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Abstract. Superconformal indices (SCIs) of 4d N = 4 SYM theories with simple gauge
groups are described in terms of elliptic hypergeometric integrals. For F4, E6, E7, E8 gauge
groups this yields first examples of integrals of such type. S-duality transformation for
G2 and F4 SCIs is equivalent to a change of integration variables. Equality of SCIs
for S P(2N ) and SO(2N + 1) group theories is proved in several important special cases.
Reduction of SCIs to partition functions of 3d N =2 SYM theories with one matter field
in the adjoint representation is investigated, corresponding 3d dual partners are found, and
some new related hyperbolic beta integrals are conjectured.
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1. Introduction

The problem of electric-magnetic duality for non-abelian gauge theories was raised
by Goddard et al. [1] (see also [2]). Its consideration in the context of N =4 super-
symmetric Yang-Mills (SYM) theory in four dimensional space-time is a quite
old area of research [3]. This duality (called also S-duality) states the equiva-
lence of the theory with an “electric” gauge group Gc to a similar theory with a
“magnetic” gauge group G∨

c . Let Gc be a simply laced Lie group. This means that
its Dynkin diagram contains only simple links, and therefore all roots of the corre-
sponding Lie algebra have the same length, which is true for SU (N ), SO(2N ), E6,

E7, and E8 groups. Then, G∨
c = Gc and the S-duality transformation maps the

complex coupling constant τ = θ/2π + 4π i/g2 to −1/τ . Taken together with
the symmetry transformation τ → τ + 1, the S-duality becomes equivalent to the
SL(2,Z)-group of modular transformations

τ → aτ +b

cτ +d
, ad −bc =1, a,b, c,d ∈Z. (1)
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For the non-simply laced gauge groups, the S-duality acts as τ →−1/mτ , where
m is the ratio of the lengths-squared of long and short roots of the corresponding
root system. One has m = 2 for SO(2N + 1) and S P(2N ) group theories dual to
each other [1]. For F4 and G2 groups one has m = 2 and m = 3, respectively; cor-
responding theories were discussed in [4] from the algebraic point of view and the
S-duality transformation of their moduli spaces was described.

Here we discuss a new test of N = 4 SYM field theory dualities based on the
superconformal indices (SCIs) suggested by Kinney et al. in [5] (for the definition
of indices in N = 1 theories, see [6,7]). N = 4 SYM theory has the P SU (2,2|4)

space-time symmetry group generated by Ja, J a, a = 1,2,3, representing SU (2)

subgroups (Lorentz rotations), Pμ, Qi,α, Qi,α̇ (supertranslations) with μ=0,1,2,3,

i =1,2,3,4 and α, α̇ =1,2, Kμ, Si,α, Si,α̇ (special superconformal transformations),
and H (dilations) whose state eigenvalues are given by conformal dimensions [8].
As to the SU (4)R R-symmetry subgroup, we mention only its commuting maxi-
mal torus generators R1, R2, R3. For a distinguished pair of supercharges, say, Q :=
Q1,1 and Q† := S1,1, in appropriate normalization one has

{Q, Q†}= H −2J3 −2
3∑

k=1

(
1− k

4

)
Rk =:�. (2)

In this case SCI is defined as the following gauge-invariant trace

I (t, y, v,w)=Tr
(
(−1)F t2(H+J3)y2J 3vR2wR3e−β�

)
, (3)

where F is the fermion number operator and t, y, v,w, ga, β are group parameters
(chemical potentials). The trace is effectively taken over the space of zero modes
of the operator � (the space of BPS states [9]), because relation (2) is preserved
by operators used in (3); the contributions from other states cancel together with
the dependence on β. In comparison to N =1,2 theories, all fields of N =4 SYM
theory lie in the adjoint representation of Gc, i.e. only the adjoint representation
characters enter SCIs.

The U (N )-gauge group SCI has the following matrix integral form [5]

I (t, y, v,w)=
∫

Gc

[dU ] exp
( ∞∑

m=1

1
m

f (tm, ym, vm,wm)Tr(U †)mTr U m
)
, (4)

where [dU ] is the invariant measure and f (t, y, v,w)Tr U †Tr U is the so-called sin-
gle-particle states index with

f (t, y, v,w)= t2(v +1/w +w/v)− t3(y +1/y)− t4(w +1/v +v/w)+2t6

(1− t3 y)(1− t3/y)
.

As shown in [10] (see there the discussion following formula (5.33)), this expression
can be obtained from the superconformal group character or partition function for
N =4 theories by imposing the shortening condition for the multiplets.
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The SCI technique has found many applications in supersymmetric field
theories. Römelsberger conjectured [6,7] that SCIs of the Seiberg dual N =1 SYM
theories coincide. Dolan and Osborn explicitly confirmed this conjecture for a
number of examples [11]. It appeared that SCIs are expressed in terms of ellip-
tic hypergeometric integrals whose theory was developed earlier in [12,13] (see also
[14] for a general survey). Equality of indices in dual theories happened to be
equivalent either to exact computability of elliptic beta integrals discovered in [12]
or to nontrivial Weyl group symmetry transformations for higher order elliptic
hypergeometric functions [13,15]. In a series of papers [16–19] we applied this tech-
nique to analyzing all previously found Seiberg dualities. We suggested also many
new such dualities on the basis of known identities for elliptic hypergeometric inte-
grals and showed that known nontrivial duality checks are satisfied for them. As
a payback to mathematics, it happened that many old dualities lead to new, still
unproven highly nontrivial relations for integrals.

This line of thoughts was further developed in beautiful papers by Gadde et al.
[20,21]. In [22], a particular one dimensional elliptic hypergeometric integral was
shown to have W (F4) Weyl group of symmetry, which follows from the elliptic
beta integral evaluation formula [12]. It was used in [20] for confirming S-dual-
ity for N = 2 SYM theory with SU (2) gauge group and four hypermultiplets and
for ensuring associativity of the operator algebra of 2d topological field theories
behind that duality. The SCI for a E6 SCFT theory was constructed in [21] from
the index of N = 2 SYM theory with Gc = SU (3) and six hypermultiplets and a
new test of the Argyres–Seiberg duality was suggested.

Here we construct N = 4 SCIs for all simple gauge groups, show their S-dual-
ity invariance for G2 and F4 cases, and give new mathematical arguments sup-
porting equality of SCIs for S P(2N ) and SO(2N +1) theories conjectured in [20].
All N = 4 indices degenerate in a specific limit to orthogonality measures for the
Macdonald polynomials and admit thus exact evaluations. Another limit leads to
computable 3d partition functions described by the hyperbolic beta integrals.

2. Duality of SO(2N +1) and SP(2N) N=4 SYM Theories

SCIs for S P(2N ) and SO(2N +1) N =4 SYM theories were described in [20] and
discussed briefly in the simplest case in [17]. Here we prove equality of these SCIs
in several important limiting cases.

In all N =4 theories the single-particle index is

1
(1− p)(1−q)

( 3∑

k=1

sk − pq
3∑

k=1

s−1
k − p −q +2pq

)
χadj(z), (5)

where χadj(z) is the character of the adjoint representation of the corresponding
gauge group (see the Appendix). For convenience, we have denoted

s1 = t2v, s2 = t2w−1, s3 = t2wv−1, p = t3 y, q = t3 y−1.
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Using explicit expressions of the group invariant measures, SCIs can be written as
particular elliptic hypergeometric integrals [14]. So, S P(2N )-electric theory index
gets the following form

IE =χN

∫

TN

∏

1≤i< j≤N

∏3
k=1 	(sk z±1

i z±1
j ; p,q)

	(z±1
i z±1

j ; p,q)

N∏

j=1

∏3
k=1 	(sk z±2

j ; p,q)

	(z±2
j ; p,q)

dz j

2π iz j
, (6)

and for SO(2N +1)-magnetic theory one has

IM =χN

∫

TN

∏

1≤i< j≤N

∏3
k=1 	(sk y±1

i y±1
j ; p,q)

	(y±1
i y±1

j ; p,q)

N∏

j=1

∏3
k=1 	(sk y±1

j ; p,q)

	(y±1
j ; p,q)

dy j

2π iy j
,

(7)

where |sk | < 1, k = 1,2,3. For |sk | ≥ 1 the indices are defined as analytical con-
tinuations of the expressions (6) and (7). Here T denotes the unit circle with
positive orientation and we use conventions 	(a,b; p,q) := 	(a; p,q)	(b; p,q),

	(az±1; p,q) :=	(az; p,q)	(az−1; p,q), where

	(z; p,q)=
∞∏

i, j=0

1− z−1 pi+1q j+1

1− zpi q j
, |p|, |q|<1,

is the elliptic gamma function. The coefficient in front of the integrals is

χN = (p; p)N∞(q;q)N∞
2N N !

3∏

k=1

	N (sk; p,q),

with (a;q)∞ = ∏∞
k=0(1 − aqk). The constraint

∏3
k=1 sk = pq plays the role of the

balancing condition for integrals.
The S-duality hypothesis leads thus to the conjecture IE = IM , or

∫

TN

�E (z, s)
N∏

j=1

dz j

2π iz j
=

∫

TN

�M (y, s)
N∏

j=1

dy j

2π iy j
, (8)

where the kernels �E (z, s) and �M (y, s) are read from integrals (6) and (7). Denot-
ing ρ(z, y, s)=�E (z, s)/�M (y, s), we have verified that this function represents the
so-called totally elliptic hypergeometric term [17,23]. This is a rather rich mathe-
matical statement giving strong evidence on the validity of the stated equality of
integrals. It means that all the functions

h(z)
i = ρ(. . .qzi . . . , y, s)

ρ(z, y, s)
, h(y)

i = ρ(z, . . .qyi . . . , s)

ρ(z, y, s)
, i =1, . . . , N ,

h(s)
kl = ρ(z, y, . . .qsk, . . . ,q−1sl . . .)

ρ(z, y, s)
, k, l =1,2,3, k �= l,
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are elliptic functions of all their arguments zi , yi , sk, and q. For instance,

h(z)
i (z, y, s;q; p)=h(z)

i (. . . pz j . . . , y, s;q; p)=h(z)
i (z, . . . py j . . . , s;q; p)

=h(z)
i (z, y, . . . psk . . . p−1sl;q; p)=h(z)

i (z, y, . . . psl . . . ; pq; p),

where k, l =1,2,3. This test is passed by all known integral identities, though it is
not sufficient for their validity. For further consequences of the total ellipticity and
various technical details of such computations, see [14,17,23].

Now we list various special cases when the equality IE = IM can be verified rig-
orously. For low ranks of the gauge group, it follows from the change of integra-
tion variables associated with the affine transformation of the corresponding root
system [20]. The electric SCI is obtained from the magnetic one after the substitu-
tion y = z2 for N =1, and y1 = z1z2 and y2 = z1/z2 for N =2.

The limit sk → 1. Suppose that one of the parameters, say, s1 goes to 1. Then
elliptic gamma functions of the integrand denominators are cancelled and no sin-
gularities appear on the integration contour. Because now s2s3 = pq, and 	(a,b;
p,q)= 1 for ab = pq, the integrands are actually equal to 1. However, the factor
χN is divergent in this limit. As a result, we have lims1→1 IE/IM =1.

Reduction p =q =0. Consider the limit p →0. For fixed z, the limit p →0 and fur-
ther limit q →0 simplifies the elliptic gamma function to

	(z; p,q) =
p→0

1
(z;q)∞

=
q→0

1
1− z

.

Because of the balancing condition for integrals, all parameters cannot be kept
fixed. The simplest possibility consists in fixing s1,2 and setting s3 = pq/s1s2. Then
integral (6) reduces to

I p=0
E (s1, s2 fixed)= (q;q)N∞

2N N !
(s1s2;q)N∞
(s1, s2;q)N∞

×
∫

TN

∏

1≤i< j≤N

(z±1
i z±1

j , s1s2z±1
i z±1

j ;q)∞
(s1z±1

i z±1
j , s2z±1

i z±1
j ;q)∞

N∏

j=1

(z±2
j , s1s2z±2

j ;q)∞
(s1z±2

j , s2z±2
j ;q)∞

dz j

2π iz j
, (9)

where (a,b;q)∞ := (a;q)∞(b;q)∞. Integral (7) reduces to

I p=0
M (s1, s2 fixed)= (q;q)N∞

2N N !
(s1s2;q)N∞
(s1, s2;q)N∞

×
∫

TN

∏

1≤i< j≤N

(y±1
i y±1

j , s1s2 y±1
i y±1

j ;q)∞
(s1 y±1

i y±1
j , s2 y±1

i y±1
j ;q)∞

N∏

j=1

(y±1
j , s1s2 y±1

j ;q)∞
(s1 y±1

j , s2 y±1
j ;q)∞

dy j

2π iy j
. (10)

For q =0 the integrands have only a finite number of poles and the integrals can
be evaluated by computing the residues. However, we did not find a simple way of
performing these computations for arbitrary N and have verified equality of the
resulting p =q =0 SCIs only for N =3.
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One can tie the limit p,q →0 to a very natural choice of the fugacities v,w in
(3) equal to 1. After fixing sk = (pq)1/3, k =1,2,3, the limit p,q →0 strongly sim-
plifies the integrals (set q = s1 = s2 =0 in (9) and (10)). Then the SCIs can be eval-
uated exactly using two different special cases of the Selberg integral, description
of which we skip for brevity, yielding IE = IM =1.

A p =0, q →1 limit. Let us set in (9), (10) s1 =qα, s2 =qβ and consider the limit
q →1 for fixed α and β. Known asymptotic formulas

lim
q→1

(qαz;q)∞
(qβ z;q)∞

= (1− z)β−α, lim
q→1

(q;q)∞
(qx ;q)∞

(1−q)1−x =	(x),

where 	(x) is the Euler gamma function, show that both integrands become equal
to 1 and the leading asymptotics for SCIs is determined by the integral prefactors

I p=0,q→1
E,M (s1 =qα, s2 =qβ)= 1

2N N !
(

	(α)	(β)

(1−q)	(α +β)

)N

(1+o(1)).

A p =0, s2 =0 limit. Let us set now in (9) s2 =0, which yields

I p=s2=0
S P(2N )

= 1
2N N !

(q;q)N∞
(s1;q)N∞

∫

TN

∏

1≤i< j≤N

(z±1
i z±1

j ;q)∞
(s1z±1

i z±1
j ;q)∞

N∏

j=1

(z±2
j ;q)∞

(s1z±2
j ;q)∞

dz j

2π iz j
. (11)

This integral can be evaluated exactly using the multivariable extension of the
Askey–Wilson integral (or particular q-Selberg integral serving as the orthogonal-
ity measure for Koornwinder polynomials) found in [24]

1
2N N !

∫

TN

∏

1≤i< j≤N

(z±1
i z±1

j ;q)∞
(bz±1

i z±1
j ;q)∞

N∏

j=1

(z±2
j ;q)∞

∏4
i=1(ai z

±1
j ;q)∞

dz j

2π iz j

=
N∏

j=1

( (t;q)∞(bN+ j−2a1a2a3a4;q)∞
(b j ;q)∞(q;q)∞

∏

1≤i<k≤4

1
(b j−1ai ak;q)∞

)
, (12)

where |b|, |ai |<1. This formula reduces to our case after the substitutions

b = s1, a1,2 =±√
s1, a3,4 =±√

qs1.

The same limit applied to (10) leads to the integral

I p=s2=0
SO(2N+1)

= 1
2N N !

(q;q)N∞
(s1;q)N∞

∫

TN

∏

1≤i< j≤N

(z±1
i z±1

j ;q)∞
(s1z±1

i z±1
j ;q)∞

N∏

j=1

(z±1
j ;q)∞

(s1z±1
j ;q)∞

dz j

2π iz j
,

(13)

which is obtained from (12) after setting

b = s1, a1 = s1, a2 =−1, a3,4 =±√
q.
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Corresponding computations on the right-hand side of (12) yield

I p=s2=0
S P(2N )

= I p=s2=0
SO(2N+1)

=
N−1∏

j=0

(qs2 j+1
1 ;q)∞

(s2 j+2
1 ;q)∞

. (14)

Equality of indices established earlier in the limit sk = (pq)
1
3 → 0, k = 1,2,3, is a

special case of relation (14) obtained after fixing s1 =q =0.
The integrals in (14) were computed under the assumption that |s1|<1, but for

finite N we can analytically continue SCIs to arbitrary values of s1 as meromor-
phic functions using the right-hand side expression. For |s1|<1, the limit N →∞
yields a ratio of double infinite products appearing in the elliptic gamma function
with p = s2

1 . From the physical point of view this limit is relevant for testing the
AdS/CFT correspondence. In [25], it was suggested to consider the maximal angu-
lar momentum limit for indices t →0, y →∞ with t3 y fixed, which corresponds to
q → 0 with fixed p. Due to the symmetry between p and q this is similar to our
limit p = s2 =0, but we have the additional free parameter s1 absent in [25].

The hyperbolic limit. Let us study the hyperbolic limit [26,27] of elliptic hypergeo-
metric integrals (6) and (7). First we parametrize the variables as

p = e2π ivω1, q = e2π ivω2 , si = e2π ivαi , i =1,2,3,

where
∑3

i=1 αi =ω1 +ω2 (the balancing condition), and then take the limit v →0.
To simplify the integrals we use the Ruijsenaars limit

	(e2π ir z; e2π irω1 , e2π irω2) =
r→0

e−π i(2z−ω1−ω2)/12rω1ω2γ (2)(z;ω1,ω2), (15)

where

γ (2)(u;ω1,ω2)= e− π i
2 B2,2(u;ω1,ω2)

(e2π i(u−ω2)/ω1; e−2π iω2/ω1)∞
(e2π iu/ω2; e2π iω1/ω2)∞

(16)

is the hyperbolic gamma function and B2,2(u;ω) is the second order Bernoulli
polynomial,

B2,2(u;ω)= u2

ω1ω2
− u

ω1
− u

ω2
+ ω1

6ω2
+ ω2

6ω1
+ 1

2
.

The following conventions are used below γ (2)(a,b;ω) := γ (2)(a;ω)γ (2)(b;ω) and
γ (2)(a ±u;ω) :=γ (2)(a +u;ω)γ (2)(a −u;ω).

We skip the general expressions for hyperbolic integrals arising in this limit and
present only the result appearing after taking the additional limit α2 →∞ (which
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mimics altogether the previously considered limit p =0, s2 =0):

I h,α2→∞
S P(2N )

= ξN

i∞∫

−i∞

∏

1≤i< j≤N

γ (2)(α1 ±ui ±u j ;ω)

γ (2)(±ui ±u j ;ω)

N∏

j=1

γ (2)(α1 ±2u j ;ω)

γ (2)(±2u j ;ω)
du j , (17)

I h,α2→∞
SO(2N+1)

= ξN

i∞∫

−i∞

∏

1≤i< j≤N

γ (2)(α1 ±ui ±u j ;ω)

γ (2)(±ui ±u j ;ω)

N∏

j=1

γ (2)(α1 ±u j ;ω)

γ (2)(±u j ;ω)
du j , (18)

where ξN = γ (2)(α1;ω)N /N !(2i
√

ω1ω2)
N and we dropped the common multiplier

exp{ π i
2ω1ω2

(α2
1 + 2α1α2 − α1(ω1 + ω2))(2N 2 + N )}. To obtain these expressions we

used the inversion relation γ (2)(z,ω1 +ω2 − z;ω)=1 and the asymptotic formulas

lim
u→∞ e

π i
2 B2,2(u;ω)γ (2)(u;ω)=1, for arg ω1 <arg u <arg ω2 +π,

lim
u→∞ e− π i

2 B2,2(u;ω)γ (2)(u;ω)=1, for arg ω1 −π <arg u <arg ω2.
(19)

The following hyperbolic analog of the Selberg integral was computed in [26]
(for N =1, see [28]):

1
2N N !

i∞∫

−i∞

∏

1≤i<k≤N

γ (2)(τ ±ui ±uk;ω)

γ (2)(±ui ±uk;ω)

N∏

j=1

∏4
i=1 γ (2)(μi ±u j ;ω)

γ (2)(±2u j ;ω)

du j

i
√

ω1ω2

=
N∏

j=1

γ (2)( jτ ;ω)

γ (2)(τ ;ω)

N−1∏

j=0

∏
1≤i<k≤4 γ (2)( jτ +μi +μk;ω)

γ (2)((2N −2− j)τ +∑4
i=1 μi ;ω)

, (20)

where the Mellin–Barnes integration contour separates sequences of integrand
poles going to infinity. One can obtain integral (17) from (20) after the substitu-
tions

τ =α1, μ1 = 1
2
α1, μ2 = 1

2
(α1 +ω1), μ3 = 1

2
(α1 +ω2), μ4 = 1

2
(α1 +ω1 +ω2),

and integral (18) after the substitutions

τ =α1, μ1 =α1, μ2 = 1
2
ω1, μ3 = 1

2
ω2, μ4 = 1

2
(ω1 +ω2)

and application of the duplication formula γ (2)(2z;ω)= γ (2)(z, z +ω1/2, z +ω2/2,

z + (ω1 +ω2)/2;ω). Direct computations show that

I h,α2→∞
S P(2N )

= I h,α2→∞
SO(2N+1)

=
N−1∏

j=0

γ (2)((2 j +2)α1;ω)

γ (2)((2 j +1)α1 +ω1 +ω2;ω)
. (21)

Relations (14) and (21) provide the best available SCI justifications of the duality
of N =4 SYM field theories with S P(2N ) and SO(2N +1) gauge groups.



N =4 SUPERCONFORMAL INDICES 105

Discuss now a physical interpretation of integrals (17), (18) and their exact eval-
uation (21). In [29] it was shown that the hyperbolic limit of 4d N =1 SCIs leads
to partitions functions of 3d N = 2 SYM and CS theories constructed in [30–32]
following [33]. Our hyperbolic integrals describe partition functions of 3d N = 2
SYM theories with S P(2N ) and SO(2N + 1) gauge groups containing one chiral
superfield in the adjoint representation with the U (1)A-group hypercharge 1. First,
these 3d theories are dual to each other and, second, they share the same confin-
ing phase described by a Wess–Zumino type model with 2N chiral fields with the
U (1)A-hypercharges 2k,−2k +1, k =1, . . . , N , and zero R-charges, whose partition
function is given by expression (21). Taking α1 = (ω1 +ω2)/2 in (17) and (18) one
obtains partition functions for pure 3d N = 4 SYM theories. As follows from the
exact evaluation (21), these partition functions vanish indicating thus to the spon-
taneous supersymmetry breaking [34].

As to the hyperbolic integrals obtained from SCIs for arbitrary α1 and α2, they
describe partition functions of 3d N =2 SYM theories with 3 chiral superfields in
the adjoint representation. The constraint α1 = (ω1 +ω2)/2 leads to partition func-
tions of 3d N = 4 SYM theories with one hypermultiplet in the adjoint represen-
tation. In these cases, 3d theories with S P(2N ) and SO(2N + 1) gauge group are
dual to each other in the same way as the parent 4d N =4 models. A similar sit-
uation holds for all other cases considered below.

3. G2 Gauge Group

We consider now the S-duality conjecture for N = 4 SYM theory with the gauge
group G2. This group has two maximal torus variables z1 and z2, but it is con-
venient to introduce the third variable z3 = z−1

1 z−1
2 (see the Appendix). Then the

electric SCI takes the form

IE =κ2

∫

T2

∏

1≤i< j≤3

∏3
k=1 	(sk z±1

i z±1
j ; p,q)

	(z±1
i z±1

j ; p,q)

2∏

j=1

dz j

2π iz j
, (22)

where |sk |<1, k =1,2,3, and

κ2 = (p; p)2∞(q;q)2∞
223

3∏

k=1

	2(sk; p,q).

In the magnetic theory one has

IM = κ2

∫

T2

∏

1≤i< j≤3

∏3
k=1 	(sk(yi y j )

±3, sk(yi y−1
j )±1; p,q)

	((yi y j )±3, (yi y−1
j )±1; p,q)

2∏

j=1

dy j

2π iy j
, (23)

where y1 y2 y3 =1 (we are indebted to S. Razamat for pointing to a misprint in our
initial expression for this integral).
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The S-duality hypothesis assumes the equality of these elliptic hypergeomet-
ric integrals, IE = IM . Remarkably, this identity can be easily established by the
following change of the integration variables

y1 = (z2z2
3)

1/3, y2 = (z3z2
1)

1/3, y3 = (z1z2
2)

1/3,

associated with the rotation of the G2 root system [4]. The SCI test confirms thus
the S-duality in this case.

Application of the limit p = s2 =0 reduces integral (22) to

I p=s2=0
G2

= 1
223

(q;q)2∞
(s1;q)2∞

∫

T2

∏

1≤i< j≤3

(z±1
i z±1

j ;q)∞
(s1z±1

i z±1
j ;q)∞

2∏

j=1

dz j

2π iz j
, (24)

where z1z2z3 =1. This integral admits exact evaluation [35]

I p=s2=0
G2

= (qs1,qs5
1 ;q)∞

(s2
1 , s6

1 ;q)∞
. (25)

4. F4 Gauge Group

Consider the S-duality for N =4 SYM theory with the gauge group F4 [1–4]. The
electric SCI has the following form

IE =κ4

∫

T4

∏

1≤i< j≤4

∏3
k=1 	(sk z±2

i z±2
j ; p,q)

	(z±2
i z±2

j ; p,q)

4∏

j=1

∏3
k=1 	(sk z±2

j ; p,q)

	(z±2
j ; p,q)

×
∏3

k=1 	(sk z±1
1 z±1

2 z±1
3 z±1

4 ; p,q)

	(z±1
1 z±1

2 z±1
3 z±1

4 ; p,q)

4∏

j=1

dz j

2π iz j
, (26)

where |sk |<1, k =1,2,3, and

κ4 = (p; p)4∞(q;q)4∞
2732

3∏

k=1

	4(sk; p,q).

In the derivation of this expression we used the F4 group adjoint representation
character which is obtained from the expression given in the Appendix after the
replacement zi → z2

i .
Using similar prescription for the magnetic theory, we find

IM =κ4

∫

T4

∏

1≤i< j≤4

∏3
k=1 	(sk y±1

i y±1
j ; p,q)

	(y±1
i y±1

j ; p,q)

4∏

j=1

∏3
k=1 	(sk y±2

j ; p,q)

	(y±2
j ; p,q)

×
∏3

k=1 	(sk y±1
1 y±1

2 y±1
3 y±1

4 ; p,q)

	(y±1
1 y±1

2 y±1
3 y±1

4 ; p,q)

4∏

j=1

dy j

2π iy j
. (27)
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These are the first examples of multiple elliptic hypergeometric integrals defined for
the F4 root system (in [22] the integrals were defined on the SU (2) group and the
Weyl group W (F4) was acting in the parameter space).

The S-duality conjecture suggests the transformation formula IE = IM . Again, as
suggested to us by S. Razamat, this identity is easily established by the change of
variables

y1 = z1z2, y2 = z1/z2, y3 = z3z4, y4 = z3/z4,

associated with the rotation of the F4 root system [4]. We see thus validity of the
SCI test for this S-duality.

The limit p = s2 =0 reduces integral (26) to

I p=s2=0
F4

= 1
2732

(q;q)4∞
(s1;q)4∞

∫

T4

∏

1≤i< j≤4

(z±2
i z±2

j ;q)∞
(s1z±2

i z±2
j ;q)∞

4∏

j=1

(z±2
j ;q)∞

(s1z±2
j ;q)∞

× (z±1
1 z±1

2 z±1
3 z±1

4 ;q)∞
(s1z±1

1 z±1
2 z±1

3 z±1
4 ;q)∞

4∏

j=1

dz j

2π iz j
, (28)

which admits exact evaluation [35]

I p=s2=0
F4

= (qs1,qs5
1 ,qs7

1 ,qs11
1 ;q)∞

(s2
1 , s6

1 , s8
1 , s12

1 ;q)∞
. (29)

5. SU(N) and SO(2N) Gauge Groups

Consider now SCIs for self-dual N = 4 SYM theories with SU (N ) and SO(2N )

gauge groups [1]. The SU (N ) theory SCI is

ISU (N ) =χN

∫

TN−1

∏

1≤i< j≤N

∏3
k=1 	(sk z−1

i z j , sk zi z
−1
j ; p,q)

	(z−1
i z j , zi z

−1
j ; p,q)

N−1∏

j=1

dz j

2π iz j
, (30)

where
∏N

j=1 z j =1, parameters sk satisfy the constraints |sk |<1, k =1,2,3, and

χN = (p; p)N−1∞ (q;q)N−1∞
N !

3∏

k=1

	N−1(sk; p,q).

The limit p =0, s2 =0 reduces integral (30) to

I p=s2=0
SU (N ) = 1

N !
(q;q)N−1∞
(s1;q)N−1∞

∫

TN−1

∏

1≤i< j≤N

(z−1
i z j , zi z

−1
j ;q)∞

(s1z−1
i z j , s1zi z

−1
j ;q)∞

N−1∏

j=1

dz j

2π iz j
, (31)
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where
∏N

j=1 z j =1, which admits exact evaluation [35]

I p=s2=0
SU (N ) =

N−1∏

j=1

(qs j
1 ;q)∞

(s j+1
1 ;q)∞

. (32)

For N → ∞ this index equals to (s1;q)∞/(s1; s1)∞, which coincides with the
reduced form of N → ∞ asymptotics (after passing from U (N ) to SU (N ) gauge
group) found in [5] from the AdS/CFT correspondence.

SCI for the SO(2N ) theory has the form

ISO(2N ) =χN

∫

TN

∏

1≤i< j≤N

∏3
k=1 	(sk z±1

i z±1
j ; p,q)

	(z±1
i z±1

j ; p,q)

N∏

j=1

dz j

2π iz j
, (33)

where |sk |<1, k =1,2,3, and

χN = (p; p)N∞(q;q)N∞
2N−1 N !

3∏

k=1

	N (sk; p,q).

Note that for N =1 the SCI is equal to χ1.
Taking the ratio of integral kernel to itself with different integration variables in

(30) and (33) one gets totally elliptic hypergeometric terms. However, consequences
of this statement are much less informative than in the cases with nontrivial sym-
metry transformations for integrals.

The limit p =0, s2 =0 reduces (33) to the integral

I p=s2=0
SO(2N )

= 1
2N−1 N !

(q;q)N∞
(s1;q)N∞

∫

TN

∏

1≤i< j≤N

(z±1
i z±1

j ;q)∞
(s1z±1

i z±1
j ;q)∞

N∏

j=1

dz j

2π iz j
, (34)

with exact evaluation [35]

I p=s2=0
SO(2N )

= (qs N−1
1 ;q)∞

(s N
1 ;q)∞

N−2∏

j=0

(qs2 j+1
1 ;q)∞

(s2 j+2
1 ;q)∞

. (35)

In the same way as for S P(2N ) and SO(2N + 1) SYM theories, this case can be
obtained from the q-Selberg integral (12) using special parameter values

b = s1, a1,2 =±1, a3,4 =±√
q.

Consider now the hyperbolic degeneration of (30) and (33) joint with the α2 →
∞ limit similar to S P(2N ) and SO(2N +1) SCIs. For SU (N )-SCI we obtain, after
dropping the multiplier exp{ π i

2ω1ω2
(α2

1 +2α1α2 −α1(ω1 +ω2))(N 2 −1)},

I h,α2→∞
SU (N ) = γ (2)(α1;ω)N−1

N !(i√ω1ω2)
N−1

i∞∫

−i∞

∏

1≤i< j≤N

γ (2)(α1 ± (ui −u j );ω)

γ (2)(±(ui −u j );ω)

N−1∏

j=1

du j , (36)
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where
∑N

j=1 u j =0. In the analysis of convergency of this integral there are two ex-
tremal options when integration variables go to infinity: in the first case u j = iR +
v j , j =1, . . . , N −1, and uN =−(N −1)iR −∑N−1

j=1 v j , where R →+∞, and the inte-
grand behaves as exp(2π N (N −1)α1 R/ω1ω2). In the second case, u1 = iR,
(u j )�
R, j =2, . . . , N −1, and uN =−iR −∑N−1

j=2 u j , R →+∞, and the integrand behaves
as exp(2π Nα1 R/ω1ω2). In both cases, for �(α1/ω1ω2) < 0 the integrand is expo-
nentially suppressed and has no singularities on the integration contour.

To our knowledge integral (36) cannot be obtained as a limit of known hyper-
bolic beta integrals. Formally it is related to the limit

∑4
i=1 μi + (N − 1)τ − ω1 −

ω2 → 0 in formula (20), which is not uniform. Therefore we have separately com-
puted this integral for N = 2,3 by showing that the sum of residues for poles on
the left-hand side of the integration contours is proportional to the product of
sums of residues of two trigonometric integrals (32) with bases q = e2π iω1/ω2 and
q̃ = e−2π iω2/ω1 , |q|<1, which yields

I h,α2→∞
SU (N ) =

N−1∏

j=1

γ (2)(( j +1)α1;ω)

γ (2)( jα1 +ω1 +ω2;ω)
. (37)

For N = 4 this integral coincides with the SO(6)-integral given below. Note that
formula (37) defines a hyperbolic analogue of the orthogonality measure normal-
ization for Macdonald polynomials on AN−1 root system (31), (32) (for arbitrary
N we consider it as a conjecture).

The hyperbolic limit for SCI of SO(2N )-theory (N >1) yields, after dropping the
multiplier exp{ π i

2ω1ω2
(α2

1 +2α1α2 −α1(ω1 +ω2))(2N 2 − N )},

I h,α2→∞
SO(2N )

= ξN

i∞∫

−i∞

∏

1≤i< j≤N

γ (2)(α1 ±ui ±u j ;ω)

γ (2)(±ui ±u j ;ω)

N∏

j=1

du j . (38)

This integral is obtained from (20) after the substitutions

τ =α1, μ1 =0, μ2 = 1
2
ω1, μ3 = 1

2
ω2, μ4 = 1

2
(ω1 +ω2),

which leads to the evaluation

I h,α2→∞
SO(2N )

= γ (2)(Nα1;ω)

γ (2)((N −1)α1 +ω1 +ω2;ω)

N−2∏

j=0

γ (2)(2( j +1)α1;ω)

γ (2)((2 j +1)α1 +ω1 +ω2;ω)
. (39)

Again, one can see that expressions (36) and (37), (38) and (39) describe par-
tition functions of 3d N = 2 SYM theories with one chiral matter superfield in
the adjoint representation of the respective SU (N ) and SO(2N ) gauge groups and
their dual confining partners. Substitution α1 = (ω1 + ω2)/2 in these expressions
leads to vanishing partition functions of 3d N =4 pure SYM theories.
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6. Exceptional Gauge Groups E6, E7, and E8

For the E6 gauge group theory we have the SCI

IE6 =κ6

∫

T6

6∏

j=1

dz j

2π iz j

∏

1≤i< j≤5

∏3
k=1 	(sk z±2

i z±2
j ; p,q)

	(z±2
i z±2

j ; p,q)

∏3
k=1 	(sk(z3

6 Z)±1; p,q)

	((z3
6 Z)±1; p,q)

×
∏

1≤i< j≤5

∏3
k=1 	(sk(z3

6z2
i z2

j Z)±1; p,q)

	((z3
6z2

i z2
j Z)±1; p,q)

5∏

i=1

∏3
k=1 	(sk(z

−3
6 z2

i Z)±1; p,q)

	((z−3
6 z2

i Z)±1; p,q)
,

(40)

where for convenience we denoted Z = (z1z2z3z4z5)
−1 and

κ6 = (p; p)6∞(q;q)6∞
27345

3∏

k=1

	6(sk; p,q).

The combinatorial factors appearing here are the same as, for example, the ones
given in [35]. Similar to the F4-group case, we took the adjoint representation
character given in the Appendix and replaced in it z j → z2

j (the same was done
for the E7 and E8 group cases considered below).

The limit p =0, s2 =0 reduces (40) to the integral

I p=s2=0
E6

= 1
27345

(q;q)6∞
(s1;q)6∞

∫

T6

6∏

j=1

dz j

2π iz j

∏

1≤i< j≤5

(z±2
i z±2

j ;q)∞
(s1z±2

i z±2
j ;q)∞

× ((z3
6 Z)±1;q)∞

(s1(z3
6 Z)±1;q)∞

∏

1≤i< j≤5

((z3
6z2

i z2
j Z)±1;q)∞

(s1(z3
6z2

i z2
j Z)±1;q)∞

5∏

i=1

((z−3
6 z2

i Z)±1;q)∞
(s1(z

−3
6 z2

i Z)±1;q)∞
,

(41)

which can be computed exactly [35],

I p=s2=0
E6

= (qs1,qs4
1 ,qs5

1 ,qs7
1 ,qs8

1 ,qs11
1 ;q)∞

(s2
1 , s5

1 , s6
1 , s8

1 , s9
1 , s12

1 ;q)∞
. (42)

For N =4 SYM theory with the E7 gauge group the SCI has the form

IE7 =κ7

∫

T7

6∏

j=1

∏3
k=1 	(sk z±2

7 (z2
j Z)±1; p,q)

	(z±2
7 (z2

j Z)±1; p,q)

∏

1≤i< j≤6

∏3
k=1 	(sk z±2

i z±2
j ; p,q)

	(z±2
i z±2

j ; p,q)

×
∏3

k=1 	(sk z±4
7 ; p,q)

	(z±4
7 ; p,q)

∏

1≤i< j<l≤6

∏3
k=1 	(sk z±2

7 z2
i z2

j z
2
l Z; p,q)

	(z±2
7 z2

i z2
j z

2
l Z; p,q)

7∏

j=1

dz j

2π iz j
,

(43)
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where we denoted Z = (z1z2z3z4z5z6)
−1 and

κ7 = (p; p)7∞(q;q)7∞
210345 ·7

3∏

k=1

	7(sk; p,q).

The limit p =0, s2 =0 reduces (43) to the integral

I p=s2=0
E7

= 1
210345 ·7

(q;q)7∞
(s1;q)7∞

∫

T7

6∏

j=1

(z±2
7 (z2

j Z)±1;q)∞
(s1z±2

7 (z2
j Z)±1;q)∞

∏

1≤i< j≤6

(z±2
i z±2

j ;q)∞
(s1z±2

i z±2
j ;q)∞

× (z±4
7 ;q)∞

(s1z±4
7 ;q)∞

∏

1≤i< j<l≤6

(z±2
7 z2

i z2
j z

2
l Z;q)∞

(s1z±2
7 z2

i z2
j z

2
l Z;q)∞

7∏

j=1

dz j

2π iz j
, (44)

which can be evaluated exactly [35],

I p=s2=0
E7

= (qs1,qs5
1 ,qs7

1 ,qs9
1 ,qs11

1 ,qs13
1 ,qs17

1 ;q)∞
(s2

1 , s6
1 , s8

1 , s10
1 , s12

1 , s14
1 , s18

1 ;q)∞
. (45)

Finally, the largest exceptional gauge group E8 theory has the SCI

IE8 =κ8

∫

T8

8∏

j=1

dz j

2π iz j

∏

1≤i< j≤8

∏3
k=1 	(sk(z2

i z2
j Z)±1; p,q)

	((z2
i z2

j Z)±1; p,q)

∏3
k=1 	(sk Z±1; p,q)

	(Z±1; p,q)

×
∏

1≤i< j≤8

∏3
k=1 	(sk z±2

i z±2
j ; p,q)

	(z±2
i z±2

j ; p,q)

∏

1≤i< j<l<m≤8

∏3
k=1 	(sk(z2

i z2
j z2

l z2
m Z)±1; p,q)

	((z2
i z2

j z2
l z2

m Z)±1; p,q)
, (46)

where Z = (z1z2z3z4z5z6z7z8)
−1 and

κ8 = (p; p)8∞(q;q)8∞
21435527

3∏

k=1

	8(sk; p,q).

Again, the limit p =0, s2 =0 reduces (46) to the integral

I p=s2=0
E8

= 1
21435527

(q;q)8∞
(s1;q)8∞

∫

T8

8∏

j=1

dz j

2π iz j

∏

1≤i< j≤8

((z2
i z2

j Z)±1;q)∞
(s1(z2

i z2
j Z)±1;q)∞

× (Z±1;q)∞
(s1 Z±1;q)∞

∏

1≤i< j≤8

(z±2
i z±2

j ;q)∞
(s1z±2

i z±2
j ;q)∞

∏

1≤i< j<l<m≤8

((z2
i z2

j z
2
l z2

m Z)±1;q)∞
(s1(z2

i z2
j z

2
l z2

m Z)±1;q)∞
,

(47)

which can be evaluated exactly [35],

I p=s2=0
E8

= (qs1,qs7
1 ,qs11

1 ,qs13
1 ,qs17

1 ,qs19
1 ,qs23

1 ,qs29
1 ;q)∞

(s2
1 , s8

1 , s12
1 , s14

1 , s18
1 , s20

1 , s24
1 , s30

1 ;q)∞
. (48)

In all three integrals (40), (43), and (46) we assumed the restrictions |sk |<1, k =
1,2,3. As expected, ratios of their kernels to themselves with different integration
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variables yield totally elliptic hypergeometric terms. These integrals represent first
known examples of elliptic hypergeometric integrals based on the exceptional root
systems of E-type.

7. Some Special N=1 and N=2 Dualities

Much attention is paid in this paper to supersymmetric theories with the excep-
tional gauge groups. Therefore we would like to describe one more duality example
for such theories known to us. We take N = 1 SYM theory with E6 gauge group
and matter fields in the fundamental representation of SU (6) flavor group and in
27-dimensional representation of E6.

This electric theory and its magnetic dual were suggested in [36,37] and validity
of this duality was discussed further in [38]. The electric SCI is

IE =κ6

∫

T6

∏

1≤i< j≤5

∏6
k=1 	(sk z−1

6 Zz2
i z2

j ; p,q)

	(z±2
i z±2

j ; p,q)

∏6
k=1 	(sk z−4

6 , sk z−1
6 Z; p,q)

	((z3
6 Z)±1; p,q)

×
∏

1≤i< j≤5

1

	((z3
6z2

i z2
j Z)±1; p,q)

5∏

i=1

∏6
k=1 	(sk z2

6z±2
i , sk z−1

6 Z−1z−2
i ; p,q)

	((z−3
6 z2

i Z)±1; p,q)

6∏

j=1

dz j

2π iz j
, (49)

where |sk |<1, k =1, . . . ,6, we denoted Z = (z1z2z3z4z5)
−1 and

κ6 = (p; p)6∞(q;q)6∞
27345

.

The magnetic theory has chiral fields in the antifundamental representation of
the flavor group and 27-dimensional representation of the gauge group. There are
also singlet mesons given by the absolutely symmetric representation of the third
rank of the flavor group. The magnetic SCI is

IM =κ6

6∏

j=1

	(s3
j ; p,q)

6∏

i, j=1; i �= j

	(si s2
j ; p,q)

∫

T6

∏

1≤i< j≤5

1

	((z3
6z2

i z2
j Z)±1; p,q)

×
∏

1≤i< j≤5

∏6
k=1 	(S

1
3 s−1

k z−1
6 Zz2

i z2
j ; p,q)

	(z±2
i z±2

j ; p,q)

∏6
k=1 	(S

1
3 s−1

k z−4
6 , S

1
3 s−1

k z−1
6 Z; p,q)

	((z3
6 Z)±1; p,q)

×
5∏

i=1

∏6
k=1 	(S

1
3 s−1

k z2
6z±2

i , S
1
3 s−1

k z−1
6 Z−1z−2

i ; p,q)

	((z−3
6 z2

i Z)±1; p,q)

6∏

j=1

dz j

2π iz j
, (50)

where |sk |<1, k =1, . . . ,6. The balancing condition for both elliptic hypergeomet-
ric integrals has the form S =∏6

i=1 si = pq.
We have checked that the ratio of these integral kernels yields a totally elliptic

hypergeometric term, which is an important test suggesting that these dualities and
the equality IE = IM might be true. Interestingly, the limit s6 →1 reduces the inte-
grals to SCIs of peculiar E6 and F4 SYM theories dual to each other [37].
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Finally, as an additional advertisement of the applications of the theory of ellip-
tic hypergeometric integrals, we present SCI of a particular N = 2 quiver SYM
theory described in [39]. Define

IE = (p; p)6∞(q;q)6∞
8

∫

T

dx

2π ix

∫

T

dy

2π iy

∫

T2

2∏

j=1

dz j

2π iz j

∫

T

dr

2π ir

∫

T

dw

2π iw

×	(t2vx±1, t2vy±2, t2vz±1
1 z±1

2 , t2vr±2, t2vw±1; p,q)

	(x±1, y±2, z±1
1 z±1

2 , r±2,w±1; p,q)

×	
( t2
√

v
y±1,

t2
√

v
r±1; p,q

)2
	

( t2
√

v
x±1 y±1,

t2
√

v
r±1w±1; p,q

)

×
2∏

j=1

	
( t2
√

v
y±1z±1

j ,
t2
√

v
r±1z±1

j ; p,q
)
, (51)

where t is the same parameter as in N = 4 theories before and v is the chem-
ical potential associated with some combination of the U (2)R-group commuting
R-charges. Introducing the variables α2 = z1z2, β2 = z1/z2, γ 2 = x , and δ2 =w, one
can rewrite this integral as

IM = (p; p)6∞(q;q)6∞
64

∫

T

dγ

2π iγ

∫

T

dy

2π iy

∫

T

dα

2π iα

∫

T

dβ

2π iβ

∫

T

dr

2π ir

∫

T

dδ

2π iδ

×	(t2vγ ±2, t2vy±2, t2vα±2, t2vβ±2, t2vr±2, t2vδ±2; p,q)

	(γ ±2, y±2, α±2, β±2, r±2, δ±2; p,q)

×	
( t2

√
v
γ ±1γ ±1 y±1,

t2
√

v
δ±1δ±1r±1,

t2
√

v
y±1α±1β±1,

t2
√

v
r±1α±1β±1; p,q

)
.

(52)

The identity IE = IM can be interpreted as the equality of SCIs for particu-
lar N = 2 SYM generalized quiver theories (although it does not correspond to
an intrinsic electric-magnetic duality). The “electric” part is an SO(3) × S P(2) ×
SO(4) × S P(2) × SO(3) N = 2 SYM quiver and the “magnetic” part is the same
theory rewritten as an SU (2)6-quiver, as illustrated in Fig. 9 of [39].

8. Discussion

In this paper we have described SCIs for N = 4 SYM theories with simple gauge
groups as elliptic hypergeometric integrals and analyzed some of their mathemat-
ical properties. For all classical simple gauge groups we have found particular
limiting values of chemical potentials (p →0 followed by the s2 →0 limit and the
hyperbolic limit followed by the α2 →∞ limit) for which N = 4 indices are com-
putable exactly. According to the general ideology [6,7,11,17], exact computability
of non-abelian gauge group SCIs is associated with the confinement in the dual
phase of the theory, since it provides a group-theoretical representation of indices
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without local gauge group symmetry. Therefore we conclude that there should exist
some interesting supersymmetric field theories similar to the Wess–Zumino model
whose SCIs are described by the right-hand sides of equalities (11), (13), (24), (28),
(31), (34), (41), (44), and (47). The hyperbolic analogs of these relations describe
equalities of 3d partition functions of particular dual 3d N = 2 and N = 4 SYM
theories.

To our knowledge, hyperbolic beta integrals for exceptional groups were not
considered in the literature. Analysing such exact integration formulas given in
[14,26,27,29] and references therein, we conjecture that the hyperbolic analogs of
all our exceptional gauge group q-beta integrals are obtained from them after the
replacement of infinite products (qnsm

k z�
j ;q)∞ with m or � �= 0 by 1/γ (2)(n(ω1 +

ω2)+ mαk + �u j ;ω), the measure elements (q;q)∞dz j/2π iz j by du j/i
√

ω1ω2, and
T by the Mellin–Barnes integration contours. From the physical point of view this
is equivalent to the conjecture on the particular structure of confining phases of
corresponding 3d N = 2 SYM theories with G2, F4, E6, E7, E8 gauge groups and
one matter field in the adjoint representation. For α1 = (ω1 +ω2)/2 this would yield
vanishing partition functions for 3d N =4 pure SYM theories.

One of the initial motivations for consideration of SCIs in [5] was an analysis
of the AdS/CFT correspondence for N = 4 SYM theory with U (N ) gauge group
which required consideration of the N →∞ limit. In this limit, the original index
coming from the BPS states not forming long multiplets can be computed from
the dual spectrum of gravitons appearing in the Type IIB supergravity compacti-
fied on Ad S5 × S5. It would be interesting to understand the meaning of the reduc-
tion p → 0 from the AdS/CFT point of view on the level of graviton spectra. All
our p = s2 = 0 indices for gauge groups of rank N are well defined in the limit
N →∞ for |s1|<1, being given by curious explicit infinite products. We expect that
the p = s2 = 0 limit corresponds to an essentially simplified picture for the corre-
sponding gravitational duals for both finite and infinite N .

In [40–42], marginal deformations of SCFTs were studied and the importance of
global symmetries for the conformal manifold (a manifold of coupling constants of
the theory where it stays conformal) is shown. A β-deformation of the N =4 SYM
theory [43] is obtained by introduction of a marginal deformation of the superpo-
tential hTr(eiπβ�1�2�3 − e−iπβ�1�3�2) breaking N = 4 supersymmetry down to
N =1 (h is the Yukawa coupling). The arbitrary parameter β may be complex and
this does not spoil superconformal invariance of the theory [44]. The initial R-sym-
metry SU (4)R breaks to U (1)R with the additional global symmetry U (1)1 ×U (1)2

[43]. From the indices point of view the parameters v and w play now the role of
chemical potentials for the latter global group. SCI for the β-deformed theory is
the same as in the initial theory [5]. This means that these theories share essentially
the same set of BPS states. In the conclusion of [17], we discussed appearance
of the SO(3) N = 4 SYM theory from an N = 1 model after a superpotential
deformation, such that both theories share the same SCI. Actually, SCIs of all
exactly marginally deformed theories coincide, only the interpretation of chemical
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potentials is different, being tied to global groups of different meaning. There-
fore these indices serve as invariants of the conformal manifold with their structure
reflecting only a part of the global symmetries preserved by the superpotential.

As an example of different deformation of N = 4 theories we can mention the
deformation to N = 1 SYM theory with two chiral superfields in the adjoint rep-
resentation and an additional U (1) global group (see [45] and references therein).
This theory has an SL(2,Z) group electric-magnetic duality inherited from N = 4
SYM theory in its infrared fixed point. At the level of SCIs such a deformation
is realized in a very simple way, it is just necessary to fix, say, s3 = √

pq, which
excludes this parameter completely from the integrals.

The q-beta integrals appearing from SCIs of all N =4 SYM theories in the limit
p → 0, s2 → 0 determine orthogonality measures for special cases of the
Koornwinder and Macdonald orthogonal polynomials (for E6, E7, and E8 root
systems these measures are generic [35]). We come thus to a natural question on
whether one can give a similar meaning to general elliptic hypergeometric inte-
grals describing N = 4 SCIs and construct corresponding biorthogonal functions.
The first example of such biorthogonal functions in the univariate case has been
found in [13] and a particular S P(2N )-group multivariable generalization of them
has been constructed in [15]. For the exceptional root systems N = 4 SCIs define
the only currently known integrals pretending to such a role.
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Appendix A: Characters of the Adjoint Representations

Here we list characters of the adjoint representations for simple Lie groups G
depending on the maximal torus variables z j .

For SU (N ) group one has N variables z j ,
∏N

j=1 z j =1, and

χSU (N ),adj(z1, . . . , zN )=
∑

1≤i< j≤N

(zi z
−1
j + z−1

i z j )+ N −1.

For SO(2N +1) group of rank N the character is (no constraints on z j )

χSO(2N+1),adj(z)=
∑

1≤i< j≤N

z±1
i z±1

j +
N∑

i=1

z±1
i + N ,

where z±1
i z±1

j := zi z j + zi z
−1
j + z−1

i z j + z−1
i z−1

j and z±1
i := zi + z−1

i .
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For S P(2N ) and SO(2N ) groups of rank N the characters are

χS P(2N ),adj(z)=
∑

1≤i< j≤N

z±1
i z±1

j +
N∑

i=1

z±2
i + N ,

χSO(2N ),adj(z)=
∑

1≤i< j≤N

z±1
i z±1

j + N .

The character for the adjoint representation of G2 group is a symmetric poly-
nomial of two parameters z1 and z2, but it is convenient to introduce the third
variable using relation z1z2z3 =1. Then,

χG2,adj(z1, z2, z3)=2+
∑

1≤i< j≤3

z±1
i z±1

j .

The exceptional F4 group has rank four and

χF4,adj(z1, . . . , z4)=
4∑

i=1

z±1
i +

∑

1≤i< j≤4

z±1
i z±1

j

+(z1/2
1 + z−1/2

1 )(z1/2
2 + z−1/2

2 )(z1/2
3 + z−1/2

3 )(z1/2
4 + z−1/2

4 )+4.

Description of the exceptional Lie groups E6,7,8 can be found in [46]. The rank
of the group E6 is equal to six and

χE6,adj(z1, . . . , z6)=6+
∑

1≤i< j≤5

z±1
i z±1

j

+z3/2
6

5∏

i=1

z−1/2
i

(
1+

∑

1≤i< j≤5

zi z j +
∑

1≤i< j<k<l≤5

zi z j zk zl

)

+z−3/2
6

5∏

i=1

z1/2
i

(
1+

∑

1≤i< j≤5

(zi z j )
−1 +

∑

1≤i< j<k<l≤5

(zi z j zk zl)
−1

)
.

The rank of the group E7 is equal to seven and the needed character is

χE7,adj(z1, . . . , z7)=7+
∑

1≤i< j≤6

z±1
i z±1

j + z±2
7

+(z7 + z−1
7 )

( 6∏

l=1

z1/2
l

6∑

i=1

z−1
i +

6∏

l=1

z−1/2
l

( 6∑

i=1

zi +
∑

1≤i< j<k≤6

zi z j zk

))
.

The group E8 is the biggest exceptional Lie group, it has rank eight and

χE8,adj(z1, . . . , z8)=8+
∑

1≤i< j≤8

z±1
i z±1

j +
8∏

i=1

z−1/2
i

(
1+

∑

1≤i< j≤8

zi z j

)

+
8∏

i=1

z1/2
i

(
1+

∑

1≤i< j≤8

(zi z j )
−1 +

∑

1≤i< j<k<l≤8

(zi z j zk zl)
−1

)
.
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