)(y) , (3.7)

where yn+1 ≡ 1, Λ1 ≥ 0, U(0,0) = 1, and polynomials UΛ with negative Dynkin indices are
set to zero. For the generating function

Fn;1(y1, . . . , yn; t) =
∞∑

Λ1=0

U(Λ1,0,...,0)(y)tΛ1 (3.8)

this implies the relation

Fn;1(y, t) = 1 +
∞∑

Λ1>0

U(Λ1,0,...,0)(y)tΛ1

= 1 + (y1t− y2t
2 + · · ·+ (−1)ntn+1)Fn;1(y, t) . (3.9)

We conclude that the generating function is given by

Fn;1(y1, . . . , yn; t) =
(

1− ty1 + t2y2 − · · ·+ (−t)nyn + (−t)n+1
)−1

. (3.10)

The polynomials Ũ are obtained from the limiting procedure in (3.6), so their generating
function is

F̃n;1(y1, . . . , yn−1; t) =
∞∑

Λ1=0

Ũ(Λ1,0,...,0)(y)tΛ1

= lim
λ→∞

Fn;1(λy1, . . . , λ
n−1yn−1;λ−1t)

=
(

1− ty1 + t2y2 + · · ·+ (−t)nyn
)−1

. (3.11)

For fixed k and n, the polynomials Ũ(k+i,0,...,0) for i = 1, . . . , n generate the ideal that has
to be divided out from the polynomial ring C[y1, . . . , yn] to obtain the chiral ring. The
polynomials Ũ can be obtained from a potential Wk,n as

Ũ(k+i,0,...,0)(y1, . . . , yn) = (−1)n−i
∂

∂yn+1−i
Wk,n(y1, . . . , yn) , (3.12)
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where the generating function for the potentials Wk,n is given by

wn(y1, . . . , yn; t) =
∞∑

k=−n
Wk,n(y1, . . . , yn)tk+n+1

= − log
(

1− ty1 + · · ·+ (−t)nyn
)
. (3.13)

The relation (3.12) can be easily verified by differentiating (3.13) with respect to yi and
comparing the result to (3.11). In this way one arrives at an expression for the super-
potential Wk,n of the Landau-Ginzburg model that corresponds to the SU(n + 1)/U(n)
Kazama-Suzuki model [42].

There is a coordinate change that makes the expression for the superpotential simpler.
If we write the yi as the elementary symmetric polynomials in some auxiliary variables xj ,
yi =

∑
j1<···<ji xj1 · · ·xji , the generating function becomes

wn(x1, . . . , xn; t) = − log
n∏
i=1

(1− txi)

=
∞∑

k=−n

1
k + n+ 1

(
xk+n+1

1 + · · ·+ xk+n+1
n

)
tk+n+1 . (3.14)

Note however that the transformation to the variables xi is non-linear, so considering
the Landau-Ginzburg model with chiral superfields corresponding to the xi will lead to a
different theory.4

By expanding the generating function one can obtain explicit expressions for the su-
perpotential in terms of the variables yi. For the case of SU(3)/U(2) (n = 2) the result
is

Wk,2(y1, y2) =
b k+3

2
c∑

i=0

yk+3−2i
1 yi2(−1)i

1
k + 3− i

(
k + 3− i

i

)
. (3.15)

We have now obtained an expression for the superpotential. For the precise dictionary be-
tween chiral primary fields in the CFT, which are labelled by weights Λ = (Λ1, . . . ,Λn), and
the corresponding expressions in the Landau-Ginzburg models, we still need to determine
the polynomials Ũ . There are different ways to proceed — we shall use the technique of gen-
erating functions to get the result for the case of SU(3)/U(2). The generalised Chebyshev
polynomials UΛ(y1, y2) have the generating function [44, eq.(13.241)]

F2(y1, y2; t1, t2) =
∞∑

Λ1,Λ2=0

U(Λ1,Λ2)(y1, y2)tΛ1
1 tΛ2

2

=
1− t1t2

(1− t1y1 + t21y2 − t31)(1− t2y2 + t22y1 − t32)
. (3.16)

4In fact, this would result in the tensor product of n minimal models.
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The truncated polynomials ŨΛ(y1, y2) (see (3.6)) that describe the elements of the chiral
ring then have the generating function

F̃2(y1, y2; t1, t2) =
∞∑

Λ1,Λ2=0

Ũ(Λ1,Λ2)(y1, y2)tΛ1
1 tΛ2

2

= lim
λ→∞

F (λy1, λ
2y2;λ−1t1, λ

−2t2)

=
1

(1− t1y1 + t21y2)(1− t2y2)
. (3.17)

This is similar to the generating function F1 for the usual Chebyshev polynomials of the
second kind5 which occur in the su(2) fusion rules,

F1(x; t) =
∞∑
n=0

Un(x)tn =
1

1− xt+ t2
. (3.18)

Indeed, F̃2 can be rewritten as

F̃2(y1, y2; t1, t2) = F1

(
y1√
y2

; t1
√
y2

) 1
1− t2y2

(3.19)

=
∑

Λ1,Λ2

UΛ1

(
y1√
y2

)
y

Λ1
2

+Λ2

2 tΛ1
1 tΛ2

2 , (3.20)

which provides us with an expression for Ũ(Λ1,Λ2),

Ũ(Λ1,Λ2)(y1, y2) = (
√
y2)Λ1+2Λ2UΛ1

(
y1√
y2

)
. (3.21)

By using a standard expression for the Chebyshev polynomials of the second kind, we get

Ũ(Λ1,Λ2)(y1, y2) =
bΛ1/2c∑
r=0

(−1)r
(

Λ1 − r
r

)
yΛ1−2r

1 yΛ2+r
2 . (3.22)

3.2 Matrix factorisations and boundary conditions

We now want to introduce a boundary in our Landau-Ginzburg model, and discuss su-
persymmetric boundary conditions that preserve a B-type combination of left- and right-
moving supersymmetries. To preserve this supersymmetry, one has to introduce boundary
fermions together with a boundary potential. This construction is always possible if one
finds a factorisation of the superpotential W (xi) in terms of matrices [5, 46–49],

E(xi)J (xi) = J (xi)E(xi) = W (xi)1 . (3.23)

The matrices E ,J can be combined into one matrix

Q(xi) =

(
0 J (xi)
E(xi) 0

)
, (3.24)

5Our convention for these polynomials is taken from [44]; it is related to the more common convention

(used e.g. in [45]) by Uhere(x) = Ustandard(x/2).

– 16 –



J
H
E
P
1
1
(
2
0
1
0
)
1
3
6

such that the condition (3.23) above turns into Q2(xi) = W (xi)1. We also introduce an
involution σ as

σ =

(
1 0
0 −1

)
, (3.25)

which anti-commutes with Q, σQ+Qσ = 0. We saw that in the infrared, the bulk superpo-
tential W (xi) turns into a quasi-homogeneous function, and there is a similar property for
matrix factorisations that correspond to superconformal boundary conditions (see e.g. [50]),
namely

Q(eiλqixi) = eiλρ(xi, λ)−1Q(xi)ρ(xi, λ) , λ ∈ C . (3.26)

For this to be consistent for iterated transformations, the invertible matrices ρ have to
satisfy a certain composition rule; in the case of x-independent ρ’s, this is just the repre-
sentation property,

ρ(λ+ λ′) = ρ(λ)ρ(λ′) . (3.27)

It can sometimes be useful to consider just the infinitesimal version of the scaling behaviour.
Differentiation of (3.26) with respect to λ at λ = 0 yields

EQ+ [R,Q] = Q , (3.28)

where

E ≡
n∑
i=1

qiyi
∂

∂yi
(Euler vectorfield) and R ≡ −i(∂λρ)ρ−1

∣∣∣
λ=0

. (3.29)

The spectrum of chiral primary open string states can be obtained by solving a cohomology
problem. The matrix Q acts linearly on the space NQ = Cn[xi] of vectors with polynomial
entries, where n is the size of the square matrix Q. Open strings between branes given by
factorisations Q,Q′ correspond to homomorphisms from NQ to NQ′ . The space of chiral
primary open string states corresponds to the cohomology of the operator DQQ′ defined
on Hom(NQ, NQ′) by

DQQ′Φ = Q′Φ− σQ′ΦσQQ . (3.30)

Obviously, there is a Z2 action on the spectrum by

Φ 7→ σQ′ΦσQ , (3.31)

and we can split the spectrum into the part with eigenvalue +1 under this operation, the
bosonic spectrum, and the part with eigenvalue −1, the fermionic spectrum.

In the case of quasi-homogeneous factorisations, one also has a C∗ action on the spec-
trum, and we can decompose the spectrum into eigenvectors with respect to this action,

ρQ′(λ)Φ(eiλqixi)ρ−1
Q (λ) = eiλqΦΦ(xi) . (3.32)

We call qΦ the U(1)R-charge of Φ. It corresponds to the eigenvalue of the u(1)-generator in
the N = 2 superconformal algebra at the infrared fixed point. In the infinitesimal version,
the action on the spectrum reads

EΦ +R′Φ− ΦR = qΦΦ . (3.33)

– 17 –



J
H
E
P
1
1
(
2
0
1
0
)
1
3
6

Not all different matrix factorisations correspond to different boundary conditions. In
particular, two matrix factorisations (Q, σQ, ρQ) and (Q′, σQ′ , ρQ′) of size r that are related
by a similarity transformation

UQU−1 = Q′ and UσQU−1 = σQ′ and UρQU−1 = ρQ′ , (3.34)

with an invertible matrix U ∈ GL(2r,C[xi]), have the same spectra with all other branes,
and are called equivalent.

Matrix factorisations can also be added (corresponding to superpositions of branes),

Q⊕Q′ ≡
(
Q 0
0 Q′

)
. (3.35)

We identify matrix factorisations that differ only by direct sums of trivial matrix factori-
sations,

(
0 1
W 0

)
or
(

0 W
1 0

)
, which have trivial spectra with all other factorisations.

There is an operation on the matrix factorisations that physically corresponds to the
map that exchanges branes and anti-branes, namely we can swap J and E ,

Q =

(
0 J
E 0

)
7→ Q =

(
0 E
J 0

)
. (3.36)

We call Q the anti-factorisation to Q.
The spectrum of chiral primary fields can be directly compared to the CFT description.

In addition one can compare the coupling to bulk fields (the RR charges), and the operator
multiplication (for open strings from one brane to itself, this defines a ring structure). After
the analysis of factorisations in the case of the SU(3)/U(2)-model in the following section,
we shall discuss their RR charges in section 3.4. The multiplicative structures will not be
considered in this paper.

3.3 Factorisations in the SU(3)/U(2) model

We can now discuss factorisations in the Landau-Ginzburg description of the SU(3)/U(2)
Kazama-Suzuki model. The superpotential is

Wk(y1, y2) =
b k+3

2
c∑

i=0

yk+3−2i
1 yi2(−1)i

k + 3
k + 3− i

(
k + 3− i

i

)
= xk+3

1 + xk+3
2 , (3.37)

where y1 = x1+x2 and y2 = x1x2. We have rescaled the superpotential to Wk = (k+3)Wk,2

(Wk,2 was given in (3.15)) to avoid disturbing prefactors in the factorisations that we are
about to discuss.

In the variables x1, x2 the superpotential is very simple, and it can be factorised as

Wk =
∏

ηd=−1

(x1 − ηx2) , (3.38)

where we have set d = k + 3. This is the factorisation that appears in the description of
permutation branes in the product of two minimal models [9, 51, 52]. Let us label the dth
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roots of −1 by ηj = eπi
2j+1
d , j = 0, . . . , d − 1. A factorisation in the y-variables is easily

obtained by noting that

(x1 − ηx2)(x1 − η−1x2) = y2
1 − (2 + η + η−1)y2 . (3.39)

This leads to a polynomial factorisation of Wk(yi) in bd+1
2 c factors (for odd d, y1 = x1 +x2

appears in the factorisation),

Wk(y1, y2) =
b d−2

2
c∏

j=0

(y2
1 − βjy2) ·

{
y1 for d odd
1 for d even.

, (3.40)

where
βj = 2 + ηj + η−1

j = 2
(

1 + cos
(
π 2j+1

d

))
. (3.41)

We have illustrated this arrangement of factors in figure 1.
We can now easily write down matrix factorisations of the superpotential by grouping

the product formula above into two polynomial factors J , E . It is very convenient to
keep the description in terms of the x-variables (indeed there is a faithful functor of the
category of matrix factorisations of Wk(yi) into the category of matrix factorisations of
W̃k(xi) = Wk(x1+x2, x1x2) — this will be discussed in appendix B.4). Then, factorisations
of Wk(yi) can be described as

JI =
∏
η∈I

(x1 − ηx2) , EI =
∏
η∈Ic

(x1 − ηx2) , (3.42)

where D is the set of all dth roots of −1, and I ⊂ D is a subset of roots that is invariant
under the map η 7→ η−1. The complement of I in D is denoted by Ic = D\I (cf. figure 2).
These factorisations are quasi-homogeneous in the sense of (3.26). The corresponding
matrices RI are given by

RI =

(
(1− qI)/2 0

0 (qI − 1)/2

)
, (3.43)

where qI = |I|2d (see (B.5)).
The open string spectrum can be obtained from the open string spectra of permutation

factorisations in the product of two minimal models [9] by a suitable projection onto open
string states that are symmetric under the exchange of x1 and x2 (see the discussion
in appendix B.4). Essentially, by the projection we get just half the spectrum of the
corresponding permutation factorisations, namely the number of bosonic and fermionic
fields in the spectrum between two factorisations given by I and I ′ is

number of bosons =
1
2
|I ∩ I ′| · |Ic ∩ I ′c| (3.44)

number of fermions =
1
2
|Ic ∩ I ′| · |I ∩ I ′c| . (3.45)
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αd

(0)

(1)

(2)

(Lmax − 1)

(Lmax)

(Lmax)−1

(Lmax − 1)−1

(2)−1

(1)−1

(0)−1

d even

αd
(0)

(1)

(2)

(Lmax − 1)

(Lmax)

(Lmax − 1)−1

(2)−1

(1)−1

(0)−1

d odd

group
sym

m
etric

factors

(0)

(1)

(2)

(Lmax − 1)

(Lmax)

d even

(0)

(1)

(2)

(Lmax − 1)

(Lmax)

x1 + x2 = y1

d odd

Figure 1. Illustration of the polynomial factorisations for the potential Wk = xd1 + xd2 (upper
row) and for the same potential expressed in symmetric coordinates y1 = x1 + x2 and y2 = x1x2

(lower row) with αd = 2π
d and Lmax = bd−1

2 c. Each node in the upper row corresponds to a
polynomial factorisation (L)=̂

(
x1 − eiαLx2

)
, where αL = Lαd + αd/2. In the lower diagram, pairs

of nodes (L) and (L)−1 (corresponding to
(
x1 − e−iαLx2

)
) are grouped together (indicated by

the shape connecting them), and we express the resulting matrix factorisations in y-variables as(
x1 − eiαLx2

) (
x1 − e−iαLx2

)
= y2

1 − βLy2.

The detailed computations are done in appendix B.1. Let us state here only the form of
the fermions (see (B.13)),

ψp = p

(
0 JI∩I′

−JIc∩I′c 0

)
with p ∈ C[y1, y2]

〈JI∩I′c ,JI′∩Ic〉 . (3.46)

The U(1) charge of a fermion ψp with a quasi-homogeneous polynomial p is given by

qψp =
1
d

(
2 deg(p) + |I ∩ I ′|+ |Ic ∩ I ′c|) . (3.47)
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(0)

(1)

(2)(3)

(4)

(5)

d even (d = 12)

(0)

(1)

(2)
(3)

(4)

(5)

(6)

d odd (d = 13)

Figure 2. Illustration for the form of the polynomial factorisation Q[0,1,2] corresponding to the
CFT boundary condition |2, 0〉. The J part (containing the roots in [0, 1, 2]) is colored in red (light
grey in black-and-white printouts), the E part (containing the other roots) in blue (dark grey).

The spectrum containing the information on U(1) charges is described by the bosonic and
fermionic boundary partition functions (see (B.18) and (B.16))

BII′(z) =
1− z2|I∩I′|

1− z2

1− z2|Ic∩I′c|

1− z4
z|I

c∩I′|+|I∩I′c| (3.48)

FII′(z) =
1− z2|I∩I′c|

1− z2

1− z2|Ic∩I′|

1− z4
z|I∩I

′|+|Ic∩I′c| . (3.49)

These are generating polynomials for the data of the spectrum — the coefficient of a term
zn gives the number of morphisms of charge n/d.

There are 2b
d+1

2
c−2 ways of combining the bd+1

2 c factors into two factors J and E (the
−2 is because we ignore the trivial factorisations where J or E are constant). The common
feature of these factorisations is that they do not have any fermions in their self-spectrum.
As we shall see shortly, these factorisations can only correspond to a subset of the boundary
states that we found before. It will therefore be necessary to find other factorisations with
higher rank matrices J , E . Some of those will be constructed in section 4.4 by the technique
of tachyon condensation.

3.4 RR charges

To determine RR charges we have to compute one-point functions of bulk fields in the
presence of a boundary. By spectral flow, the fields corresponding to RR ground states can
be labelled by elements of the chiral ring. For such an element φ we calculate the charge
by the Kapustin-Li formula [49] (see also [50]),

chφ(Q) =
1√
2

ResWk

(
φStr

(
∂y1Q∂y2Q

))
. (3.50)

Note that we have to insert a factor 1/
√

2 if we want to compare the results to the charges
of the full boundary states in the CFT description. (This rescaling of the RR charge also
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occurs e.g. in [25].) With our choice of grading (3.25), the supertrace is defined as

Str

(
A B

C D

)
= trA− trD . (3.51)

The residue is formally defined as

ResWk
(f) =

1
(2πi)2

∮ ∮
f

∂y1Wk∂y2Wk
dy1dy2 . (3.52)

It can be evaluated by noting that (see [53])

ResWk
(f∂yiWk) = 0 for all f and all yi . (3.53)

This fixes the residue up to a normalisation which is given by the requirement that the
Hessian determinant H,

Hk = det(∂yi∂yjWk) = d2 yk2

(
(U ′k+1(z))2 − U ′k+2(z)U ′k(z)

)
, (3.54)

(z = y1/
√
y2) has as residue the number of chiral primary fields,

ResWk
(Hk) =

(k + 1)(k + 2)
2

. (3.55)

It defines a pairing on the chiral primary fields Ũ(Λ1,Λ2)(y1, y2),

ResWk

(
Ũ(Λ1,Λ2)Ũ(Λ′1,Λ

′
2)

)
= d2 δΛ1,Λ′1δk−Λ1−Λ2,Λ′2 . (3.56)

Let us now evaluate the RR charge. For a factorisation with a simple factor Jj = y2
1−βjy2

we find
Str∂y1Qj∂y2Qj =

d

z2 − βj
(
βjUk+2(z)− 2zUk+1(z)

)
y
k/2
2 . (3.57)

To determine the charge we need to expand this polynomial in combinations of Chebyshev
polynomials in z, and we claim

1
z2 − βj (βjUk+2(z)− 2zUk+1(z)) = 2

b k
2
c∑

i=0

cos
(
π
d (2j + 1)(i+ 1)

)
Uk−2i(z) . (3.58)

To prove this we write z = 2 cos t, and use an alternative expression for the Chebyshev
polynomials,

Un(2 cos t) =
sin
(
(n+ 1)t

)
sin t

. (3.59)

This transforms (3.58) into a trigonometric identity,

βj sin
(
(k + 3)t

)− 4 cos t sin
(
(k + 2)t

)
= 2(4 cos2 t− βj)

b k
2
c∑

i=0

(
cos
(
π
d (2j + 1)(i+ 1)

)
sin
(
(k − 2i+ 1)t

))
, (3.60)
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which can be proved straightforwardly by rewriting the trigonometric functions in terms
of exponentials and evaluating the geometric sum on the right hand side.

Using (3.58) and the property (3.56) of the residue, we can evaluate the charge corre-
sponding to the normalised fields φi = d Uk−2i(z)y

k/2
2 , and we find

chφi(Qj) =
√

2 cos πd (2j + 1)(i+ 1) . (3.61)

This describes the charge for any factorisation Qj with a simple factor Jj = y2
1 − βjy2. As

we will see later in section 4.2, all other polynomial factorisations QI can be obtained by
taking tachyon condensates of those with a single factor in J . The charges add up in this
process, so that the charge of QI is given by

chφi(QI) =
1√
2

∑
η∈I

ηi+1 , (3.62)

where we made use of the formula ηj = eiπ
2j+1
d for the dth roots of unity and understand

the sum as being taken over those roots η appearing in the index set I of the factorisation
QI formulated in xi variables.

This ends our discussion of the polynomial factorisations and their properties. Let us
now see how these results are related to the CFT analysis.

4 Comparison of factorisations and boundary states

In this section we will finally address the comparison between the boundary states and the
matrix factorisations for the SU(3)/U(2)-model. We shall first identify the boundary states
that correspond to polynomial factorisations — these already form a basis of the vector
space of RR charges. We shall then discuss tachyon condensation and RG flows, and show
how further boundary states can be identified as matrix factorisations.

4.1 Polynomial factorisations

The simplest factorisations of Wk(y1, y2) are the polynomial factorisations that were iden-
tified in section 3.3. One of their properties is that they do not have fermions in their
self-spectra. To do the comparison, we first identify the boundary states that lead to
fermion-free spectra.

The fermions in the self spectrum of a brane with boundary state |L, l〉 correspond to
chiral primaries in the overlap between |L, l〉 and |L, l〉 = |L, k + 1 − l〉. A chiral primary
((l1, l2), 0; l1, l1 + 2l2) appears there with multiplicity n(l1,l2)L

LN
(k+1)
l1l

k+1−l. The second
factor describing the fusion rules of su(2) is obviously 0 when l = 0 or l = k + 1 because
l1 ≤ k, thus the branes with boundary states |L, 0〉 have fermion-free open string spectra.
It turns out that for odd k, there are no further boundary states with fermion-free self-
spectra; for even k there are in addition the boundary states |k2 , l〉. The detailed analysis
can be found in appendix A.3.1.

Let us concentrate on the boundary states |L, 0〉. To characterise them further, we
can compute their bosonic spectra. We can show (see appendix A.3.2) that they have
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(L+ 1)(k+ 1−2L) bosons in their self-spectrum. This matches with the number of bosons
for polynomial factorisations with L+ 1 elementary factors in J or E . The boundary state
|0, 0〉 therefore seems to correspond to a factorisation with J ∼ y2

1 − βjy2 for some βj . To
determine which βj is the correct one, we compare the RR charges. The RR charge of the
boundary state |0, 0〉 is given by (see (2.40))

chi(|0, 0〉) =
1√
2

sin 2π
d (i+ 1)

sin π
d (i+ 1)

=
√

2 cos πd (i+ 1) , (4.1)

and by comparison with the RR charges (3.61) of the elementary factorisations, we see
that we find agreement for j = 0. Hence we conclude that β0 = 2(1 + cos(πd )) is the correct
choice, so that

|0, 0〉 ↔ Q|0,0〉 =

(
0 (y2

1 − β0y2)
Wk

y2
1−β0y2

0

)
. (4.2)

The same reasoning applies to the remaining boundary states |L, 0〉 with L 6= 0 that should
correspond to factorisations where J consists of L+1 factors. By evaluating the RR charges
we can determine which factors appear, namely we find

chi(|L, 0〉) =
1√
2

sin 2π
d (L+ 1)(i+ 1)
sin π

d (i+ 1)

=
√

2
L∑
j=0

cos πd (2j + 1)(i+ 1)

=
L∑
j=0

chi(Qβj ) . (4.3)

We conclude that we have the following correspondence,

|L, 0〉 ↔ Q|L,0〉 =

(
0

∏L
j=0(y2

1 − βjy2)
WkQL

j=0(y2
1−βjy2)

0

)
. (4.4)

To simplify notation, we define

[n1, . . . , nr] :=
r⋃
i=1

{ηni , η−1
ni } , (4.5)

so that Q|L,0〉 = QI|L,0〉 with the set of roots given by

I|L,0〉 = [0, . . . , L] . (4.6)

It remains to check the relative spectra. Consider the factorisations QI|L,0〉 and QI|L′,0〉 ,
and assume L′ ≥ L. Then I|L,0〉 ⊂ I|L′,0〉, and from (3.45) we see that the spectrum does
not contain any fermions. The bosonic spectrum is encoded in the generating polynomial
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BI|L,0〉I|L′,0〉(z) given in (3.48). Using

|I|L,0〉 ∩ I|L′,0〉| = 2L+ 2 (4.7)

|Ic|L,0〉 ∩ Ic|L′,0〉| = k + 3− (2L′ + 2) (4.8)

|Ic|L,0〉 ∩ I|L′,0〉| = 2(L′ − L) (4.9)

|I|L,0〉 ∩ Ic|L′,0〉| = 0 , (4.10)

the generating polynomial takes the form

BI|L,0〉I|L′,0〉(z) =
L∑

α1=0

k−2L′∑
α2=0

z4α1+2α2+2(L′−L) (4.11)

=
1− z2(2L+2)

1− z4

1− z2(k+3−(2L′+2))

1− z2
z2(L′−L) . (4.12)

This coincides precisely with the generating polynomial B|L,0〉,|L′,0〉(z) in (A.24) of the CFT
computation. This analysis thus confirms the consistency of the correspondence

|L, 0〉 ↔ QI|L,0〉 . (4.13)

Recall that the boundary states |L, 0〉 already form a basis of the charge lattice that is
spanned by the maximally symmetric boundary states.

For k odd, these are all boundary states that can be associated to polynomial fac-
torisations of the superpotential. For even k, however, we also found the series |k2 , l〉 with
fermion-free self-spectra. The analysis of RR charges leads to the identification

|k2 , l〉 ↔ QI| k2 ,l〉
, I| k

2
,l〉 = {η− k

2
+l+2m : m ∈ {0, . . . , k − l + 1}} . (4.14)

This identification is also consistent with the spectra, which can be verified by compar-
ing (3.48) and (A.29).

We conclude that all boundary states with fermion-free self-spectra can be matched to
polynomial matrix factorisations. There are, however, other boundary states with fermions
in their spectra, and also there are polynomial factorisations that do not correspond to any
of the maximally symmetric boundary states.

4.2 Tachyon condensation

Our aim is to identify matrix factorisations for the remaining boundary states. We have
already seen that the factorisations Q|L,0〉 form a basis of the space of RR charges. It is
therefore conceivable that we can generate all other factorisations from these elementary
ones. In this subsection we shall explain the general mechanism of tachyon condensation
for matrix factorisations that enables us to construct new factorisations. As an example
we shall demonstrate how for even k the factorisations Q| k

2
,l〉 can be generated from the

generating set {Q|L,0〉}.
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Let us first briefly explain how tachyon condensation works in the matrix factorisa-
tion description. Suppose we start with the superposition of two boundary conditions
corresponding to the direct sum Q of matrix factorisations Q1 and Q2,

Q =

(
Q1 0
0 Q2

)
with σ =

(
σ1 0
0 σ2

)
. (4.15)

A fermion ψ = ψ1,2 in the spectrum between Q1 and Q2 corresponds to a fermion Ψ in the
self-spectrum of Q of the form

Ψ =

(
0 0
ψ 0

)
. (4.16)

It is now easy to check that Qψ := Q+Ψ is again a matrix factorisation of W . We interpret
the corresponding boundary condition as the result of the condensation of the fermionic
field Ψ, and denote this tachyon condensate by

(Q1
ψ−→ Q2) ≡ Qψ ≡

(
Q1 0
ψ Q2

)
. (4.17)

In mathematics this procedure is known as cone construction, and the object Qψ fits into
what is called a distinguished triangle (see e.g. [2, 54]),

Q1[1]
ψ[1]−−→ Q2 → Qψ → Q1 . (4.18)

It is understood that the first and the last term of the above sequence are identified (there-
fore the name triangle) up to the action of the shift functor [1] that maps a factorisation
Q to its anti-factorisation Q[1] = Q̄. In particular, any cyclic shift of objects in (4.18) will
yield another valid distinguished triangle. For example, shifting all objects in (4.18) one
position to the left will yield a triangle

Q2
ψ̃[1]−−→ Qψ → Q1 → Q2[1] , (4.19)

thus we learn that the object Q1 can be obtained as a condensate from Q2[1] and Qψ with
some morphism ψ̃. This will be useful in section 4.4.

Let us exemplify this by studying condensates of two polynomial factorisations QI
and QI′ that at least have one fermion in their relative spectrum. From (3.45) we see that
this implies that I 6⊂ I ′ and I ′ 6⊂ I. Turning on a fermion ψp (see (3.46)) leads to the
factorisation

(QI
p−→ QI′) ≡ (QI

ψp−→ QI′) =


0 JI 0 0
JIc 0 0 0
0 pJI∩I′ 0 JI′

−pJIc∩I′c 0 JI′c 0

 . (4.20)

Consider now the fermion of lowest charge (p = 1). By doing some elementary trans-
formations Q → UQU−1, one can verify that this factorisation is equivalent to a direct
sum,

(QI
1−→ QI′) ∼= QI∩I′ ⊕QI∪I′ . (4.21)
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In case I ∩ I ′ = ∅ or I ∪ I ′ = D, one of the summands is trivial and the condensate is
equivalent to a single polynomial factorisation.6

For even k, we can use the above tachyon condensations to show how we can obtain
the polynomial factorisations Q| k

2
,l〉 from our generating set {Q|L,0〉}. Of course Q| k

2
,0〉 is

already contained in the set, so the first non-trivial example is

Q| k
2
,1〉 = Q[0,..., k

2
−1, k

2
+1] . (4.22)

From the condensation formula (4.21) we see that

Q| k
2
,1〉 ∼=

(
Q| k

2
−1,0〉

1−→ Q| k
2
,0〉
)
. (4.23)

To simplify notations, we shall denote the factorisation Q|L,0〉 by a rectangular box with
label L, and the factorisation Q|L,0〉 by a rounded box with label L, so that the above
condensation process reads

k
2
− 1 k

2

1
. (4.24)

It is easy to see how this generalises: for l ≤ k
2 one has

Q| k
2
,l〉 ∼= k

2
− l k

2
− l + 1 k

2
− l + 2

1 1 1 · · ·


k
2

1
for l odd,

k
2

1
for l even.

(4.25)

The case l ≥ k
2 + 1 is also covered by noting that Q| k

2
,l〉 = Q| k

2
,k+1−l〉. Note that although

multiple arrows appear, the result can still be written as a condensate in the form (4.17)
by grouping the factorisations in rectangular boxes into Q1 and the ones in rounded boxes
into Q2.7

Before we now go on to construct factorisations for other boundary states, we shall
first discuss the analogue of tachyon condensation on the CFT side.

4.3 RG flows

On the CFT side we also have some information on tachyon condensation, which here cor-
responds to the perturbation of the theory by a relevant boundary operator. The conformal
boundary theory at the infrared fixed point of the induced boundary renormalisation group
flow is then associated to the theory with the condensed tachyon. There is a general rule for
boundary flows in coset models [31, 55] that we can apply in our setup. This rule is based
on a conjecture that certain flows that are visible for large coset levels can be extrapolated
down to arbitrary levels.

6What we have described here is very similar to the condensation processes among polynomial factorisa-

tions in the theory of two minimal models discussed in [9]. In fact, their arguments are directly applicable

here by applying the functor described in appendix B.4.
7That is, Q1 = ⊕iQ1,i with Q1,i = Q| k2−l+2i,0〉 and Q2 = ⊕jQ2,j with Q2,j = Q| k2−l+2j+1,0〉, such

that the individual fermions in (4.25) combine into an element of H1(Q1, Q2) = ⊕i,jH1(Q1,i, Q2,j) (where

H1(·, ·) denotes the space of fermionic morphisms); this justifies viewing the tachyon condensate as the

outcome of a single condensation process.
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The content of the rule in our case is the following. Choose a representation Λ of
su(3)k, and labels L, l that parameterise boundary states. Then the rule predicts a flow8∑

λ,l′
bΛλN

(k+1)
λl

l′ |L, l′〉 
∑
L′
nΛL

L′ |L′, l〉 . (4.26)

Here, bΛλ denotes the branching coefficient of the regular embedding su(2) ⊂ su(3) at
embedding index 1, N (k+1)

λl
l′ is the fusion coefficient of su(2) at level k + 1 and nΛL

L′ the
twisted su(3) fusion coefficient at level k.

There is a lot of evidence that this rule correctly describes boundary RG flows [31] (see
also [56]). As a simple consistency check in our case, we can compare the RR charges of
the initial and the final configuration. The charge of the left hand side of equation (4.26)
can be evaluated using (2.41),

ch(LHS) =
∑
l′,λ,L′′

bΛλN
(k+1)
λl

l′(N (k+1)
LL′′

l′ −N (k+1)
LL′′

k+1−l′)ch(|L′′, 0〉)

=
∑
l′,λ,L′′

bΛλN
(k+1)
λL

l′(N (k+1)
l′L′′

l −N (k+1)
l′L′′

k+1−l)ch(|L′′, 0〉) (4.27)

=
∑

L′,λ,L′′
bΛλ
(
N

(k+1)
λL

L′ −N (k+1)
λL

k+1−L′)(N (k+1)
L′L′′

l −N (k+1)
L′L′′

k+1−l)ch(|L′′, 0〉) .

In the last step we split the sum over l′ = 0, . . . , k + 1 into two parts; we introduced the
new summation variable L′ = 0, . . . , bk2c, and replaced l′ = L′ in the first part of the sum,
and l′ = k+ 1−L′ in the second part. Now let us look at the charge of the right hand side
of equation (4.26),

ch(RHS) =
∑
L′,L′′

nΛL
L′(N (k+1)

L′L′′
l −N (k+1)

L′L′′
k+1−l)ch(|L′′, 0〉) . (4.28)

By using formula (2.35) for the twisted su(3) fusion coefficients we find precise agreement
with the result (4.27) for the left hand side. This shows that the suggested flows are
consistent on the level of RR charges.

Let us work out one class of flows described by the rule above, where we set Λ = (1, 0).
The branching is (1, 0)→ (0)⊕ (1), and so from (4.26) we find for k > 1 the flows

|L, l − 1〉+ |L, l〉+ |L, l + 1〉 
{
|L− 1, l〉+ |L, l〉+ |L+ 1, l〉 for L 6= k

2

|L− 1, l〉 for L = k
2 .

(4.29)

Here, labels outside of the allowed range are ignored (e.g. if l = 0, then the boundary state
|L, l − 1〉 on the left hand side does not appear).

The field that triggers these flows is determined as follows: consider the adjoint rep-
resentation (1, 1) of SU(3) and decompose it into the irreducible representations (l,m) of
SU(2)×U(1),

(1, 1) −→ (0, 0)⊕ (1, 3)⊕ (1,−3)⊕ (2, 0) . (4.30)
8Note the difference in notation for RG flows (denoted by ) and fermionic morphisms as part of tachyon

condensation processes (denoted by
pα

).
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The perturbing field then has coset label ((0, 0), 0; l,m) with l,m from the list above. As
explained in [55], the adjoint representation (2, 0) of SU(2)×U(1) has to be removed from
the list, and choosing the trivial representation (0, 0) would correspond to take the identity
field for the perturbation. That means that the field ψ responsible for the flows could come
from two sectors

ψ ∈ H((0,0),0;1,3) ⊕H((0,0),0;1,−3) . (4.31)

The field ψ((0,0),0;1,−3) is the superpartner to the chiral primary field ψ((k,0),0;k,k) of charge
q = k

k+3 . This is the charge that we expect to see in the corresponding tachyon condensation
processes of matrix factorisations.9

4.4 Constructing more factorisations

Having identified the elementary factorisations Q|L,0〉, we can now use the information on
RG flows from the CFT description to obtain new matrix factorisations.

Let us start with a simple example. For L = k
2 (k even) and l = 1, the flow rule (4.29)

reads ∣∣k
2 , 0
〉

+
∣∣k

2 , 1
〉

+
∣∣k

2 , 2
〉
 
∣∣k

2 − 1, 1
〉
. (4.32)

This gives us the prescription how to build the matrix factorisation corresponding to the
boundary state

∣∣k
2 − 1, 1

〉
.The fermion that has to be switched on is also uniquely fixed in

this case, because a fermion with charge k
k+3 is only found once between

∣∣k
2 , 0
〉

and
∣∣k

2 , 1
〉
,

and once between
∣∣k

2 , 2
〉

and
∣∣k

2 , 1
〉
, and both have to be turned on, because otherwise we

would end up with a superposition in the condensate. The prescription therefore is

Q∣∣ k
2
−1,1

〉 ∼= (Q∣∣ k
2
,0
〉 qψ= k

k+3←−−−−− Q∣∣ k
2
,1
〉 qψ= k

k+3−−−−−→ Q∣∣ k
2
,2
〉) . (4.33)

A comment is in order about the directions of the arrows. We chose the arrows such that
we can write the process as a single condensation: we can view it as turning on a single
fermion between Q∣∣ k

2
,1
〉 and the superposition of Q∣∣ k

2
,0
〉 and Q∣∣ k

2
,2
〉. It is not difficult

to see that reversing both arrows leads to an equivalent factorisation. If we only reverse
one arrow, we have to view it as a two-step condensation. If we first condense the right
arrow (in whatever direction), we find that there is only one fermion between Q∣∣ k

2
,0
〉 and

the condensate, and the corresponding condensate is again equivalent to our first choice of
arrows. If we first condense the left arrow (in whatever direction), there are two fermions
left. One of them corresponds to the original fermion corresponding to the right arrow,
and the condensate is again equivalent to our original choice of arrows. (The other fermion
would also lead to a polynomial factorisation, which could not be correct.) Thus, although
we do not have a general understanding of how to choose the arrows to reproduce the CFT
flows, we see that in our case any choice will lead to the same result.

Let us analyse the condensate in more detail. Identifying the morphisms of the proper
charge between the polynomial factorisations on the right hand side of (4.33), we obtain

Q∣∣ k
2
−1,1

〉 ∼= (Q[
0,..., k

2

] 1←− Q[
0,..., k

2
−1, k

2
+1
] y1−→ Q[

0,..., k
2
−2, k

2

]) . (4.34)

9The other field belongs to an anti-chiral field that we do not see in the matrix factorisation description.
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The left arrow is a fermion of lowest charge, so we can condense the factorisations according
to (4.21) and find

Q∣∣ k
2
−1,1

〉 ∼= (Q[
0,..., k

2
−1
] y1−→ Q[

0,..., k
2
−2, k

2

]) . (4.35)

We can rewrite the result in terms of elementary constituents {Q|L,0〉} by writing the
polynomial factorisation on the right of the arrow as a condensate, which leads to

k
2
− 1 k

2
− 1

k
2

k
2
− 2

y1

1

1

. (4.36)

Thus we have obtained a precise proposal for the matrix factorisation corresponding to
Q∣∣ k

2
−1,1

〉 from the flow rule.

Let us now evaluate the flow rule (4.29) for l = 0. It then reads for L < k/2

|L, 0〉+ |L, 1〉 |L− 1, 0〉+ |L, 0〉+ |L+ 1, 0〉 , (4.37)

where again boundary states are left out if the label leaves the allowed range. This can be
translated into a tachyon condensation in terms of matrix factorisations,

L Q|L,1〉
q = k

k+3 ∼= L− 1
⊕

L
⊕

L + 1 . (4.38)

This tachyon condensate fits into the distinguished triangle (see (4.18))

Q|L,0〉[1]
ψ∗[1]−−−→ Q|L,1〉 −→

(
Q|L−1,0〉 ⊕Q|L,0〉 ⊕Q|L+1,0〉

) −→ Q|L,0〉 , (4.39)

where we write ψ∗ to denote the fermionic morphism of charge q = k
k+3 . By shifting the

triangle (see (4.19)) we see that Q|L,1〉 can be obtained as a condensate from Q|L−1,0〉 ⊕
Q|L,0〉 ⊕ Q|L+1,0〉 and Q|L,0〉[1], i.e. we can invert the tachyon condensation (4.38) to get
Q|L,1〉 alone on the left hand side,

Q|L,1〉 ∼= L L

L + 1

L− 1

?
?

?

(4.40)

We do not have much control over the morphisms that appear in the condensate, but we see
immediately that for L = k

2 − 1 we find the same structure as in (4.36), so the morphisms
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are fixed for this value of L. Assuming that the morphisms will be the same for other
values of L, we arrive at a proposal for the factorisation corresponding to Q|L,1〉

(
L < k

2

)
,

Q|L,1〉 ∼= L L

L + 1

L− 1

y1

1

1

. (4.41)

This representation of Q|L,1〉 has the advantage that it gives a description directly in terms
of the basic constituents Q|L,0〉. For computations, however, it is more useful to condense
the right column of the diagram in (4.41) into the polynomial factorisation Q[0,1,...,L−1,L+1],
so that we find (similarly to (4.35))

Q|L,1〉 ∼=
(
Q[0,1,...,L]

y1−→ Q[0,1,...,L−1,L+1]

)
. (4.42)

In appendix B.2, the fermionic spectrum (including the U(1) charges) of such condensates
is investigated, and it agrees with the spectrum of the |L, 1〉 boundary states. Also the
relative fermionic spectra among the Q|L,1〉 and between Q|L,1〉 and Q|L′,0〉 is determined
there and shown to be consistent with the CFT results.

Another requirement for our maximally symmetric boundary states is that they are
invariant under the exchange of left- and right-movers, because we are considering B-type
boundary states in a diagonal theory.10 On the matrix factorisation side this means to
transpose the matrices (see [57, 58]), or, in the above condensation pictures, to reverse
the arrows. Let us briefly discuss why reversing the arrow in (4.42) leads to an equivalent
factorisation,

Q→ =
(
Q[0,1,...,L]

y1−→ Q[0,1,...,L−1,L+1]

) ∼= (Q[0,1,...,L]
y1←− Q[0,1,...,L−1,L+1]

)
= Q← . (4.43)

Displaying only the J -part of the factorisations, we have

Q←
∣∣
J =

(
J[0,1,...,L] y1J[0,1,...,L−1]

0 J[0,1,...,L−1,L+1]

)
(4.44)

Q→
∣∣
J =

(
J[0,1,...,L] 0

y1J[0,1,...,L−1] J[0,1,...,L−1,L+1]

)
. (4.45)

By just exchanging columns and rows, we can bring Q←
∣∣
J to the form

Q←
∣∣
J
∼= J[0,1,...,L−1]

(
J[L+1] 0
y1 J[L]

)
. (4.46)

10Note that this requirement does not hold for general B-type boundary states in these models, because

the theory is not diagonal with respect to the N = 2 superconformal algebra, but only with respect to the

larger coset algebra. Thus this provides a non-trivial, necessary (but not sufficient) condition for maximally

symmetric boundary states.
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We can now add the second row to the first with a suitable factor to change the (1, 1)-
entry to JL. Similarly, we use the first column to change the (2, 2)-entry from JL to
JL+1. Under the combined transformation the (1, 2)-entry remains zero, and one sees the
equivalence to Q→.

There is a further check that we can perform, namely we can see whether we can
reproduce the condensate in (4.38) with a morphism that carries the right charge q = k

k+3 .
Indeed, as discussed in appendix B.3 this is true, so that the RG flow (4.37) is consistent
with the identification (4.41) of |L, 1〉.

Having found the factorisations for |L, 1〉, we could now try to go further and construct
factorisations for |L, 2〉 by using the RG flow rules. This is possible in principle, but in
doing that one encounters the problem that the morphisms that have to be turned on in
the condensation are in general not determined uniquely by their U(1) charge. Therefore
we have a lot of freedom in the Ansatz for the boundary states with higher label l, and it
is not clear to us how to determine the right choice. This is related to the fact that for
|L, l〉 with l ≥ 2 there can be marginal fields in the boundary spectrum, which means that
these boundary conditions can be continuously deformed.

Further progress is expected by using topological defect lines that generate the whole
spectrum of boundary states. This will be reported elsewhere [59].

5 Low level examples

For the first two levels k = 1 and k = 2, the SU(3)/U(2) model corresponds to a minimal
model, where all matrix factorisations and boundary states are known. At the next level
k = 3, the SU(3)/U(2) model describes a torus orbifold. In this section we want to compare
our results to known results for these low level examples.

5.1 k = 1

Let us start with k = 1. The central charge is then c1 = 3/2, which is the central charge
of the minimal model SU(2)/U(1) at level 2. The superpotential is

W1(y1, y2) = y4
1 − 4y2

1y2 + 2y2
2 , (5.1)

and by replacing z =
√

2(y2 − y2
1) we obtain

Ŵ1(y1, z) = −y4
1 + z2 . (5.2)

This is the superpotential of the minimal model of level 2 with the 0B GSO projection.
As discussed in [6, 7], the boundary states in this model are labelled by a su(2)2 label
L = 0, 1, 2, but with the identification rule |L〉 = |2 − L〉. The boundary state |1〉 that is
fixed under this identification is not elementary, but decomposes into two resolved boundary
states |1+〉 and |1−〉. So there are three boundary states in this model, in concordance with
the boundary states |0, 0〉, |0, 0〉 and |0, 1〉 that we identified in the SU(3)/U(2) model at
level 1. According to [7] the resolved boundary states |1±〉 correspond to the two polynomial
factorisations that exist in this case, which we associated to the boundary states |0, 0〉 and
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|0, 0〉. The remaining boundary state |0〉 (which corresponds to |0, 1〉 in the SU(3)/U(2)
description) then is associated [7] to the factorisation(

y1 z

−z −y3
1

)(
−y3

1 −z
z y1

)
= Ŵ1(y1, z) · 1 . (5.3)

By a similarity transformation this is equivalent to the factorisation that we found to
correspond to |0, 1〉,(

y2
1 − β0y2 0
y1 y2

1 − β1y2

)(
y2

1 − β1y2 0
−y1 y2

1 − β0y2

)
= W1(y1, y2) · 1 , (5.4)

when expressed in y1, z. Thus our general findings for the SU(3)/U(2) series agree with
the minimal model analysis for k = 1.

5.2 k = 2

Let us now look at the SU(3)/U(2) model at level k = 2 with central charge c2 = 12/5.
The central charge is that of a minimal model SU(2)/U(1) at level 8. The superpotential
is

W2 = y5
1 − 5y3

1y2 + 5y1y
2
2

= −1
4

(y5
1 − y1z

2) , (5.5)

where we changed variables by z =
√

20(y2 − 1
2y

2
1). This is the superpotential of the D-

type minimal model with 0B projection. The boundary states are labelled by |L〉 and
|L〉, where L = 0, . . . , 8 and we have the identification |L〉 = |8 − L〉, and similarly for
the |L〉. The boundary state |4〉 is fixed under this identification and can be decomposed
into two resolved boundary states |4±〉 (similarly for |4〉). Thus in total we obtain 12
boundary states. In contrast we only find 8 boundary states in the SU(3)/U(2) model,
and these correspond precisely to the ones with L even. The reason why we find less is
that the SU(3)/U(2) coset algebra is slightly larger than the bosonic subalgebra of the
superconformal algebra as it is the chiral algebra of the D-model, which is obtained by a
simple-current extension. The boundary states with L odd correspond to twisted boundary
conditions from the point of view of the Kazama-Suzuki model. Indeed, the model at k = 2
has an additional automorphism. By level-rank duality, we have the equivalence

SU(3)2 × SO(4)1

U(2)
∼= SU(4)1 × SO(8)1

S(U(2)×U(2))
. (5.6)

In the description on the right hand side, it is obvious that we have an additional au-
tomorphism that permutes the U(2)’s [26]. Using this automorphism to twist the gluing
conditions, one finds the missing boundary states. This extra twist is a peculiarity at k = 2,
so we are not going to work out these boundary states explicitly here.

We have listed the (untwisted) boundary states of the Kazama-Suzuki model together
with their matrix factorisations in table 1. The corresponding boundary states and fac-
torisations of the minimal models can be found in table 2. It is straightforward to see that
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|L, l〉 Q|L,l〉

|0, 0〉
(

0 y2
1 − β0y2

y1(y2
1 − β1y2) 0

)

|1, 0〉
(

0 (y2
1 − β0y2)(y2

1 − β1y2)
y1 0

)

|0, 1〉


0 0 y2

1 − β0y2 0
0 0 y1 y2

1 − β1y2

y1(y2
1 − β1y2) 0 0 0
−y2

1 y1(y2
1 − β0y2)



|1, 1〉
(

0 y1(y2
1 − β0y2)

(y2
1 − β1y2) 0

)

Table 1. List of boundary states and their factorisations in the SU(3)/U(2) model at level k = 2.
The other four boundary states are just anti-branes of the ones listed here.

the factorisations are related to those in table 1 by similarity transformations, where we
can use that

y2
1 − β0y2 = y2

1 −
5 +
√

5
2

y2 = −
√

5 + 1
4

(y2
1 + z) (5.7)

y2
1 − β1y2 = y2

1 −
5−√5

2
y2 =

√
5− 1
4

(y2
1 − z) . (5.8)

5.3 k = 3

For k = 3, the SU(3)/U(2) Kazama-Suzuki model has central charge c = 3, and the model
describes a Z6 orbifold of a torus with complex structure τ = 1

2(1+i
√

3) and size R = 1/
√

3
(in units where α′ = 2) without a B-field (see [60]). It is a marginal deformation of the
product of two minimal models with superpotential W = v6+w3. The relation of boundary
states and factorisations in that model to the torus orbifold branes has been analysed in [61].
The factorisations we found in the Kazama-Suzuki model can be deformed to factorisa-
tions in the product of minimal models. In particular, the deformation of the polynomial
factorisations lead to generalised permutation branes in the minimal model description [61].

6 Outlook

In this article we have explored the connection between boundary states and matrix factori-
sations in the SU(3)/U(2) Kazama-Suzuki model. We have identified matrix factorisations
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|L〉 Q|L〉 |L, l〉

|0〉
(

0 −
√

5+1
4 (y2

1 + z)√
5−1
4 y1(y2

1 − z) 0

)
|1, 0〉

|2〉


0 0 y1

√
5−1
4 z

0 0 −
√

5+1
4 z −1

4y
3
1

−1
4y

4
1 −

√
5−1
4 y1z 0 0√

5+1
4 y1z y2

1 0 0

 |0, 1〉

|4+〉
(

0 −
√

5+1
4 (y2

1 + z)√
5−1
4 y1(y2

1 − z) 0

)
|0, 0〉

|4−〉
(

0 −
√

5+1
4 y1(y2

1 + z)√
5−1
4 (y2

1 − z) 0

)
|1, 1〉

Table 2. List of boundary states and matrix factorisations in the D-type minimal model Ŵ2(y1, z) =
− 1

4 (y5
1−y1z2), and the corresponding boundary state in the SU(3)/U(2) Kazama-Suzuki description.

for the series |L, 0〉 of boundary states, which form a basis for the RR charges. By using
information on boundary RG flows, we have constructed matrix factorisations also for the
series |L, 1〉 as condensates of superpositions of |L, 0〉 branes. This demonstrates the power
of tachyon condensation to obtain new factorisations, and it points towards a way of how
to obtain all the factorisations corresponding to boundary states |L, l〉.

The difficulty one faces when extending the analysis to l ≥ 2 is that these boundary
states generically possess marginal boundary fields, and by just looking at the spectrum
one will not be able to distinguish those factorisations that are connected by marginal
deformations. For this, one needs further information, like the boundary chiral ring.

Another way to single out the factorisations corresponding to the boundary states
that are maximally symmetric with respect to the coset W-algebra would be to identify
the W-algebra structure on the matrix factorisation side. The Kazama-Suzuki models
SU(n)/U(n−1) have an N = 2 Wn algebra [62–65]. The construction of the corresponding
currents11 in the bulk LG model for SU(3)/U(2) was done in [67, 68], similarly to the
construction of the currents T and J of the N = 2 superconformal algebra in [69, 70]. It
would be interesting to extend this analysis to boundary theories to understand how the
symmetry of the boundary states translates into conditions on matrix factorisations.

A promising way of how to systematically obtain the other factorisations is by employ-
ing topological defect lines [71] to generate factorisations for the whole set of boundary
states. Topological defects are labelled by representations of the coset algebra. A defect
D((0,0),0;1,m) can generate all boundary states |L, l〉 from the elementary set {|L, 0〉} by

11The W3-current in the coset model has been constructed in [66].
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fusing the defect onto the boundary. If we identify this defect on the LG side as a factori-
sation of the difference of two copies of the superpotential [72], we would be in the position
to iteratively obtain all relevant matrix factorisations. Of course, one faces also here the
problem that one has to fix the freedom of marginally deforming the defect, but once a
defect is fixed, there is no further ambiguity for the matrix factorisations corresponding to
the maximally symmetric boundary states. This is currently under investigation [59].

The methods of RG flows, tachyon condensations and topological defect lines should
also be useful when one approaches the higher rank SU(n)/U(n−1) models for n ≥ 4. The
first task would be to find an elementary set of factorisations corresponding to boundary
states |L, 0〉. The connection to a product of n− 1 minimal models might again be useful,
and maybe it is also for this more general setup the permutation factorisations [10] that
lead to the relevant factorisations for the Kazama-Suzuki models. Another promising
approach would be to use defect lines between the product of minimal models and the
Kazama-Suzuki model, similar to the defect corresponding to the functor described in
appendix B.4, to relate factorisations on both sides.

Another interesting aspect of the relation of boundary states and factorisations is
the charge group. We have different notions of charges in this context, and it would be
interesting to compare them. Firstly, we can compute RR charges as one-point functions
of the RR fields, which we have used to identify the correct factorisations corresponding to
the |L, 0〉 boundary states. This, however, will not be sensible to torsion charges. On the
other hand, we can define charges as dynamical invariants. On the CFT side, this means
to look for invariants under boundary RG flows like in [73]. For coset models the so defined
charge groups [31, 74] are given by equivariant twisted topological K-theory [75, 76]. On
the matrix factorisation side, the group of dynamical invariants is the Grothendieck K-
group. It would be interesting to understand its connection to the topological K-theory for
the Kazama-Suzuki cosets.

Finally, the Kazama-Suzuki models can also be used to construct Gepner-like mod-
els [11] for Calabi-Yau compactifications. It would be interesting to repeat the charge
analysis of [77] to see whether tensor products of the factorisations that we identified al-
ready provide a basis for the charge lattice. Furthermore, it is known that some of the
Kazama-Suzuki models can be marginally deformed to obtain other rational models [78],
e.g.

SU(3)k
U(2)

 
SU(2)k+1

U(1)
×

SU(2) k−1
2

U(1)
for k odd. (6.1)

In the example above, under the deformation the polynomial factorisations of the Kazama-
Suzuki model go over into generalised permutation factorisations [77] of the minimal mod-
els. In a full Gepner-like model, it would be interesting to investigate what happens to the
properties of the branes (like their mass) when doing complex structure deformations to
go one from Gepner-like model to another.
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A CFT open string spectra

A.1 Explicit formula for boundary states

The B-type boundary states |L, S; l〉 in the SU(3)k/U(2) Kazama-Suzuki model are given
by (see equation (2.17))

|L, S; l〉 = 4

√
2(k + 3)

3

b k
2
c∑

Λ1=0

k+1∑
λ=0

∑
Σ

ψ
(3)
L(Λ1,Λ1)S

(so)
SΣ S

(2)
lλ√

S
(3)
0(Λ1,Λ1)S

(so)
0Σ S

(2)
0λ

|(Λ1,Λ1),Σ;λ, 0〉〉 . (A.1)

Note that in the numerator the untwisted S-matrix S(2) of SU(2) appears because charge
conjugation is an inner automorphism for SU(2). The S-matrices for su(2)k+1 and su(3)k
are given by (see e.g. [44])

S
(2)
ll′ =

√
2

k + 3
sin π(l+1)(l′+1)

k+3 (A.2)

S
(3)
0Λ =

8√
3(k + 3)

sin π(Λ1+1)
k+3 sin π(Λ2+1)

k+3 sin π(Λ1+Λ2+2)
k+3 . (A.3)

For su(3) we only need the S-matrix with one entry 0.
For so(4)1, the modular S-matrix is

S(so) =
1
2


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

 , (A.4)

where the rows and columns are indexed by Σ = 0, v, s, s̄.
An expression for the twisted S-matrix ψ(3)

L(Λ1,Λ1) for su(3)k can be found in [35],

ψ
(3)
L(Λ1,Λ1) =

2√
k + 3

sin
2π(L+ 1)(Λ1 + 1)

k + 3
. (A.5)

In the computation of the spectrum we also need the modular S-matrix of U(1)6(k+3),

S
6(k+3)
µµ′ =

1√
6(k + 3)

exp
(
− πi

3(k + 3)
µµ′
)
, (A.6)

the fusion rules of su(2)k+1,

N
(k+1)
l1l2

l3 =

{
1 for |l1−l2| ≤ l3 ≤ min(l1 + l2, 2k + 2− l1 − l2) and l1+l2+l3 even
0 otherwise,

(A.7)

and the twisted fusion rules of su(3)k, which we discuss next.
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A.2 Twisted fusion rules of su(3)

The formula for the open string spectra for the B-type branes in the SU(3)/U(2) model
contains the twisted fusion rules for su(3)k that are given by

nΛL
L′ =

∑
Λ′=(Λ′1,Λ

′
1)

ψ
(3)
LΛ′ψ

(3)
L′Λ′S

(3)
ΛΛ′

S
(3)
0Λ′

. (A.8)

Explicit expressions for these coefficients have been determined in [35] in terms of fusion
rules of su(2) at level 2k + 4 (together with an alternative formula involving su(2) fusion
at level (k−1)/2 for odd k). In a similar way one can obtain a formula involving the su(2)
fusion rules at level k+ 1 which is the form that is most convenient for our purposes. It is
given by (see (2.35))

nΛL
L′ =

∑
γ

bΛγ
(
N

(k+1)
γ L

L′ −N (k+1)
k+1−γ L

L′) , (A.9)

and it involves the branching coefficients b of the regular embedding of su(2) in su(3)
(embedding index 1).

In the following we shall prove this formula. Let us first note that one can express the
twisted S-matrix in terms of the su(2) S-matrix at level k + 1,

ψ
(3)
L(Λ1,Λ1) =

√
2S(2)

L,2Λ1+1 . (A.10)

The ratio S(3)
ΛΛ′/S

(3)
0Λ′ is given by a character χΛ of the finite dimensional Lie algebra su(3)

evaluated on the weight − 2πi
k+3(Λ′ + ρsu(3)), where ρsu(3) is the Weyl vector of su(3) [44,

eq.(14.247)]. So we get

S
(3)
ΛΛ′

S
(3)
0Λ′

= χΛ

(− 2πi
k+3(Λ′ + ρ)

)
=
∑
γ

bΛγχγ
(− 2πi

k+3(2Λ′1 + 1 + ρsu(2))
)

=
∑
γ

bΛγ
S

(2)
γ,2Λ′1+1

S
(2)
0,2Λ′1+1

. (A.11)

Here, we expressed the su(3)-character χΛ as a sum of characters χγ of representations γ
of su(2) that appear in the decomposition of Λ. Inserting this into the formula (A.9) for
n, we obtain

nΛL
L′ =

∑
γ

bΛγ

b k
2
c∑

Λ′1=0

2S(2)
L,2Λ′1+1

S
(2)
L′,2Λ′1+1

S
(2)
γ,2Λ′1+1

S
(2)
0,2Λ′1+1

=
∑
γ

k+1∑
µ=0

S
(2)
LµS

(2)
L′µ

S
(2)
0µ

(
S(2)
γµ − S(2)

k+1−γ,µ
)

=
∑
γ

bΛγ
(
N

(k+1)
LL′

γ −N (k+1)
LL′

k+1−γ) . (A.12)
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Here we used that

S(2)
γµ − S(2)

k+1−γ,µ =

{
2S(2)

γµ for µ odd
0 for µ even ,

(A.13)

and in the last step we used the Verlinde formula for su(2)k+1. This concludes the proof
of (A.9). Notice that in the formula one could replace the su(2)k+1 fusion rules by the
untruncated tensor product coefficients of the finite dimensional su(2), because L+L′ ≤ k,
so no truncation appears.

A.3 Spectra

For the comparison to the matrix factorisation results we are interested in the chiral pri-
maries that appear in the open string spectra. Inserting the result (A.9) into the for-
mula (2.21) for the spectrum, and restricting to chiral primaries, we obtain

〈L1, l1|q̃ 1
2

(L0+L̄0− c
12

)|L2, l2〉ch.prim. =
∑

Λ=(Λ1,Λ2)

nΛL2
L1N

(k+1)
Λ1l2

l1χΛ,0;Λ1,Λ1+2Λ2(q) (A.14)

=
∑

Λ=(Λ1,Λ2)

∑
γ

bΛγ
(
N

(k+1)
γL2

L1 −N (k+1)
k+1−γ,L2

L1
)

×N (k+1)
Λ1l2

l1χΛ,0;Λ1,Λ1+2Λ2(q) . (A.15)

Here we have used that each chiral primary has a representative ((Λ1,Λ2), 0; Λ1,Λ1 + 2Λ2)
(see (2.6)).

To evaluate these expressions we also need a formula for the branching coefficients.
The representation Λ = (Λ1,Λ2) decomposes into su(2)-representations according to

(Λ)→
Λ1⊕
γ1=0

Λ2⊕
γ2=0

(γ1 + γ2) . (A.16)

From this we can read off the branching coefficient bΛγ that counts how often a representation
γ = γ1 + γ2 appears in the decomposition.

It is sometimes convenient to write the branching coefficients in terms of (untruncated)
su(2) fusion rules,

b(Λ1,Λ2)
γ =

∑
µ

NµΛ1
Λ2NµΛ1+Λ2

2γ . (A.17)

A.3.1 Fermions in self spectra

The polynomial matrix factorisations that we found in section 3.3 have the common feature
they do not have fermions in their self spectra. In the CFT language this means that there
are no chiral primaries in the spectrum between the brane and its anti-brane. We now want
to analyse which boundary states satisfy this property. A chiral primary corresponding to
the su(3)k-representation Λ = (Λ1,Λ2) appears in the spectrum between |L, l〉 and |L, l〉
with multiplicity nΛL

LN
(k+1)
Λ1l

k+1−l. Obviously this is 0 for l = 0 or l = k + 1 because
Λ1 + Λ2 ≤ k, so Λ1 < k + 1. For 0 < l < k + 1, the su(2)-fusion coefficient allows all
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Λ1 ≥ |k + 1− 2l| that satisfy Λ1 + k odd. In particular, we can look at the multiplicity of
Λ = (k − 1, 0). Evaluating the branching coefficient by formula (A.17) as

b(k−1,0)
γ = Nk−1,k−1

2γ , (A.18)

we obtain

n(k−1,0)L
L =

k−1∑
γ=0

(
NγL

L −Nk+1−γ,LL
)

=
k−1∑
γ=0

NγL
L −

k+1∑
γ=2

NγL
L

= N0L
L −NkL

L . (A.19)

In the last step we used that 2L ≤ k. We see that for L < k/2, the multiplicity is always
one, so only for L = k/2 (and thus only for even k), there could be further boundary states
with fermion-free self-spectra.

Let us now analyse this remaining possibility L = k/2 (assuming that k is even). The
twisted fusion coefficient n is then

n(Λ1,Λ2) k
2

k
2 =

∑
γ

bΛγ
(
Nγ k

2

k
2 −Nk+1−γ, k

2

k
2
)

=
∑
γ

bΛγ (−1)γ

=
Λ1∑
γ1=0

Λ2∑
γ2=0

(−1)γ1+γ2

=

{
1 for Λ1,Λ2 even
0 else .

(A.20)

In the second step we used the expression (A.16) for the branching rules. The twisted
fusion rules for L = k/2 thus allow for all Λ with even labels Λ1,Λ2. On the other hand
the su(2)-fusion coefficient N (k+1)

Λ1l
k+1−l vanishes for even Λ1 if k is even, so there are no

chiral primaries in the spectrum between |k2 , l〉 and |k2 , l〉.
To summarise, we have identified two series of boundary states that lead to fermion-

free self spectra. On the one hand the series |L, 0〉 (and their anti-branes |L, k + 1〉), on
the other hand, the series |k2 , l〉, which only exists for even k.

A.3.2 Relative spectra of the l = 0 series

For the series of boundary states |L, 0〉, we shall now determine the spectrum of chiral
primaries. We encode the bosonic spectrum (including information on the U(1) charges qi)
between a boundary state |L, 0〉 and a boundary state |L′, 0〉 in a generating polynomial,

B|L,0〉,|L′,0〉(z) =
∑

chiral primaries φi

zqid . (A.21)

– 40 –



J
H
E
P
1
1
(
2
0
1
0
)
1
3
6

Using formula (A.14) for the spectrum, we obtain

B|L,0〉,|L′,0〉(z) =
∑

Λ

nΛL
L′N

(k+1)
Λ10

0zΛ1+2Λ2

=
k∑

Λ2=0

n(0,Λ2)L
L′z2Λ2

=
k∑

Λ2=0

∑
γ

b(0,Λ2)
γ

(
NγL

L′ −Nk+1−γ,LL
′)
z2Λ2

=
k∑

Λ2=0

Λ2∑
γ=0

(
NγL

L′ −Nk+1−γ,LL
′)
z2Λ2

=
k∑
γ=0

k∑
Λ2=γ

(
NγL

L′ −Nk+1−γ,LL
′)
z2Λ2 . (A.22)

Now assume that L′ ≥ L. Then the representations γ that appear in the fusion of L and
L′ can be parameterised as

γ = L′ − L+ 2m with m = 0, . . . , L . (A.23)

So finally we obtain

B|L,0〉,|L′,0〉(z) =
L∑

m=0

(
k∑

Λ2=L′−L+2m

z2Λ2 −
k∑

Λ2=k+1−L′+2m−L
z2Λ2

)

=
L∑

m=0

k−L′−L+2m∑
Λ2=L′−L+2m

z2Λ2

= z2(L′−L) 1− z2(2L+2)

1− z4

1− z2(k+3−(2L′+2))

1− z2
. (A.24)

By sending z → 1, we obtain the total number of chiral primaries in the relative spectrum,

B|L,0〉,|L′,0〉(1) =
1
2

(2L+ 2)(k + 3− (2L′ + 2)) . (A.25)

The spectrum encoded in the generating function B|L,0〉,|L′,0〉(z) can be compared to the
bosonic spectrum between two matrix factorisations. The fermionic spectrum, on the other
hand, corresponds to the spectrum of chiral primaries between |L, 0〉 and |L′, 0〉. We have
already seen in appendix A.3.1 that there are no such states for L′ = L, and similarly we
find

F|L,0〉,|L′,0〉(1) =
∑

Λ

nΛL
L′N

(k+1)
Λ10

k+1 = 0 , (A.26)

because Λ1 ≤ k and so the su(2) fusion rule gives 0. The l = 0 series of boundary states
should thus correspond to matrix factorisations that do not have any fermions in their
relative spectra.
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A.3.3 The L = k/2 series

For even k, we want to analyse the spectra of the boundary states |k2 , l〉. The bosonic
partition function B| k

2
,l〉,| k

2
,l′〉(z) of chiral primaries is given by

B| k
2
,l〉,| k

2
,l′〉(z) =

∑
Λ

nΛ k
2

k
2N

(k+1)
Λ1l

l′zΛ1+2Λ2

=
k∑

Λ1=0,even

k−Λ1∑
Λ2=0,even

N
(k+1)
Λ1l

l′zΛ1+2Λ2

=
k/2∑
µ=0

N
(k+1)
2µ,l

l′ z
2µ − z2k+4−2µ

1− z4
. (A.27)

In the second step we have used (A.20) to evaluate the twisted fusion rules. From the su(2)
fusion coefficient it is immediately clear that the partition function vanishes if l+ l′ is odd.
Let us assume thus that l + l′ is even and that l′ ≥ l. For the given range of the labels
µ, l, l′, we can replace the su(2)k+1 fusion rules by the untruncated su(2) tensor product
coefficients,

N
(k+1)
2µl

l′ = N2µl
l′ −N2k+4−2µ,l

l′ for 2µ ≤ k + 2, l, l′ ≤ k + 1 . (A.28)

Inserting this into (A.27) we arrive at

B| k
2
,l〉,| k

2
,l′〉(z) =

k/2∑
µ=0

z2µ − z2k+4−2µ

1− z4

(
N2µ,l

l′ −N2k+4−2µ,l
l′)

=
k/2∑
µ=0

z2µ − z2k+4−2µ

1− z4
N2µl

l′ −
k+2∑

µ= k
2

+2

z2k+4−2µ − z2µ

1− z4
N2µl

l′

=
∑
µ≥0

z2µ − z2k+4−2µ

1− z4
N2µl

l′

=
(l+l′)/2∑

µ=(l′−l)/2

z2µ − z2k+4−2µ

1− z4

= zl
′−l (1− z2(l+1))(1− z2(k+2−l′))

(1− z2)(1− z4)
. (A.29)

For the total number of bosons we then have (again assuming l′ ≥ l and l + l′ even)

B| k
2
,l〉,| k

2
,l′〉(1) =

1
2

(l + 1)
(
k + 3− (l′ + 1)

)
. (A.30)

A.3.4 The |L, 1〉 series

For comparison with the matrix factorisation results we want to determine the fermionic
spectra of the |L, 1〉 boundary states, more precisely the self-spectrum as well as the relative
spectra among each other and with the |L, 0〉 series.
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The fermionic spectrum between |L1, 1〉 and |L2, 1〉 is the same as the bosonic spectrum
between |L1, 1〉 and |L2, k〉. The spectrum of chiral primaries is then given by (A.14),

〈L1, 1|q̃ 1
2

(L0+L̄0− c
12

)|L2, k〉ch.prim. =
∑

Λ=(Λ1,Λ2)

nΛL2
L1N

(k+1)
Λ11

kχΛ,0;Λ1,Λ1+2Λ2(q) (A.31)

=
∑

Λ2=0,1

n(k−1,Λ2)L2

L1χ(k−1,Λ2),0;k−1,k−1+2Λ2
(q) . (A.32)

Using (A.9) we find

n(k−1,0)L2

L1 = n(k−1,1)L2

L1 = N0L2
L1 +N1L2

L1 −NkL2
L1 . (A.33)

For the self-spectrum (L1 = L2 <
k
2 ), we therefore find two chiral primaries with SU(3)

weights (k − 1, 0) and (k − 1, 1), respectively. The U(1) charge of a chiral primary corre-
sponding to (Λ1,Λ2) is q(Λ1,Λ2) = Λ1+2Λ2

d , in our case the two fermions have U(1) charges

q(k−1,0) =
d− 4
d

and q(k−1,1) =
d− 2
d

. (A.34)

For L1 6= L2, there are no fermions in the relative spectrum, unless |L1 − L2| = 1. In that
case we again find two fermions with the same charges as in (A.34).

The relative fermionic spectrum of |L1, 0〉 and |L2, 1〉 is the same as the bosonic spec-
trum between |L1, 0〉 and |L2, k〉, which is given by

〈L1, 0|q̃ 1
2

(L0+L̄0− c
12

)|L2, k〉ch.prim. =
∑

Λ=(Λ1,Λ2)

nΛL2
L1N

(k+1)
Λ10

kχΛ,0;Λ1,Λ1+2Λ2(q) (A.35)

= n(k,0)L2

L1χ(k,0),0;k,k(q) . (A.36)

From (A.9) we conclude that

n(k,0)L2

L1 = N0L2
L1 = δL2L1 . (A.37)

Hence, the fermionic spectrum is empty for L1 6= L2. For L1 = L2, there is precisely one
fermion in the spectrum of charge

q(k,0) =
d− 3
d

. (A.38)

B Landau-Ginzburg open string spectra

In this appendix we shall provide details of the spectrum calculation in the Landau-
Ginzburg description of the SU(3)/U(2) Kazama-Suzuki models. We explicitly perform
the calculation for the polynomial factorisations, and for the first series of size 2 ma-
trix factorisations corresponding to the boundary states |L, 1〉. We shall then discuss the
tachyon condensation that reproduces the RG flow of section 4.3. The final subsection
explains the functor from matrix factorisations in the Kazama-Suzuki model to those in
the product of minimal models.
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B.1 Spectra of polynomial factorisations

The Landau-Ginzburg model corresponding to the SU(3)/U(2) Kazama-Suzuki model at
su(3) level d−3 has the following superpotential in the variables y1 = x1+x2 and y2 = x1x2,

Wk(y1, y2) =
d−1∏
p=0

(x1 − ηpx2) =
b d−2

2
c∏

j=0

(y2
1 − βjy2) ·

{
y1 for d odd
1 for d even

, (B.1)

where
ηp = exp(iπ(2p+ 1)/d) and βj = 2 + ηj + η−1

j . (B.2)

The simplest matrix factorisations of Wk are of size 1, i.e. polynomial factorisations. Let
D = {η|ηd = −1} be the set of dth roots of −1. Now we can choose a subset I ⊂ D of
roots and form the factorisation

QI =

(
0

∏
η∈I(x1 − ηx2)∏

η∈Ic(x1 − ηx2) 0

)
, (B.3)

where Ic = D \ I denotes the complement of I in D. This describes a factorisation in the
y-variables provided I is invariant under η → η−1.

To determine the infinitesimal U(1) R-charge representation associated to such a matrix
factorisation QI , we make a diagonal Ansatz RI = diag(R1, R2) and plug it into eq. (3.28),
finding

R1 −R2 = 1− qI , (B.4)

where qI = 2|I|/d. We want RI to be traceless [50], so we find

RI =

(
(1− qI)/2 0

0 (qI − 1)/2

)
. (B.5)

We are now ready to explicitly determine the spectra. Let us start with the fermions. For
a fermionic morphism ψ,

ψ =

(
0 p2

p1 0

)
, (B.6)

in the spectrum between QI and QI′ , the closedness condition reads(
0 JI′
JI′c 0

)(
0 p2

p1 0

)
+

(
0 p2

p1 0

)(
0 JI
JIc 0

)
= 0 , (B.7)

which is equivalent to

JI′p1 + p2JIc = JI′∩Ic(JI∩I′p1 + JIc∩I′cp2) = 0 (B.8)

JI′cp2 + p1JI = JI∩I′c(JI∩I′p1 + JIc∩I′cp2) = 0 . (B.9)

The closed fermionic morphisms thus read

ψp = p(y1, y2)

(
0 JI∩I′

−JIc∩I′c 0

)
, (B.10)
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with some polynomial p(y1, y2). If p is quasi-homogeneous , the charge of the corresponding
fermion ψp is according to (3.33) given by

qψp =
1
d

(
2deg(p) +

∣∣I ∩ I ′∣∣+
∣∣Ic ∩ I ′c∣∣) . (B.11)

The possible choices for p and correspondingly the set of fermions are determined by
dividing out exact fermionic morphisms,

ψ̃ = DII′φ =

(
0 JI′
JI′c 0

)(
v1 0
0 v2

)
−
(
v1 0
0 v2

)(
0 JI
JIc 0

)

=

(
0 JI′v2 − v1JI

JI′cv1 − v2JIc 0

)

= (JI′∩Icv2 − JI∩I′cv1)

(
0 JI∩I′

−JIc∩I′c 0

)
. (B.12)

Comparing with formula (B.10) for the most general closed fermionic morphism labelled
by a polynomial p, we see that the elements in the cohomology are of the form

ψp = p

(
0 JI∩I′

−JIc∩I′c 0

)
with p ∈ C[y1, y2]

〈JI∩I′c ,JI′∩Ic〉 , (B.13)

where 〈· · · 〉 denotes the ideal generated by the polynomials between the angle brackets.
The number of fermionic open string states is given by the dimension of the quotient ring
in which p takes it values. According to a generalised Bézout formula [79, Chapter 1, §3.4],
the dimension is given by the products of the degrees of the two polynomials defining the
ideal, divided by the products of the weights of the variables yi. In the case at hand we
find

nfermions =
1
2

∣∣I ∩ I ′c∣∣∣∣I ′ ∩ Ic∣∣ . (B.14)

Note that at least one of the sets appearing here must have even cardinality: the roots in
the sets I, I ′ appear as pairs η, η−1, and the only single root η = −1 (that could occur for
odd d) can only be in either I ∩ I ′c or I ′ ∩ Ic because they are disjoint. Let us denote
the cardinalities by n1, n2, where we choose n2 to be even. A basis for the quotient ring is
then given by monomials pα = yα1

1 yα2
2 where α1 = 0, . . . , n1 − 1 and α2 = 0, . . . , n2

2 − 1.

We can go further by not just determining the total number of fermions, but also their
U(1) charges given by (B.11). We encode the spectrum in a generating polynomial, the
fermionic partition function,

FII′(z) :=
∑

fermions Ψp

zd qΨp , (B.15)
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which can straightforwardly be evaluated,

FII′(z) =
n1−1∑
α1=0

n2
2
−1∑

α2=0

z2α1+4α2+|I∩I′|+|Ic∩I′c|

=
1− z2n1

1− z2

1− z2n2

1− z4
z|I∩I

′|+|Ic∩I′c|

=
1− z2|I∩I′c|

1− z2

1− z2|Ic∩I′|

1− z4
z|I∩I

′|+|Ic∩I′c| . (B.16)

The analysis for the bosonic morphisms is completely analogous. Note that the bosonic
morphisms between QI and QI′ are in one-to-one correspondence with the fermions be-
tween QI and QI′ = QI′c ; in particular the number of bosons is given by

nbosons =
1
2

∣∣I ∩ I ′∣∣∣∣Ic ∩ I ′c∣∣ , (B.17)

and the generating polynomial for the bosonic spectrum is

BII′(z) =
1− z2|I∩I′|

1− z2

1− z2|Ic∩I′c|

1− z4
z|I

c∩I′|+|I∩I′c| . (B.18)

Explicitly, the bosons between QI and QI′ are given by

φ = v ·
(
JIc∩I′ 0

0 JI∩I′c

)
with v ∈ C[y1, y2]

〈JI∩I′ ,JIc∩I′c〉 . (B.19)

B.2 Tachyon condensates of two polynomial factorisations and their spectra

Having identified all polynomial factorisations, a natural procedure to obtain more fac-
torisations is by tachyon condensation. In this section we discuss the situation where we
superpose two polynomial factorisations QI and QI′ to build the size 2 factorisation

QII′ =

(
QI 0
0 QI′

)
, (B.20)

and then turn on a fermion ψpτ between QI and QI′ to obtain the tachyon condensate

QτII′ := (QI
pτ−→ QI′) =

(
QI 0
ψpτ QI′

)
. (B.21)

The fermion ψpτ is of the form (B.13) with some polynomial pτ . For a generic condensate,
the U(1) R-charge matrix is given by

R =

(
RI +

qψpτ −1

2 12 0

0 RI′ −
qψpτ −1

2 12

)
, (B.22)

where the charge of the tachyon is given by (B.11). If the condensate matrix QτII′ is
reducible, i.e. if it can be written as a direct sum of smaller factorisations, then the R-
charge matrix might have to be modified [50, Section 4.4]. In the case at hand, this only
happens for the fermion with lowest charge, pτ = 1, in all other cases we can employ (B.22)
for the condensate.
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B.2.1 Self-spectrum

We first want to determine the self-spectrum of such a factorisation, and we shall restrict
the discussion to the fermions. Before the condensation, in the superposition QII′ we
only have fermions that come from the relative spectra of the constituents, because the
polynomial factorisations do not have any fermions in their self-spectra. A basis for the
fermionic spectrum is then given by(

0 ψI′I
0 0

)
and

(
0 0

ψII′ 0

)
with ψII′ = pII′

(
0 JI∩I′

−JIc∩I′c 0

)
, (B.23)

where pII′ ∈ C[y1,y2]
〈JI∩I′c ,JI′∩Ic 〉 (and according expressions for ψI′I).

We now want to investigate how the spectrum changes when we turn on the fermion
ψpτ and form the condensate QτII′ . A fermionic morphism Ψ,

Ψ =

(
ψII ψI′I
ψII′ ψI′I′

)
, (B.24)

in the self-spectrum of QτII′ is closed with respect to Dτ , precisely if the matrix blocks
in (B.24) are of the form

ψII =

(
0 p1JI∩I′

p2JIc∩I′c 0

)
(B.25a)

ψI′I = p

(
0 JI∩I′

−JIc∩I′c 0

)
(B.25b)

ψII′ = p′
(

0 JI∩I′
−JIc∩I′c 0

)
− p3

(
0 0

pτJIc∩I′c 0

)
(B.25c)

ψI′I′ =

(
0 p2JI∩I′

p1JIc∩I′c 0

)
+ p3

(
0 −JI′
JI′c 0

)
, (B.25d)

where p, p′, p1, p2, p3 are polynomials satisfying

p pτ = p2JI∩I′c + p1JIc∩I′ . (B.26)

The space of closed homomorphisms has to be divided by the space of exact homomor-
phisms. First we observe that

Dτ


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 p3

 =


0 0 0 0
0 0 0 0
0 0 0 p3JI′

pτp3JIc∩I′c 0 −p3JI′c 0

 , (B.27)

so by adding this exact homomorphism we can always remove the terms in (B.25) involving
p3. Next we want to show that given p and p′, the cohomology class of the homomorphism
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is already fixed. With fixed p and p′, the only freedom we have is to change p1, p2 to some
new p′1 and p′2. These have to satisfy (B.26), and from that we conclude that

p′1 = p1 + p4JI∩I′c p′2 = p2 − p4JIc∩I′ , (B.28)

with some polynomial p4. The difference between the corresponding homomorphisms Ψ′

and Ψ is exact,

Ψ′ −Ψ =


0 p4JI 0 0

−p4JIc 0 0 0
0 0 0 −p4JI′
0 0 p4JI′c 0

 = Dτ


0 0 0 0
0 p4 0 0
0 0 p4 0
0 0 0 0

 . (B.29)

Thus we conclude that the diagonal blocks ψII and ψI′I′ , which are specified by p1 and
p2, do not carry any additional information on the cohomology class that is not contained
already in the off-diagonal blocks ψI′I and ψII′ .

Disregarding exact homomorphisms of the form (B.29) or those that would change p3,
we are now left with exact homomorphisms of the form

Dτ

(
v112 φI′I
φII′ v212

)
=

(
−φI′Iψpτ DI′IφI′I

DII′φII′ + (v1 − v2)ψpτ ψpτφI′I

)
. (B.30)

As we have discussed before, we can concentrate on the off-diagonal blocks ψI′I and ψII′ ;
they label the fermionic morphisms in the self-spectrum of the tachyon condensate.

From (B.25) we see that (having set p3 = 0) these blocks have the same form as
fermions in the superposition of QI and QI′ as given by (B.23). The only thing that
changes is the condition on the polynomials p and p′. Let us first look at the upper right
block ψI′I and the corresponding polynomial p. The exact homomorphisms (B.30) together
with the condition (B.26) tells us to choose

p ∈ R =
C[y1, y2]

〈JI∩I′c ,JIc∩I′〉 with p pτ = 0 ∈ R . (B.31)

For the lower left block ψII′ the changed exactness condition from (B.30) tells us to take

p′ ∈ C[y1, y2]
〈JI∩I′c ,JIc∩I′ , pτ 〉 . (B.32)

We conclude that some fermions that are present in the superposition survive, while others
will disappear due to the changed conditions on p and p′. The details depend of course
crucially on the polynomial pτ that describes the condensing field. In the extreme case
when pτ = 1, we see immediately from (B.31) and (B.32) that no fermions would survive.

The condition (B.31) on p and the condition (B.32) on p′ are dual to each other. We
know that there is an exact pairing on R given by a residue formula (similarly to the one
in section 3.4). When we identify p′’s whose difference is proportional to pτ , the dual space
is obtained by restricting p to those polynomials that are orthogonal to pτ (and everything
generated from it) with respect to the pairing. As the residue formula is non-degenerate
on R, this is equivalent to saying that ppτ = 0 in R.
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We can also determine the U(1) charge of these fermions. From the formu-
lae (B.5), (B.22) and (B.11) we conclude that the charge corresponding to a fermion given
by the polynomial p′ is

qΨp′ = 1 +
2
d

(
deg p′ − deg pτ

)
, (B.33)

the charge of a fermion corresponding to the polynomial p is

qΨp =
2
d

(
deg p+ deg pτ + |I ∩ I ′|+ |Ic ∩ I ′c|)− 1 . (B.34)

Let us exemplify these considerations in the case of the tachyon condensates (4.42) discussed
in section 4.4, namely choosing QI , QI′ with I = [0, . . . , L] and I ′ = [0, . . . , L− 1, L+ 1],
and pτ = y1.

The spectrum is then obtained by evaluating (B.31) and (B.32). The ring in (B.32) in
which p′ takes its values is now

p′ ∈ C[y1, y2]
〈(y2

1 − βLy2), (y2
1 − βL+1y2), y1〉 . (B.35)

This ring is one-dimensional, and p′ = 1 is a representative for a non-trivial element.
Similarly, p = y1 is a representative for the solution of ppτ = 0 in R as in (B.31).

The condensate thus has two fermions; according to (B.33) and (B.34) their charges
are

qΨp′ =
d− 2

2
and qΨp =

d− 4
d

. (B.36)

This fits precisely with the CFT result in (A.34).

B.2.2 Relative spectra

Now we want to study the relative fermionic spectrum between two condensates Qi (i =
1, 2) of polynomial factorisations,

Qi = (QIi
pτi−→ QI′i) (B.37)

=

(
QIi 0
ψτi QI′i

)
, (B.38)

where

ψτi = pτi

(
0 JIi∩I′i

−JIci ∩I′ci 0

)
. (B.39)

For a fermionic morphism Ψ12 from Q1 to Q2,

Ψ12 =

(
ψI1I2 ψI′1I2
ψI1I′2 ψI′1I′2

)
, (B.40)

the closedness condition reads

DI′1I2ψI′1I2 = 0 (B.41)

DI1I2ψI1I2 = −ψI′1I2ψτ1 (B.42)

DI′1I′2ψI′1I′2 = −ψτ2ψI′1I2 (B.43)

DI1I′2ψI1I′2 = −ψτ2ψI1I2 − ψI′1I′2ψτ1 . (B.44)
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To simplify our analysis, we now specify the precise case that we are interested in. We
want in particular to analyse the relative spectra of the factorisations Q|L,1〉, so we take

Q1 = Q|L1,1〉 = (Q[0,...,L1−1,L1+1]
y1−→ Q[0,...,L1]) (B.45)

Q2 = Q|L2,1〉 = (Q[0,...,L2]
y1−→ Q[0,...,L2−1,L2+1]) , (B.46)

and we assume L1 > L2. Note that we have chosen different presentations for the two
factorisations to simplify our analysis (see (4.43)). Explicitly we then have

I1 = [0, . . . , L1 − 1, L1 + 1] ⊃ [0, . . . , L2] = I2 (B.47)

I ′1 = [0, . . . , L1] ⊃ [0, . . . , L2 − 1, L2 + 1] = I ′2 , (B.48)

and also I ′1 ⊃ I2. This last condition means that there are no fermions in the spectrum
between QI′1 and QI2 , i.e. that all closed fermionic morphisms are exact with respect
to DI′1I2 . On the other hand, the closedness condition (B.41) for the ψI′1I2-part in the
spectrum of the condensates just means that ψI′1I2 is closed and hence exact with respect
to DI′1I2 . Also the structure of exact morphisms is unchanged in the ψI′1I2-sector, so that
we can always achieve

ψI′1I2 = 0 (B.49)

by adding exact morphisms. This simplifies the other closedness condi-
tions (B.42)and (B.43) to the usual closedness conditions of the constituents, and
because of the relations in (B.47) and (B.48), all these morphisms are exact and hence can
be set to zero,

ψI1I2 = 0 (B.50)

ψI′1I′2 = 0 . (B.51)

This again simplifies the closedness condition (B.44) to the usual one, and so ψI1I′2 is of
the form

ψI1I′2 = p

(
0 JI1∩I′2

−JIc1∩I′c2 0

)
. (B.52)

What happens to the exactness condition? Here we have to distinguish two cases. If
L1 > L2 + 1, then I1 ⊃ I ′2 and thus there are no fermions between QI1 and QI′2 and we
can also set ψI1I′2 = 0: in that case there are no fermions in the spectrum.

Let us therefore assume that L1 = L2 + 1. We are now looking for the most general
exact fermionic morphism D12Φ12 that has all entries vanishing except ψI1I′2 ,

D12Φ12 =

(
DI1I2φI1I2 − φI′1I2ψτ1 DI′1I2φI′1I2

DI1I′2φI1I′2 + ψτ2φI1I2 − φI′1I′2ψτ1 DI′1I′2φI′1I′2 − ψτ2φI′1I2

)
=

(
0 0

ψex
I1I′2 0

)
.

(B.53)
First we note that φI′1I2 has to be closed with respect to DI′1I2 , and so it is of the form

φI′1I2 = v1

(
JI′c1 ∩I2 0

0 JI′1∩Ic2

)
, (B.54)
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with some arbitrary polynomial v1. A straightforward analysis yields the form of φI1I2 ,

φI1I2 =

(
v2JIc1∩I′c1 ∩I2 0

0 v′2JI1∩I′1∩Ic2

)
, (B.55)

with
v′2JIc1∩I′1∩I2 − v2JI1∩I′c1 ∩Ic2 = v1p

τ
1 . (B.56)

In our case the polynomial accompanying v′2 is JIc1∩I′1∩I2 = 1 because I1 ⊃ I2, so that we
can express v′2 in terms of the other polynomials, and we get

φI1I2 = v2

(
1 0
0 JI1∩Ic2

)
+

(
0 0
0 v1p

τ
1JI1∩I′1∩Ic2

)
. (B.57)

Similarly we have

φI′1I′2 = v3

(
1 0
0 JI′1∩I′c2

)
−
(

0 0
0 v1p

τ
2JI′1∩Ic2∩I′c2

)
. (B.58)

Parameterising

φI1I′2 =

(
v4 0
0 v5

)
, (B.59)

the ψex
I1I′2 component of an exact morphism of the form (B.53) reads

ψex
I1I′2 =

(
v5J[L1]−v4J[L1−1,L1+1]−pτ1v3J[L1−1] +p

τ
2v2J[L1+1] +v1p

τ
1p
τ
2

)( 0 JI1∩I′2
−JIc1∩I′c2 0

)
.

(B.60)
Comparing this with the form (B.52) of a closed morphism, we see that the fermions in
the spectrum are labelled by the quotient ring

R12 =
C[y1, y2]

〈J[L1],J[L1−1,L1+1], p
τ
1J[L1−1], p

τ
2J[L1+1], p

τ
1p
τ
2〉

. (B.61)

In our case pτ1 = pτ2 = y1, and so

R12 =
C[y1, y2]
〈y2

1, y2〉 , (B.62)

which is two-dimensional with representatives p = 1, y1. We finally conclude that there are
two fermions in the spectrum between Q|L1,1〉 and Q|L1−1,1〉.

The charges of these two fermions can then be determined using the charge ma-
trix (B.22) and we obtain

q =
d− 4
d

+
2
d

deg(p) , (B.63)

so the two fermions have charges d−4
d and d−2

d . This matches the CFT result in ap-
pendix A.3.4 (see the discussion below (A.34)).
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B.2.3 Relative spectrum with polynomial factorisations

We want to determine the fermionic spectrum between a polynomial factorisation Q1 = QI1
and the condensate Q2 of two polynomial factorisations,

Q2 = (QI2
pτ−→ QI′2) . (B.64)

A closed fermion,

Ψ =

(
ψI1I2
ψI1I′2

)
, (B.65)

satisfies

ψI1I2 = p1

(
0 JI1∩I2

−JIc1∩Ic2 0

)
(B.66)

ψI1I′2 =

(
0 p2JI1∩I2∩I′2

p′2JIc1∩Ic2∩I′c2 0

)
, (B.67)

with
p′2JI1∩Ic2∩I′2 + p2JIc1∩I2∩I′c2 = p1p

τ . (B.68)

In the cases we are interested in, we have either I1 ⊂ I2 or I2 ⊂ I1, i.e. there are no
fermions between QI1 and QI2 . By condensation, the closedness and exactness condition
do not change for the ψI1I2 component, and we can use exact morphisms to set p1 to 0.
Then ψI1I′2 is closed with respect to DI1I′2 ,

ψI1I′2 = p

(
0 JI1∩I′2

−JIc1∩I′c2 0

)
. (B.69)

The remaining exact morphisms D12Φ then come from bosons

Φ =

(
cφI1I2
φI1I′2

)
, (B.70)

where φI1I2 is closed with respect to DI1I2 ,

φI1I2 = v1

(
JIc1∩I2 0

0 JI1∩Ic2

)
, (B.71)

with some polynomial v1. Writing the bosonic component φI1I′2 as

φI1I′2 =

(
v2 0
0 v′2

)
, (B.72)

the remaining exact fermionic morphisms Ψex have ψex
I1I2 = 0 and

ψex
I1I′2 =

(
0 v′2JI′2 − v2JI1 + pτv1JI1∩Ic2JI2∩I′2

v2JI′c2 − v′2JIc1 − pτv1JIc1∩I2JIc2∩I′c2 0

)
(B.73)

= (v′2JIc1∩I′2 − v2JI1∩I′c2 + pτv1JI1∩Ic2∩I′c2 JIc1∩I2∩I′2)

(
0 JI1∩I′2

−JIc1∩I′c2 0

)
. (B.74)
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Here we used again that either I1 ⊂ I2 or vice versa. The fermions are then labelled by poly-
nomials p (see (B.69)) modulo identifications that come from the exact morphisms (B.74),
hence we can view p as living in the quotient

p ∈ C[y1, y2]
〈JIc1∩I′2 ,JI1∩I′c2 , pτJI1∩Ic2∩I′c2 JIc1∩I2∩I′2〉

. (B.75)

For explicitness we now set

I1 = [0, . . . , L1] (B.76)

I2 = [0, . . . , L2] (B.77)

I ′2 = [0, . . . , L2 − 1, L2 + 1] (B.78)

pτ = y1 . (B.79)

For L1 < L2 we have JI1∩I′c2 = 1, so there are no fermions. Similarly for L1 > L2 we have
JIc1∩I′2 = 1, and no fermion remains. On the other hand, for L1 = L2, the spectrum is
given by

p ∈ C[y1, y2]
〈J[L1+1],J[L1], y1〉 , (B.80)

which is one-dimensional. In conclusion, we find precisely one fermion in the spectrum
between Q|L1,0〉 and Q|L2,1〉 if L1 = L2, and no fermions otherwise. The fermion that
appears for L1 = L2 has charge

q =
d− 3
d

, (B.81)

which can be determined using (3.33) and the charge matrices (B.5) and (B.22). This
coincides with the CFT result in (A.38).

B.3 Reproducing the CFT flows

Having identified matrix factorisations for the |L, 0〉 and |L, 1〉 series, we can now com-
pare the RG flows (4.29) between boundary states to tachyon condensation in the matrix
factorisation language. Let us consider the RG flow

|L, 0〉+ |L, 1〉 |L− 1, 0〉+ |L, 0〉+ |L+ 1, 0〉 . (B.82)

From formula (A.38) we can see that in the relative spectrum between |L, 0〉 and |L, 1〉,
there is precisely one fermion ψ of charge qψ = d−3

d . Condensing this fermion corresponds
in the CFT to perturb with a field from this coset sector, so this is compatible with the
considerations that led to (4.31). In the language of matrix factorisations this fermion is
given by (B.69) with p = 1.

Let us explicitly work out the tachyon condensate. To make the equations more read-
able, we only write the J -part of the matrix in a notation like in (3.24). We obtain

(Q|L,0〉
ψ−→ Q|L,1〉)J =

 J[0,...,L] 0 0
0 J[0,...,L] 0

J[0,...,L−1] y1J[0,...,L−1] J[0,...,L−1,L+1]

 . (B.83)
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We can use the term J[0,...,L−1] to eliminate all other entries in that row or column by
elementary transformations. Having done this one can immediately see the equivalence to
the matrix

(
Q|L−1,0〉+|L,0〉+|L+1,0〉

)
J =

J[0,...,L−1] 0 0
0 J[0,...,L] 0
0 0 J[0,...,L+1]

 . (B.84)

This reproduces the RG flow (B.82) in terms of matrix factorisations. Note that the brane
|L, 0〉, although appearing in both the initial and the final configuration, is not purely a
spectator brane, but is involved in the flow.

B.4 A faithful functor

Given a matrix factorisation Q(y1, y2) for the superpotential Wk(y1, y2), we can construct
from it a matrix factorisation Q̃(x1, x2) := Q(x1 + x2, x1x2) of the superpotential

W̃k(x1, x2) = Wk(x1 + x2, x1x2) = xk+3
1 + xk+3

2 . (B.85)

This map gives rise to a functor from the category of matrix factorisations of Wk to the
category of W̃k. It maps a morphism Φ(y1, y2) from Q1 to Q2 (seen as a matrix with
polynomial entries) to

Φ̃(x1, x2) = Φ(x1 + x2, x1x2) . (B.86)

Obviously, Φ̃ is closed if Φ is. On the other hand, if we change Φ by an exact morphism,
then obviously the corresponding image also differs from Φ̃ by an exact term.

The most interesting property of this map is that it defines a faithful functor, i.e. it is
injective on the morphism spaces. This can be seen as follows: let Φ be such that Φ̃ = DxΨ
is exact. Decompose Ψ(x1, x2) = Ψsym(x1, x2) + Ψasym(x1, x2) into a symmetric and an
antisymmetric part with respect to the exchange of x1 and x2. Since Φ̃(x1, x2) is symmetric
by construction, and also Dx is symmetric, we know that DxΨasym = 0. Hence

Φ̃ = DxΨsym . (B.87)

A symmetric polynomial can be rewritten in terms of y1, y2, so that there exists a morphism
Ψ′(y1, y2) such that Ψsym(x1, x2) = Ψ′(x1 + x2, x1x2). Therefore

Φ(y1, y2) = DyΨ′(y1, y2) , (B.88)

from which we conclude that the functor is indeed faithful.
This property makes it possible to use known results on factorisations of W̃k(x1, x2)

to obtain information on factorisations of Wk(y1, y2). Namely given a factorisation Q of
Wk, express it in x-variables to get a factorisation Q̃ of W̃k. Then determine the spectrum,
and decompose it into one part that is symmetric under exchange of x1 and x2, and one
part that is anti-symmetric. The symmetric part is the isomorphic image of the spectrum
of the factorisation Q in the variables y1, y2.

The functor we have discussed here, can be realised in terms of a defect12 separating
the theories with superpotentials Wk and W̃k. This will be discussed elsewhere [59].

12We thank Nils Carqueville and Ingo Runkel for discussions on this point.
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