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Abstract
In this paper we investigate a computational model of word
learning that is cognitively plausible. The model is partly
trained on incorrect form-referent pairings, modelling the in-
put to a word-learning child that may contain such mismatches
due to inattention to a joint communicative scene. We intro-
duce a procedure of active learning, based on attested cognitive
processes. We then show how this procedure can help over-
come the unreliability of the input by detecting and correcting
the mismatches by reliance on previously built up experience.
Index Terms: language acquisition, word learning, computa-
tional modelling

1. Introduction
Learning words from speech is an important part of human lan-
guage processing and consequently plays an important role in
language acquisition. It is a process that seems to be performed
effortlessly, but on closer inspection is found to involve several
ill-understood top-down and bottom-up cognitive processes.

Word learning, which we define as the development of pair-
ings between patterns in the audio stream and referents in the
environment, takes place under conditions of uncertainty for
the learner. We distinguish two types of uncertainty. The first
relates to the fact that the infant must discover suitable basic
building blocks from a highly variable speech stream and even-
tually form meaningful combinations of these building blocks.
Research in the last 15 years has shown that the ability of young
learners to process speech signals is at least partly based on the
use of statistical properties of the signal, as show by Saffran et
al. [1] in experiments with artificial language learning.

The second type of uncertainty is due to possible inconsis-
tencies in the matches between patterns in the speech stream
and objects in the visual focus. Smith and Yu have shown that
both adults [2] and young infants [3] use statistical inference to
discover matches from ambiguous combinations of audio and
visual information. Swingley and Fernald [4] reported that in-
fants who are presented with a word that they know does not re-
fer to the object they are looking at, will attempt to redirect their
attention toward an object in the visual environment that does
match the word. This shows that children are able to detect that
form-referent pairings do not match their previous experience
and that they will actively attempt to resolve these perceived
mismatches by aligning a different visual referent with a given
auditory form.

In summary, we see in children a set of processes that allow
them to learn words while uncertain about both the composition
of the patterns in the speech they hear and the reliability of the
association of those patterns with objects they see.

In this paper we use an existing computational model of
word learning to investigate how these processes may enable

infants to accurately learn words from speech under uncertain
conditions. We hypothesize that the described processes of de-
tection and correction of mismatches may help to improve the
word learning process, by providing a mechanism to overcome
uncertainties in the input. We will investigate this hypothesis by
investigating the performance of our model under conditions of
uncertain input.

2. A model of active word learning
2.1. Detection of words in speech

In our model, word representations are built by a computational
method that discovers structure across sequences of stimuli, us-
ing the Non-Negative Matrix Factorization algorithm (NMF),
introduced by Lee and Seung [5]. NMF is a statistical learning
algorithm, capable of solving the first type of uncertainty we de-
scribed in section 1, i.e. the detection of basic building blocks
and word-like units from a variable speech stream.

In our adaptation of NMF, an audio stream, representing
low-level sensory information, is transformed into a feature vec-
tor and stored in an n × m database matrix V , each column
of which contains n feature values of one of the observed m
stimuli. The relevant structure is then extracted by means of
an approximate factorization of the matrix V as a product of
two much smaller matricesW and H , such that the dissimilar-
ity between the observed matrix V and the reconstructed matrix
W ·H is minimized with respect to the symmetrized Kullback-
Leibler divergence, as investigated in [6] (equation 1, adapted
from [5]).

Vij ≈ (WH)ij =
r∑

a=1

WiaHaj (1)

BothW andH are internal to the learner. The r columns of
W are the internal representations of the basic units that are be-
ing learned. Each column of H corresponds to a specific stim-
ulus in V . The columns in H consist of the weights that must
be applied toW such that a linear combination of basic units in
W optimally approximates the stimuli. In most learning mod-
els building on NMF, the rank r of the factorization is chosen
such that (n+m)r # nm, with the result thatW ·H forms a
compression of the data in V .

Each stimulus is encoded as a single feature vector y. This
vector contains an audio part ya (encoding the acoustic data in
the stimulus) and a keyword part yk, which encodes the key-
word that the utterance contains and is the target of learning.

The experiments reported here are based on an implementa-
tion of a cognitively plausible incremental version of NMF that
has shown promising results in the field of speech recognition
[7]. In this versionW is updated each time a stimulus has been
processed by the learner. This incremental approach allows the
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learner to decode (recognize) stimuli right from the start with-
out the necessity to first collect stimuli in a V matrix. It also
allows us to interpret the development of the internalW matrix
as the dynamic result of an evolution across the training set.

Once an initial estimate of the W matrix is obtained from
some input utterances y, the system can identify keywords from
audio files by reconstructing the visual part. This reconstruction
is done as follows. Let y be a stimulus vector, consisting of an
audio component ya and a keyword component yk. We can
estimate an encoding vector h, based on the audio part of y, by
minimizing ya ≈ W a · h. The vector h indicates the linear
combination of columns in W that best approximates y. We
can then use h to reconstruct a keyword vector by using the
equality ŷk = W k · h. In the estimated reconstructed keyword
vector ŷk the index of the largest element indicates the keyword
hypothesized by the system.

2.2. Active word learning

The findings described in section 1 suggest that human word
learners possess two competencies to help overcome incorrect
form-referent pairings in the input: First, the ability to detect
these mismatches and second, the ability to correct them by
finding a visual referent that matches the auditory form.

Both of these competencies rely on the child’s ability to
compare current input to the internal representations based on
previous input. It is this comparison that forms the basis of our
model of active learning. Once the learning model has con-
structed sufficiently strong internal representations such that it
achieves some accuracy in word recognition, it can start to use
these representations to judge the confidence it has in the cor-
rectness of form-referent pairings in further input. Active learn-
ing entails comparing the learner’s own estimate of what refer-
ent (or keyword) conforms to a speech utterance in the input, to
the referent that is actually presented with the utterance.

Thus, active learning is the process of detecting and cor-
recting mismatches in the input, based on the comparison of
stimuli with internal representations built from previous expe-
rience. We hypothesize that active learning may help in estab-
lishing robustness under conditions where the input associations
of speech utterances with keywords are not always correct, i.e.
where the input is unreliable. We formalize this unreliability as
the probability that the audio component of an input stimulus
is accompanied by the wrong keyword (chosen from a uniform
distribution over the remaining possible keywords). This prob-
ability is denoted by λ.

If there is a strong match between the learner’s own esti-
mate of the referent and the presented referent, then the learner’s
confidence in the presented pairing will be high and it will
update its internal representations accordingly. Conversely, if
there is too strong a mismatch, the learner will actively attempt
to ‘shift focus’ from the presented referent to one it estimates
will fit better, as Swingley and Fernald [4] showed infants can
do. As an example, if the child sees an apple and hears ‘Look at
the lion!’ and detects the mismatch, it may decide to search for
a referent conforming to its idea of ‘lion’ and learn to associate
this with the speech.

We can formalize this notion of active learning as follows.
First we define the confidence of the model in the correct-
ness of a presented utterance-keyword (form-referent) pair. Let
max(v) be the largest element of vector v, maxidx(v) be its in-
dex and vi indicate the i-th element of v. Then the confidence
of the model in the stimulus y is given by:

conf(y) = 1−
max(ŷk)− ŷk

maxidx(yk)∑n
i=1 ŷ

k
i

(2)

In words, the confidence of the learner in utterance-
keyword pairing y is obtained by reconstructing a keyword vec-
tor ŷk from the utterance part of y. The activation level of
the estimated keyword is the maximal element of this vector
(max(ŷk)). The presented stimulus indicates its keyword by
maxidx(yk), so the activation level in the reconstructed vector
of the presented keyword is ŷk

maxidx(yk). The confidence, then, is
1 minus the normalized difference between the activation of the
most activated keyword in the reconstruction and the activation
level of the presented keyword in this reconstruction.

We introduce a model parameter θ, a threshold which gov-
erns the amount of active learning that the system applies. If the
confidence of the system in a presented stimulus is higher than
this threshold, i.e. if there is a strong match between the pre-
sented keyword and the estimated keyword, the learner will up-
date its internal representations with the presented association.
If, on the other hand, the confidence is lower than θ, mean-
ing that there is a too strong a mismatch between the presented
and the estimated keyword, the learner will not associate the
stimulus’ keyword with the utterance, opting for the keyword it
reconstructed instead. The threshold parameter θ in effect gov-
erns the amount of active learning that the system applies. The
higher the threshold is, the more ‘active’ the system is in relying
on its own representations.

In this paper, we investigate the behaviour of the model in
conditions where the associations between speech utterances
and keywords in the input to the learner are unreliable. This
emulates directly the conditions of the experiments of Swingley
and Fernald [4], but also has broader ecological validity. At-
tention of the learner to the caregiver and the communicative
scene is an important factor in the acquisition of language (cf.
[8, 9]). Unreliable associations in the input can be understood
as modelling situations where the attention of the learner is on
the ‘wrong’ part of the visual scene, thus risking associating the
wrong object with an utterance.

3. Experiments
3.1. Data sets

In the experiments described in this section, the training set was
designed by selecting utterances from a large database of human
speech, recorded in the ACORNS project [10]. The utterances
are all simple sentences with only elementary syntactic struc-
ture, consisting only of a main clause. This syntactic structure
resembles the structure of child-directed language [11].

The training set consists of 450 utterances from a single
speaker. Each of the utterances contains a single instance of
one of the following 10 keywords: mummy, looks, big, lion,
see, bottle, square, cat, cow, fish. The keywords are distributed
evenly over the training set.

The nature of the NMF algorithm places restrictions on its
input requirements that are not easily met by continuous audio
recordings. Specifically, it demands that all input vectors are
of equal length and contain only positive values. In order to
comply with these specifications the utterances are coded as co-
occurrence counts of Vector Quantization labels, as proposed
by Van hamme [12]. The code book (150-150-100 for static
MFCC,∆ and∆2) is trained on randomly selected feature vec-
tors and is fixed throughout the experiments.
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Figure 1: Baseline of word learning experiment. The graph
shows the development of accuracy of word recognition as the
learning progresses as estimated from a held out test set (N =
100)

Each speech utterance is associated with a binary keyword
vector indicating which single keyword occurs in it.

3.2. Training and testing

In the training phase, the combined audio-keyword vectors are
presented to the learning system incrementally. The training
phase consists of two periods. In the first period, all presented
associations are correct and the learner accepts them uncondi-
tionally (θ = 0, λ = 0). This period spans 40 stimuli or 4
tokens of each keyword. In the second period, spanning 450
utterances, both θ and λ take values > 0, meaning that the in-
put becomes unreliable and that the learner can learn actively.
The first period of the learning phase is necessary for the sys-
tem to build internal representations that are sufficiently strong
to estimate keywords from audio signals.

After every 10 stimuli presented in the second period of the
training phase, the system is tested for accuracy on a separate
set of utterances (N = 100). The test set consists of held-out
data from the same speaker as in the training set. The keywords
occur evenly in the test set. During testing, training is halted so
that the internal representations inW are not updated on the test
set. The accuracy of the model is estimated as follows. Based
on the audio part of an input stimulus, the model reconstructs
the keyword part. The accuracy on a given test set is estimated
by comparing the reconstructed keyword vector with the origi-
nal keyword vector for every item in the test set.

4. Results
Section 2 introduced the basic word learning model. In our ex-
tended model it corresponds to a setting with passive learning
(θ = 0) and completely reliable input (λ = 0). Since this
combination of parameter settings is conceptually closest to an
idealized learning situation, it will serve as our baseline.

Fig. 1 shows the development of the accuracy of word
recognition of the baseline. Denoting the estimated accuracy
after training on n utterances by ân, we note that the estimated
final accuracy is â450 ≈ .94 and convergence to this level oc-
curs around 350 utterances of training.

Fig. 2 depicts the development of the accuracy of word

Figure 2: Effects of active learning from uncertain input. The
figure depicts the development of accuracy of word recognition
for three levels of active learning (θ), showing that performance
improves with increasing θ.

Figure 3: Effects of active learning on final performance for
different levels of λ. Accuracy is estimated after training on
450 uncertain utterances.

recognition for partly unreliable input, i.e. λ = 0.4 and for
three levels of active learning (θ = 0, θ = 0.5 and θ = 0.9).
The figure shows that without active learning (θ = 0), the
model is still able to learn from uncertain input, improving sig-
nificantly from â40 = 0.41 to â450 = 0.74 (McNemar’s Test,
p # 0.01). Note that this improvement over training is sig-
nificantly less pronounced than the improvement over training
shown in the baseline graph in figure 1 (p # 0.01).

Accuracy improvement during training is significantly
higher when the model learns actively (θ = 0.5 and θ = 0.9) as
also shown in figure 2. Final accuracy estimations are 0.82 and
0.9 respectively. In summary, these graphs display the increase
in performance with increased θ for λ = 0.4.

Fig. 3 gives an overview of the effects of active learning on
final performance after training under different levels of uncer-
tainty (λ = 0.0, λ = 0.2, λ = 0.4, λ = 0.5). From this figure
we observe the following.

All graphs show a distinct peak in performance around
θ = 0.9, after which performance drops off sharply. Up un-
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til this point, we observe that higher levels of active learning
coincide with higher levels of final performance for all values
of λ (including λ = 0). Secondly, for the condition λ = 0,
we observe that levels of θ up to 0.9 do not decrease the per-
formance substantially relative to θ = 0. This is important,
because if the input is in fact reliable, any lack of confidence in
the presented associations incurs the risk of incorrectly rejecting
stimuli. Fig. 3 shows that this is not the case in our model.

The performance as θ approaches 1 under the different lev-
els of λ is understood from this same perspective. At θ = 1
every association in the input is rejected in favour of a recon-
struction based on internal representations. This means that the
model cannot learn effectively from correct inputs and projects
its errors in its internal representations.

5. Discussion and Conclusions
This paper set out to investigate the role of active learning under
conditions of uncertainty in a recent computational model of
word learning. We formally defined uncertainty as stochastic
mismatches in form-referent pairings in the input to the learning
algorithm. Active learning was implemented by allowing the
learner to override the presented keyword if its confidence in
the pairing with an audio signal was lower than a threshold. The
detection and correction of mismatches by choosing a different
referent if deemed necessary models the process of gaze shifting
under inconsistent input described by Swingley and Fernald [4].

The effects of active learning were quantified by measuring
the word recognition accuracy. We investigated our hypothesis
that active learning helps the learner overcome uncertainty in
the form-referent pairings in the input.

The results described in section 4 lead us to the following
conclusions. First, we observe that higher levels of unreliabil-
ity of the input decrease the final performance of the model.
This ties in with the posed centrality of attention sharing in lan-
guage acquisition [9]. However, even with higher levels of un-
certainty, the model still performs above chance and is able to
learn throughout the uncertain phase of training by relying on
its past experience.

Second, the results show that the learning model performs
better under unreliable input if it learns actively. This con-
firms our hypothesis that actively detecting and correcting mis-
matches in the input by relying on previous experience helps the
learner gain a higher accuracy of word recognition.

Third, the less reliable the input, the greater the improve-
ment gained from active learning. Since unreliability is de-
fined stochastically over all input stimuli, the model can still
improve its performance when it is does not learn actively, al-
though these improvements will be marginal. When the unreli-
ability increases, learning inactively becomes less effective. If
the model learns actively, however, it can better counteract the
unreliability of the input and gain better performance.

Fourth, the model never performs substantially worse when
it learns actively instead of passively (up to a certain level of
active learning). This is an important result, since it shows that
the active learning strategy is viable even when the input is com-
pletely reliable. When it is not known how reliable the input will
be (what the level of λ will be), active learning is a good default
strategy, guaranteed to achieve the best performance given the
level of reliability.

In summary, we have shown how a model of active learning
based on cognitively plausible processes that infants are known
to apply can achieve good performance when trained with un-
certain input. This result ties in with the observation that a cor-

rective procedure that is able to overcome attentive mismatches
between an utterance from a caregiver and an object in the com-
municative scene, can be an important part of word learning in
human language acquisition.

For future research this model can be extended to have a
dynamic and variable level of active learning depending on the
strength of the internal representations. In the current paper we
model the infant’s burgeoning word recognition capacity as a
system that is trained just sufficiently to gain some accuracy
in recognition but has not reached convergence yet. In a future
extension, the role of the first, ‘clean’, phase of training could be
studied to bring the model closer to cognitively and ecologically
plausible learning situations.

6. Acknowledgements
The research of Maarten Versteegh and Louis ten Bosch is sup-
ported by grant number 360-70-350 from the Dutch Science Or-
ganisation NWO.

7. References
[1] J. Saffran, R. Aslin, and E. Newport, “Statistical learn-

ing by 8-month-olds,” Science, vol. 274, pp. 1926–1928,
1996.

[2] C. Yu and L. Smith, “Rapid word learning under uncer-
tainty via cross-situational statistics,” Psychological Sci-
ence, vol. 18, pp. 414–420, 2007.

[3] L. Smith and C. Yu, “Infants rapidly learn word-referent
mapping via cross-situational statistics,” Cognition, vol.
106, pp. 333–338, 2008.

[4] D. Swingley and A. Fernald, “Recognition of words re-
ferring to present and absent objects by 24-month-olds,”
Journal of Memory and Language, vol. 46, pp. 39–56,
2002.

[5] D. Lee and S. Seung, “Learning the parts of object by non-
negative matrix factorization,” Nature, vol. 40, pp. 788–
791, 1999.

[6] P. Hoyer, “Non-negative matrix factorization with sparse-
ness constraints,” Journal of Machine Learning Research,
vol. 5, pp. 1457–1469, 2004.

[7] V. Stouten, K. Demuynck, and H. Van hamme, “Automat-
ically learning the units of speech by non-negative matrix
factorisation,” in Proceedings Interspeech, 2007.

[8] L. Smith, “How to learn words: an associative crane,”
in Breaking the word learning barrier, R. Golinkoff and
K. Hirsh-Pasek, Eds. Oxford: Oxford University Press,
2000.

[9] M. Tomasello, Constructing a language – a usage-based
theory of language acquisition. Harvard University
Press, 2003.

[10] L. ten Bosch, H. V. hamme, L. Boves, and R. Moore, “A
computational model of language acquisition: the emer-
gence of words,” Fundamenta Informaticae, pp. 229–249,
2009.

[11] J. van de Weijer, “Language input for word discovery,”
Ph.D. dissertation, Max Planck Institute for Psycholin-
guistics, Nijmegen, the Netherlands, 1998.

[12] H. Van hamme, “HAC-models: a Novel Approach to Con-
tinuous Speech Recognition,” in Proceedings Interspeech
2008, Brisbane, Australia, 2008.

2933


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	Also by L. ten Bosch
	Also by Lou Boves
	----------

