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Abstract

Using the algorithm of constructing the IR finite observables suggested in [20]
and discussed in details in [21], we consider construction of such observables in
N = 8 SUGRA in NLO of PT. In general, contrary to the amplitudes defined
in the presence of some IR regulator, such observables do not reveal any simple
structure.
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1 Introduction

In the last decade remarkable progress in understanding the structure of the amplitudes
in supersymmetric gauge theories has been achieved [1]. Due to development of the
so-called unitarity cut technique [2, 3], the three- and four-loop results for the four-
point amplitudes became available for N = 4 super Yang-Mils theory (SYM) [4]. The
application of the same technique in N = 8 supergravity (SUGRA), first used in
[5, 6, 7], made it possible the computation of the three- [8] and four-loop [9] four-point
amplitudes in N = 8 SUGRA. We want to stress that obtaining such results, using the
standard diagram technique (component or superspace) seems practically impossible
due to extreme complexity of such computations.

This results initiated once again the discussion of possible ultraviolet (UV) finiteness
of the N = 8 SUGRA [10] and motivated the search of possible constraints on the UV
divergences in N = 8 SUGRA from various points of view [11, 12, 13, 14] and of the
presence of the symmetry group E7(7) in the theory [15, 16].

The answers for the amplitudes, which can be obtained from the unitarity cut
technique, are usually represented as a sum of the master scalar integrals, defined
in D dimensions with fixed coefficients. This provides the possibility to analyze the
dependence (UV behavior) of the amplitude on the dimensionality of space-time D.
Such an analysis up to four loops for the four-point amplitudes in N = 8 SUGRA
revealed the same UV behavior of the amplitudes as in N = 4 SYM. This result,
as claimed by the authors of [10, 17], does not follow from the properties of N = 8
SUSY and cannot be obtained, at least in some obvious way, from the previous analysis
based on different versions of superspace technique (see, however, [18]). This makes
it possible, once again, to suggest that N = 8 SUGRA amplitudes (the S-matrix) are
[10, 17] UV finite as in the case of N = 4 SYM.

The expressions obtained by means of the unitarity cut technique in N = 4 SYM
andN = 8 SUGRA usually have a very ”simple” form. This, and possible UV finiteness
of the N = 8 SUGRA, allows one to make a conjecture, that the amplitudes (the S-
matrix) in N = 8 SUGRA are the ”simplest” among all D = 4-dimensional QFTs with
maximum spin ≤ 2[19].

However, despite the compact and simple form and the UV finiteness, the ampli-
tudes in N = 8 SUGRA (as in any D = 4 dimensional QFT with massless fields) are
still, strictly speaking, ill defined in D = 4 (without some infrared (IR) regulator) due
to the presence of the IR divergences.

In the case of Yang-Mills (YM) theories (and QCD) in such cases the objects of phys-
ical interest are not the amplitudes themselves but the so-called IR finite observables
which are build from the amplitudes, but possess no dependence on the IR regulator.
In [20, 21] the authors suggested the example of such observables for N = 4 SYM. In
contrast to relatively simple answers for several first orders of PT for the four- and
five-point amplitudes [22], the IR finite observables considered in [20, 21], in the first
nontrivial order of PT (NLO) has no simple structure and resemble the complicated
(prior to properly applied simplifications) expressions for the six-point amplitudes in
the second order of PT [23].

It seems natural to consider the similar IR finite observables in N = 8 SUGRA. It
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is this kind of observables that have a clear physical meaning. In the current article we
discuss the construction of such observables in N = 8 SUGRA using the same methods
as in [20, 21].

2 Inclusive cross-sections as IR finite observables

One of the possible IR finite observables are properly constructed perturbative inclu-
sive cross-sections. Such observables naturally appear in the parton model of pertur-
bative QCD [24, 25, 26, 27, 28] and their construction is based on the Kinoshita-Lee-
Nauenberg (KLN) theorem [29]. In such inclusive cross-sections, if the dimensional
regularization is used, the IR divergences appears as 1/ǫ poles. Cancellation of this
infrared divergences coming from the loops includes two main ingredients: emission of
additional soft real quanta and redefinition of the asymptotic states resulting in the
splitting terms governed by the Altarelli-Parisi kernels. The latter ones take care of the
collinear divergences and are absorbed into the probability distributions of initial and
final particles over the fraction of momenta qi(z). The appearance of such distributions
can be heuristically understood in the following fashion: in massless QFT a particle
with momentum p is indistinguishable from the jet of particles with the same overall
momentum and quantum numbers flying parallell. In the first none trivial order of PT
in dimensional regularization the momentum distribution qi(z) can be represented as

qi(z,
Q2

f

µ2
) = δ(1− z) +

g2

2π

1

ǫ

(

µ2

Q2
f

)ǫ
∑

j

Pij(z), (1)

where Pij(z) are the so-called splitting functions. They define the probability that the
particle i emits the collinear particle j with a fraction of momentum z. Here g is the
coupling constant, µ is the mass parameter of dimensional regularization. Qf is usually
called the factorization scale and can be interpreted as the width of a jet of collinear
particles. The contributions from Pij(z) to the cross-section sometimes are called the
collinear counterterms.

Schematically, the class of IR finite observables discussed above, which are the
inclusive cross-sections, can be written as

dσincl
obs =

∞
∑

n=2

1
∫

0

dz1q1(z1,
Q2

f

µ2
)

1
∫

0

dz2q2(z2,
Q2

f

µ2
)

n
∏

i=1

1
∫

0

dxiqi(xi,
Q2

f

µ2
)× (2)

×dσ2→n(z1p1, z2p2, ...)Sn({z}, {x}) = g4
∞
∑

L=0

(

g2

16π2

)L

dσF inite
L (s, t, u, Q2

f),

where Sn({z}, {x}) are the so-called measurement functions, which define what inclu-
sive cross-section (total, differential distribution, etc.) is considered. Note that not for
any choice of Sn({z}, {x}) one gets the IR finite result (see [20, 21] for discussion).
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3 Computation of inclusive cross-section in N = 8

SUGRA

Our aim is to evaluate the inclusive differential polarized cross-section in NLO in the
week coupling limit in planar N = 8 SUGRA in analytical form and to trace the
cancelation of the IR divergences.

Consider the inclusive cross-section for the scattering of polarized gravitons in N =
8 SUGRA in the first nontrivial order of PT and follow the algorithm discussed in
[20, 21]. We assume that all the gravitons have a fixed helicity (+) or (−) and consider
all of them to be outgoing ones. The incoming graviton has the opposite momentum
and helicity. Then all the tree amplitudes with helicity configurations (+...+) or (−+
...+) are identically zero. The first nonzero tree level graviton amplitudes, similar
to the YM case, are those with helicity configurations (− − +...+). They are called
the MHV (or anti-MHV in the case (+ + −...−)) amplitudes. We restrict ourselves
in our consideration to the class of the MHV amplitudes (the MHV channel) only.
Consideration of the anti-MHV channel can be done in the similar fashion. Note,
however, that such a restriction is possible only in the leading order. In higher orders
of PT in order to achieve the IR finiteness, in general, one has to consider all type of
the amplitudes since they are mixed.

Consider the process of 2×2 graviton scattering where all incoming and all outgoing
gravitons have positive helicity. In our notations this corresponds to the amplitude with
helicity configuration (− − ++). This amplitude is the MHV and anti-MHV at the
same time. So one has to take it with the weight 1/2 for considering the MHV channel
only.

The tree amplitude under consideration written in helicity spinor formalism [30]
has the form

Mtree
4 (1−, 2−, 3+, 4+) = (16πGN)i 〈1 2〉

8 [1 2]

〈3 4〉 N(4)
, (3)

where

N(n) ≡
n−1
∏

i=1

n
∏

j=i+1

〈i j〉 . (4)

Here the notation, now standard, for the spinor inner product has been used:

ǫabλ(i)
a λ

(j)
b = 〈λ(i)λ(j)〉

.
= 〈ij〉, ǫȧḃλ̄

(i)
ȧ λ̄

(j)

ḃ
= [λ̄(i)λ̄(j)]

.
= [ij]. (5)

Under the complex conjugation one has

(〈ij〉)∗ = [ij], (6)

and also
〈ij〉[ij] = sij , (7)

where sij = (pi + pj)
2, and pi, pj are some on-shell momenta which correspond to the

i-th and j-th particles.
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Then the differential cross-section dσ(g−g− → g+g+)/dΩ can be written as
(

dσ

dΩ13

)(−−++)

0

=
1

E2

∫

dφ2|M
tree|
4 |2S2, (8)

where dφ2 is the two particle phase space, Sn is the measurement function which, in
our case, has the form

S2 = δ+,h3
δD−2(Ω− Ω13), (9)

dΩ13 = dφ13dcos(θ13), θ13 is the scattering angle of a particle with momentum p3 with
respect to the particle with momentum p1 in the center of mass (c.m.) frame, δ+,h3

corresponds to the fact that particle with momentum p3 has the positive helicity.
From now on the dimensional regularization (reduction) will be used. In the c.m.

frame the Born contribution to the cross-section can then be written as
(

dσ

dΩ

)(−−++)

0

=
1

E2

α2
Grs

6

t2u2

(

µ2

s

)ǫ

=
(αGrE

2)2

E2

(

µ2

s

)ǫ
16

(1− c2)2
, (10)

where s, t, u are the standard Mandelstam variables, E is the total energy of initial
particles in the c.m. frame, c = cos θ13 is the cosine of the scattering angle of the third
particle, µ and ǫ are the parameters of dimensional regularization, and αGr = GN/4π.
In the c.m. frame for the Mandelstam variables one has

s = E2, t = −E2/2(1− c), u = −E2/2(1 + c).

3.1 Virtual contribution

Consider now the one-loop correction to the Born contribution. The corresponding
amplitude has the form:

MN=8
4 (1−, 2−, 3+, 4+) = (16πGN)

21

4
〈1 2〉8

×
[

h(1, {2}, 3)h(3, {4}, 1)Tr2[1234] I12344 + perms
]

, (11)

where Tr[i1i2i3i4] ≡ Tr[k̂i1k̂i2 k̂i3k̂i4 ] and

h(a, {1}, b) =
1

〈a 1〉2 〈1 b〉2
.

The summation goes over all possible permutations and the scalar integral I12344 is equal
to

I12344 (s, t) = −
2

st

Γ(1 + ǫ)Γ(1− ǫ)2

Γ(1− 2ǫ)

(

1

ǫ2
(
(

µ

s

)ǫ

+
(

µ

−t

)ǫ

) +
1

2
log2

(

s

−t

)

+
π2

2

)

+O(ǫ).

So the contribution to the cross-section in c.m. frame has the form
(

dσ

dΩ

)(−−++)

virt

=
(αGrE

2)3

πE2

(

µ2

s

)2ǫ
64

(1− c2)2

[

1

ǫ

(

(1 + c) log(
1 + c

2
) (12)

+(1− c) log(
1− c

2
)
)

+ 2 log(
1 + c

2
) log(

1− c

2
)
]

.
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It should be stressed that in this order of PT the UV divergences in N = 8 are absent
and all the divergences have the IR nature. Note also the absence of the 1/ǫ2 pole which
in this case cancels due to permutations in (11) contrary to the gauge theories in D = 4
where it is usually present. As one can see from (12), despite the extremely complicated
intermediate expressions appearing in diagrammatical computations, the final result for
the four-point one-loop MHV graviton amplitude in N = 8 has a relatively ”simple”
form.

3.2 Real emission

Following the algorithm for construction of the IR finite observables we consider the
contribution to the cross-section from amplitudes with additional particles in the final
state. For the fixed helicity of initial particles one has two types of the graviton
amplitudes:

1. Three gravitons in the final state with positive helicity: g−g− → g+g+g+. This
is the MHV amplitude;

2. Two gravitons in the final state with positive and one with negative helicity:
g−g− → g+g+g−. This is the anti-MHV amplitude.

In the MHV channel only the first amplitude contributes. In this case there are
three identical particles in the final state so we have to choose which particle we are
detecting. This can be achieved, for example, by arranging the particles in according to
their energy and selecting ”the fastest one”. It would correspond to the measurement
function of the form

S(−−+++),1
3 = δ+,h3

Θ(p03 > p04)Θ(p03 > p05)δ
D−2(Ω− Ω13). (13)

In practice it is more convenient to work with the measurement function written as
[21]

S3(p3, p4, p5) = Θ(p03 −
1− δ

2
E)δD−2(Ω− Ω3), (14)

where δ is an arbitrary parameter which can be fixed, for example, from the requirement
that the detected particle is the fastest one (this corresponds to δ = 1/3). We will leave
the value of δ arbitrary to be convicted that the cancelation of the IR divergences occurs
for arbitrary δ.

The amplitude for the process g−g− → g+g+g+ can be written as:

Mtree
5 (1−, 2−, 3+, 4+, 5+) = (16πGN)

3

2 i 〈1 2〉8
ǫ(1, 2, 3, 4)

N(5)
, (15)

where

ǫ(i, j,m, n) ≡ 4iǫµνρσk
µ
i k

ν
j k

ρ
mk

σ
n = [i j] 〈j m〉 [mn] 〈n i〉 − 〈i j〉 [j m] 〈mn〉 [n i] .

Then, the cross-section is
(

dσ

dΩ13

)(−−+++)

Real

=
1

E2

∫

dφ3|M5|
2S3, (16)
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where dφ3 is three particle phase space. After the integration one has

(

dσ

dΩ13

)(−−+++)

Real

=
(αGrE

2)3

πE2

(

µ2

s

)2ǫ
64

(1− c2)2

[

1

ǫ

(

(1 + c) log(
1 + c

2
) (17)

+(1− c) log(
1− c

2
)
)

+ Finite part(δ, c)
]

.

The finite part is a complicated polynomial function of log, log2 and Li2 with the
argument of the form (1± c)/2 and in general have the same structure as in [21]1.

3.3 Collinear counterterms

Consider now the contributions from collinear counterterms. In the MHV channel
the splitting function Pij(z) has the form (we use here slightly different notation for
the splitting functions indicating explicitly all three particles like P init

fin1,fin2
(z) to avoid

confusion.)

P g−

g+g+ = [
1

z(1− z)+
]2 =

1

z2
+

2

z(1− z)+
+

1

[(1− z)2]+
. (18)

Here 1/[(1− z)2]+ should be understood as

∫

dz
f(z)

[(1− z)2]+
=
∫

dz
f(z)− f(1)− f ′(1)(z − 1)

(1− z)2
.

The splitting function P g−

g+g+ can be obtained as the collinear limit of the corre-
sponding amplitude [30]. Note also that in the case of N = 8 SUGRA the probabil-
ity distribution q(z) does not receive radiative corrections in αGr except for the first
order[6].

The contribution to the cross-section from the IR counterterms can be schematically
written as

dσspl,init
2→2 =

αGr

2π

1

ǫ

(

µ2

Q2
f

)ǫ
∫ 1

0
dzP g−

g+g+(z)
∑

i,j=1,2; i 6=j

dσ2→2(zpi, pj, p3, p4)S
spl,init
2 (z), (19)

dσspl,fin
2→2 =

αGr

2π

1

ǫ

(

µ2

Q2
f

)ǫ

dσ2→2(p1, p2, p3, p4)
∫ 1

0
dzP g−

g+g+(z)S
spl,fin
2 (z). (20)

The measurement function in this case has the same form as in the case of the real
emission, but now depends on the fraction of momentum z that restricts the integration
over z

Sspl,1
2 (z) = δ+,h3

δD−2(Ω− Ω13)θ(z − zmin), (21)

where zmin is equal to

zinmin =
(1− δ)(1− c)

1 + δ − c(1− δ)
, zfinmin = (1− δ) (22)

1One can get it upon request from the authors
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for the splitting function of the initial and final states, respectively. This conditions
can be obtained from the requirement p03 > (1− δ)E/2 in the appropriate kinematics.

Integration over the phase space and over the fraction of momentum z gives:

(

dσ

dΩ13

)(−−+++)

InSplit

=
(αGrE

2)3

πE2

(

µ2

s

)2ǫ
128

(1− c2)2

[

1

ǫ

(

1− 2δ

(δ − 1)δ
− 2 log(1− δ) (23)

+2 log δ − (1− c) log
1− c

2
− (1 + c) log

1 + c

2

)

+ Finite part(δ, c)
]

,

(

dσ

dΩ13

)(−−+++)

FnSplit

=
(αGrE

2)3

πE2

(

µ2

s

)2ǫ
128

(1− c2)2
1

ǫ

[

2δ − 1

(δ − 1)δ
+ 2 log(1− δ)− 2 log(δ)

]

.

(24)

4 IR finite observables in N = 8 SUGRA

It is easy to see that the MHV part of inclusive cross-section defined in (2) as a sum
of several contributions

AMHV =
1

2

(

dσ

dΩ13

)(−−++)

0

+
1

2

(

dσ

dΩ13

)(−−++)

V irt

+

(

dσ

dΩ13

)(−−+++)

Real

+

(

dσ

dΩ13

)(−−+++)

InSplit

+

(

dσ

dΩ13

)(−−+++)

FnSplit

,

(25)
is IR finite, all the divergences cancel as expected. It should be stressed that this
cancellation occurs for arbitrary δ. The analogous cancellation should take place in
the anti-MHV channel. Note that AMHV has no simple structure in contrast to the
virtual correction to the cross-section (dσ/dΩ13)

(−−++)
0 .

5 Conclusion

We have applied the algorithm for construction of IR finite observables in N = 8
SUGRA and explicitly demonstrated the cancellation of the IR divergences in NLO
of PT. One can see that such observables, in general, have no any simple structure in
contrast to the amplitudes defined in the presence of some IR regulator. In [20, 21]
a similar analysis has been performed for the N = 4 SYM theory with the same
conclusions. This makes us to conclude that this type of observables is not optimal in
the sense of ”simplicity” of the answer. It is also important to note the dependence of
the answers on the factorization scale Qf which breaks the conformal invariance. This
dependence is a general feature of observables constructed on the base of eq.(2).

At the same time there are no ”no-go” theorems which prohibit the existence of
observables reflecting the rich symmetries of maximally supersymmetric YM or grav-
ity theories. The search of such observables seems to be an interesting challenge, if
one wants to construct physically meaningful expressions which reveal the possible
integrability structure of the model.
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