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Classical radiation by free-falling charges in de Sitter spacetime
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We study the classical radiation emitted by free-falling charges in de Sitter spacetime coupled to
different kinds of fields. Specifically we consider the cases of the electromagnetic field, linearized gravity,
and scalar fields with arbitrary mass and curvature coupling. Given an arbitrary set of such charges, there
is a generic result for sufficiently late times which corresponds to each charge being surrounded by a field
zone with negligible influence from the other charges. Furthermore, we explicitly find a static solution in
the static patch adapted to a charge (implying no energy loss by the charge) which can be regularly
extended beyond the horizon to the full de Sitter spacetime, and show that any other solution decays at late
times to this one. On the other hand, for nonconformal scalar fields the inertial observers naturally
associated with spatially flat coordinates will see a nonvanishing flux far from the horizon, which will fall
off more slowly than the inverse square of the distance for sufficiently light fields (m> + £R < 5H?/4)
and give rise to a total integrated flux that grows unboundedly with the radius. This can be qualitatively
interpreted as a consequence of a classical parametric amplification of the field generated by the charge
due to the time-dependent background spacetime. Most of these results do not hold for massless

minimally coupled scalar fields, whose special behavior is analyzed separately.
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I. INTRODUCTION

The study of interacting quantum field theories in
de Sitter spacetime [1-6] has recently been the subject of
an increasingly renewed interest [7-20]. There is contro-
versy in the literature on the significance of large quantum
infrared effects and whether they can lead to an instability
of de Sitter-invariant states and even a secular screening of
the cosmological constant. In this respect, it is good to have
solid answers to basic questions concerning field theory in
de Sitter space.

In this paper we want to analyze in detail the possible
classical radiation of scalar, electromagnetic, and linear-
ized gravitational fields by free-falling charges in de Sitter
spacetime. The fact that a charge follows a geodesic does
not necessarily imply the absence of radiation. This is
clearly illustrated by the example of an electrically charged
(or neutral) small mass orbiting around a central massive
object in an asymptotically flat spacetime, which will emit
electromagnetic (unless the orbiting mass is neutral) and
gravitational radiation. In this case there is a natural set of
asymptotic inertial observers with respect to which the
orbiting mass describes a nontrivial motion, and the exis-
tence of radiation can be understood fairly naturally; the
situation is, however, less clear for de Sitter. Note that the
emission of radiation in the previous example will lead to a
backreaction force which will deviate the actual trajectory
from the original geodesic motion. In contrast, the high
degree of symmetry of de Sitter guarantees that the trajec-
tory of a single free-falling charge will not be altered even
if it radiates.
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In flat space radiation is defined as a far-zone field which
can be separated from the near-zone field associated with
the sources [21], and falls off slowly enough so that it can
propagate the total energy flux (integrated over the whole
solid angle) over an arbitrarily long distance (in the ab-
sence of absorption or damping). Thus, in formulating the
concept of radiation as emission of energy by the charges
and subsequent energy propagation independently of them,
local and global energy conservation arguments play a
crucial role. These can be understood as a consequence
of Minkowski spacetime possessing globally timelike
Killing vectors.

When considering radiation in curved spacetimes, one
needs to confront two new conceptual difficulties. The first
one is the absence of energy conservation. Even though the
total stress tensor is covariantly conserved, one can no
longer relate the change of the energy within a given region
to the flux through the surface enclosing that region in a
simple and direct way. This is still possible when there is a
timelike Killing vector available (see Sec. II D), but this is
not the case in general. It is, therefore, possible to introduce
this kind of construction within a static patch of de Sitter,
leading to a conserved Killing energy, but not globally. (In
asymptotically flat spacetimes it is also possible to define
consistently a notion of total energy and asymptotic energy
flux in terms of the Arnowitt-Deser-Misner (ADM) and
Bondi masses, and related concepts [22].)

The second new difficulty is the absence in general of a
preferred frame of observers with respect to which one
could naturally define the energy density and local energy
fluxes (given any frame characterized by a tetrad {e }, they
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are obtained by contracting the stress tensor with the tetrad
appropriately). The importance and possible sensitivity to
the choice of frame of observers can be illustrated with a
simple example in flat space which shows that the flux can
be zero for one set of observers, but nonzero for a different
set. Consider an eternally uniformly accelerated electric
charge in Minkowski space (with proper linear accelera-
tion a). An inertial observer (placed at a distance much
greater than 1/a from the charge) would see a nonzero
flux. On the other hand, Rindlerian observers “comoving”
with the charge would find a vanishing flux [23]. (The
easiest way to see this is by realizing that in the Rindler
frame one has a static charge which produces a static
electric field [23].)

We will bear these issues in mind when studying the
fields generated by free-falling charges in de Sitter. As a
consequence, we will separately analyze the energy loss by
the source and the falloff of the integrated flux at large radii
(larger than the horizon), two aspects which are indepen-
dent due to lack of global energy conservation.
Furthermore, we will examine each case in several differ-
ent frames. On the one hand, we will consider the inertial
observers naturally associated with spatially flat and global
coordinates, which are both particularly suitable for study-
ing fluxes at radii much larger than the horizon. (Working
with global coordinates can unmask global restrictions,
such as the requirement for a vanishing total electric
charge, which are absent otherwise.) On the other hand,
we will also study the problem in terms of static coordi-
nates, whose associated static observers (except for the
central one) are noninertial. Within the static patch covered
by these coordinates one can define a conserved Killing
energy and they are particularly useful to analyze the
energy loss by the charge (which must have its origin in
the current-field interaction term).

Various aspects of classical fields and radiation of mass-
less scalars in de Sitter space have been studied in a
number of papers [24-27] (certain quantum mechanical
features of radiation emission in de Sitter have also been
analyzed in Refs. [28,29]). Here we will address the ques-
tion of radiation of free-falling charges in quite some
generality. We consider a broad class of fields (scalar
with arbitrary mass and curvature coupling, electromag-
netic, and linearized gravity) and obtain the generic late-
time field for an arbitrary set of free-falling charges.
Furthermore, we examine the situation in several different
frames to get a more complete picture, and pay special
attention to those aspects connected to radiation, namely,
energy loss by the charge and fluxes at large distances.

The paper is organized as follows. We start by consid-
ering the electromagnetic and conformal scalar fields in
Secs. II and III. In both cases the calculation can be
reduced to a calculation in flat space by using a suitable
conformal transformation, and complete absence of energy
flux is found. Next, the massless minimally coupled scalar
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field is considered in Sec. I'V. The charge is found to lose
energy at a constant rate, but the total integrated flux falls
off to zero at large radii. The case of general mass and
curvature coupling is studied in Sec. V and solutions im-
plying no energy loss by the charge are found for M? =
m? + £R > 0. Nevertheless, for sufficiently light fields one
has nonvanishing total flux at large radii. In Sec. VI we
analyze the case of linearized gravity. The generic late-
time behavior for an arbitrary set of geodesics is described
in Sec. VIL Finally, we discuss our results in Sec. VIII.
Further details about coordinate systems in de Sitter and
the regular extension of the static solution to the full space-
time are provided in a couple of appendices.

We use the (+, +, +) sign convention of Ref. [30] and
work throughout the paper with natural units (A = ¢ = 1)
such that the Hubble constant equals one.

II. ELECTROMAGNETIC FIELD

We start with the calculation of the electromagnetic field
produced by a free-falling charge (i.e. moving along a
geodesic). Since any two geodesics in de Sitter can be
related by an isometry transformation, we can consider
without loss of generality the geodesic corresponding to
s =x'=r=0 in the different coordinate systems
(global, spatially flat and static) described in
Appendix A. When working with global coordinates, we
will need to include explicitly a second particle with op-
posite charge, which will be considered to move along the
antipodal geodesic. Taking into account that Maxwell’s
theory is conformally invariant and de Sitter space is
conformal to the Einstein static universe or to flat space
(for the region covered by a spatially flat foliation), we
expect no electromagnetic radiation to be emitted by a
free-falling charge in de Sitter. We will see that explicitly
in the next subsections.

The action for the electromagnetic field coupled to a
current J# is

S[A,, J+] = [d“x\/_( F,F* + A J”) (1)

where F,, =2V[,A, =2d[,A,] and the indices are
raised with the inverse metric as usual. It leads to the
following equation of motion:

v FMV:\/—_aM(\/__gFMV)ZJV’ ()

For a pointlike charge with worldline z#(7) the current is
given by

4 (7)

JHx) = g [ dr =228 — 2 (7)

=4 o E 5000 — o) ®
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with "= d/d7 and where the first equality is valid for any
parametrization of the worldline, but the second one is only
valid when 7 is the proper time and (locally) synchronous
coordinates adapted to the worldline are employed, so that
gﬁf?, is the spatial metric of the subspace orthogonal to the
worldline. The stress tensor for the electromagnetic field,
which can be obtained by functionally differentiating the
action for the free field, is

T,u,z/ = F,u,aFVa - ig,u,VFaBFaﬁ- 4)
As mentioned above, one can see that the action in Eq. (1)
is invariant under a conformal transformation of the metric,
8uv— Qz(x)gw,, while keeping A, (and hence F,,)
fixed. Note, however, that the physical values of the elec-
tric and magnetic fields, which corresponds to contracting
F,, with an orthonormal basis {¢,} will transform as
Feie) — Q’ZFWefer due to the rescaling required
to keep the basis orthonormal. Similarly, although T,
would rescale with a factor 172, the physical values of
the energy density, pressure, and energy flux will transform
asT,, el e} — Q4T el e;. Finally, from Eq. (3) one can
see that the current and its physical values transform,
respectively, as follows: J# — Q™ 4J* and Jrey —
Q3w e,

A. Spatially flat coordinates

As seen in Eq. (A4), when parametrizing half of de Sitter
space using spatially flat coordinates, it is conformal to half
of Minkowski spacetime with conformal factor 2 =
1/m?. Therefore, the electromagnetic field for a free-
falling charge with x' = const [and hence dx*/dn =
(1,0,0,0)] will be given in the Coulomb gauge by’

q !

AO—W, Ai—O, and FOi—qW,

4)
where |%| = (8x'x/)!/? and we only wrote the nonvanish-
ing components of the field strength. The physical electric
field, Fy; = g(n?/4m|x|?)(x'/|X]), points in the radial di-
rection and its magnitude is inversely proportional to the
square of the physical distance on spatial sections of con-
stant time. Since there is no magnetic field in this frame,
the energy flux measured by the inertial observers comov-
ing with the charge is zero, i.e., Ty; = 0.

B. Global coordinates

The situation is very similar when considering the global
coordinates described in Appendix A 1. In this case, one
can take advantage of the fact that the spacetime is man-
ifestly conformal, with a conformal factor a*(\) =

"Note that the Lorentz gauge condition V,A* = 0, satisfied
by our solution in Minkowski spacetime, is not preserved in
general under conformal transformations.
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cos 2(A), to a region of the Einstein static universe with
line element ds?> = —dA? + dQ3 and —7/2 < A < /2.

Working in the Coulomb gauge, V,A' =0 =V A~
one can easily find the solution for a free-falling charge
at 3 = 0 in the Einstein static universe:

Ap = 4 cot(6),
dar
q (6)

A' = O’ 44’
! 477sin®(65)

and F 03 —
where F*” can also be obtained directly from Eq. (2).
Because of conformal symmetry, the solutions have ex-
actly the same form in global de Sitter coordinates
(although A, no longer satisfies the Lorentz gauge condi-
tion in de Sitter space). The physical electric field is given
by Fy3 = q/4ma*(A)sin*(6;), which is inversely propor-
tional to the physical area of the 2-sphere centered at the
charge and contained on the 3-spheres corresponding to the
constant-time spatial sections. Note also that the solution in
Eq. (6) implies the existence of a charge with opposite sign
at the antipodal geodesic (#; = ). This can be understood
as a consequence of Gauss’s law [the 0 component of
Eq. (2)], which implies that the total charge (i.e., the
integral of the charge density over the compact spatial
sections) should vanish.

As in the case of spatially flat coordinates, the energy
flux seen by the comoving inertial observers in the global
frame vanishes (7); = 0) due to the absence of a magnetic
field.

C. Static coordinates

Working with the static coordinates defined in
Appendix A 3, one can also solve Maxwell’s equations
easily to obtain the following result in the Coulomb gauge
(VAT =0=V_,A*):

q

A =—,
Y 4y

1
42’

where the component F,, coincides in this case with physi-
cal value of the electric field corresponding to the compo-
nent F;; in an orthonormal basis. Once again the absence
of a magnetic field implies a vanishing energy flux seen by
the static observers (7,, = 0).

Note that the results for F',,, that we have obtained in the
three coordinate systems are equivalent. This can be im-
mediately seen by using Eqs. (A10)—(A15) to show that the
functional dependence of the only nonvanishing compo-
nent of F' Y is the same in all cases, and taking into account
that the transformation which relates the orthonormal bases
associated with the different coordinate systems leaves the
relevant element of the exterior basis invariant (the trans-
formation in tangent and cotangent space is a boost along
the direction of the electric field, which leaves it invariant).
The solution in static coordinates also agrees with the
result for the electromagnetic field of the de Sitter-

A;, =0, and F, = @)
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Reissner-Nordstrom solution in the limit of very small
mass and charge.

D. Killing-energy conservation

The existence of a timelike Killing vector £* in the
static patch (whose tangent curves are parametrized by ?)

allows the definition of a conserved Killing energy con-

(&) _

structed from the current j; wp€”s which is cova-

riantly conserved (i.e., V# ]f) = 0). Applying Gauss’s
theorem to a cylindrical spacetime region with top and
bottom boundaries corresponding to constant ¢ hypersur-
faces plus a third boundary generated by time translation,
and differentiating with respect to time, one gets

dE d
= — d3 fos T Yt
dt dt ,[zt Ty etn

—N [ P JTosT €K, ®)
a3,

where n* is a the unit vector normal to the hypersurface 2,
k* is the outward unit vector normal to its boundary 9.,
and N is the normalization factor of the Killing vector,
defined by é* = Nn*. This equation displays the conser-
vation of the Killing energy by relating the rate of change
of the energy contained within the surface 92, and the total
flux crossing that surface. Note that in principle one needs
to consider the total stress tensor because it was necessary
to consider a covariantly conserved stress tensor
(V#T,, = 0) when deriving Eq. (8).

In particular one can apply this result to study the energy
loss (emission) by the charge. In this paper we will focus
on the contributions to the stress tensor from the field and
current-field interaction term. (In the examples that we will
be considering the trajectory of the free-falling charge will
not be affected and the contribution of the free charge
terms will not play a significant role.) As we will see,
whenever one has a static solution for the field, the flux
[the right-hand side of Eq. (8)] vanishes, and so does the
contribution of the free field to the left-hand side. From this
we can conclude that the charge did not experience any
energy loss. And indeed the only changes to the charge
energy (if its trajectory is not altered) can come from the
current-field interaction term, which will remain constant
for a static solution. On the other hand, in Sec. IV B we will
have a nonstationary solution with a nonvanishing flux for
a massless minimally coupled scalar field, and this kind of
energy conservation argument will provide an alternative
way of obtaining the rate of change of the current-field
interaction term.

III. MASSLESS CONFORMALLY COUPLED
SCALAR FIELD

As we will see, the situation for a massless conformally
coupled scalar field is very similar to the electromagnetic
case. The action for a real scalar field with arbitrary mass
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m, curvature-coupling parameter ¢, and coupled to an
external source J(x) is given by

L. gu) = = [y (58 0,80, + 3m4?
1
+ERG + 1), ©

from which one obtains the following equation of motion,
known as the Klein-Gordon equation:

O —m> = éR)¢p = J_aﬂ(d_g“”a v 9)
— (m? + £ER)p = J, (10)

where R is the Ricci scalar. For a pointlike charge with
worldline z#(7) the current is given by

J(x) = qfdr v \/_ 6(4)(x - z%(7))

8B (x« — z%(7)), (1)

where the first equality is valid for any parameterization of
the worldline whereas the second one is only valid when
(locally) synchronous coordinates adapted to the worldline

are employed. The stress tensor is obtained by functionally
differentiating the action with respect to the metric [1]:

T/,LV = vp.qbvucﬁ - %gﬂv(va(bvacﬁ + m2¢2)
+ ‘f(g/LVD - v,uvv + G,u,v)()b2~ (12)

For vanishing mass and ¢ = 1/6 (commonly known as
the conformal coupling case), the action S[¢, J, g,,] is
invariant (up to a total divergence) with respect to confor-
mal transformations of the metric, g,, — 8., =
0%(x)g ., together with the following rescalings of the
field and the current: ¢ > =Q '¢p and J —J =
Q73J [note that the current for a pointlike charge, given
by Eq. (11), does rescale appropriately]. It is then easy to
see that the stress tensor transforms in a simple way under
such conformal transformations:

;oo 2 Sl T 8u] 2072 55[4 ) 5]
SEVET B J8 dg
=0T, (13)

where we used the invariance of the action with respect to
conformal transformations in the second equality. This
simple transformation of the stress tensor under conformal
rescalings will be exploited below to obtain the energy flux
in de Sitter space from the result in Minkowski or the
Einstein static universe.
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A. Spatially flat coordinates

As mentioned above, for a massless conformally
coupled field (m = 0, £ = 1/6) the action is invariant
under conformal transformations. Therefore, by taking
) = —1/mn one can immediately relate the field generated
by a free-falling scalar charge in de Sitter when using
spatially flat coordinates to the analogous situations in
flat space, where the solution is given by ¢ = —q/4|%|.
The corresponding solution in de Sitter is then obtained by
rescaling the field:

__4q (=7
= T W (14

Since the Minkowski solution is time independent, there is
no energy flux associated with it (7j; = 0). Equation (13)
then implies the absence of energy flux as seen by the
comoving observers (x' = const) in de Sitter spacetime
with spatially flat coordinates.

B. Global coordinates

Similarly, the solution for a free-falling scalar charge at
03 = 0 in global coordinates can be straightforwardly
obtained by solving the Klein-Gordon equation in the
conformally related Einstein static universe, where the
relevant equation to solve (if one looks for a static solution)
is
¢

1 0
sin2(05) 96, (S‘“z(’*)aeg) B

9 8(63)
47 sin*(65)’

5)

which follows from applying Eq. (10) withm = O and ¢ =
1/6 to the Einstein static universe and taking into account
that R = 6 when the radius of curvature is one. Introducing
z = cos(#3), Eq. (15) becomes

2
QIR R . ] 1) 06
az 477'\/_ V1
The homogeneous part of this equation corresponds to the
hypergeometric differential equation with parameters a =
b =1 and ¢ = 3/2. Thus, the solution to Egs. (15) and
(16) is

77_03

¢(2) —%F(l,lﬁ/z;%) —_ 4

477 472 sin(m — 65)

___4q _0
N 47Tsin(93)<1 'n')’ (an

which is the only solution of the homogeneous equation
which is regular everywhere except for z = 1, where the
source is located, and has the right behavior as z — 1
compatible with the right-hand side of Egs. (15) and (16)
[namely, ¢ — —g/4705 as 65 — 0]. There is a second
independent solution of the homogeneous equation,
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b(z) = —%[ (1 1:3/2; HZ)

2
1 -z
+F (1 1;3/2; )]
2
q

=—-—1 18
477 sin(65) (18)
which is not regular at z = —1 either and actually corre-

sponds to having also an identical source at the antipodal
worldline (63 = 7). This solution will play an important
role when comparing with the solutions in the other sub-
sections and in Sec. V. Other solutions of the homogeneous
equation can be obtained by taking a linear combination of
Egs. (17) and (18) and will correspond to a certain combi-
nation of sources at 6; = 0 and 63 = 7.

Note that in contrast with the electromagnetic case,
where Gauss’s law forced the total charge on the compact
spatial section to be zero, even static solutions of the Klein-
Gordon equation can have a nonvanishing total charge in
the Einstein static universe due to the term proportional to
the Ricci scalar and the field in Eq. (10), as illustrated by
the solution in Eq. (17). In fact, by considering a continu-
ous superposition of rotations on S* of that solution, one
can generate a solution which corresponds to an arbitrary
charge distribution on 3.

The solutions in de Sitter space can be immediately
obtained from those in the Einstein static universe dividing
by a(T) = cosh(T). For instance, the solution for two
identical antipodal charges becomes

q
411 cosh(T) sin(65)

¢(T, 03) = — (19)
The static solutions in the Einstein static universe have
obviously Tj; = 0. Taking into account Eq. (13), we con-
clude that there is no energy flux as seen by the comoving
observers (with §' = const) in de Sitter global coordinates
for the solution in Eq. (19) or any solution obtained by
rescaling the static solutions mentioned above for the
Einstein static universe.

C. Static coordinates

Finally, one can work with the static coordinates of
Appendix A 3. If we consider a free-falling charge at r =
0, the static solutions will satisfy the following equation:

li(rz(l )a¢) x 6(r)

=y 2= 5 Q0
Unfortunately in this case it is not straightforward to find
explicit solutions in terms of known special functions, but
one can still study their existence and their main properties.
This will be done in Sec. V for arbitrary values of & and m.
As we will see, Eq. (20) has a one-parameter family of
solutions, but only one of them is regular on the horizon (at
r = 1). From the construction in Sec. V and Appendix B, it
is clear that such a solution should correspond to Eq. (19),
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which is regular everywhere except for the charge world-
lines at 3 = 0 and 63 = 7. Using Eq. (A13) it can be
written in static coordinates as

e =- L, @1
T

which can be easily checked to satisfy Eq. (20). Using

Eq. (A10) one can also see that it is equivalent to the

solution in spatially flat coordinates given by Eq. (14).

Being time independent, this solution has zero flux as

seen by the static observers with r = const (i.e., T;, = 0).

IV. MASSLESS MINIMALLY COUPLED SCALAR
FIELD

The main features of the massless minimally coupled
case are the absence of a stationary solution in the static
patch which can be regularly extended to the full space-
time, and the existence, instead, of solutions which exhibit
a constant nonvanishing energy flux as seen by static
observers. Some of the results presented here have previ-
ously been obtained in Ref. [25], where this problem was
considered.

A. Spatially flat coordinates

In this case conformal symmetry is no longer available
and we need to solve explicitly Eq. (10) with m = £ = 0,
which becomes (after multiplying by ./—g)

nv
0, 0,6 =Ls0w), 22)
n n

where we particularized the current in Eq. (11) to a free-
falling pointlike charge located at x' = 0. The retarded
Green function (Gg) for a massless minimally coupled
scalar field in de Sitter spacetime is a well-known result.
An explicit derivation starting from Eq. (22) can be found
for instance in Ref. [25] and the result is

nn’

Gr(n, %, m, ¥') = [»7», 8(n—n'—1x-X1)
4a|¥ — ¥|

1
+ o =0~ 15 = %) [otn — )
o
(23)

where one should remember that 7 is negative and future
infinity corresponds to = 0. Hence, we will have the
following solution of Eq. (22):

L o, 89
¢=q f d*x'Gg(n, %, 1, X') m

-1 [4 + log(M)] +const,  (24)
4ar LIX| |70l

where 7, is an arbitrary dimensionful parameter and the
remaining constant term is actually divergent and reflects
the logarithmic divergence exhibited by the integral with
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respect to n’. Nevertheless, one can simply discard this
constant term and it will still be a solution of Eq. (22). Note
that in contrast with Ref. [25], our solution is valid for all
times, although it becomes arbitrarily large at early times.
This point and the possibility of “turning on” the charge at
a finite initial time 7);, as done in Ref. [25], will be further
discussed in Sec. IV B.

Calculating the time and spatial derivatives of the solu-
tion found in Eq. (24),

ot = (5t ) 5)
4 \|x| 7 —Ix|
q nx; X
00 =—| S35 ) 26
¢ 47T< 11> 1xl(1x] — 17)) (20)

we can find the energy flux, whose components in an
orthonormal basis are given by Ty, = 7*(dg)(9;¢).
This flux is invariant under the isometry associated with
the time translation in Eq. (A5). The first contribution to ¢,
do¢, and 9;¢ dominates for points well within the horizon
(IX] < |m|) and coincides with the solution for the mass-
less conformally coupled case. Its contribution to Tj; is not
zero, but falls off fast enough so that its total integrated flux
vanishes in the limit of infinite radius. (In the conformal
case Tj; vanishes because there is an exact cancellation
from the £V, V,¢? term.) For points outside the horizon
(Ix] > In]) the second terms on the right-hand side of
Egs. (25) and (26) must also be taken into account. Such
a term dominates then the contribution to ;¢ for large ||
and is inversely proportional to |X|. On the other hand, the
two terms on the right right-hand side of Eq. (25) become
comparable and partially cancel out, so that d¢ falls off
like 1/]X|? for large |X|. This means that the total integrated
flux tends to zero for large radii. [These points can be seen
more directly by considering first a large-distance expan-
sion on the right-hand side of Eq. (25).]

B. Static coordinates

In this subsection we will consider the static coordinates
of Appendix A 3, but it will be convenient to introduce the
tortoise radial coordinate r., which arises from requiring
dr./dr = (1 — r*)~! and is related to the standard radial
coordinate by r = tanhr,. In terms of this new coordinate,
the line element becomes

5 _ —dt* + dr? ’ 5
ds cosh2(r) + tanh*(r,)d€)3. 27
We will consider the same free-falling source as in
Sec. IVA, whose trajectory is given in terms of these
coordinates by x*(f) = (,0,0,0). The Klein-Gordon
equation (including the source) for a spherically symmetric
field will be
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cosh(r,)[—tanh?(r.)9? ¢ + 9, (tanh*(r.)d, ¢)]

_ 49
pym 8(r.).

If we are interested in finding static solutions, the equation
further reduces to

(28)

g cosh(r,)
41 sinh?(r,)

q
=———06(r,).
4arr? ()

cosh?(r.)d% ¢ + 2coth(r.)d, ¢ = 8(r,)

(29)

It is easy to verify that ¢ = —(q/4m)[coth(r,) — r.] is a
solution of this equation. Thus, it may naively seem that
even for a massless minimally coupled field a free-falling
charge in de Sitter can produce a stationary field, which
implies T; = 0, in its associated static patch. There are,
however, several important additional aspects that should
be taken into account. Let us start by pointing out that
Eq. (28) has the following obvious time-dependent solu-
tion:

b= i[coth(r*) —r. +at+ b (30)
4ar

for any real constants a and b. Next, one can use Eq. (A10)
as well as Eq. (Al1) divided by Eq. (A10) to obtain the
following relations between static and spatially flat coor-
dinates:

— 1 = cosh(r,)e !, |X| = sinh(r,)e . 31)
Taking these into account, one can easily see that Egs. (30)
and (24) are equivalent (after discarding the divergent
constant piece in the latter) if one takes a = 1 and b =
log|nol. But what is the explanation for the additional
freedom in choosing a and b that one appears to have
when working with static coordinates? This can be under-
stood as follows. If we introduce the advanced and retarded
times v=+t+r, and u =t — r,, we have —r, + at =
v(a — 1)/2 — u(a + 1)/2, and we can clearly see that it
will diverge on the future event horizon (which corre-
sponds to v — oo while keeping u finite) unless a = 1.
Therefore, requiring that the solution is regular on the
future event horizon and can be extended beyond it, com-
pletely fixes the existing freedom (up to the trivial additiv-
ity constant) and selects that solution already found in
Sec. IVA, which is not stationary in the static patch.
There is no stationary solution that can be regularly ex-
tended beyond the event horizon, but as we will see in the
next section, this is a peculiarity of fields with M?> = m? +
éR=0.

Let us take the solution in Eq. (30) with @ = 1 and study
the Killing energy and Killing-energy fluxes along the lines
presented in Sec. IID. Even though the solution is not
stationary, it gives a time-independent result for the 7,
component of the field stress tensor an its contribution to
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the first integral in Eq. (30). Taking this into account and
using the same kind of arguments that led to the derivation
of Eq. (8), we can infer the following two conclusions.
First, the total energy flux going through surfaces of differ-
ent radii should be the same and, second, it should equal
the energy loss by the charge (coming from the current-
field interaction term). The first point can indeed be
checked if one takes N = 1/ cosh(r,), \/g5s = tanh’(r.),
T,. = —(q/4m)*coth®(r,), & = 8V, k = cosh(r,)8%,
and substitutes them into the right-hand side of Eq. (8) to
get a constant integrated flux (independent of the radius of
the 93, surface) equal to g2 /4. Furthermore, one can also
check that the decrease in the total Killing energy,
dE/dt = —q* /4, that follows from Eq. (8) for such an
energy flux does agree with the decrease of Killing energy
associated with the current-field interaction term, which is
given by qd¢(t,0)/0t = —q? /4.

Several additional remarks are in order. First, if we had
included the standard kinetic term for the trajectory of the
pointlike charge with a mass m, we would have found
(even allowing for a general trajectory of the charge) that
the current-field interaction term can be interpreted as a
contribution to the “effective mass™ of the charge, given
by me(7) = m + gp(1(7), 0). Note that the field diverges
at the origin and one needs to introduce a suitable regu-
larization and renormalization procedure, which involves
taking an infinite bare mass m that cancels the correspond-
ing divergence (all this is necessary because we consider
the strictly pointlike particle limit). The important point is
that within this context this procedure can be carried out in
a time-independent manner, so that changes with time of
the field will directly reflect changes of the effective mass;
see Ref. [25] for further details, but keep in mind that we
use the opposite sign for the current-field interaction term
here. The second remark is that the solution in Eq. (30)
with a = 1 diverges on the past event horizon (this is easily
seen in terms of u, v coordinates, where the past horizon
corresponds to u — —oo while keeping v finite), which is
equivalent to the fact that the solution found in Sec. [IVA
diverged for 1 — —oo. This issue was not present in
Ref. [25], where the charge was turned on at some finite
time 7, and it can be understood as follows: if the charge
loses energy at a constant rate and one demands the mass to
be bounded, it cannot be radiating for an infinite period of
time. Hence, it was assumed in Ref. [25] that the charge
was turned on at some initial time 7,, when the renormal-
ized effective mass had a finite value m. At later times, the
effective mass would be given by mey(t) = mg —
q*/4m(t — t;). We can see that the effective mass will
vanish at a certain time and become negative after that.
In Ref. [25] it was essentially concluded that the charge
would simply disappear after that. In our opinion, however,
the question is not so clear. Think of a free-falling charge
which was also electrically charged. It would not radiate
electromagnetically, but it would lose energy due to the
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emission of the minimally coupled field. At some point its
mass would vanish, but it cannot simply disappear because
of electric charge conservation. A nontrivial process is
likely to happen at this point, but the actual details may
be rather subtle and complex. We will return briefly to this
question in the discussion section.

C. Global coordinates

Here we reanalyze the situation using global coordi-
nates. We will only consider a single charge (this aspect
will be further discussed below). The source on the right-
hand side of the Klein-Gordon equation will then be given
by (q/41)8(65)/sin?(65)cosh’(T). There is a nice expres-
sion for the retarded propagator in terms of the invariant
interval for a pair of points [31]:

Ge(2) = %[5(1 2+ 00— 2)]X 6T -T), (32)

where Z(x, x') = XA(x)X2(x')n 4p is the de Sitter-invariant
interval associated with the pair of points x and x’. In terms
of the coordinates introduced in Appendix A 1 and for the
particular configuration with #5 = 0O considered here, we
have Z(x, x") = sinh(T) sinh(7T") — cosh(T) cosh(T") X
cos(65). Integrating with the source, we get the following
intermediate expression for the solution:

q T . .
(T, 65) = — f dT'[ (1 + sinh(T) sinh(T")
47T 0

— cosh(T) cosh(T") cos(65)) + 6(1 + sinh(7T)
X sinh(7") — cosh(T) cosh(T") cos(65))]. (33)
The argument of the delta and theta functions is zero when

_ —1 % cosh(T)sin(6;)
sinh(T) — cosh(T) cos(65)’

(34)

where the upper sign corresponds to the retarded time
(T" < T) and the lower sign to the advanced one (T’ >
T). Moreover, there will be no solution when A < 65 —
/2 (where A is the conformal time introduced in
Appendix A 1), which corresponds to spacetime points
that lie outside the causal future of the entire charge world-
line. In the end one gets the following final result:

o(T, 65) = { 477 cosh(T) sin(85) i 4

i —1 + cosh(T) sin(65)
Ogl:sinh(T) — cosh(7) cos(493):|

+ const}ﬁ()t — 65 + 7/2), (35)

where the same remarks given below Eq. (24) concerning
the existence of a logarithmic divergence in the integration
and the possibility of adding an arbitrary constant also
apply here. In fact, it is considerably less cumbersome to
evaluate the integral in Eq. (33) by changing to spatially
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flat coordinates (this can be done because the support of the
integrand is entirely contained within the region covered
by the spatially flat coordinates), and the calculation be-
comes then very similar to that of Sec. IVA. Alternatively
one can directly check that, when expressed in terms of
spatially flat coordinates, Eq. (35) reduces to Eq. (24). In
order to show this equivalence one needs to make use of a
couple of relations between spatially flat and global coor-
dinates: —1/m = sinh(T) + cosh(T) cos(63), which fol-
lows from comparing the expressions for X° — X* in
Egs. (A1) and (A3), and —|%|/n = cosh(T) sin(63), which
follows from comparing the expressions for (X'X/§; j)l/ Zin
Egs. (A1) and (A3). In addition, one needs to use the fact
that the right-hand side of Eq. (34) with the upper choice of
sign is identically equivalent to (sinh(7) + cosh(T) X
cos(65))/(1 + cosh(T) sin(65)).

We close this subsection with several remarks. First, the
solution in Eq. (35) diverges at A = 03 — 7r/2, which
corresponds to the divergence at n — — oo or the past event
horizon already found in Secs. IVA and IV B respectively.
As discussed in Sec. IV B, this can be cured by switching
on the charge at a finite initial time (it can be done
smoothly to guarantee that the Klein-Gordon equation is
satisfied in the whole spacetime). In contrast with the
electromagnetic or gravitational case, this is mathemati-
cally consistent because there is no symmetry that requires
the charge to be conserved. Second, note that it was pos-
sible to find a solution for the full de Sitter spacetime even
though we considered a single charge. While the Gauss
constraint forbids this possibility in the electromagnetic
case and something similar happens also in the gravita-
tional case (as briefly explained in Sec. VIC), there is no
such restriction for a scalar field. If we looked for time-
independent solutions, V;Vi¢ = 0 would imply a vanish-
ing total charge in the massless minimally coupled case,
but the existence of extra terms involving time derivatives
in the Klein-Gordon equation means that there is no re-
striction on the total charge when one allows for a general
time dependence of the solution. On the other hand, de-
manding certain properties from the solution may some-
times imply the need to consider additional charges. For
instance, we will see in the next section that having an
identical antipodal charge makes it possible to have a
stationary solution in the corresponding two static patches
which can be regularly extended to the full de Sitter space-
time for m? + éR > 0. However, as we will see, that is not
possible for m?> + £€R = 0, and there was consequently no
particular motivation for considering more than one charge
here.

V. SCALAR FIELD WITH ARBITRARY MASS AND
CURVATURE COUPLING

We have seen that, similarly to the electromagnetic case,
one can have a free-falling charge coupled to a conformal
scalar field in de Sitter spacetime which does not radiate. In
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contrast, for a massless minimally coupled scalar field it is
not possible to have a stationary solution in the static patch
which is regular on the horizon (and can be extended
beyond it). A charge coupled to such a field keeps losing
energy indefinitely at a constant rate. We would like to
investigate how generic this situation is: is the absence of
radiation a peculiarity of the conformal case closely tied to
conformal symmetry, or is on the contrary the situation for
the massless minimally coupled case exceptional? (The
case of vanishing mass and minimal coupling is known
to exhibit several other peculiarities due to large infrared
effects.) We will show in this section that the generic
situation is the absence of energy loss by the charge. On
the other hand, we will see in Sec. V B that for sufficiently
light fields the integrated energy flux seen by inertial
observers at distances much larger than the horizon can
grow unboundedly with the radius. The existence of these
two seemingly contradictory results is a consequence of
the lack of global energy conservation in de Sitter space-
time; see Sec. VIII for a more detailed discussion.

More specifically, given a scalar field with arbitrary
mass m and curvature coupling &, whose action and equa-
tion of motion are listed in Egs. (9)—(11), its dynamics for a
fixed background spacetime with constant scalar curvature
depends on the “effective mass” M?> = m? + £R. We will
see that given two identical antipodal charges at 6; = 0
and 05 = 7, there is always a globally regular solution for
M? >0 which is stationary in the corresponding static
patches. This solution exhibits a vanishing energy flux as
seen by the static observers. (Note that the antipodal source
is entirely absent from the spacetime region covered by the
spatially flat coordinates or a single static patch.)

It is worth pointing out that having M? > 0 does not
necessarily imply that the fields cannot exhibit massless
behavior: it is not trivial to define unambiguously the
notion of mass when the Compton wavelength is compa-
rable or larger than the radius of curvature. In fact, the case
that shares some key properties with massless fields in flat
space (namely, a retarded propagator with support entirely
contained on the light-cone for conformally flat spacetimes
such as de Sitter) is the conformal case, which corresponds
to M? = 2 (where we have used that R = 12 in units with
H=1).

A. Static coordinates

The Klein-Gordon equation in static coordinates with a
pointlike source at r = 0 is

1 9% 1 9 ap\ Ao
- - T4 - 21_ 2—>+——M2
1—r o2 2 8r<r( r)ar r? ¢
q 6(r)
=17 36
4o r? (36)

where A, is the Laplacian on the 2-sphere, covered with
the coordinates {6, 6,}. If we look for static and spheri-
cally symmetric solutions centered at r = 0, the equation
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reduces to

’¢p 2 ¢ qg 6(r)
=) —+=(1—-2r)—— —
( r)ar2 r( r)ar 4o r?

(37)

The homogeneous part is a second-order ordinary differ-
ential equation with regular singular pointsatr = 0, r = 1,
and r = 0. Thus, Fuchs’s theorem guarantees that one can
use the Frobenius method to construct two independent
solutions as a couple of convergent series. The two solu-
tions around » = 0 can be chosen to be

M2 =

=S amr=1+"L2y 38
o(r —r;anr = ?r (38)
1 o0
$2(r) = — 3 byr" + cIn(r) (1)
n=0
1 M? —2
=;+< 5 )r-l—.... 39)

The first one is regular at r = 0 since (d¢p;/9r)(0) =0
(otherwise it would have a spike at the origin of spherical
coordinates and would not be differentiable there) and is, in
fact, an even function of r. It is, therefore, a solution of the
homogeneous equation with no source at the origin. On the
other hand, the second solution (in this case ¢ = 0) corre-
sponds to a Dirac delta source at the origin. With the right
normalization, namely, ¢(r) = —(q/47)p,(r), it is a so-
lution of Eq. (37) including the pointlike source.

We are interested in solutions which are regular on the
horizon. So let us study the series expansion for the solu-
tions around r = 1 and then discuss how they match the
solutions found above. In this case the two independent
solutions can be chosen as

- d M?
()= a,(r—1" =1 —T(r— 1)+..., (40)
n=0

Pa(r) = Z b,(r—1)" +1n(r — Dé(r — 1)
n=1

=1In(r —1) —MTZ(V— Din(r — 1)

+(M72—4)(r—1)+....

The second solution is singular at » = 1. Hence, we should
consider a solution proportional to ¢;(r), which is finite
and regular at r = 1. In fact, it can be extended smoothly to
the full de Sitter space, as discussed in detail in
Appendix B. In general, this solution will match a linear
combination of the solutions found above: Cé,(r) =
A¢|(r) + Bop,(r). Taking B = —(q/4), so that it is a
solution of Eq. (37) including the delta source, completely
fixes A and C. Note that one should exclude the possibility

(41)
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that B = 0 because this would imply that a solution of the
equation with the source at » = 0 would always pick a
contribution proportional to ¢,(r) and would have singular
behavior at »r = 1. In Appendix B we prove that this
possibility can always be excluded for M?> > 0.

From the previous paragraph we can conclude that for
M? > 0 one can always find a static solution ¢,(r) asso-
ciated with a free-falling charge in de Sitter which is
regular on the horizon and can be extended to the full
spacetime, as discussed in more detail in Appendix B
and the next two subsections.” Since it is time-independent
in static coordinates, this solution exhibits zero energy flux
as seen by the static observers (7,;, = 0).

We close this subsection by briefly mentioning what
things would have looked like if we had used the tortoise
coordinate r, introduced in Sec. IV B. The Klein-Gordon
equation would be the same as Egs. (28) and (29) with an
extra M? ¢ term on the left-hand side. Close to the source at
r =0, r and r, are almost the same and the solutions in
terms of r, have the same form as in Egs. (38) and (39). On
the other hand, close to the horizon, which corresponds to
r. — oo, the Klein-Gordon equation becomes approxi-
mately 82(;5 / dr: = 0, whose solutions are a linear combi-
nation of ¢(r,) =1 and ¢,(r.) =r./2. These
correspond to the solutions in Eqgs. (40) and (41), and
from this point on the argument would proceed exactly
as above. In addition, one could study how perturbations
with respect to this solution, which are initially regular on
the horizon, decay at late times. This amounts to imposing
the boundary condition of vanishing flux from r, — o0 and
is analogous to the quasinormal-mode analysis of pertur-
bations outside a Schwarzschild black hole. We will, how-
ever, study the decay of perturbations using spatially flat
and global coordinates.

B. Spatially flat coordinates

In spatially flat coordinates the Klein-Gordon equation
for a field with an effective mass M? and a pointlike source
at x' = 0 is

92 F 92
- —d’ a2y i O M?p = g8 ().
a2 or Jx'ox’

(42)

Given a solution ¢,(r) in static coordinates like the one
found in Sec. VA (and its extension to r > 1), one can
explicitly check that ¢(e7|X]) is a solution of Eq. (42), as it

’In fact, one can consider r>1 in Eq. (37) to study the
extension of the solution to the remaining two nonstatic patches
and introduce an analogous expansion in terms of 1/r around
r = oo, which is also a regular singular point. In that way, one
obtains the same kind of late-time decay that will be described in
the next two subsections, as well as the large-distance behavior
for scales much larger than the horizon; see Appendix B 2 for
further details.
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should be. Furthermore, its large-distance behavior can be
obtained from Egs. (B4) and (BS5) and is given by

os(7, x7) ~ (e|X])) ", (43)
with A_ = 3/2 —/9/4 — M2,

Interestingly enough, one can establish the generic late-
time behavior of an arbitrary solution and show that it tends
at sufficiently late times to ¢¢(e”|X|). This follows from the
fact that for M> > 0 the homogeneous solutions of Eq. (42)
decay exponentially at late times. Indeed, if we Fourier
transform the comoving spatial coordinates, the homoge-
nous part of the Klein-Gordon equation becomes

9” s +3Ha d’"

a7*

+ (e 2+ M), =0. (44)

After a particular mode leaves the horizon (i.e., when
|kle™ > 1) one can neglect the contribution from the term

proportional to k* in order to study the evolution of that
mode. The solution at sufficiently late times is, thus, a
linear combination of two exponentially decaying terms,
exp(— A7) with A. = 3/2 +4/9/4 — M?, which always
have a positive real part for M> > 0. In contrast, for M? =
0 we have A_ = 0 and one of the two solutions becomes
constant outside the horizon. This can give rise to large
infrared effects as modes keep leaving the horizon and is
closely related to the peculiar behavior that we found for
the massless minimally coupled case, including the ab-
sence of a regular static solution in the static patch.
Taking into account the explanations above, one can see
that the approximate result for ¢ (7, x’) in Eq. (43) can be
employed to calculate the energy flux at sufficiently late
times and sufficiently large physical distances from the
source. Its time and spatial derivatives are given by

a"’* ~ (“A)(ER) (45)

*Ta('bs T 1—A_
S (B) o)

The energy flux can then be obtained from Eq. (12). Let us
consider first the minimally coupled case (¢ = 0). Only the
first term on the right-hand side of Eq. (12) will contribute
to the energy flux. At sufficiently late times and sufficiently
far from the source, the result for the radial flux when
working with an orthonormal basis is the following:

Tos ~ (A (er|3) 71724 47)

For positive but sufficiently small masses (0 < M? < 1),
A_ will be positive but very small. This means that the
amplitude of the stress tensor will be quadratically sup-
pressed, but, more importantly, it will fall off almost as
slowly as the inverse of the physical distance. Therefore,
the total flux integrated over a sphere of radius R will grow
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almost proportionally to R for sufficiently large radii. This
is a remarkable result whose interpretation and discussion
is provided in Sec. VIIL. In fact, in order to have a non-
vanishing integrated flux at large radii it is sufficient to
have M? < 5/4, which corresponds to A_ = 1/2 (M? =
5/4 would give rise to a finite integrated flux in the limit of
an infinite radius, whereas for smaller masses it would
grow unboundedly with the radius). For nonminimal cou-
pling (¢ # 0) there is an additional contribution from the
term §V#V,,¢2 in Eq. (12), but the conclusions remain
unchanged.

C. Global coordinates

In global coordinates the Klein-Gordon equation has the
following form:

_32_¢+ Az — M2 _ 9 5(65) 9 8(65 — 77),
9T?  cosh®T 47 63 47 (05 — m)?
(48)

where Aj; is the Laplacian of the 3-sphere, parametrized by
{6, 0, 05}, and we included a free-falling source at #; = 0
as well as an antipodal one at #; = 7, which is necessary
in order to have a static solution in the static patch which is
globally regular. This is discussed in Appendix B, where
we also study its late-time and large-distance behavior,
which is generically found to be

¢(T, 83) ~ (cosh(T) sin(63)) ", (49)
and is valid for cosh(7T)sin(#;) > 1. Note that at suffi-
ciently late times, as the sources get farther and farther
way, one will have non-negligible values of the field in two
disconnected regions around each one of the sources with a
very similar form to that found above for spatially flat
coordinates. As will be discussed in Sec. VII, this can
actually be generalized to an arbitrary set of geodesics.
Similarly to the case of spatially flat coordinates one can
also establish that the generic late-time behavior of an
arbitrary solution of Eq. (48) tends at sufficiently late times
to ¢(T, 05). The homogeneous solutions of Eq. (48) can
be decomposed in terms of spherical harmonics Y; ,,(€))
for the 3-sphere with time-dependent coefficients which
are proportional to (cosh7) ~3/2 times a linear combination

of the Pi:&% ?(tanhT)

szlfz/z(tanhT ), and decay at late times in the same way

already found above for spatially flat coordinates.

The worldline of the antipodal source lies entirely out-
side the spacetime region covered by the spatially flat
coordinates considered in Sec. V B. We close this subsec-
tion by briefly discussing its implications for the results
found there. When solving Eq. (42), the effects of the
antipodal source would enter through the initial value

Legendre functions and
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data specified on one of the flat spatial sections. At suffi-
ciently late times any solution of Eq. (42) will decay to
¢(e"|x]), which has no information left on the antipodal
source. There is actually a simple interpretation of this
point. Suppose that we start with 83 < 77 for the second
source and then take the limit 6; — . Doing so while
considering a flat spatial section with constant 7, means
that the location of the second source will be taken to an
infinite physical distance on that section. Since the field
generated by the second source will fall off at large dis-
tances in the same way as given by Eq. (43), it will not
contribute in the limit of infinite separation (at least for
M? > 0). That explains why there is no contribution to
¢ (e"|x]) from the antipodal source.

VI. LINEARIZED GRAVITY

Gravitational radiation can be studied in the context of
linearized gravity, regarded in this case as small metric
perturbations around a de Sitter background geometry:
&uv = &uv T hy,. One can then evaluate the usual geo-
metrical objects for the perturbed metric, expand in terms
of the metric perturbation, and retain the terms strictly
linear in £,,,. It is convenient to express them as

T4 = (VY bt + Vs — VEn,,),
n _ a @ “«
Ruy = %(vavvh,u + vav,uhv o vVth -V vo‘h”'”)’
(50)

where h = g*Ph, g» V. is the covariant derivative associ-
ated with the background metric g,,,, and we will be using
the background metric to raise and lower indices unless
explicitly stated otherwise. An additional conceptual diffi-
culty in this case is the existence of a gauge symmetry
corresponding to transformations under diffeomorphisms.
One can employ the background field method, as we did
above, which preserves general covariance in terms of the
background geometry. Nevertheless, the gauge freedom
under transformations of the form h,, — h,, + 2V(u &)
needs to be fixed (it can be interpreted as the ambiguity in
splitting the background and the perturbation). Even if one
does so by imposing a gauge-fixing condition compatible
with the background general covariance (background field
gauge), in general the results will still depend on the
particular gauge fixing. Only truly gauge-invariant physi-
cal observables will be completely independent.

In order to study gravitational radiation, we will follow
Ref. [32] and compute G/ (2), which results from evaluating
the Einstein tensor for the perturbed metric g, and keep-
ing the terms strictly quadratic in %,,, in a particular
gauge. This object suffers from the gauge dependence
mentioned above: while being generally covariant with
respect to the background geometry, it will depend on the
particular gauge which was chosen for #,,,.. (In asymptoti-
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cally flat spacetimes it can still be employed to calculate
gauge-invariant quantities such as the ADM mass, the total
angular momentum, or the asymptotic energy flux, but that
is not the case here.) Notwithstanding, we will follow this
common approach and leave deeper scrutiny for future
work. In this respect it will likely be useful to consider

the linearized Weyl tensor C ﬁB,pg, which is gauge invariant
because its unperturbed counterpart vanishes and will
completely and naturally characterize the perturbed ge-
ometry at linear order.® It might then be worth exploring
the use of the Bel-Robinson superenergy tensor [33], which
involves terms quadratic in the Weyl, as a possible way of
characterizing linearized gravitational radiation in a gauge-
invariant fashion.

A. Spatially flat coordinates

The linearized Einstein equation for metric perturba-
tions around a de Sitter background can be written as

GV = 87GTAY, (51)

where the gravitational coupling constant G can be re-
garded as the expansion parameter and the linearized
Einstein tensor is given by

Gi" = g7 — RS,

_1lgsv 1) _ pa (0)
i‘slu,(Rg h BRa’B)y

(52)

with Rﬂ?, given by Eq. (51) and R(O) = 3g,, being the
Ricci tensor of the de Sitter background. Note that when
perturbing the Einstein equation with one of the indices
raised, the contribution of the cosmological constant term
is entirely contained in the background equation and it does
not appear in Eq. (51) for the linear perturbations. As for
the background stress tensor Th" = g, T%" of a free-

= 8upt(0)
falling pointlike mass, one can take

wr _ Z (T)Z (T) @) (va _
T() fd = \/_3 (x

— miée)(x‘* — 2%(7)), (53)

z%(7))

where we have used the same notation as in Eq. (3) and
2 = gu it

In order to find an explicit solution in spatially flat
coordinates, we will make use of the results derived in
Ref. [27]. Defining ¢4 = h’, — (h/2)8% and imposing the

3Together with the linearized Weyl tensor, the linearized
Riemann tensor is entirely determined by the linearized Ricci
tensor, which can be cast in a gauge-invariant form by raising
one of the indices (the background quantity is then proportional
to 8},, whose Lie derivative with respect to any vector vanishes).
When one imposes the Einstein equation, this quantity vanishes
outside the sources: R4 = 0.
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gauge condition V, ¢ = —(2/n)¢9, a closed set of
equations governing the dynamics of x,, = 17, ¥}
were obtained in that reference. One can study the solu-
tions of the inhomogeneous and homogeneous equation.
The homogenous equation satisfied by the two physical
polarizations of the gravitational waves correspond to the
Klein-Gordon equation for a massless minimally coupled
scalar field. Here we will, however, focus on the solutions
of the inhomogeneous equation. For a pointlike mass lo-
cated at x' = 0, the only nonvanishing component that
results from evaluating Eq. (53) is T(()%) = m(—n)8¥(x'),
where we took into account that z# = e~ "85 = —ndl in
the {m, x'} coordinates that we are employing. The non-
trivial part of the Einstein equations is then

2 2 o
;80)(00 - ?Xoo = _167TGT(()0) or,

(0)

T
az(Xoo) — 167G 0
Ui n

where 92 = n#”9 w0, 18 just the flat space D’ Alembertian.
A particular solution of Eq. (54) is the following:

3% xo0 +
(54)

equivalently,

Xoo 4Gm 4Gm
ST S = = (69)
7 |X| | %]
which implies
2G i 2G i
W= =S (s6)
|X| |x

Following Ref. [32] we will consider ¢, = (1/87G)GY @
as the stress tensor of the linearized gravitational field. It
can be directly obtained by evaluating the exact Einstein
tensor for the perturbed metric g,, [using the result in
Eq. (56)] and keeping only the terms quadratic in the
gravitational coupling constant G. In this way we find

3
0 o XN
: |x[*

which gives a total integrated flux over the sphere that falls
off to zero at large radii.

(57)

B. Static coordinates

The perturbative solution for a pointlike particle at » = 0
in static coordinates can be obtained by expanding pertur-
batively in G the exact Schwarzschild-de Sitter solution

2Gm dr
d2=—<1— - 2)dﬂ+—
’ r (1 —2m — 2

2

+ rde%.

(58)

Keeping only terms linear in G one gets the following
result for the linear metric perturbations:

2G
htt = hrr = "
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Now we should use this metric perturbation to construct
g uv and calculate ty = (1/87G)GY @ Alternatively one
can consider the exact Einstein tensor for the full
Schwarzschild-de Sitter solution and keep those terms
quadratic in G. In fact, since the Schwarzschild-de Sitter
solution satisfies the equation GJ, = 39}, (remember that
A = 3 in our units), there is no dependence on G left when
evaluating the full Einstein tensor outside the sources. This
will, however, include a possible contribution to the full
Einstein tensor from terms quadratic in G in the exact
Schwarzschild-de Sitter metric, which needs to be sub-
tracted. Therefore, one needs to take hﬁfl =
4G*m?/r*(1 — r*)? 81,8}, and use Eq. (50) to calculate its
contribution to the perturbed Ricci tensor, and from it get
immediately the Einstein tensor contribution to be sub-
tracted. Fortunately, one can easily see that the 0i compo-
nents will vanish and we can conclude that # = 0, as one
intuitively expects from the existence of a static solution.

C. Global coordinates

Similarly to the electromagnetic case, one also needs to
consider at least two sources in the case of linearized
gravity. Analogously to the requirement of a vanishing
total electric charge implied by the Gauss constraint, the
constraints from the Einstein equations impose the follow-
ing restriction on the lowest-order stress tensor of the
sources:

[, @xyEtimee =0 (60)
3,

given a compact Cauchy hypersurface 2, with normal unit
vector n*, and a Killing vector £”. (It is crucial to have a
compact Cauchy hypersurface; that is why this issue arises
in full de Sitter space, whose Cauchy hypersurfaces have
an S° topology, but not in the subregion covered by spa-
tially flat coordinates.) This restriction is closely related to
the phenomenon of linearization instability [34] in this
context and is sometimes referred to as ‘‘linearization
instability constraint.” In particular, for the timelike
Killing vectors in de Sitter this condition is not satisfied
by a single particle, but it is fulfilled by two antipodal free-
falling particles with equal mass. In fact, the simplest way
to obtain the linearized gravity solution for this case is to
consider the small mass limit of the Schwarzschild-
de Sitter solution, restrict oneself to the region outside
the black-hole horizon (including the extension beyond
the cosmological horizon) and treat the mass perturbatively
there. In this way, we can directly obtain the metric per-
turbation in terms of the static background coordinates
from Eq. (58). The result (obtained in the previous sub-
section) will cover the two antipodal static patches of
de Sitter, but it can be regularly extended to the full
de Sitter spacetime by considering the extension of the
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static coordinates to » > 1 as described in Appendix A 3,
and even changing to global background coordinates using
Eqgs. (A13)—(Al5).

VII. LATE-TIME RESULTS FOR AN ARBITRARY
SET OF GEODESICS

At sufficiently late times a general set of geodesics in
de Sitter spacetime will become arbitrarily far apart. We
will argue that in most cases the field generated by a
general set of free-falling charges moving along such geo-
desics will exhibit a generic form at sufficiently late times.

A. Scalar field

The basic idea is simple. We saw in Sec. V B that for
M? > 0 the field generated by a single free-falling charge
tends at late times to a generic solution ¢ (7, x%), which in
turn falls off at large distances. The generalization to
multiple charges is straightforward: since we are consid-
ering linear fields, one can simply apply the superposition
principle. (One would need external forces to compensate
the mutual forces and guarantee that the charges continue
to follow geodesics, at least until the mutual forces can be
neglected, which is the late-time regime that we are really
interested in here.) Furthermore, at sufficiently late times
so that all the geodesics are sufficiently far apart [and
taking into account the fall-off of ¢(7, x) at large dis-
tances], one can focus entirely on the field generated by the
closest charge and neglect the effect from all the other
charges.

Therefore, the generic late-time field configuration
would correspond to effectively nonoverlapping field
zones surrounding each one of the charges, where one
could employ adapted spatially flat and even static coor-
dinates (for points within the horizon of the charge) such
that the results of Secs. VA and V B would directly apply.
This result, however, does not hold for M? = 0, as we
found in Sec. IV when studying explicitly the massless
minimally coupled case. On the other hand, for 0 < M? <«
1 the conclusion will be true, but one will need to wait for a
very long time to make sure that the solution associated to
each one of the charges decays to ¢(7, x') and that the
different charges are separate enough. This is because A _,
which controls the decay rate of any homogenous solution
of the Klein-Gordon equation as well as the falloff of
¢,(7, x') with the distance, is very small in that case.

B. Electromagnetic field

The situation for the electromagnetic field is similar to
that for scalar fields with M? > 0. We saw in Sec. II that
there is a static solution in the static patch which can be
regularly extended to the full spacetime. The remaining
question is then whether the solutions of the homogenous
Maxwell equation decay at late times analogously to the
solutions of the Klein-Gordon equation. This can be easily
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investigated by taking advantage of the invariance of
Maxwell’s equation under conformal transformations.
For instance, in spatially flat coordinates the solutions for
F,,, are the same as in flat space, i.e., free electromagnetic
waves. However, the physical electromagnetic field (re-
ferred to an orthonormal basis) should be rescaled by the
inverse square of the scale factor: Fj; = n*F v
Physically this corresponds to the amplitude of the elec-
tromagnetic waves being redshifted away as they propa-
gate in the expanding spacetime, and results in any initial
solution decaying to that of Sec. II at sufficiently late times,
or the corresponding generalization for an arbitrary set of
free-falling charges analogous to that described for scalar
fields in the previous subsection.

C. Linearized gravity

Things are slightly more subtle for linearized gravity. As
seen in Sec. VIC, there is a static solution which can be
regularly extended to the full spacetime. However, whether
other solutions generically decay to it at late times is less
obvious. After an appropriate gauge-fixing and field rede-
finition, one can see that the homogeneous equation sat-
isfied by the two physical polarizations of the linear metric
perturbations are that of a massless minimally coupled
scalar field [35]. This would seem to imply that given a
nonvanishing initial condition, it will not decay at late
times. Nevertheless, one should consider gauge-invariant
quantities which naturally describe the local geometrical

properties. The linearized Weyl tensor, C%M, is one such
object which fully characterizes the perturbed geometry to
linear oder. One can check that the linearized Weyl tensor
for the homogeneous solutions of the linearized Einstein
equation does decay at late times, so that the static solution
and its extension, indeed, correspond to an attractor ge-
ometry at late times.

VIII. DISCUSSION

We have analyzed the classical fields generated by free-
falling charges in de Sitter spacetime coupled to different
kinds of fields. We were able to provide explicit results for
the electromagnetic case, linearized gravity, and scalar
fields with a wide range of values for the mass and the
curvature coupling (M? = m?> + £R = 0). Furthermore,
we have argued that at sufficiently late times one should
have a generic result for an arbitrary set of free-falling
charges in all cases (other than a scalar field with M? = 0),
which would correspond to each charge being surrounded
by a field zone with negligible influence from the other
charges and where the results obtained for a single charge
would apply.

Except for scalar fields with M> = 0 we have generi-
cally found ‘‘absence of radiation” in the static patch
associated with each free-falling charge. More precisely,
we have obtained a static solution with vanishing energy
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flux with respect to this frame. This implies conservation of
the Killing energy and, together with the static character of
the field, can be exploited to argue that there was no energy
loss (emission) by the source. As discussed in Sec. VA and
Appendix B, having a static solution in the static patch is
simple, the nontrivial aspect is whether it is regular on the
horizon so that it can be extended to the full de Sitter
spacetime.

Furthermore, we have also studied the energy flux at
distances much larger than the horizon as seen by the
natural set of inertial observers in spatially flat coordinates,
and found a remarkable result. For sufficiently light fields
(with M? < 5H?/4) the energy flux does not fall off fast
enough (slower than the inverse square of the distance) and
the total flux integrated over a sphere of radius R becomes
arbitrarily large for large radii. This phenomenon can, in
fact, be qualitatively understood as the result of a classical
parametric amplification process. In contrast with the
Killing energy in the static patch, there is no energy
conservation in the natural frame associated with the spa-
tially flat coordinates (and in any case there is no frame
where energy is conserved for scales larger than the hori-
zon), and one can interpret that the field generated by the
free-falling charge is being amplified by the time-
dependent background spacetime, analogously to what
would happen to a harmonic oscillator with a time-
dependent frequency (e.g., a pendulum with a time-
dependent length).

Note also that the unbounded growth of the integrated
flux with the radius does not necessarily entail dramatic
effects for two reasons. First, the stress tensor itself is small
(the flux component is quadratically suppressed by the
mass of the light field), so that its contribution to the
backreaction on the spacetime geometry will be locally
small (although a more detailed analysis would be required
to make sure that there are no significant secular effects).
Second, while this kind of phenomena would face an
insurmountable tension with energy conservation in flat
spacetime, it becomes much easier to avoid contradictions
in de Sitter, where energy is not globally conserved.

On the other hand, for scalar fields with M2 = 0 there is
no stationary solution in the static patch which can be
regularly extended to the full spacetime. Instead, we ex-
plicitly found for the massless minimally coupled case that
the charge loses energy at a constant rate. As discussed in
Sec. IV B, this means that its effective mass will vanish and
start to become negative within a finite time. In Ref. [25] it
was assumed that the charge would simply disappear at
that point. However, as illustrated in Sec. IV B with the
example of a particle which is also electrically charged, we
believe that the question can be more subtle and should be
studied within an appropriate microscopic model of the
charges. It seems clear that a negative mass signals some
kind of instability, but its precise nature is less obvious. For
instance, if one tried to model the microscopic constituents
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of the charge by massless fermions with a Yukawa cou-
pling to the field, it is known that the theory exhibits an
instability unless there is a minimum amount of nonlinear
self-coupling for the scalar field. It might be that for certain
parameter ranges the theory itself is unstable in de Sitter
space, or that the effects of the nonlinear terms in the scalar
field potential need to be taken into account when consid-
ering the late-time evolution of the effective mass.
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APPENDIX A: COORDINATE SYSTEMS IN DE
SITTER SPACE

Four-dimensional de Sitter space with unit radius of
curvature (H = 1) can be defined as the hyperboloid given
by n45XAX® = 1 and embedded in the five-dimensional
Minkowski spacetime with metric Nap =
diag(—1,1,1,1,1). It is invariant under the ten-
dimensional O(4, 1) group of isometries, which corre-
sponds to the Lorentz group of the embedding spacetime.

1. Global coordinates

One can introduce a coordinate system {7, §;} which
covers the whole hyperboloid and corresponds to the fol-
lowing embedding:

X0 = sinh(7), X4 = — cosh(T)w*, a=1234,
' = sin(6;) sin(6,) sin(6,),

w? = sin(63) sin(6,) cos(6,), (A1)
w? = sin(6;) cos(6,),

w* = cos(65),

where §,,w @’ =1 and defines a 3-sphere. The line
element in these coordinates is

1
dS2 = _dT2 + COShZ(T)dQ% = m[_d)lz + dQ%],

(A2)

with dQ3 = d63} + sin®(03)[d63 + sin*(6,)d67]. The last
equality in Eq. (A2) shows explicitly that de Sitter space is
conformal to a region of the Einstein static universe char-
acterized by the finite range of the conformal time,
—7m/2<A<a/2. Six of the ten independent Killing
vectors are manifest in these global coordinates, namely,
those associated with the O(4) isometry group of the 3-
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spheres that correspond to the spatial sections with 7' =
const.

The worldlines with #; = const are timelike geodesics
with proper time 7" and can be regarded as inertial, or free-
falling, observers. (Note incidentally that any pair of geo-
desics can be related by a de Sitter isometry transforma-
tion.) Throughout the text we often consider the particular
geodesic defined by #; = 0, and the antipodal one, with
03 = TI.

2. Spatially flat coordinates

The following alternative parametrization covers half of
the hyperboloid, corresponding to X° — X* > 0 (the other
half can be covered by an analogous parametrization which
changes the sign of the X° and X* coordinates):

_1+5E2 n

X0 = -,
27 2

Xi=-% =123 (A3)
n
X“—l_)_z2+77

27 2’

with n € (—oo, 0). The line element can then be written as
o 1 o
ds* = —dr* + eZTSijdx’dxf = —2(—d7]2 + 8;;dx'dx),
Y

(A4)

where the comoving time 7 is related to the conformal time
n by n = —exp(—7). In terms of the conformal coordi-
nates {7, x'} it is obvious that this half of de Sitter is
conformal to half of Minkowski space with n € (—o0, 0).
Furthermore, seven of the isometry generators of de Sitter
space are manifest in this coordinate. In addition to the six
generators of the Euclidean group E(3) for the spatial
sections with n = const, the metric in Eq. (A3) is mani-
festly invariant under the following transformation:
X — e “m,

n n (AS)

or, equivalently, T T+ a

The worldlines with x' = const are timelike geodesics
with proper time 7, and here the particular geodesic cor-
responding to 63 = 0 in the previous subsection is given in
conformal coordinates by x*(7) = (—e™7, 0,0, 0). In con-
trast, the antipodal geodesic located at #; = 7 is entirely
contained in the other half of de Sitter space not covered by
this parametrization.

3. Static coordinates

While de Sitter spacetime has no global timelike Killing
vectors, it does have Killing vectors which are timelike in
half of the spacetime and exhibit a bifurcate Killing hori-
zon structure. One can introduce static coordinates which
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cover each one of the two patches where the Killing vector
is timelike (hence one quarter of the full de Sitter space)
and correspond to the following parametrization of the
hyperboloid:

X =41 — r*sinh(z),

Xi:_rwi; i:1y2y3)
X* = =1 — r2cosh(z),

where 0 =r <1 and ', which satisfy the condition
0;jw'w’ = 1 and define a 2-sphere, can be parametrized as

(A6)

o' = sin(6,) sin(d,),

w? = sin(6,) cos(,), (A7)
w3 = cos(6,).
The line element in these coordinates is given by
2 2 7.2 dr® 2102
ds* = —(1 — r?)dt T —— + r7dQ3, (A8)
(1—=1r2)
where  dQ3 = d63 + sin*(6,)d#3. Four independent

isometry generators are manifest in these coordinates:
three associated with the O(3) group of the 2-sphere and
one corresponding to the time-translation symmetry ¢ —
t + «. The worldlines of constant r are uniformly accel-
erated timelike curves and only r = 0 is a geodesic (with
proper time f), which coincides with the same geodesic
considered in the previous two subsections; r = 1 corre-
sponds to the event horizon surrounding this geodesic
observer.

Note that there is an analogous static patch, antipodal to
the one considered so far, which can be covered by the
same kind of coordinates by changing the sign of both X°
and X* in the above parameterization. Furthermore, the
remaining two quadrants of de Sitter can be covered by
extending the range of the radial coordinate to 1 < r < o
and making the following changes in the embedding pa-
rameterization described by Eq. (A6):

XY = +472 — 1 cosh(z), X* = FVr? — 1sinh(2).

(A9)

The two additional quadrants covered by this parametriza-
tions are not static since the timelike and spacelike char-
acter of 9, and 9, are interchanged.

We conclude this appendix briefly describing the rela-
tion between the static coordinates (as well as their exten-
sions) and the coordinate systems of the previous
subsections.

a. Relation to spatially flat coordinates

Comparing the expressions for X’ in Egs. (A3) and (A6)
one immediately finds
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| X .
r=——=a(n)lxl (A10)
]
Similarly, by comparing the expressions for X° — X*, one
gets

1
——=eV1—1r or eX=n>—|F2 (AlD)
]
Taking the logarithm, the following relation between the
comoving time of spatially flat coordinates and the static
time is obtained”:

T=t+ %ln(l —72). (A12)

They both coincide along the worldline at » =0 and
correspond to the proper time of that geodesic.
Furthermore, from these relations it is straightforward to
see that the isometry transformation defined in Egs. (AS)
corresponds to the time-translation symmetry for t — ¢ +
a keeping r fixed in static coordinates.

b. Relation to global coordinates

Finally, comparing X’ (with i = 1, 2, 3) as well as
X°/X* in Egs. (Al) and (A6), one finds the following
relation between global and static coordinates:

r = cosh(T) sin(65), (A13)
_tanh(7)
tanh(z) = cos(83) (A14)

If one extends the static coordinates outside the static
patch, the last relation becomes

tanh(T)
cos(f5)

coth(r) = (A15)

APPENDIX B: REGULAR EXTENSION OF THE
STATIC SOLUTION

The static solution for a free-falling charge in de Sitter
found in Sec. V is directly related to a solution of the
Euclidean version of the Klein-Gordon equation on the 4-
sphere. This fact can be exploited to show that for M? > 0
the solution regular on the horizon can always be matched
to the solution with a source at » = 0. This will be shown in
the first subsection of this appendix by arguing that if the
contrary were true, there would be a solution regular every-
where on the sphere, and then proving that this is impos-
sible for M? > 0. In the second subsection we will discuss
the extension of this solution to the full de Sitter spacetime
and its regularity.

“If one extends the {r, 1} coordinates outside the static patch
using Eqgs. (A9), there the relation becomes 7 = —¢ + (1/2) X
In(r* = 1).
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1. Equivalent problem on the 4-sphere

A 4-sphere can be obtained by analytic continuation
from de Sitter space by taking ¢ =16 in Eq. (A8) and
requiring € to have a period of 277 so that there is no
conical singularity at » = 1. This becomes perhaps even
clearer if we introduce the change of coordinates r =
sin(y), with 0 = y = 7, so that the line element becomes

ds® = cos*(x)d6? + dx? + sin*(x)d Q2. (B1)
One can proceed in the same way to obtain the Euclidean
version of the Klein-Gordon equation (36). In the new
variables the source term is given by (g/4mx?)8(x) +
(q/47(x — m)?)8(x — ), where the second term would
correspond to the second static patch mentioned in
Appendix A 3 and is required here for continuity in 6. If
one looks for solutions of the form ¢(x) = ¢(r) (in fact,
for M? = 0 they are necessarily of this form), the equation
satisfied becomes equivalent to Eq. (37). Thus, one can
make use of the results in Egs. (38)—(41) for the expansions
around the regular singular points at y = 0 and y = 7/2
(corresponding, respectively, to » = 0 and r = 1). Taking
into account that r = sin(y), it is clear that ¢,(y) from
Eq. (38) is an even function of y with no spike at y = 0,
where it is smooth. Similarly, taking into account that 1 —
r=1-—cos(y — 7/2), one can see that ¢(y) from
Eq. (40) is an even function of (y — 77/2) with no spike
at y = /2, where it is smooth.

The advantage of working on the 4-sphere is that we can
easily prove that for M2 >0, C,(x) always matches a
linear combination A¢;(y) + B¢, (y) with nonvanishing
B. Indeed, if B vanished, C¢b; (y) would match A¢, (y) and
would correspond to a homogeneous solution of Eq. (37)
which would be regular everywhere on the 4-sphere, but
one can show that this is impossible as follows. The
homogeneous solutions of Eq. (37) are solutions of the
Euclidean version of the Klein-Gordon equation:

(Ay — M?)¢p =0, (B2)
where A, is the Laplace operator on $*, whose eigenvalues
are —L(L + 3) with L =0, 1, .... Therefore, one cannot
have a regular solution for M? > 0 since that would cor-
respond to an eigenfunction of the Laplacian with a posi-
tive eigenvalue. In contrast, for M 2 = 0 one does have the
obvious solution ¢» = const, which explains why our argu-
ment does not work for the massless minimally coupled
case and why one cannot find a static solution regular on
the horizon associated with a freely falling charge in that
case.

>Note that it makes sense to identify ¢(y) = ¢(r) only if
¢(x) = ¢(7 — x). This is possible because the smooth function
that we will find below is an even function of (y — 7/2). Hence,
from now on we will focus on y =< 77/2 and use ¢(y) = (7 —
x) for y = 7/2.
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2. Extension to full de Sitter spacetime

One can obtain de Sitter space by analytic continuation
from S$* reversing the procedure at the beginning of the
previous subsection. In that way, one is naturally led to a
static patch of de Sitter, but one can go to full de Sitter by
extending the static coordinates to r > 1, as explained in
Appendix A 3. Alternatively, one can consider an analytic
continuation of the form (T = 6, — 7/2 to the global
coordinates. On the 4-sphere the source is located on an
equatorial worldline with #; = {0, 7} and arbitrary values
of 6,4, which becomes two disconnected antipodal world-
lines in de Sitter located, respectively, at 5 = 0 and 65 =
m, and arbitrary values of T.

Since we found a function which is regular everywhere
on $* (outside the source), the analytic continuation to full
de Sitter space should be regular too. This can be explicitly
checked by using Eq. (A13) to express in terms of global
coordinates the solution ¢,(r) found in Sec. VA. The only
potentially problematic value is » = 1 and, as seen in
Eq. (40), the solution around that value can be expanded
as a convergent series in powers of (1 — r), which can be
written in global coordinates as

sin(03)
cos(A)

1—r=1—cosh(T)sin(f;) =1 —

cos(f; — 7/2)
cos(A)

where the neighborhood of r =1 can be more easily
studied in terms of the conformal time A, since r = 1
then corresponds to 63 — 77/2 = = A mod 7. The solution
is, thus, manifestly smooth everywhere outside the sources.
Note that in order not to have a spike at 5 — 7/2 = A =0
it is important that ¢((r) is an even function of 0; — 7/2
and A, which follows from Eq. (A13) and the fact that the
solution in Eq. (40) is analytic in (1 — r).

Besides the neighborhood of » = 1 one can also study
the behavior at late times (and fixed comoving distance) or
at a large physical distance from the sources (and fixed
time) by considering the solution ¢(r) for large values of
r. More specifically, one can introduce the change of
variables w = 1/r in Eq. (37) (note that for large r the
source is irrelevant) and see that w = 0 is a regular singular
point. One can, therefore, make use of the Frobenius
method and Fuchs’s theorem to express the solutions as a
series expansion in powers of 1/r, analogously to what was
done in Sec. VA. The two possible solutions are given by

() =r 1+, (B4)

=1 , (B3)

Go(r) =r (1 +--),

where A. = 3/2 = +/9/4 — M? (notice that for M? >0
their real part is always positive) and the remaining terms
involve positive integer powers of 1/r times a possible Inr
factor in some cases. Using r = cosh(T) sin(6;) one can
straightforwardly obtain the late-time and large-distance

(BS)
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behaviors in global coordinates. (The late-time behavior
coincides with that obtained in Sec. V B for the homoge-
neous solutions of the Klein-Gordon equation because the
source played no role here.) The extension of the static
solution will correspond to a unique linear combination
D (r) + Ed,(r) whose coefficients should be deter-
mined by matching it to the regular solution near the
horizon, given by Eq. (40), with the right normalization
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factor. This would require solving (37) exactly. Lacking an
exact solution, we can still expect that the large r behavior
will be determined by ¢, (r), which dominates over ¢,(r)
at large r, as long as D # 0 (that this is the case could
perhaps be shown using approximate methods to match the
solutions). For the particular example of a conformal field
(corresponding to M? = 2), we know that the exact solu-
tion is proportional to 1/r and D # 0 indeed (while E = 0).
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