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1 Introduction

The earliest form of model building in string theory consisted of “embedding the spin

connection in the gauge group” for a Calabi-Yau compactification of the E8×E8 heterotic

string [1]. These correspond to (0,2)-compactifications that happen to have N = (2, 2)

worldsheet supersymmetry. A natural question to ask concerns the counting of massless

states in uncompactified spacetime which are singlets under the unbroken E8×E6 gauge

symmetry. This turns out to be a fascinating question that has received rather sporadic

attention in the past 25 years.

These massless states correspond to first order deformations of the theory. Marginal

deformations must preserve the (0,2) superconformal symmetry [2]. Deformations that

preserve the full (2,2) invariance constitute the familiar (2,2) moduli space. Its dimension

is constant [3], and in a geometric phase it corresponds to the unobstructed [4] deformations

of complex structures and changes in the complexified Kähler form. The remaining moduli

that only preserve (0,2) invariance are harder to describe. As a first step, we may count

the massless gauge singlets in the four-dimensional effective theory. Each of these is a first

order deformation that may be obstructed at higher order.

Unfortunately, the identification of all massless singlets at a generic point in the (2,2)

moduli space is well beyond our current abilities. To make progress, we must work at

certain limiting points where the spectrum is accessible to available techniques. These

include large radius points, Landau-Ginzburg loci and the Gepner points they contain, and

orbifolds. In each of these points the techniques used to identify the singlets are rather

different, and the resulting description of the space of first order deformations might appear

as mysterious as an elephant to the group of proverbial blind men from Indostan. Can these

different descriptions be reconciled?

In the large radius limit of a Calabi-Yau phase, the counting of the singlets is quite

easy to visualize. The (2,2) singlets manifest themselves as infinitesimal deformations of the

complex structure or complexified Kähler form of the Calabi-Yau, while the less familiar

(0,2) singlets correspond to first order deformations of the tangent bundle, counted by

H1(EndT ). This group can jump with complex structure [5]; moreover a “generic” first

order (0,2) deformation is expected to be lifted by world-sheet instantons [6]. One might

expect, therefore, that the Gepner models corresponding to certain Calabi-Yau threefolds

might count the number of (0,2)-deformations differently. After all, the Gepner model

describes physics at some “minimal radius” for the Calabi-Yau threefold, well away from

the large radius limit, for a special choice of complex structure. Singlet counts for Gepner

models were comprehensively listed in [7].

So perhaps the different aspects of the elephant cannot be reconciled. It may be that

the number of singlets varies wildly across the moduli space. We will argue here that is not

the case. The behaviour of the singlets is quite orderly, with relatively modest jumping in

the singlet count. As is well studied, the quintic threefold provides a remarkably boring

case study, where the number of singlets is fixed except for a handful of singlets associated

with extra U(1) gauge symmetries at the Gepner point.
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In the case of the quintic, the gauged linear sigma model offers a beautiful explanation

of this behaviour. As already noted in [8], the (2,2) GLSM describing a Calabi-Yau complete

intersection in a toric variety has natural (0,2)-preserving deformations encoded in a (0,2)

superpotential for the gauge theory. The holomorphic parameters of this superpotential

encode the “toric” Kähler moduli, the “polynomial” complex structure moduli, as well

as a subset of classically unobstructed bundle moduli. This GLSM parameter space was

recently studied in some detail in the case of Calabi-Yau hypersurfaces [9]. Remarkably,

these GLSM deformations have been argued to correspond to exactly marginal deformations

of the (0,2) theory [10–12].

Getting back to the quintic, it is not hard to see that all elements of H1(EndT ) can

be represented as deformations of the (0,2) GLSM superpotential. Hence, it is not too

surprising that the singlet spectrum at the Gepner point simply differs by a few states

associated to the un-Higgsing of additional gauge symmetries.

More generally, there are certainly models where H1(EndT ) is not fully described by

the (0,2) GLSM, and the additional singlets, unprotected by GLSM arguments, should

suffer the fate of the “generic” large radius singlet and become massive away from the

large radius limit.

In this paper we will study various cases which have a little more structure than the

quintic. We will show how the bulk of the spectrum stays fixed and can be tracked nicely

between the Calabi-Yau and Landau-Ginzburg pictures. We will also see how various

massless states can appear in some subspaces of the moduli space. In some cases these

extra states can be tracked all the way from the Gepner model to the large radius limit.

The orbifold is an important intermediate step on a path from the Gepner model to

the large radius limit. Comparing the orbifold to the large radius limit is extremely well

studied in the context of (2,2) theories. Here the relationship between the orbifold and its

resolution is now generally known as the McKay correspondence. A McKay correspondence

for the (0,2)-case has been quite neglected, despite its origin in string theory being as

old [13]. We make some first efforts in this direction here. In particular, at the orbifold

limit the massless states can be characterised as “untwisted” or “twisted”, and we are able

to compute the spectrum of states of both types. In the case of a Calabi-Yau space with a

curve of quotient singularities this involves understanding how the six-dimensional theory

determined by the quotient is compactified on the singular curve and leads to a twisted

compactification familiar from the study of wrapped D-branes. This is a first step toward

a McKay correspondence, but there are some subtleties we do not resolve here.

We will focus on 4 examples of Calabi-Yau threefolds in a (weighted) projective space,

each of which has its own merit:

• a quintic in P4 is the simplest and most studied case;

• a sextic in P4
21111 has extra singlets states at small radius;

• a septic in P4
31111 is a blown-up orbifold and demonstrates the (0,2) McKay corre-

spondence;

• an octic in P4
22211 exhibits many complications, including extra singlets appearing

both at special radii and at special complex structure.
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The Landau-Ginzburg locus for the sextic and octic theories has additional singlets in

comparison to the large radius computation, which are not associated with an enhanced

gauge symmetry. What is the fate of these singlets as we move away from the Landau-

Ginzburg locus by turning on a Kähler deformation? The only reasonable possibility is

that they acquire a Kähler-dependent mass term, which is indeed allowed by the quantum

symmetry of the Landau-Ginzburg orbifold and consistent with the fact that the number

of additional chiral singlets is even.

This would be challenging to verify directly even at the Gepner point, since it would

require us to compute correlators of several twisted states. Luckily, we have a tool at our

disposal that would be singularly unhelpful to the six blind men: we can take a look at our

elephant in the mirror. Using mirror symmetry we are able to show that the extra singlets

do indeed acquire a Kähler-dependent mass.

The extra singlets provide examples of states with Kähler dependent masses; however

we observe that in all of our examples every large radius singlet, whether it is a (0,2)

GLSM deformation or not, remains massless at the Landau-Ginzburg locus. Thus, we

have yet to find an example of a “generic” large radius singlet that is lifted by world-sheet

instantons. Instantons could well lead to higher order obstructions for these first order (0,2)

deformations, but we find it remarkable that an instanton-induced mass term for the non-

GLSM singlets, while allowed by symmetries, is not generated. This suggests that there

may be a non-renormalization theorem with a wider applicability than the one currently

known for the subspace of GLSM deformations.1

The rest of the article is organized as follows: in sections 2 and 3 we review and develop

the technology necessary to study heterotic spectra in Landau-Ginzburg and Calabi-Yau

phases. Section 4 is devoted to a comparison of the general results, while section 5 contains

specific computations in the examples.

2 Singlet spectrum at the Landau-Ginzburg locus

Describing the massless spectrum of a heterotic vacuum as a function of the moduli is

a difficult affair even in string perturbation theory, since it requires a knowledge of the

marginal operators in a non-trivial SCFT. At certain points in the moduli space the SCFT

may reduce to a solvable theory: for instance, it might be an orbifold of a free theory or a

Gepner model. When this holds, the full perturbative string theory is under control: the

spectrum is computable, and any scattering amplitude can be reduced to an integral over

the moduli space of a punctured Riemann surface. In principle, conformal perturbation

theory can then be used to determine these properties in an open neighborhood of the

solvable point. Unfortunately, in practice conformal perturbation theory is difficult to

carry out in full generality. For instance, even in an orbifold of T 6 little is known about

1We have a hint of this possibility already from the (2,2) moduli space: a generic Calabi-Yau hypersur-

face will have non-toric and non-polynomial deformations that are not described by familiar holomorphic

couplings in the GLSM Lagrangian; although standard GLSM arguments do not apply to these, each such

deformation corresponds to a deformation of the CFT.
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the dependence of spectrum and amplitudes on the twisted sector moduli corresponding

to Kähler deformations.

To make progress it turns out to be useful to sacrifice a little of the ambition: if we

cannot determine the spectrum as a function of all the moduli, perhaps we can do so

on some suitably nice locus in the moduli space. For instance, in the example of a T 6

orbifold we can look at the dependence of the spectrum on all of the untwisted moduli.

This example is perhaps not very exciting, since as far as this dependence is concerned,

we are basically dealing with a solvable theory. The Landau-Ginzburg models provide an

important class of examples where the massless spectrum can be determined, even though

the theory is not a solvable SCFT. In particular, the Landau-Ginzburg description allows

us to follow the massless spectrum as parameters in the superpotential are varied.

2.1 (2,2) Landau-Ginzburg generalities

In this section we review some standard results on (2,2) Landau-Ginzburg models [14, 15]

and their uses in heterotic compactification [16]. A (2,2) Landau-Ginzburg theory with a

UV R- symmetry is defined by a Lagrangian for N chiral superfields Xi with canonical

kinetic terms and a quasi-homogeneous superpotential W (X) satisfying

W (λαiXi) = λW (X).

The superpotential coupling is a relevant deformation of the free theory, and under suitable

conditions the IR fixed point is believed to be a non-trivial compact (2,2) SCFT, with the

UV R-symmetry corresponding to the R-symmetry of the IR theory. In such theories the

critical point set of W , i.e. points where dW = 0, is the origin in Cn, and without loss of

generality the αi may be taken to be 0 < αi ≤ 1
2 .

While following the Landau-Ginzburg RG flow is a non-trivial affair, it turns out that a

number of properties of the theory, in particular those involving the supersymmetric ground

states, are independent of the RG details. Perhaps the most elegant way to encapsulate

the accessible IR physics is via a representation of the left-moving N = 2 super-conformal

algebra in the cohomology of the right-moving supercharge Q of the UV theory [17]. The

propagating fields in a (2,2) chiral multiplet Xi and its complex conjugate anti-chiral

multiplet X
i

consist of the bosonic xi, its complex conjugate xi, the right-moving fermions

ψi+, ψ
i
+, and the left-moving fermions γi−, γ

i
−. Define T, J,G± by2

T 0 =
∑
i

{
−γi∂γi − 2∂xi∂xi

}
,

J =
∑
i

{
(αi − 1)γiγi − 2αix

i∂xi
}
,

T = T 0 − 1
2∂J,

G− = 2i
√

2
∑
i

γi∂xi,

G+ = i
√

2
∑
i

{
(1− αi)γi∂xi − αixi∂γi

}
. (2.1)

2We use the notation where ± denotes R-charge, not world-sheet chirality.
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xi ∂xi γi γi

q αi −αi αi − 1 1− αi
2h αi 2− αi 1 + αi 1− αi
q αi −αi αi −αi

Table 1. Weights and charges of the fields

It is easy to show that these operators are Q-closed up to the equations of motion of the

UV theory; moreover, the super-renormalizability of the Lagrangian allows us to evaluate

the algebra of these operators via free-field OPEs. The result is that this is a representation

of the N = 2 algebra with central charge c = 3
∑

i(1− 2αi). The conformal weights h and

charges q of the fundamental fields are given in table 2.1; the table also lists the charges q

under the right-moving R-symmetry.

The left-moving N = 2 algebra in Q cohomology is perfectly suited to study super-

symmetric ground states of the theory. In string theory, these right-moving Ramond sector

states correspond to massless fermions in the space-time theory, and in a space-time su-

persymmetric compactification knowledge of these states is sufficient to reconstruct the

massless spectrum. While in general determining the Q cohomology is a challenge, the

super-renormalizability of the Landau-Ginzburg theory reduces the computation to two

simple steps [16]: the UV theory is truncated to the fields in the N = 2 algebra of (2.1),

and the Q operator acts on the remaining modes via

Q =

∮
dz

2πi
γi∂iW (x). (2.2)

2.2 The Landau-Ginzburg orbifold

In order to apply these ideas to string compactifications, they must be generalized to

Landau-Ginzburg orbifolds. This has been carried out in [16] and extended to a wide

class of (0,2) heterotic backgrounds in [18–20]. In this section we will review the (2,2)

heterotic models.

Following Gepner [21], we know that a c = c = 9 (2,2) SCFT with integral q−q charges

can be used to construct a space-time supersymmetric E6×E8 heterotic compactification.

In Landau-Ginzburg models the natural way to achieve this is to orbifold by exp(2πiJ) [22].

In the Gepner construction, the “internal” theory is tensored with a free theory of 10 left-

moving Majorana-Weyl fermions λA, as well as a level-one left-moving E8 current algebra.

Adding four (0,1) superfields for the four Minkowski directions leads to correct central

charges for a critical heterotic string, and modular invariance and space-time supersymme-

try are ensured by performing a GSO projection on the world-sheet fermion numbers on the

left and the right. The right-moving GSO projection is, as usual, responsible for space-time

supersymmetry, while the left-moving projection ensures that the manifest SO(10)×U(1)

gauge symmetry is enhanced to E6.3

3The U(1) factor is precisely the left-moving R-symmetry.
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In the (2,2) Landau-Ginzburg theory, the GSO projections are conveniently combined

with the orbifold onto integral q: we simply orbifold by g = exp(−iπJ) and project onto

suitable fermion numbers, both on the left and right, mod 2. The massless fermions that

are E6×E8 singlets come from the (NS, R) sectors, i.e. the sectors twisted by gk with k

odd. In such a sector the GSO projection amounts to keeping states with integral q. Since

αi are rational, g2d = 1 for some integer d, and hence there are 2d − 1 twisted sectors.

Space-time CPT exchanges the k-th twisted sector with the (2d− k)-th sector, so we need

only consider k = 1, 3, . . . , d.

Massless fermion states must be in the Q cohomology, and level matching implies

that the left-moving energy E must vanish. The E6 representation, as well as the type of

space-time multiplet (vector or chiral/anti-chiral) is determined by the q, q charges. The

E6 representation follows from the standard decomposition

E6 7→ SO(10)×U(1)

78 7→ 450 + 16−3/2 + 163/2 + 10

27 7→ 161/2 + 10−1 + 12

27 7→ 16−1/2 + 101 + 1−2. (2.3)

The E6 singlet states must have q = 0. The type of space-time multiplet can be determined

by working out the action of spectral flow on corresponding (NS,NS) operators. The result

is that a massless fermion with right-moving charge q = ±3
2 is a vector; if q = −1

2 it belongs

to a chiral multiplet, and if q = 1
2 , it belongs to an anti-chiral multiplet.

The algorithm for determining the singlet spectrum is therefore quite simple: for each

odd sector in the Landau-Ginzburg orbifold, we must identify states in the Q cohomology

with E = q = 0 and q = ±1
2 . Since we restrict to the Q cohomology the left-moving

quantum numbers can be determined from the left-moving N = 2 UV algebra. It is useful

to note that Q commutes with the left-moving algebra and has a definite right-moving

charge q = 1. Thus, in any sector the zero energy states live in a complex

· · · // U−3/2
Q // U−1/2

Q // U1/2
Q // U3/2

// · · · , (2.4)

where the Uq are states with definite q charge.

2.3 Quantum numbers in twisted sectors

The remaining question to be addressed is the computation of the E, q and q quantum

numbers in the twisted sectors. The E and q quantum numbers of the twisted vacua

can be obtained by using the UV N = 2 algebra. In the k-th sector the fields have a

twisted moding

xi(z) =
∑

s∈Z−νi

xisz
−s−hi , γi(z) =

∑
s∈Z−ν̃i

γisz
−s−h̃i

2∂xi(z) =
∑

s∈Z+νi

ρisz
−s+hi−1, γi(z) =

∑
s∈Z+ν̃i

γisz
−s+h̃i−1, (2.5)
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where 2hi = αi, 2h̃i = 1 + αi, and

νi =
kαi
2

(mod 1) 0 ≤ νi < 1

ν̃i =
k(αi − 1)

2
(mod 1) −1 < ν̃i ≤ 0 . (2.6)

The Fock vacuum |k〉 is defined as the state annihilated by all positive modes. The left-

moving quantum numbers of |k〉 can be computed by working out the one-point functions

of J and T via the mode expansion. For instance, we easily find

2〈k|xi(w + ε)∂xi(w)|k〉 = ε−1 + (νi − hi)w−1 +O(ε),

〈k|γi(w + ε)γi(w)|k〉 = ε−1 + (1 + ν̃i − h̃i)w−1 +O(ε). (2.7)

Using a point-splitting regularization for J , these correlators imply

w〈k|J(w)|k〉 =
∑
i

[
(αi − 1)(1 + ν̃i − h̃i)− αi(νi − hi)

]
, (2.8)

whence we read off the left-moving charge of |k〉 as

qk =
∑
i

[
(αi − 1)(ν̃i + 1

2)− αi(νi − 1
2)
]
. (2.9)

Similarly, we obtain the weight via w2〈k|T (w)|k〉 = hk:

hk =
3

8
+ ∆k, ∆k =

1

2

∑
i

[νi(1− νi) + ν̃i(1 + ν̃i)] . (2.10)

To obtain the energy, we must transform from the plane to the cylinder and remember

to include contributions from the other left-moving degrees of freedom. In sectors with k

even, we find Ek = 0 — an answer in line with the (2,2) supersymmetry. For k odd, the

result is

Ek =
3

8
+ ∆k −

9

24︸ ︷︷ ︸
LG

+ 0− 5

24︸ ︷︷ ︸
SO(10)

+ 0− 8

24︸ ︷︷ ︸
E8, NS

+ 0− 2

24︸ ︷︷ ︸
space-time

= −5

8
+ ∆k. (2.11)

The remaining quantum number is the right-moving R-charge. The simplest way to

determine this is to note that in the UV the right-moving current J is related to the left-

moving current via J = J + JB, where JB assigns charge +1 to γi and −1 to ψi. The JB
symmetry is independent of W , and we can evaluate the charge of the twisted vacuum by

simply setting W = 0. Combining this with the result for J , we find

qk =
∑
i

[
αi(ν̃i + 1

2) + (αi − 1)(−νi + 1
2)
]
. (2.12)

Having determined the ground state quantum numbers, we will construct E = q = 0

energy states by acting on |k〉 with the lowest excited modes, which we will denote by

xi ≡ xi−νi , ρi ≡ ρiνi−1, γi ≡ γi−1−ν̃i , γi ≡ γiν̃i . (2.13)
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k Ek qk qk ν ν̃

0 0 −3
2 −3

2 0 0

1 −1 0 −3
2

1
10 −2

5

2 0 3
2 −3

2
1
5 −4

5

3 −1
2 −1 −1

2
3
10 −1

5

4 0 1
2 −1

2
2
5 −3

5

5 0 −2 1
2

1
2 0

Table 2. Ground state quantum numbers and modings for the quintic.

As usual, an oscillator with mode ν will contribute −ν to the energy. In describing the Q

cohomology we will also need the conjugate modes, which we will distinguish with a dagger:

x†i ≡ ρ
i
νi , ρ†i ≡ x

i
1−νi , γ†i ≡ γ

i
1+ν̃i

, γ†i ≡ γ
i
−ν̃i . (2.14)

The Q operator takes the general form

Q =
∑
i

{
γi∂iW1+ν̃i + γ†i∂iWν̃i

}
. (2.15)

2.4 The quintic

We will now apply the method reviewed above to determine the singlet spectrum at the

Landau-Ginzburg point in the moduli space of the quintic in CP4. This calculation was

performed in [16], and we repeat it here to review the notation and also to remark on

some universal features of such models. The theory is described by the superpotential

W (X0, . . . , X4), a degree five polynomial. The R-charges of the fields are αi = 1
5 , so that

the Z5 orbifold acts by multiplying the fields by fifth roots of unity. Thus, there are ten

twisted sectors. CPT invariance allows us to restrict to k = 0, . . . , 5, and since we are

interested in the singlets, we can restrict to odd k. The ground state quantum numbers

and field modings for the sectors are given in table 2.

Zero energy states with q = 0 are only found in the k = 1 and k = 3 sectors. An

explicit basis for these states is

q̄ = −3
2 q̄ = −1

2

γiγj |1〉25

⊕
xiρj |1〉25

Q // F i[4]γi|1〉350

xiγj |3〉25

(2.16)

Unless indicated otherwise, here and in what follows F[d] denotes a degree d polynomial

in the xi with respect to the multi-grading of the relevant homogeneous coordinate ring

– 9 –
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(in this case the xi just have charge 1). The subscript of the ket indicates the number of

linearly independent states of each type. The map Q : U−3/2 → U−1/2 is given by

Q = γ†i∂iW + γi∂ijWρ†j , (2.17)

so that the image of an arbitrary state |ψ〉 ∈ U−3/2, specified by two matrices cij and dij is

Q|ψ〉 = Q
{

4cijγiγj + dijxiρj
}
|1〉 =

{
−4cij∂jW + dkjxk∂ijW

}
γi|1〉. (2.18)

What is the kernel of Q? Since W is quasi-homogeneous, dim kerQ ≥ 1 for any W . A

Q-closed state is obtained by setting cij = dij = δij . In fact, for generic W this is the

only Q-closed state in U−3/2. Its existence is not surprising: this is the vector multiplet

corresponding to the unbroken U(1)L symmetry. Thus, we find that there are generically

301 massless chiral singlets in the k = 1 sector.

When W is taken to be Fermat, we find that there are five Q-closed states at U−3/2,

with dij = diδij and cij = dij . Again, this is not a big surprise, since at this point in

the moduli space the theory reduces to the Gepner model for ⊕5
i=1A

i
4. This theory has

five unbroken U(1) currents, each of which leads to a massless vector multiplet. So, at the

Fermat point we find 305 massless chiral singlets at k = 1.

The physics encoded by the change in kerQ is just the supersymmetric Higgs mecha-

nism: the disappearance of a massless vector multiplet is accompanied by the disappearance

of a massless E6 singlet chiral multiplet. The number of massless vector multiplets is given

by the number of decoupled components of the Landau-Ginzburg theory. For instance,

turning on the unique monomial containing all the fields breaks all but one of the currents

and leads to 301 massless singlets.

Finally, we turn to the k = 3 sector. Here there are 25 zero energy states with q = 0

as shown in (2.16). Clearly Q = 0 in this sector, so that all of these states correspond

to massless singlets. Combining these states with the k = 1 singlets, we see that the

theory contains 326 massless singlets for generic W and 330 at the Fermat point. Sub-

tracting the 1+101 (2,2) moduli, we find 224 singlets that are not associated to extra U(1)

gauge symmetries.

The (2,2) Landau-Ginzburg Lagrangian can be deformed to a (0,2) theory by replacing

∂iW with arbitrary quartic polynomials W i in the component Lagrangian. Although the

G± generators of the left-moving SCA are no longer conserved, the J and T still generate

a left-moving U(1)L× Virasoro algebra. The computation of the ground-state quantum

numbers and Q cohomology are unchanged by these deformations.

2.5 Universal structure in LG singlet spectrum

The spectrum of singlets we have seen in the quintic in fact exhibits a pattern that is

somewhat universal and will be useful in connecting the Landau-Ginzburg results to calcu-

lations in the large radius phase. Consider a Landau-Ginzburg model with N = 5 fields and

arbitrary charges 0 < αi ≤ 1
2 such that

∑
i(1 − 2αi) = 3. We will consider the k = 1 and

k = 3 sectors of any such model and find that some singlet states are universally present.
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To simplify expressions, note from (2.6) we have

ν̃i =

{
νi − 1

2 , 0 < νi ≤ 1
2

νi − 3
2 ,

1
2 ≤ νi < 1.

(2.19)

We begin with the k = 1 sector. Here

0 < νi = 1
2αi ≤

1
4 and − 1

2 < ν̃i = νi − 1
2 ≤ −

1
4 .

Inserting these values we find E1 = −1 and (q1, q1 = (0,−3
2). These values show immedi-

ately that zero-energy states will be given by

|ψ〉 =
(
F (x, γ) +Gi(x, γ)ρi +H i(x, γ)γi

)
|1〉 . (2.20)

Since νi ∝ αi functions of x can be classified by their degree, f[p](λ
αidxi) = λpf(x), so

that p determines the charge and energy of f(x). We also use the notation ni = αid ∈ Z.

A possible chiral field with α = 1
2 must here be distinguished, so we use the somewhat

clumsy notation

αI = 1
2 I = 0, . . . , n− 1 ;

0 <αa <
1
2 a = n, . . . , 4 . (2.21)

Clearly, 0 ≤ n ≤ 1; if n = 0 the first row is vacuous.

Considering the first term in (2.20), the zero energy condition shows that

F (x, γ) = F[2d](x) + F i[d+ni]
(x)γi + F ij[ni+nj ](x)γiγj + · · ·

+ F i1...im[n1+...+nm−(m−2)d]γi1 · · · γim + · · · . (2.22)

The expansion extends so long as there are terms for which the degree of F is positive.

All of these yield states at q = 2. The second term potentially yields two types of zero

energy states

GI(x, γ) = GI[nI ](x) + G̃IγI

Ga(x, γ) = Ga[na](x) . (2.23)

States of the first type have (q, q) = (0,−3
2) and represent singlets in vector multiplets.

The second term in the first line contributes n states at (q, q) = (0,−5
2). The third term

also yields two types of zero energy states

H i(x, γ) = H i
[d−ni]

(x) +H ij
[nj−ni]

(x)γj . (2.24)

The first of these contributes states at (q, q) = (0,−1
2) (chiral matter) and the second at

(0,−3
2) (vector multiplets). This exhausts the possible singlet states at k = 1. The action

of Q is determined from (2.15)

Q(G̃IγIρI) = G̃I∂IWρI , Q(Giρi) =
∑
k

Gi∂ikWγk, Q(H ijγjγi) = H ij∂jWγi . (2.25)
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q̄ = −5
2 q̄ = −3

2 q̄ = −1
2

G̃I[0]γIρI |1〉
Q //

⊕iGi[ni]
ρi|1〉
⊕

⊕nj≥niH
ij
[nj−ni]

γjγi|1〉

Q // ⊕kHk
[d−nk]γk|1〉

⊕AKA
[nA]

∏
B 6=A γB|3〉
⊕

⊕aKa
[na]γa

∏
A γA|3〉

Table 3. Universal Singlets in Landau-Ginzburg models.

We now move to the k = 3 sector. In general we will not enumerate all possible states

at q = E = 0 or the action of Q. Rather, we will show that certain states arise universally

at q = −1
2 . Here a different distinction among the fields by weight is appropriate

1
3 <αA ≤

1
2

1
2 <νA ≤

3
4 −1 <ν̃A ≤ −3

4 A = 0, . . . ,m− 1 ;

0 <αa ≤ 1
3 0 <νa ≤ 1

2 −1
2 <ν̃a ≤ 0 a = m, . . . , 4 . (2.26)

Clearly n ≤ m ≤ 2. Inserting these values we find that the ground state is characterized by

2E3 = m− 1− 3
∑
A

αA;

(q3, q3) =

(
m− 1−

∑
A

αA, −1
2 −

∑
αA

)
. (2.27)

We will not attempt a complete characterization of all zero-energy states in this sector but

note that the following states always arise:

KA
[nA]

∏
B 6=A

γB|3〉, Ka
[na](x)γa

∏
A

γA|3〉. (2.28)

Note that since we still have νi ∝ αi we classify functions of x by degree as above. All of

these states have (q, q) = (0,−1
2) and represent scalars in chiral multiplets. The first term

obviously contributes when m is nonzero. The coefficient space for these states is identical

to the first row of q = −3
2 states in the k = 1 sector in table 3 and in terms of counting

singlets they explicitly “cancel them out”. In general there can be other zero energy states

at k = 3. These can include states with charge (0,−3
2) and nontrivial Q action, so not all

of the states listed above are physical. In all cases we have observed, the coefficient spaces

of these q = −3
2 states are then repeated as coefficients of q = −1

2 states in other sectors,

effectively canceling again. We term this reappearance of k = 1 states in higher sectors the

“cascade”. We will see an example of this in section 5.2.3.

The set of states we have listed here is present in any Landau-Ginzburg model where

the orbifold simply projects onto integral R-charges. In the case of the quintic this is the

complete complement of singlets. In other models there will be additional states in various

sectors, but these universally present states will figure in comparing the Landau-Ginzburg

phase with the orbifold.
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2.6 More LG orbifolds

The methods described above are easily extended to study quotients of the Landau-

Ginzburg models discussed above by further discrete symmetries. These will be useful when

constructing the mirrors as Landau-Ginzburg models.4 A model with charges αi = ni/d

has a natural non-R action of U(1)N acting by phases on the worldsheet chiral multiplets

Φi. This is broken by the superpotential W , and for generic W it is broken to Zd, by which

we took the quotient above. Special nonsingular superpotentials leave a larger discrete

subgroup G ⊂ U(1)N unbroken, and we can construct quotient theories following the same

steps as above, with the simplifying feature that the new symmetries act non-chirally. In

what follows we will take G to be abelian, and we will not consider general choices of

discrete torsion in Landau-Ginzburg orbifolds [23].

The symmetry groups by which we quotient will act by phases on the chiral multiplets.

We represent the group elements by N -tuples of rational numbers defined up to integers,

so that the vector w represents the action of g ∈ G:

g : Φi 7→ e2πiwiΦi , (2.29)

generating a cyclic action of order d(w) = gcd(wi).

To construct the quotient by a group generated by vectors w(a) we introduce twisted

sectors labeled by 0 ≤ t(a) ≤ d(w(a))− 1. The new symmetry is not an R-symmetry so the

twists of bosons and fermions (2.6) are modified to

νi =
kαi
2

+
∑
a

t(a)w
(a)
i (mod 1) 0 ≤ νi < 1

ν̃i =
k(αi − 1)

2
+
∑
a

t(a)w
(a)
i (mod 1) −1 < ν̃i ≤ 0 . (2.30)

We also introduce a projection onto states invariant under (2.29).

The G action in twisted sectors is determined by the requirement of modular invariance

from (2.29). For a non-chiral symmetry this is the same as the action in the untwisted

sector, and the twisted vacua are uncharged. The GSO projection, however, is chiral

and thus sectors with nonzero k will in general carry a G-charge.5 The charge is easily

computed by working with the UV fields and free OPEs. Since the twisted bosons make no

contribution, it is sufficient to consider the action of g on the fermions, which we express

as a subgroup of the U(1) vectorial symmetry with current JG =
∑

iwi(γ
iγi + ψiψ

i
). The

full U(1) symmetry is broken by the superpotential couplings, but since W is G-invariant,

we can use this embedding to compute the G-charge. The result is that a twisted vacuum

|k, t(a)〉 transforms by a phase e2πiqg , with

qg =
∑
i

wi(ν̃i − νi + 1) (mod 1) . (2.31)

4In addition, a generic Landau-Ginzburg phase of a GLSM will have such further quotients as part of

the discrete gauge symmetry.
5We would like to thank B. Wurm for his help in clarifying this point.

– 13 –



J
H
E
P
0
1
(
2
0
1
2
)
0
6
0

The quotients of interest to us will be those preserving space-time supersymmetry. This

requires that the left-moving spectral flow operator, in the k = 1 sector, be preserved by

the projection. We can construct this operator in the free field representation of section 2.1

and find that it is preserved if ∑
i

wi = 0 . (2.32)

Note that since (2.29) depends on wi only modulo integers, this condition is equivalent to

the more familiar ∑
i

wi ∈ Z (2.33)

in terms of restricting the allowable quotients. In the twisted sectors, (2.31) will hold when

w are chosen to satisfy the more stringent condition.

2.7 Gepner models and mirror symmetry

For special values of the superpotential couplings, the Landau-Ginzburg model in all of

our examples is an exactly solvable theory [24]. Prior to the orbifold of section 2.2 we have

a product of (2,2) minimal models. This, of course, allows a calculation of the spectrum

of singlets at this point in the moduli space, but this is equivalent to a special case of

the Landau-Ginzburg calculation, as discussed above. The utility, to our work, of the

Gepner model, is that at this point we have a construction [25] of the mirror model as

an orbifold, as well as an explicit mirror map in terms of the Gepner construction. This

allows us to find the singlet states in the mirror model corresponding to the states we

enumerate using the Landau-Ginzburg construction. We can then construct the mirror

as a Landau-Ginzburg orbifold and study the dependence of the singlet spectrum on the

mirror superpotential. Since deformations of the mirror superpotential are mapped to

Kähler deformations in the original model, we can thus predict which singlet states will be

lifted by Kähler deformations away from the Landau-Ginzburg locus.

In all of our examples, the exactly solvable superpotential will be a sum of terms of

the form xki+2
i , corresponding to an Aki+1 minimal model at level ki and of the form

xli+1
i + xiy

2
i , corresponding to a Dli+2 minimal model at even level ki = 2li, leading to

a tensor product of n minimal models.6 Primary fields in the level-k minimal model are

labeled Φl,l̄
q,s;q̄,s̄ where 0 ≤ l, l̄ ≤ k, subject to the identifications

q ∼ q + 2(k + 2) s ∼ s+ 4 , (2.34)

(and the same for q̄, s̄) as well as

Φl,l̄
q,s;q̄,s̄ ∼ Φk−l,k−l̄

q+k+2,s+2;q̄+k+2,s̄+2 . (2.35)

6We hope there will be no confusion between the minimal model levels labeled by ki and the twisted

sectors labeled by k.
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Fields with even (odd) s create states in the NS (R) sector.7 We use Gepner’s notation(
l
q s

)
|
(

l̄
q̄ s̄

)
for the state created by (2.35). The R-charge and conformal weight of a state

are given by

q = −
∑
i

q̃i
ki + 2

+
si
2

(2.36)

h =
∑
i

li(li + 2)− q2
i

4ki + 8
+
s2
i

8
, (2.37)

for qi, si in the standard range |qi − si| ≤ l, −1 ≤ si ≤ 2, where q̃i = qi + si for R states

and q̃i = qi for NS states.

The minimal model at level k has a partition function

Z =
1

2

∑
l+q+s∈2Z

Al,l̄χ
l
q,sχ

l̄ ∗
q,s (2.38)

where Al,l̄ is the appropriate affine modular invariant at level k + 2 and the factor of 1
2

reflects the identification (2.35). The model enjoys a discrete symmetry Gk = Zk+2 × Z2

under which the state
(

l
q s

)
has weights q, s. In the associated Landau-Ginzburg model we

will be interested in the Zk+2 subgroup of this generated by xi 7→ e2πi/ki+2xi in the Aki+1

model and by xi 7→ e2πi/li+1xi and yi 7→ −yi in the Dli+2 model.

The Gepner construction of a string vacuum as a quotient of the tensor product was

introduced in section 2.2. We add free fields and perform a quotient by Zd × Zn2 . The

quotient introduces twisted sectors in which q̄i, s̄i differ from qi, si by k and additional

twists in which any two s̄ indices are shifted by 2. The gauge symmetry of the model is

E6×E8×U(1)n−1. The SO(10)-neutral scalars in chiral multiplets are states with q̄ =

1, h̄ = 1
2 and q = h = 0. The corresponding fermion states are obtained by applying the

spacetime supersymmetry generator, shifting q̄, s̄ by one, and leading to q̄ = −1
2 . We will

denote states in the resulting model by(
l1

q1 s1

)
· · ·
(

ln
qn sn

)∣∣∣( l̄1
q̄1 s̄1

)
· · ·
(

l̄n
q̄n s̄n

)
.

The mirror model is constructed as a further quotient by a subgroup of G, essentially

the subgroup under which the spacetime supercharge is invariant. The quotient introduces

twisted sectors in which q̄j is shifted relative to qj by 2tam
(a) for a lattice generated by a

set of integer vectors m(a) (and the associated projection). The result of the construction

is [25] a model in which the primary fields are related to those of the original theory by

q 7→ −q, s 7→ −s. The orbifold construction can be realized in the Landau-Ginzburg model

as a quotient following section 2.6 with the action on the chiral superfields given by

w
(a)
j =

m
(a)
j

kj + 2
for A-type x

kj+2
j

w
(a)
j,x =

2m
(a)
j

kj + 2
, w

(a)
j,y =

m
(a)
j

2
for D-type x

(kj+2)/2
j + xjy

2
j

7In fact, s = 2 states are not primary but after the orbifold they do create highest weight states; this is

related to the fact that the quotient projects out some modes of the supercurrents in the individual minimal

models.
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To use mirror symmetry to study the behavior of the singlet spectrum under Kähler

deformations away from the Gepner point, we first find the spectrum of singlets in the orig-

inal model. For each of these we construct the mirror state and identify the twisted sector

in the mirror quotient in which it arises. We then consider the mirror Landau-Ginzburg

model constructed as an orbifold. The mirror superpotential will admit polynomial defor-

mations related by the monomial-divisor mirror map to the toric Kähler deformations in

the original model. In the relevant twisted sectors, we can study the change in Q cohomol-

ogy when the superpotential is deformed, thus identifying which singlet states are lifted

under Kähler deformations away from the Gepner point.

3 Deformations of the tangent bundle

3.1 The tangent sheaf

Let T denote the tangent sheaf (or bundle — we will use the terms interchangeably here)

of a Calabi-Yau threefold X. We are interested in first order deformations of T since

they correspond classically to massless fields allowing, to first order, a deformation of a

(2,2)-model to a (0,2)-model.

Such deformations are given by Ext1
X(T, T ) = H1(X,End(T )). For a simple argument

we refer to [26], chapter 15. Methods of computing H1(End(T )) have been studied for

some time [5, 27, 28] for cases of Calabi-Yau manifolds in products of projective spaces.

Here we give a method that is reasonably direct for complete intersections in toric varieties.

Let V be a compact toric variety and let X be a Calabi-Yau complete intersection

within V . That is, we are in the context of Calabi-Yau’s as studied in [29, 30]. We

quickly review the construction of V to fix notation. Let x0, . . . , xN−1 be the homogeneous

coordinates on V . That is, we have a homogeneous coordinate ring in the sense of Cox [31]

R = C[x0, . . . , xN−1]. (3.1)

We now have a short exact sequence

0 //M //Z⊕N Φ //D //0, (3.2)

where D is a lattice8 of rank r. Each column of the matrix Φ can be thought of as a U(1)r

charge vector of the coordinates xi. That is, R has the structure of an r-multigraded ring.

The toric variety is given as

V =
Spec(R)− Z(B)

(C∗)r
, (3.3)

where B is the “irrelevant ideal” in R and Z(B) is the associated subvariety of CN . B is

determined combinatorially from the fan describing V .

Let v denote an element of the lattice D, i.e., an r-vector. If M is a multigraded R-

module then we may shift multi-gradings to form M(v) in the usual way. Correspondingly,

8Assumed to be torsion-free.
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if OV is the structure sheaf of V , then we may denote by OV (v) the twisted sheaf associated

to the module R(v). Line bundles on V correspond to OV (v) for various v ∈ D. If V is

smooth then every element of D defines a line bundle.

Let qi denote the row vectors of the transpose of Φ. That is, qi represents the multi-

grading of the homogeneous coordinate xi. Let TV be the tangent sheaf of V . Assuming

V is smooth, we have the generalization of the Euler exact sequence for a toric variety [32]

0 //O⊕rV
xiqi //

N−1⊕
i=0

OV (qi) //TV //0. (3.4)

Let

Q =
N−1∑
i=0

qi. (3.5)

Suppose X is a smooth hypersurface in V representing the anticanonical class. Then X is

a Calabi-Yau manifold and we have the adjunction exact sequence:

0 //TX //TV |X //OX(Q) //0, (3.6)

where we denote a restriction of OV (v) to X by OX(v).

Since all the sheaves in (3.4) are locally-free, we may restrict to X and the sequence

will remain exact. Combining this with the sequence (3.6) yields the following fact.

The complex

0 //O⊕rX
xiqi //

⊕
i

OX(qi)
∂iW //OX(Q) //0, (3.7)

is exact everywhere except the middle term where the cohomology is isomorphic to the

tangent sheaf TX . Here W denotes the defining equation for the hypersurface X.

It is easy to generalize this to the case of a complete intersection. Suppose X is defined

by an intersection of W1 = W2 = . . . = 0. Let each Wa have grade Qa. Then the tangent

sheaf is given by the cohomology of

0 //O⊕rX
xiqi //

⊕
i

OX(qi)
∂iWa //

⊕
a

OX(Qa) //0, (3.8)

For the remainder of the paper we assume X is a hypersurface.

Before heading into the more complicated H1(End(TX)) computation it will be useful

to consider the cohomology of the tangent sheaf itself. It is most convenient to use the

language of the derived category D(X) to manipulate the tangent sheaf. The tangent sheaf

is equivalent in D(X) to the complex (3.7), where the middle position of (3.7) is considered

position zero. Suppose we have an object E • in D(X) represented by a complex

· · · //E −1 //E 0 //E 1 // · · · (3.9)

We can consider the total cohomology (or hypercohomology) of this complex Hn(E •). There

is a spectral sequence with [33]

Ep,q1 = Hq(E p), (3.10)
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which converges to Hp+q(E •). This gives a method of computing the cohomology of the

tangent sheaf. The E1 stage of the spectral sequence is

...
...

...

H2(OX)⊕r //
⊕
i

H2(OX(qi)) // H2(OX(Q))

H1(OX)⊕r //
⊕
i

H1(OX(qi)) // H1(OX(Q))

H0(OX)⊕r //
⊕
i

H0(OX(qi)) // H0(OX(Q))

//

OO

p

q (3.11)

Fortunately it is straight-forward to compute the cohomology groups Hn(V,OX(v)) =

Hn(X,OX(v)). First, the cohomology groups Hn(V,OV (v)) can be computed. Actually

we need to study these cohomology groups in detail and we give a relevant method (if not

the most efficient) in the appendix. Then one may use exact sequences of the form

0 //OV (v −Q) //OV (v) //OX(v) //0, (3.12)

to restrict to X.9

The dotted line in the spectral sequence (3.11) represented terms which contribute to

H1(TX), that is, deformations of complex structure. Since X is a Calabi-Yau threefold

we know that H1(OX) = H2(OX) = 0. Also, since Q corresponds to an ample divisor,

H1(OX(Q)) = 0. The contribution to H1(TX) from the zeroth row (i.e., q = 0) corresponds

to the cokernel of the d1 map induced from the complex (3.7). This is given by elements

of H0(OX(Q)) which are not multiples of ∂W/∂xi. This is immediately recognizable as

deformations of the defining polynomial W modulo reparametrizations. These are the

usual “polynomial deformations” of X. The spectral sequence then yields the following

little result:

Theorem 1 The non-polynomial deformations of complex structure for a Calabi-Yau hy-

persurface X in a toric variety are given by

⊕
i

H1(OX(qi)). (3.13)

9Perhaps the easiest way to compute this is to express it in terms of a module as a cokernel as in (3.12)

and then compute the cohomology using the Macaulay 2 package [34].
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This should be compared with a similar result obtained for deformations of complex struc-

ture of smooth projective toric varieties [35].

3.2 End(T )

We would now like to compute the cohomology groups Hk(X,End(T )). These groups

may also be written Ext1
X(T, T ). The machinery of the derived category is well-suited to

compute these cohomology groups as we discuss. We refer to [36, 37] for more details.

Given a complex

E • = · · · //E −1 //E 0 //E 1 // · · · , (3.14)

of coherent sheaves and a similar complex F • we may form an object in D(X) which

represents the object Hom(E ,F ). It is given by the complex whose nth term is

Hom(E •,F •)n =
⊕
j=i+n

Hom(E i,F j). (3.15)

If φ ∈Hom(E •,F •)n then we define the differential of this new complex by

dn(φ) = dFφ− (−1)nφdE , (3.16)

as in [38]. The total cohomology of the object Hom(E ,F ) represents the “hyperext”

groups Ext(E ,F ).

Let us apply the above to the case of the tangent sheaf. From (3.7) we have a complex

representing Hom(T, T ) given by

OX(−Q)⊕r //

⊕
i OX(qi−Q)

⊕⊕
i OX(−qi)

⊕r

//

O⊕r
2

X

⊕⊕
i,j OX(qi−qj)

⊕
OX

//

⊕
i OX(qi)

⊕r

⊕⊕
i OX(Q−qi)

//OX(Q)⊕r

(3.17)

where the dotted line represents position zero. The maps in this complex are derived from

xiqi and ∂iW by using (3.16). This yields

Theorem 2 There is a spectral sequence whose E1 term is given by

Ep,q1 = Hq(X,Hom(T, T )p), (3.18)

where Hom(T, T ) is given by (3.17). This converges to

Hn(X,End(T )) ∼=
⊕
p+q=n

Ep,q∞ . (3.19)

This theorem gives a practical method of computing H1(End(T )) as we discuss in

several examples below.

– 19 –



J
H
E
P
0
1
(
2
0
1
2
)
0
6
0

3.3 The quintic

The quintic threefold in P4 provides a simple example to demonstrate theorem 2. As we

will see in this paper, the quintic is deceptively simple and fails to demonstrate most of

the interesting phenomena that can happen for counting singlets. Nevertheless it always

provides a good example to start with.

For the quintic, the tangent complex (3.7) becomes

OX
xi //OX(1)⊕5 ∂iW //OX(5). (3.20)

Before writing down the full spectral sequence we should note that Serre duality gives

Hk(X,OX(v) ∼= H3−k(X,OX(−v)). (3.21)

This makes the second and third row of the spectral sequence copies of row one and zero

written in reverse. We obtain

...
...

...
...

H1(OX(−5)) //
H1(OX(−1)⊕5)

⊕

H1(OX(−4)⊕5)

//

H1(OX)

⊕
H1(O⊕25

X )

⊕
H1(OX)

//
H1(OX(1)⊕5)

⊕
H1(OX(4)⊕5)

// H1(OX(5))

H0(OX(−5)) //
H0(OX(−1)⊕5)

⊕
H0(OX(−4)⊕5)

//

H0(OX)

⊕
H0(O⊕25

X )

⊕
H0(OX)

//
H0(OX(1)⊕5)

⊕
H0(OX(4)⊕5)

// H0(OX(5))

//

OO

p

q

(3.22)

That is,

C125
d
(1)∨
1 // C25+350

d
(0)∨
1 // C1+25+1

0 0 0

0 0 0

C1+25+1
d
(0)
1 // C25+350

d
(1)
1 // C125

//

OO

p

q

(3.23)
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where we show contributions to H1(End(T )) with the dotted line.

To compute the E2 stage of the spectral sequence requires an explicit determination

of the d1 maps in (3.23). This is not so bad since the monomials of degree n form a basis

(up to the quintic defining equation) of H0(O(n)). Actually, since the holonomy of the

quintic threefold is precisely SU(3), the tangent sheaf is irreducible and so, by Schur’s

lemma, H0(End(T )) has dimension one. This means the map d
(0)
1 in (3.23) has a one-

dimensional kernel.

The map d
(1)
1 is of the form

H0(OX(1))⊕5

⊕
H0(OX(4))⊕5

( ∂iW xi ) //H0(OX(5)) (3.24)

Since clearly any degree 5 polynomial can be expressed as a sum
∑

i xigi, for quartic gi’s,

the map d
(1)
1 is surjective for any W .

Thus the spectral sequence degenerates at E2 and we obtain

dimH1(X,End(T )) = 25 + 350− 125− 1− 25

= 224,
(3.25)

in agreement with known results [39] and section 2.4. Moreover, all 224 singlets correspond

to (0,2) GLSM deformations.

4 Relating the computations

The main point of this work lies in comparing calculations of the singlet spectrum valid

at various loci in the moduli space of (2,2) theories. At different loci we apply different

techniques, and in comparing the results we can find interesting relations between the

calculations.

4.1 End(T ) and GLSM deformations

The spectral sequence of the section 3.2 is closely related to the (0,2) GLSM holomorphic

parameters studied in [9]. In addition to the toric Kähler parameters, the (0,2) superpo-

tential is encoded by the maps in the complex

0 //O⊕rV

E0

Ei


//

OV

⊕⊕
i OV (qi)

(W,Ji)//OV (Q) //0, (4.1)

where W ∈ H0(OV (Q)) specifies the hypersurface. In order for this to be a complex, this

data must satisfy ∑
i

EiJi + E0W = 0. (4.2)

This is the famous (0,2) supersymmetry constraint.
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A superpotential specified by Ei, Ji leads to the same IR physics as one specified by E′i,

J ′i whenever the two are related by holomorphic field re-definitions. These re-definitions

act on various (0,2) multiplets and can be identified with the following sections:

neutral chiral fields : H0(O⊕r
2

V ),

charged chiral fields : ⊕iH0(OV (qi)),

charged Fermi fields : ⊕i,jH0(OV (qi − qj)). (4.3)

These must of course be taken modulo gauge transformations and U(1)L invariance. The

data in E, J and W encodes both bundle and polynomial Calabi-Yau deformations. As

is familiar from the monomial-divisor mirror map, the latter are nicely described by toric

geometry [40] of V and the Newton polytope for W . In particular, a choice of W fixes

the polynomial complex structure moduli of the Calabi-Yau, as well as re-definitions of the

charged matter fields modulo gauge invariance.

Supposing we have fixed the complex structure on X, we can ask about the remain-

ing (0,2) deformations and field re-definitions. The first order deformations δEi and δJi
fit into the first position (recall that the zeroth position is marked by the dotted line)

of the complex

0 //

H0(O⊕r
2

V )

⊕⊕
i,j H

0(OV (qi − qj))

⊕
H0(OV )

//

⊕
iH

0(OV (qi)
⊕r)

⊕⊕
iH

0(OV (Q− qi))

//H0(OV (Q)⊕r). (4.4)

They must satisfy δEiJi + EiδJi = 0.

This complex is just what we get for H0(Hom(T, T )), where Hom(T, T ) is given

in (3.17), but with two important differences. Firstly the sheaves relevant to the GLSM

are defined over V , while those relevant to the geometric analysis are defined over X.

This can lead to differences in the counting. For instance, in general H0(OV (qi − qj)) 6=
H0(OX(qi − qj)), and the latter can have additional holomorphic sections. When this

holds, the GLSM superpotential modulo holomorphic field re-definitions over-parametrizes

the bundle deformations, since there are automorphisms of the NLSM that cannot be lifted

to holomorphic re-definitions of the UV theory. We will see an example of this phenomenon

in the septic. Secondly, and more obviously, we are missing the first two terms of (3.17).

These will vanish on V but there are examples (not in this paper) where the restriction to

X can give nonzero entries.

We should also note another subtlety in the comparison: there is a difference between

counting first order solutions to the supersymmetry constraint (4.2) and demanding that

it is satisfied to all orders. The latter leads to GLSM deformations, while the former

corresponds to massless states accessible via the GLSM.

4.2 Mapping geometry to the Landau-Ginzburg theory

It is interesting to compare the geometric computation of the number of singlets with the

Landau-Ginzburg description. At a crude level we know that the numbers agree, but can
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we make a more precise map? We can make some way via a series of exact sequences as

follows. We restrict attention to the case r = 1, i.e., there is only one U(1) charge.

Define A by

0 //A //
⊕

i OX(qi)
∂iW //OX(Q) //0. (4.5)

(3.7) gives an exact sequence

0 //OX
//A //T //0. (4.6)

From these sequences, the following is exact:

0 // Ext1(T,A ) // Ext1(A ,A ) // H1(T ) // H0(A ) // 0,

C

(4.7)

as is

0 //H2(T ) //Ext1(T,A ) //Ext1(T, T ) //0. (4.8)

These exact sequences show how the three sources of singlets, H1(T ), H2(T ) and Ext1(T, T )

combine into Ext1(A ,A ) (minus one).

Now let L1 and L3 be the “universal” contributions from the Landau-Ginzburg theory

at k = 1 and k = 3 respectively from table 3. That is

0 //H0(O) //

⊕
iH

0(O(qi))

⊕⊕
i,j H

0(O(qi − qj))

//
⊕

iH
0(O(Q− qi)) //L1

//0 (4.9)

is exact, and L3 =
⊕

iH
0(O(qi)). These statements are written for the toric variety V

but one can show, in the case r = 1, that they are also valid on restriction to X.

The relationship between L1, L3 and Ext1(A ,A ) is expressed by the fact that the

following two sequences are exact (for generic W ):

0 // C //
L3

⊕⊕
i,j H

0(OX(qi−qj))

//
⊕

iH
0(OX(Q−qi)) // L1

// 0

0 // C //
H0(OX)

⊕⊕
i,j H

0(OX(qi−qj))

//
⊕

iH
0(OX(Q−qi)) // Ext1(A ,A ) // 0

(4.10)

It is easy to see from this that dimensions are correct, i.e., the singlet count between the

Landau-Ginzburg picture and the large radius picture agree:

dimL1 + dimL3 = dimH1(T ) + dimH2(T ) + dimH1(End(T )), (4.11)

but we also see that the precise mapping of singlets between these pictures is quite subtle.
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4.3 Orbifolds and a (0,2) McKay correspondence

Phases in which X acquires orbifold singularities are an interesting intermediate situation

between the large-radius geometric phase and the Landau-Ginzburg phase. Near an orbifold

limit point we can distinguish untwisted “bulk” states from twisted states localized near the

singular locus. Deep in the orbifold phase, when all sizes in X other than the cycle whose

shrinking is responsible for the singularity are taken large, the geometry near the singular

locus tends to a limit in which the space transverse to the singular locus is simply Cd−D/Γ
for a quotient group Γ and a singular locus of dimension D. In the orbifold limit, the theory

acquires a discrete quantum symmetry, and states can be classified by their transformation

properties under it. Invariant states, also termed untwisted states, correspond to strings

occupying the “bulk” of X. Charged, or “twisted” states represent strings localized near

the singular locus. The spectrum of massless twisted states can be determined from the

local structure of X near the singular locus.

When X is a hypersurface in a toric variety, the GLSM provides a simple description

of the untwisted sector. Deep in the orbifold phase, some of the chiral fields acquire large

expectation values, breaking the gauge group down to a subgroup U(1)r
′ × Γ, r′ < r.

Fluctuations of these fields acquire large masses through the Higgs mechanism,10 and

integrating them out we find an effective theory of the remaining chiral fields interacting

with r′ gauge multiplets and via an effective superpotential Ŵ . Applying the GLSM picture

of section 4.1 to this reduced model produces singlets in the untwisted sector of the model.

To describe the twisted sector we use the fact that twisted states are localized near

the singular locus. This allows us to use the local geometry to find a free-field description

near a point on the singular locus following [13]. For the reader’s convenience we recall the

analysis, recast in the notation we use here, restricting attention for simplicity to the case

Γ = Zp. Near a point on the singular locus we pick local coordinates xi, i = 1 . . . 3, on

which the Γ action is generated by xi 7→ e2πini/pxi with
∑
ni = 0 (mod p), and consider a

free theory with chiral supermultiplets Φi and this (non-R) action. The twisted sectors of

this orbifold of a free field theory, our approximation to the twisted sectors of the orbifold

phase of X, can be described using the techniques of section 2 simply setting W = 0 and

αi = 0. We find twisted sectors labeled by (k, s) where k = 1, . . . p − 1, and s = 0, 1

distinguishes R (s = 0) sectors from NS (s = 1) boundary conditions on the left-moving

fermions. In the sector (k, s) the boundary conditions on the fields are given by

νi =
kni
p

(mod 1) 0 < νi ≤ 1,

ν̃i =
kni
p
− s

2
(mod 1) −1 < ν̃i ≤ 0, (4.12)

while hi = 0 and h̃i = 1
2 . With W = 0 computing Q cohomology is trivial, but we need to

perform the projection onto Γ-invariant states, as well as the GSO projection.

10As usual, we gloss over the subtleties of this in two dimensions.
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The quotient preserves the four worldsheet supercharges given to within overall

factors by

G− =
∑
i

γi∂x̄i, G+ =
∑
i

γi∂xi, Ḡ− =
∑
i

ψi∂̄x̄i, Ḡ+ =
∑
i

ψ̄i∂̄xi (4.13)

The superscripts label the charges under the fermion number currents given by

J =
∑
i

Ji, Ji = γiγi,

J̄ =
∑
i

J̄i, J̄i = ψ̄iψi
(4.14)

The case D = 0 — an isolated singular point — is simplest. We study an example in

section 5.2. The free field theory exhibits (in general) an unbroken E6 gauge symmetry,

and the methods we presented lead to predictions for the massless spectrum in twisted

sectors. We find 27 and 27 multiplets and their conjugates along with the E6 singlets

related to them by the left-moving supersymmetry which are (2, 2) moduli. These are the

subject of the McKay correspondence. In our conventions, chiral 27s correspond to Kähler

deformations, while chiral 27s correspond to deformations of complex structure. There will

also be E6 singlets in the twisted sectors, for which one can attempt to find an analogous

correspondence. Note that the conjugate states will arise in the conjugate sector, so that

in general some of these singlet states might be lifted in pairs by deformations resolving

the singularity.

In the case D = 1 — a curve C of singularities — we proceed in stages. Near a point

on C we can find local coordinates as above, such that n1 = 0. There are bosonic x1 zero

modes in the twisted sectors, so our states will locally be described by functions of x1. A

novel feature of this construction will be that excluding x1 means the zero mode of ψ̄1 is no

longer Q̄-exact, and we will need to include it in our computations (recall that we compute

in the right-moving R sector where ψ1 satisfies the same untwisted boundary conditions

as x1). The free-field quotient preserves an unbroken E7 gauge symmetry given by the

embedding E7×SU(2) ⊂ E8.11

We can then consider this quotient structure fibered over the (assumed to be) large

curve C. The low-energy physics will be described by a nonlinear sigma model on C with

the fields determined from the orbifold construction as above. These will couple to the

spin connection on C so that the functions of x1 become sections of appropriate bundles.

To find the spin we note that the curvature of C breaks E7 → E6. Since this fits into the

maximal embedding E6×SU(3) ⊂ E8 we see that U(1)C must be an SU(3) subgroup. The

fact that it must also commute with an SU(2) subgroup acting in the transverse directions

(before taking the quotient) determines

JC = −J1 − J̄1 + 1
2

(
J2 + J3 + J̄2 + J̄3

)
. (4.15)

Simply compactifying the quotient theory on the curve C will not lead to a super-

symmetric spectrum. In fact, the local structure is not described as C ×
(
C2/Γ

)
but as

11Pedants will note the missing quotient by Z2 here.
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Large Radius Limit Orbifold

Landau-Ginzburg Theory
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?
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(0,2) McKay

CascadeKähler form

moduli space

Figure 1. Mapping between Calabi-Yau , Landau-Ginzburg and orbifold phases.

a fibration over C such that the resulting space is Calabi-Yau. In terms of our fields, the

transverse coordinates xi for i 6= 1 transform under JC in such a way that two of the su-

percharges are invariant. Moreover, the zero mode of ψ̄1, lying in the cokernel of Q̄ in the

nonlinear sigma model, becomes a section of Ω, the cotangent bundle of C. When acting

on a vertex operator corresponding to a space-time fermion in a massless chiral multiplet

(with q̄ = −1
2) ψ̄1 will create the vertex operator for a massless antichiral multiplet (q̄ = 1

2).

Thus fields in the nonlinear theory with charge q̄ = −1
2 and spin qC will produce massless

chiral multiplets corresponding to H0(C,Ω⊗qC ). Fields with charge q̄ = 1
2 and spin qC will

produce massless antichiral multiplets corresponding to H1(C,Ω⊗(qC+1)). CPT invariance,

the requirement that each chiral multiplet of charge qC be accompanied by an antichiral

multiplet of charge −qC is then tantamount to Serre duality on C.

This gives a matching between counting singlets in the orbifold language and the

large radius language which works almost perfectly. Some interesting subtleties concerning

dependence on complex structure will be seen in section 5.3.2.

The correspondence between the Landau-Ginzburg picture and the large radius picture

proceeds typically as shown in figure 1. The orbifold corresponds to a weighted projective

space where we essentially just consider a single C∗-action (i.e., r′ = 1), and so the results

of section 4.2 apply. That is, we may relate the Landau-Ginzburg picture to the orbifold

picture using the L1 and L3 contributions to the cascade. Then the orbifold may be related

to the large radius limit by using the above (0,2)-McKay correspondence.

5 Examples

5.1 The sextic in P4
{2,1,1,1,1}

5.1.1 Geometry

The weighted projective space P4
{2,1,1,1,1} with homogeneous coordinates [x0, . . . , x4] has a

terminal singularity at x1 = x2 = x3 = x4 = 0. If X is a generic hypersurface of degree 6

then it will not intersect this singularity. The Hodge numbers of X are h1,1(X) = 1 and

h2,1(X) = 103. The analysis of H1(X,End(T )) looks quite similar to that of the quintic.
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The spectral sequence is

Ep,q1 :

C129 // C393 // C35

0 0 0

0 0 0

C35 // C393 // C129
//

OO

p

q

(5.1)

This gives dimH1(X,End(T )) = 230. As in the case of the quintic, each of these corre-

sponds to a (0,2) GLSM deformation. Adding in singlets from h1,1, h2,1 and U(1) partners

we would predict a value for the Gepner model of 230 + 1 + 103 + 4 = 338. The actual

value as given in the table of [7] is 344. We are short by 6.

5.1.2 The Landau-Ginzburg locus

The superpotential is a degree 6 polynomial with weights α0 = 1
3 and all other αi = 1

6 (we

take i = 1, . . . , 4). Working sector by sector, we find the following zero energy states with

q = 0.

q̄ = −3
2 q̄ = −1

2

γ0γ0|1〉1 ⊕ γiγj |1〉16

⊕
F i[1]γiγ0|1〉16

⊕
Gi[1]ρi|1〉16 ⊕H[2]ρ0|1〉11

Q //
F[4]γ0|1〉46

⊕
F i[5]γi|1〉320

xiγj |3〉16 ⊕ F[2]γ0|3〉11

ρ0γiγj |5〉6

(5.2)

In the k = 1 sector Q : U−3/2 → U−1/2 has a one-dimensional kernel for generic W ; the

dimension increases to 5 at the Fermat point. This is just what we have already observed

in the quintic. So, we find 307 k = 1 chiral singlets for generic W and 4 more at the

Fermat point.

The k = 3 states arise from the “cascade” picture described above, while the six k = 5

states account for the discrepancy with geometry. As we will see, mirror symmetry shows

that these states are lifted once we turn on the Kähler modulus to move away from the

Landau-Ginzburg point.
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5.1.3 Mirror symmetry and Kähler deformations

The Gepner model in this moduli space is given by a (quotient of) the product A2 ⊕ A⊕4
5

of minimal models at level ki = 4 and k0 = 1. In addition to the universal “cascade”

states in the k = 1 and k = 3 sectors, there are six singlet states in the k = 5 sector. The

Gepner model enjoys a discrete S6 symmetry which permutes these singlet states. The

Kähler deformation does not break this symmetry, so all of these singlets will be lifted by

the deformation or none will.

Explicitly, the six massless singlet states at k = 5 are given by permutations of

S =
(

0
−4 2

)(
2

−2 0

)(
2

−2 0

)(
1

−3 2

)(
1

−3 2

)∣∣∣( 0
1 1 )( 2

3 1 )( 2
3 1 )( 1

2 1 )( 1
2 1 ) (5.3)

For clarity we have not cast this into standard form, exhibiting it in a way that makes the

twist manifest.

The mirror model is given by a Z2
6 × Z3 quotient represented by the vectors

m(1) = (0, 1, 0, 0,−1) m(2) = (0, 0, 1, 0,−1) m(3) = (1, 0, 0, 0,−2) . (5.4)

The state mirror to S (obtained by reversing the signs of q and s) satisfies

q̄ = q +m(1) +m(2) −m(3) −m(0), (5.5)

where m(0) = (1, 1, 1, 1, 1), and so will appear in the sector (k; t) = (11; 1, 1, 2). Note that

while the mirror model obviously shares the permutation symmetry of the original, this is

not evident in its presentation as a quotient. Thus the states related to S by permutations

will arise in other twisted sectors.

In the Landau-Ginzburg model the discrete group acts via

w1 = (0, 1
6 , 0, 0,−

1
6) w2 = (0, 0, 1

6 , 0,−
1
6) w3 = (1

3 , 0, 0, 0,−
1
3) . (5.6)

Constructing the Landau-Ginzburg orbifold we find in this sector the following states

at q = 0:

q̄ = −1
2 q̄ = 1

2

γ0x
2
1x

2
2ρ

2
3ρ

2
4|v〉

Q // x3
1x

3
2ρ3ρ4|v〉

(5.7)

where |v〉 is the twisted vacuum. To find the action of Q note that since ν̃0 = 0, the

only term that can possibly contribute is γ†0(∂0W )0. At the Gepner point ∂0W = 2x2
0,

and expanding this we find that the q = −1
2 state contributes to the cohomology at the

Gepner point.

The mirror Landau-Ginzburg model has a unique superpotential deformation (re-

lated by mirror symmetry to the Kähler deformation of the original model). This cor-

responds to adding to the Fermat superpotential the unique monomial invariant under the

quotient group:

δW = ψx0x1x2x3x4 . (5.8)
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This modifies Q as found above, introducing a term γ†0 ψ x1 x2 x3 x4, which upon

expansion gives

δQ = · · ·+ ψγ†0x1x2ρ
†
3ρ
†
4 , (5.9)

rendering the kernel trivial. The state S, and thus all six k = 5 singlets states found above,

are lifted for ψ 6= 0 by a Kähler dependent mass term.

5.2 The septic in P4
{3,1,1,1,1}

5.2.1 Geometry

Let Xorb be a septic hypersurface in P4
{3,1,1,1,1}. This weighted projective space has a

codimension 4 quotient singularity but the degree of the hypersurface forces Xorb to pass

through this point. Xorb thus has an isolated singularity of the form C3/Z3.

The polytope in the N lattice associated with P4
{3,1,1,1,1} is not reflexive but we may

analyze the septic hypersurface in the general setup of the gauged linear σ-model in the

following way. Let P ◦ be the Newton polytope in M for septics in P4
{3,1,1,1,1}. The 8 vertices

are given by the equation

x2
0x1 + x2

0x2 + x2
0x3 + x2

0x3 + x7
1 + x7

2 + x7
3 + x7

3. (5.10)

Then define P ⊂ N as the polar polytope. P has 6 vertices, which may be taken to be

(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (−3,−1,−1,−1) and (−1, 0, 0, 0).

One then constructs a toric variety V associated to P with following data. The homo-

geneous coordinate ring is R = [x0, . . . , x5], the charges are given by

Φ =

(
0 1 1 1 1 −3

1 0 0 0 0 1

)
, (5.11)

and let B be (x0, x5)(x1, x2, x3, x4). V is then a P1-bundle over P3. X is a smooth Calabi-

Yau hypersurface in this. The vertices of the Newton polytope correspond to the equation

x2
0x1 + x2

0x2 + x2
0x3 + x2

0x3 + x7
1x

2
5 + x7

2x
2
5 + x7

3x
2
5 + x7

3x
2
5. (5.12)

The divisor x5 = 0 corresponds to a P2 ⊂ X with normal bundle O(−3) which arises as

the exceptional divisor of the resolution of the C3/Z3 quotient singularity in Xorb. One

easily computes h1,1(X) = 2 and h2,1(X) = 122.

X has an interesting relation with the Calabi-Yau threefold X ′, the resolution of the

degree 14 hypersurface in P4
{7,2,2,2,1} as first observed in [41]. One may follow extremal

transitions between hypersurfaces in toric varieties [42] by shrinking the Newton polytope

and thus growing its polar. That is, one drops terms in the defining equation corresponding

to vertices of the convex hull of P ◦. Typically this makes X singular. The fact that P grows

corresponds to a resolution of singularities which allows X to pass through an extremal

transition. We may try to do the same thing with our septic by shrinking the convex hull

of (5.12) to that of

x2
0x1 + x7

1x
2
5 + x7

2x
2
5 + x7

3x
2
5 + x7

3x
2
5. (5.13)
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The polar of this Newton polytope corresponds to P4
{7,2,2,2,1} and thus X appears to have

undergone an extremal transition to X ′. That said, the defining equation (5.13) is actually

smooth. The supposed transition is not a transition at all and X ′ is merely a smooth

deformation of X.

Actually the septic X should be considered more generic than the degree 14 hypersur-

face X ′ in the following sense. All 122 deformations of complex structure of X are seen

as polynomial deformations. For X ′, theorem 1 shows that 15 of the deformations are

non-polynomial. This is because X ′ has an exceptional divisor of the form C×P1 where C

is a genus 15 curve. As observed in [43], a generic deformation of X ′ will break this divisor

up into 28 rational curves. The latter geometry is seen in a generic X.

The analysis of H1(X,End(T )) proceeds as follows. The spectral sequence is

Ep,q1 :

C316 // C690 // C87

0 0 0

0 0 0

C87 // C690 // C316
//

OO

p

q

(5.14)

This has a new feature compared to the quintic and sextic of the previous sections. The

H0 of various line bundles computed in the bottom row of the spectral sequence must

be computed on X and not copied from V . For example H0(OV (4,−1)) is trivial while

H0(OX(4,−1)) is dimension one.

Anyway, this gives dimH1(X,End(T )) = 288. We can compare this to the Gepner

model for X ′. Adding in singlets from h1,1, h2,1 and U(1) partners we would predict a

value for the Gepner model of 288 + 2 + 122 + 3 = 415, which is correct.

The counting of (0,2) GLSM deformations following [9] näıvely yields 292 parameters

associated to H1(X,End(T )). This is due to the four extra automorphisms counted by

H0(OX(4,−1)) that cannot be lifted to the GLSM. Modulo this subtlety, we expect that

all of the (0,2) singlets identified by the geometric computation can be integrated up to

deformations of the (0,2) superpotential.

5.2.2 The orbifold

As argued in section 4.3, we may analyze Xorb in terms of the toric picture of the weighted

projective space. That is, we have a homogeneous coordinate ring R = C[x0, . . . , x4]

with the grading giving by the weights (3, 1, 1, 1, 1) and the irrelevant ideal is simply

B = (x0, x1, . . . , x4).
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The spectral sequence of (3.11) which computes the cohomology of the tangent

sheaf becomes

Ep,q1 :

C

0 0

0 0

C // C37 // C158
//

OO

p

q

(5.15)

which predicts h2,1 = 122 and h1,1 = 1. Recall that these are the contributions from the

untwisted sector of the orbifold. The value of h2,1 is correct but we need to add one twisted

state to h1,1 to account for the C3/Z3 singularity. Then we agree with above.

The corresponding spectral sequence for End(T ) gives

Ep,q1 :

C158 // C496 // C59

0 0 0

0 0 0

C59 // C496 // C158
//

OO

p

q

(5.16)

which yields dimH1(Xorb,End(T )) = 280. Comparing to above, we see that there must

be 8 twisted stated to yield to the total of 288.

So we predict that there are 9 twisted singlets states — 1 contributing to h1,1 and 8

to H1(End(T )). Indeed the free-field calculation of [13] reproduces this. We have here two

twisted sectors k = 1, 2 and since they are related by conjugation we may restrict attention

to k = 1. These twisted vacua are invariant under Z3, i.e. qg of (2.31) is zero.

In the (k, s) = (1, 0) (twisted R) sector we find νi = 1
3 , ν̃i = −2

3 . As usual E(1,0) = 0,

and the vacuum charges are (q(1,0), q̄(1,0)) = (1
2 ,−

1
2). There are no zero modes in the internal

theory, so the unique R ground state leads (after GSO projection) to chiral fermions in the

161/2 of SO(10).

In the (1, 1) (twisted NS) sector we have νi = 1
3 , ν̃i = −1

6 . Here E(1,1) = −1
2 and

the vacuum charges are (q(1,1), q̄(1,1)) = (−1,−1
2). There are thus massless states in the

10−1. Corresponding to these is the associated singlet (Kähler modulus) given by G+|1, 1〉.
Internal excitations yield the nine massless singlet states xiγj |1, 1〉 with charge (0,−1

2) of

which one linear combination is the Kähler modulus mentioned above, as well as the state

γ1γ2γ3|1, 1〉 with charges (2,−1
2).
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We thus find a chiral 27 predicted by the McKay correspondence, as well as the 9

singlets predicted above.

5.2.3 The Landau-Ginzburg analysis

The Landau-Ginzburg phase of the corresponding GLSM is described by a degree 7 super-

potential W (x0, . . . , x4), with α0 = 3
7 and αi = 1

7 for i = 1, . . . , 4. The zero energy states

with q = 0 are given by

q̄ = −3
2 q̄ = −1

2 q̄ = 1
2

γ0γ0|1〉1 ⊕ γiγj |1〉16

⊕
Gj[1]ρj |1〉16

⊕
H i0

[2]γiγ0|1〉40 ⊕G0
[3]ρ0|1〉21

Q //
H0

[4]γ0|1〉39

⊕
H i

[6]γi|1〉420

ρ0γi|3〉4
Q //

Kj
[1]γjγ0|3〉16

⊕
K0

[3]γ0|3〉21

x0γ0|5〉1
⊕

xiγj |5〉16

Q // x2
0xi|5〉4

(5.17)

Once again, for k = 1, Q : U−3/2 → U−1/2 has a one-dimensional kernel for W generic

and a five-dimensional kernel at the Gepner point, which corresponds to,

W = (x2
0x1 + x7

1) + x7
2 + x7

3 + x7
4, (5.18)

i.e. the minimal model D8 ⊕ A⊕3
6 . Adding up the states, we find 366 k = 1 chiral singlets

for generic W .

In the k = 3 sector, Q has a trivial kernel unless W 55 = W i5 = 0, but that is a singular

superpotential. So, this sector contributes 16 + 21 − 4 = 33 singlets for any non-singular

W . This model demonstrates the “cascade” described in 2.5. In the third sector we have

in addition to the q = −1
2 states listed in (2.28) the set of four states of charge q = −3

2

and a nontrivial action of Q so that there are less massless singlets in this sector than the

“universal” prediction. However, these states return in the k = 9 sector (not shown) as four

states of charge q = −1
2 (related by conjugation to the four states at charge q = 1

2 at k = 5).

Finally, we consider the k = 5 sector. Writing W as

W = f[7](xi) + g[4](xi)x0 + sixix
2
0, (5.19)

we see that the action of Q on an arbitrary state

|ψ〉 = (ax0γ0 + bijxiγj)|5〉 ∈ U−1/2 (5.20)
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is

Q|ψ〉 = (2asixi + sibjixj)x
2
0|5〉. (5.21)

Thus, all of the U1/2 states are Q-exact for any non-singular W , and we find 13 chiral

singlets in k = 5. This total agrees with the orbifold and large radius phases.

5.3 The octic in P4
{2,2,2,1,1}

5.3.1 Geometry

The weighted projective space P4
{2,2,2,1,1} with homogeneous coordinates [x0, . . . , x4] has

a Z2 quotient singularity along x0 = x1 = x2 = 0. This may be resolved to yield

a toric variety V0 with homogeneous coordinates [x0, . . . , x5], an irrelevant ideal B =

(x0, x1, x2, x5)(x3, x4) and grades given by the charge matrix

Φ =

(
0 0 0 1 1 −2

1 1 1 0 0 1

)
. (5.22)

X0 is an octic hypersurface in V0 with defining equation, in Fermat form,

x4
0 + x4

1 + x4
2 + (x8

3 + x8
4)x4

5. (5.23)

Mirror symmetry was studied in detail for this example in [44].

The exceptional set in X0 formed by the Z2-resolution is of the form E = C × P1,

where C is a genus 3 curve. One has h1,1(X) = 2, where the two deformations of

B + iJ can be considered to be the overall volume and a size of E. One may also show

h2,1 = 86. Of these 86 deformations of complex structure, 83 are obtained by deformations

of the polynomial (5.23). The remaining 3 deformations of complex structure arise from

H1(OX(−2, 1)) = 3 in agreement with theorem 1. The 83 polynomial deformations of com-

plex structure preserve E = C × P1. We will see below that the remaining 3 deformations

break E apart into 4 disjoint P1’s in accord with [43].

The E1 stage of the spectral sequence to compute H1(X0,End(T )) is given by

Ep,q1 :

C208 // C426 // C40

C6 // C15

C15 // C6

C40 // C426
d1 // C208

//

OO

p

q

(5.24)

The map marked d1 in (5.24) fails to be surjective in this case which makes for more

interesting analysis compared to the above examples. Let R4 denote the vector space of

degree 4 polynomials in the variables {x0, x1, x2}. Then one can show that

coker d1 =
R4

(x0, x1, x2) (∂0W,∂1W,∂2W ) |x5=0
. (5.25)
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This is a 6-dimensional space. In particular, for example, if W is in Fermat form then

coker d1 is spanned by {x2
0x

2
1, x

2
0x

2
2, x

2
1x

2
2, x

2
0x1x2, x0x

2
1x2, x0x1x

2
2}. The map on row one of

the spectral sequence is shown to be surjective in the appendix.

If one were to replace the map xiqi in (3.7) with a generic map of the right multi-

degree then the map d1 in (5.24) becomes surjective. This means that a deformation to

a more generic (0,2)-model kills any massless states that appear at the (2,2)-locus due to

a failure of surjectivity of d1. For this generic (0,2)-model the spectral sequence becomes

degenerate at the E2 stage:

Ep,q2 :

0 C179 C

0 C9

C9 0

C C179 0 //

OO

p

q

(5.26)

This yields a generic value of dimH1(X0,End(T )) = 188.

However, on the (2,2)-locus, where d1 fails to be surjective H1(X0,End(T ) may jump

to a higher value. A precise analysis of this is not too difficult, but the technical details may

be a little distracting. So this computation is left to the appendix. The result is that for the

Fermat polynomial one finds dimH1(X0,End(T )) = 200, but that this value falls back to

188 for a generic W, even on the (2,2)-locus. This kind of jumping in dimH1(X0,End(T ))

as one varies the complex structure was seen in other examples in [5].

Three of the deformations of complex structure of X0 are obstructed in the sense that

they prevent X0 being embedded in the toric variety we have considered so far. That said,

it is still possible to understand these deformations in terms of a hypersurface in a toric

variety as follows.

V is the crepant resolution of the weighted projective space P4
{2,2,2,1,1}. It can be viewed

as a P3-bundle over P1. To be precise, the toric data implies it is the space

P
(
O(−2)⊕ O ⊕ O ⊕ O

)
, (5.27)

over P1. The short exact sequence

0 //O(−2) //O(−1)⊕2 //O //0, (5.28)

on P1 shows that O(−1)⊕2 may be viewed as a deformation of O ⊕ O(−2). That is,

we may construct a family of line bundles over P1 where the central fibre is O ⊕ O(−2)

and all other fibres are O(−1)⊕2. In the same way, there is a three-dimensional space

of first-order deformations of complex structure that take P
(
O(−2) ⊕ O ⊕ O ⊕ O

)
into

P
(
O(−1)⊕2 ⊕ O ⊕ O

)
.
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So let V1 be P
(
O(−1)⊕2 ⊕O ⊕O

)
which we may define as a toric variety with homo-

geneous coordinate ring R = C[x0, . . . , x5],

Φ =

(
1 1 1 1 0 0

1 1 0 0 1 1

)
, (5.29)

and B = (x0, x1, x4, x5)(x2, x3). Let X1 be a Calabi-Yau hypersurface. For a specific

complex structure one might consider the defining equation

W1 = x4
0 + x4

1 + x4
2x

4
4 + x4

2x
4
5 + x4

3x
4
4 + λx4

3x
4
5, (5.30)

where λ is a generic complex number (not equal to one or else the threefold is singular).

From what we have said, X0 and X1 are deformation equivalent.12 Putting x4 = x5 = 0

in X1 forces x4
0 + x4

1 = 0 and thus yields 4 rational curves. These 4 rational curves in X1

are what remains of the genus 3 curve times P1 in X0 after switching on any of the three

non-polynomial deformations of X0.

Note that X1 exhibits all 86 deformations of complex structure as polynomial defor-

mations.

Let us compute H1(X1,End(T )). The spectral sequence yields

Ep,q1 :

C208 // C420 // C33

0 // C8

C8 // 0

C33 // C420
d1 // C208

//

OO

p

q

(5.31)

The map d1 fails to be surjective, similarly to the X0 case. The next stage of the

spectral sequence is

Ep,q2 :

C

((

C181 C

0 C8

C8

((

0

C C181 C //

OO

p

q

(5.32)

12One can also show that the A-model chiral rings of the X0 and X1 GLSMs are isomorphic: these models

are describing the same moduli space of (2,2) SCFTs.
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The d2 maps in this spectral sequence may or may not be zero depending on the precise

complex structure. The computation is very similar to that for X0 in the appendix. The

result is that d2 is zero for the specific equation (5.30) but becomes nonzero for a generic

defining equation. Thus

dimH1(X1,End(T )) =

{
190 for the hypersurface (5.30)

188 generically
(5.33)

This fits in very nicely with the picture for X0. Once again we have a generic value

of 188 for dimH1(X,End(T )) but this can increase for specific complex structures. X1 is

“more generic” than X0 and cannot achieve as large a value for dimH1(X,End(T )). The

numbers of GLSM deformations for X0 and X1 are, respectively, 179 and 180.

5.3.2 The orbifold

Xorb is the singular octic in the unresolved weighted projective space P4
{2,2,2,1,1}. We may

compute the untwisted sector easily enough in a way analogous to section 5.2.2. The result

is that

h1,1
0 = 1

h2,1
0 = 83

dimH1(X,End(T ))0 = 182,

(5.34)

where the subscript 0 denotes the untwisted sector.

Xorb exhibits a genus 3 curve C of singularities and Γ = Z2. We now have two twisted

sectors with k = 1, where ν1 = 0 and νa = 1
2 for a = 2, 3. Note that the k = 1 sectors are

self-conjugate, and (2.31) shows that the twisted vacua are Z2-invariant.

In the (k, s) = (1, 0) (R) sector we have ν̃1 = 0, ν̃a = −1
2 . E(1,0) = 0, and the vacuum

charges are (q(1,0), q̄(1,0)) = (−1
2 ,−

1
2). In this sector we have zero modes of γ1 and ψ1 so

that the ground state is fourfold degenerate. Letting |1, 0〉 denote the state annihilated by

γ1 and ψ1, we have the four ground states with their associated charges and spins along

C, (q, q̄; qC)

|1, 0〉(−1/2,−1/2;1) γ1|1, 0〉(1/2,−1/2;0) ψ̄1|1, 0〉(−1/2,1/2;0) γ1ψ̄1|1, 0〉(1/2,1/2;−1) . (5.35)

All of these are Γ-invariant and after GSO projection they lead to massless chiral super-

multiplets with SO(10)×U(1)L×U(1)C transformation properties 16−1/2;0⊕161/2;1 along

with their antichiral conjugates.

In the (1, 1) (NS) sector we have ν̃1 = −1
2 , ν̃a = 0. Here E(1,1) = −1

2 , and the charges

are (q(1,1), q̄(1,1)) = (−1,−1
2). Here there are zero modes of γa as well as ψ̄1 and hence the

ground state is eightfold degenerate. With our usual notation we have

|1, 1〉(−1,−1/2;0) γ2γ3|1, 1〉(1,−1/2;1) γa|1, 1〉(0,−1/2;1/2)

ψ̄1|1, 1〉(−1,1/2;−1) ψ̄1γ2γ3|1, 1〉(1,1/2;0) ψ̄1γa|1, 1〉(0,1/2;−1/2) (5.36)

The first line will lead to chiral multiplets, the second to antichiral (after acting with

left-moving excitations). The two states listed last on each line are Γ-odd, the others
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Γ-even. The Γ-even ground states will lead to massless chiral multiplets transforming as

10−1;0 ⊕ 101;1 and their antichiral conjugates. Acting with the supercharges we find the

associated singlets

G+|1, 1〉 =
∑
a

xaγa|1, 1〉(0,−1/2;0) 10;0

G−γ2γ3|1, 1〉 = (ρ2γ3 − ρ3γ2) |1, 1〉(0,−1/2;1) 10;1 . (5.37)

Internal excitations lead to additional GSO and Γ invariant chiral states as listed below,

with their SO(10) × U(1)L × U(1)C transformation properties, as well as the antichiral

conjugates

γ1|1, 1〉 1−2;1

γ1γ2γ3|1, 1〉 12;0

γ1γ2γ3|1, 1〉 10;2

γ1|1, 1〉 10;−1 (5.38)

xaγb|1, 1〉4 10;0

ρaγb|1, 1〉4 10;1

Note that xa, ρa have spins −1
2 ,

1
2 , respectively.

Collecting all of this together into representations of E6×U(1)C we find that the chiral

multiplets fill out

270 ⊕ 271 ⊕ 1−1 ⊕ 12 ⊕ (11)⊕4 ⊕ (10)⊕4 (5.39)

with the antichiral conjugates as expected. Note that one of the states in (10)⊕4 is related

by (5.37) to the 270 and one of the states in (11)⊕4 is related to the 271.

When we compactify on C we now find that massless chiral multiplets are given by

holomorphic sections of Ω⊗qC . Riemann-Roch and vanishing theorems give

h0(Ω⊗qC ) =


0 qC < 0

1 qC = 0

g qC = 1

(2qC − 1)(g − 1) qC > 1.

(5.40)

For qC = 0 we thus predict from the twisted sector one massless 27 and the single

associated Kähler modulus, as well as 3 additional singlets regardless of the genus of C.

Putting g = 3 for the case at hand we predict, from qC = 1 states, 3 massless 27s with

the associated 3 complex structure moduli, as well as an additional 9 singlets. We also find

6 massless singlets from the qC = 2 states.

Adding together the untwisted and twisted states we obtain

h1,1(Xorb) = 1 + 1 = 2,

h2,1(Xorb) = 83 + 3 = 86
(5.41)
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as expected. More interestingly, we have a grand total of 288 singlets. That is, we predict

200 singlets associated with H1(End(T )). This total agrees with the massless spectrum for

large radius phase for the Fermat complex structure.

So we have agreement with the large radius (and Landau-Ginzburg phase — as we

see shortly) only for particular values of the complex structure of X0. In particular, our

orbifold computation seems, at first sight, not to depend at all on the value of the complex

structure of X0. How can we resolve this discrepancy?

We do not know the full resolution of this question, but we can make the following

observations. Our analysis in terms of free fields of the twisted sector effectively assumes

that we were analyzing the normal bundle of C in X0 rather than X0 itself. The deviations

of the geometry away from the normal bundle as we move away from C must introduce

corrections that we have ignored so far.

Which states counted above do we believe are reliably massless? The fields in nontrivial

E6 representations, along with the associated Kähler and complex structure moduli, are

of course protected by the (2, 2) supersymmetry; in addition, the 6 singlet states coming

from qC = 2 involve only excitations along C and we do not expect them to be sensitive

to the details of the structure of X away from the curve. The 12 additional singlet states

coming from qC = 0, 1 involve excitations in the directions transverse to the curve. There

is nothing to stop these states being lifted by the additional interactions introduced upon

varying the superpotential. Thus we might reasonably expect there to be 12 fewer singlets

for a generic complex structure. This agrees perfectly with the large radius picture.

5.3.3 The Landau-Ginzburg locus

Using the GLSM, it is easy to describe the Landau-Ginzburg point of the GLSM for

X0. Integrating out the x5 and p fields leads to a theory with fields x0, . . . , x4, with

α0,1,2 = 1
4 , and α3,4 = 1

8 . Assigning weights [2, 2, 2, 1, 1] to the fields, the Landau-Ginzburg

superpotential is a degree 8 polynomial in 5 variables which we denote

W̃ (x0 . . . x4) ≡W |x5=1 . (5.42)

We will distinguish the fields with different αi by taking indices I, J = 0, 1, 2, and a, b = 3, 4.

With these numbers in hand, we classify the zero energy states with q = 0 as shown

in table 4.

For generic W̃ we will have 244 singlets from k = 1, while for Fermat we find 248. As

in the example of the quintic, the physical reason for the appearance of these extra singlets

is just the Higgs mechanism.

The k = 3 and k = 5 zero energy states clearly satisfy Q = 0, so that all of these

correspond to massless singlets.

The k = 9 sector states are the CPT conjugates of the states at k = 7 and the Q

complex is the transpose of the complex for k = 7. We can thus equivalently study either

sector, and since the structure at k = 9 more transparently reflects the description in

the previous subsection we choose this option. The antichiral multiplets from this sector

(conjugate to the chiral multiplets at k = 7) are determined by the cokernel of Q. Using
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q̄ = −3
2 q̄ = −1

2 q̄ = 1
2

γaγb|1〉4
⊕

γIγJ |1〉9 ⊕HaJ
[1] γaγJ |1〉12

⊕
GI[2]ρI |1〉18 ⊕Ga[1]ρa|1〉4

Q //
HI

[6]γI |1〉150

⊕
Ha

[7]γa|1〉140

KI
[2]γI |3〉18

⊕
Ka

[1]γa|3〉4

ρI |5〉3

ρIρJρKρLγ3γ4|7〉15
Q //

ρIγJγ3γ4|7〉9 ⊕ xaρJγb|7〉12

⊕
ρaγb|7〉4 ⊕ γI |7〉3

xIγ3γ4γJ |9〉9 ⊕ xIρaγb|9〉12

⊕
xaγb|9〉4 ⊕ γI |9〉3

Q // F[4]γ3γ4|9〉15

xI |11〉3

...

Table 4. Landau-Ginzburg states for the octic.

νI = 1
8 and νa = 9

16 and hence ν̃I = −3
8 , ν̃a = −15

16 , the map in this sector is determined by

the following terms

Q1 = γ†I

(
∂IW̃

)
ν̃I

= γ†I

(
∂IW̃ (x)

)∣∣∣
x3=x4=0

Q2 = γa

(
∂aW̃

)
1+ν̃a

= γa

(
∂aiW̃ (x)−1/2

)
ρ†i = γaρ

†
b∂abW̃ (x)|x3=x4=0

(5.43)

where we have used the moding information, and in the second line also the absence of ρI
excitations at q = −1

2 .

The first of these contributes the following nontrivial Q action

Q1xIγ3γ4γJ |9〉 = xI

(
∂JW̃ (x)

)∣∣∣
x3=x4=0

γ3γ4|9〉 , (5.44)
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so that the cokernel agrees with (5.25). When W̃ is in Fermat form Q2 = 0 and there is a

six-dimensional space of antichiral singlets at q = 1
2 , leaving 19 chiral singlets at q = −1

2 .

When we deform W̃ away from the Fermat form the cokernel can decrease. For instance,

adding the term

δW̃ = ψx0x1x2x3x4 (5.45)

leaves Q1 unchanged but adds

δQ2 = ψ
(
γ3ρ
†
4 + γ4ρ

†
3

)
x0x1x2 (5.46)

which now acts nontrivially:

δQ2xIρaγb|9〉 = ±ψxIδabx0x1x2γ3γ4|9〉. (5.47)

The three-dimensional image of this is clearly independent of the image of Q1 so this

deformation removes three additional pairs of states, leaving 16 chiral and 3 antichiral

singlets at k = 9. For generic W̃ , Q has no cokernel and the singlet spectrum is simply 13

chiral states.

To see that this is identical13 to the calculation in the appendix note that in general

Q2xIρaγb|9〉 = εabxI

(
∂34W̃

)∣∣∣
x3=x4=0

γ3γ4|9〉

= xIεab (∂5W )x5=0 γ3γ4|9〉
(5.48)

using the gauge invariance of W .

The most obvious physical explanation for this lifting of states is via a simple mass

term in the superpotential of the effective theory. The (anti)chiral states in k = 7 have their

chiral(antichiral) conjugates in the k = 9 sector, allowing for a mass term that depends on

the untwisted complex structure moduli.

To summarize, we find 282 = 2 + 86 + 188 + 6 singlets for generic W , while the Fermat

point has an additional 4 + 12 massless singlets. This agrees with the Gepner model

value of 298.

5.3.4 Mirror symmetry and Kähler deformations

The singlet spectrum at the Gepner point in this model includes, in addition to the “cas-

cade states” which as expected are not lifted by Kähler deformations, and the expected four

additional singlets lifted by the Higgs mechanism under any deformation, a total of 28 ad-

ditional chiral singlets in the sectors k = 5, 7, 9. The Gepner model here is A⊕3
3 ⊕A

⊕2
7 . The

model enjoys a discrete permutation symmetry S3×Z2 and the states form representations

of this. This symmetry commutes with the quantum symmetry associated to the Gepner

orbifold so that states within each twisted sector transform into each other. As always,

orbits under the discrete symmetry are lifted together under the Kähler deformations away

from the Gepner point, both of which are invariant.

13Assuming the higher differential d5 in the appendix always vanishes.
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(k; t1, t2.t3) Orbits Singlets at Gepner point

(1; 0, 0, 0) 7[2] 7

(1; 1, 0, 0) 4 3

(1; 3, 3, 2) 1 1

(3; 3, 3, 3) 6 2

(13; 3, 2, 2) 4 3

(15; 0, 2, 2) 2 1

(15; 2, 1, 1) 5; 8[2] 3

(15; 3, 3, 2) 3 3

Table 5. Twisted Sectors (k; t) in which non-cascade singlets arise

Explicitly, the 28 states comprise eight orbits of the discrete symmetry as listed below.

The number in brackets indicates the size of the associated orbit. The 3 chiral states in

the k = 5 sector form the orbit of

S1 =
(

1
−3 2

)(
1

−3 2

)(
0

−4 2

)(
2

−2 0

)(
2

−2 0

)∣∣∣( 1
2 1 )( 1

2 1 )( 0
1 1 )( 2

3 1 )( 2
3 1 ) [3]

The 6 chiral states in the k = 7 sector comprise the orbits of

S2 =
(

2
−4 2

)(
0

−6 2

)(
0

−6 2

)(
2

−4 2

)(
2

−4 2

)∣∣∣( 1
3 1 )( 0

1 1 )( 0
1 1 )( 2

3 1 )( 2
3 1 ) [3]

S3 =
(

1
−5 2

)(
1

−5 2

)(
0

−6 2

)(
2

−4 2

)(
2

−4 2

)∣∣∣( 1
2 1 )( 1

2 1 )( 0
1 1 )( 2

3 1 )( 2
3 1 ) [3]

The 19 chiral states in the k = 9 sector comprise the orbits of

S4 =
(

1
−7 0

)
( 0

0 0 )( 0
0 0 )

(
4

−4 0

)(
2

−6 2

)∣∣∣( 1
2 1 )( 1

1 1 )( 0
1 1 )( 4

5 1 )( 2
3 1 ) [6]

S5 =
(

1
−7 2

)
( 0

0 0 )( 0
0 0 )

(
3

−5 2

)(
3

−5 2

)∣∣∣( 1
2 1 )( 0

1 1 )( 0
1 1 )( 3

4 1 )( 3
4 1 ) [3]

S6 = ( 0
0 0 )( 0

0 0 )( 0
0 0 )

(
5

−3 0

)(
3

−5 0

)∣∣∣( 0
1 1 )( 0

1 1 )( 0
1 1 )( 5

6 1 )( 3
4 1 ) [2]

S7 = ( 0
0 0 )( 0

0 0 )( 0
0 0 )

(
4

−4 0

)(
4

−4 2

)∣∣∣( 0
1 1 )( 0

1 1 )( 0
1 1 )( 4

5 1 )( 4
5 1 ) [2]

S8 =
(

1
−7 0

)
( 0

0 0 )( 0
0 0 )

(
3

−5 2

)(
3

−5 0

)∣∣∣( 1
2 1 )( 0

1 1 )( 0
1 1 )( 3

4 1 )( 3
4 1 ) [6]

The mirror is given by a Z3
4 orbifold, with

m(1) = (1, 0, 0, 0,−2) m(2) = (0, 1, 0, 0,−2) m(3) = (0, 0, 1, 0,−2) . (5.49)

Table 5.3.4 shows the twisted sectors in which the mirrors of each of these states appear.

Note that the S3 permutation permutes t(a) while the Z2 acts as (k, ta) 7→ (k− 4
∑
ta, ta +

2
∑
ta).

The mirror model has two untwisted (2,2) deformations corresponding to the two toric

Kähler deformations of the octic. We can write the general superpotential for the mirror

model as

Ŵ = x4
0 + x4

1 + x4
2 + x8

3 + x8
4 − 8ψx0x1x2x3x4 − 4χx4

3x
4
4 . (5.50)

– 41 –



J
H
E
P
0
1
(
2
0
1
2
)
0
6
0

In each of the sectors in table 5.3.4 sectors we have computed the Q cohomology and the

only one in which this changes when we deform Ŵ is the sector (15; 2, 1, 1) (and its three

permutations). In this sector we have

ν = (3
8 ,

1
8 ,

1
8 ,

15
16 ,

15
16); ν̃ = (−1

8 ,−
3
8 ,−

3
8 ,−

9
16 ,−

9
16) (5.51)

and a basis for the zero energy states at q = 0 is

q̄ = −1
2 q̄ = 1

2

γIxIρ
3
3ρ

3
4|v〉3

γ3ρ
2
3ρ

3
4|v〉

γ4ρ
3
3ρ

2
4|v〉

Q //
x4

1ρ
3
3ρ

3
4|v〉

x4
2ρ

3
3ρ

3
4|v〉

x0x1x2ρ
2
3ρ

2
4|v〉

(5.52)

where |v〉 is the twisted vacuum.

The map Q is here given by the terms Q = γ†i

(
∂iŴ

)
ν̃i

and inserting (5.51) we compute

for our explicit superpotential(
∂0Ŵ

)
−1/8

= 12x2
0ρ
†
0(

∂1Ŵ
)
−3/8

= 4x3
1(

∂2Ŵ
)
−3/8

= 4x3
2(

∂3Ŵ
)
−9/16

= 8!x3ρ
†6
3 − 8ψ

(
x1x2x4ρ

†
0 + x0x2x4ρ

†
1 + x0x1x4ρ

†
2 + x0x1x2ρ

†
4

)
− 4(4!)2χρ†23 ρ

†3
4

(
x3ρ
†
4 + x4ρ

†
3

)
(
∂4Ŵ

)
−9/16

= 8!x4ρ
†6
4 − 8ψ

(
x1x2x3ρ

†
0 + x0x2x3ρ

†
1 + x0x1x3ρ

†
2 + x0x1x2ρ

†
3

)
− 4(4!)2χρ†33 ρ

†2
4

(
x3ρ
†
4 + x4ρ

†
3

)
At the Gepner point (ψ = χ = 0) we have

Qγ1x1ρ
3
3ρ

3
4|v〉 = 4x4

1ρ
3
3ρ

3
4|v〉 Qγ2x2ρ

3
3ρ

3
4|v〉 = 4x4

2ρ
3
3ρ

3
4|v〉 (5.53)

as the only nontrivial Q action. This leaves 3 chiral singlet states in this sector at the

Gepner point, as observed. When we deform, we find that in addition

Qγ3ρ
2
3ρ

3
4|v〉 = Qγ4ρ

3
3ρ

2
4|v〉 = −8ψx0x1x2ρ

2
3ρ

2
4|v〉 . (5.54)

Thus, in this sector (and in each of the two related to it by permutations) as well as its

conjugate sector (and its permutations) one chiral state is lifted by the ψ deformation.

This agrees with the counting above.

Let us conclude the analysis of the octic with a summary of the counting of the singlets.

The Gepner model has 298 singlets which may be cataloged as in table 6. In this table we

label states “twisted” or “untwisted” according to the orbifold picture of section 5.3.2.
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Kähler form, untwisted 1

Kähler form, twisted 1

Complex Structure, untwisted 83

Complex Structure, twisted 3

H1(End(T )) generic untwisted 182

H1(End(T )) generic twisted 6

Extra singlets at special complex structure 12

Extra singlets at special Kähler form 6

Extra singlets associated to Gepner U(1)4 4

Total 298

Table 6. Classification of the singlets in the Gepner model.
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A Spectral sequence computations

A.1 Definitions

Let us first review how to compute the cohomology of a line bundle O(q) on a toric

variety V . We need to know this in some detail in order to be able to compute the

necessary differentials in the spectral sequence in section 3.2. The method, using local

cohomology, is generalized from Grothendieck [45] in [46]. As we describe it, this method

is not completely optimized for efficiency, but for our purposes it is not only the actual

computation of Hk(V,O(q)) which is important, but also the explicit form of cochains

which represents it.

We wish to compute sheaf cohomology in terms of Čech cohomology. The reasoning is

exactly analogous to the case of projective space as discussed in [47] chapter III.5. Let the

irrelevant ideal be B = (m1,m2, . . . ,ml), where mi are monomials. Consider the open sets

Ui = V − Z(mi). (A.1)

These open sets form an open cover of V .
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The coordinate ring of Ui is given by the localization Rmi consisting of functions f/mn
i

for f ∈ R. Similarly Rmi,mj = (Rmi)mj is the coordinate ring on Uij = Ui ∩ Uj . We then

form the local cochain complex from

CiB(R) =
⊕

j1<...<ji

Rmj1
,...,mji

. (A.2)

The differential d : CiB(R) → Ci+1
B (R) is given by the obvious inclusion map with some

(−1)j factors to ensure d2 = 0. We will elucidate these signs below.

R admits a fine grading valued in Zn, where the grade of each homogeneous coordinate

is a basis vector. Let a subscript p denote this fine grading. Then [46]

C∗B(R)p =
⊕

{J | neg(p)⊂supp(mJ )}

C, (A.3)

where J is a subset of {1, . . . , l}, mJ is the least common multiple of mj , j ∈ J and neg(p)

is the subset of {1, . . . , l} corresponding to negative grades. The differential d maps the

J component of C∗B(R)p to the J ′ component as zero unless J ′ = J ∪ j, in which case it

is (−1)e where j is in the eth position of J ′. The local cohomology groups H i
B(R)p are

defined by the local cochain complex C∗B(R)p. Note, in particular, that they only depend

on p via neg(p).

The definition of Čech cohomology then gives

Či({Ui},O)p = Ci+1
B (R)p, for i ≥ 0. (A.4)

We also have C0
B(R)p = Rp. It is a fact that the covering given by Ui is affine and thus

sufficiently fine to give Čech cohomology. It follows that

H i(V,O)p = H i+1
B (R)p, for i ≥ 1, (A.5)

and that

H0(V,O)p = Rp

H0
B(R) = H1

B(R) = 0.
(A.6)

We now have an explicit method of computing the spectral sequence in theorem 2.

Following the notation of [48], it is based on a double complex Kp,q, where the vector

spaces Kp,q have localized Laurent monomials as a basis. The vertical maps in the double

complex are the Čech boundaries as explained above, and the horizontal maps come from

the complex representing the sheaf in question.

A.2 The example

Let V be the resolved weighted projective space P4
{2,2,2,1,1}. Here R = C[x0, . . . , x5] and

B = (x0, x1, x2, x5)(x3, x4) = (x0x3, x1x3, x2x3, x5x3, x0x4, x1x4, x2x4, x5x4). Let t denote

the fine grading (0, 0, 0,−1,−1, 0). Then C∗B(R)t is given by (starting at position zero)

0 //0 //C16 //C48 //C68 //C56 //C28 //C8 //C1. (A.7)
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It is exact in every place except H2
B(R)t = C. A generator of H2

B(R)t is given by the same

Laurent monomial x−1
3 x−1

4 in the 16 localizations Rmi,mj , where i = 0, . . . 3 and j = 4 . . . 7.

One can also show14 that H2
B(R)p vanishes unless neg(p) = neg(t).

We now have enough information to compute H1(V,O(q) for any q ∈ D. The map

from the fine grading to the coarse grading, D, is given by the grades (5.22), which we

repeat here for convenience:

Φ =

(
0 0 0 1 1 −2

1 1 1 0 0 1

)
. (A.8)

The monomial x−1
3 x−1

4 has charge (−2, 0), and it follows that H1(V,O(−2, 0)) = C.

Similarly

• dimH1(V,O(−2, 1)) = 3 with basis {x0x
−1
3 x−1

4 , x1x
−1
3 x−1

4 , x2x
−1
3 x−1

4 } and

• dimH1(V,O(−3, 1)) = 6 with basis

{x0x
−2
3 x−1

4 , x0x
−1
3 x−2

4 , x1x
−2
3 x−1

4 , x1x
−1
3 x−2

4 , x2x
−2
3 x−1

4 , x2x
−1
3 x−2

4 }.

The first row of the spectral sequence has, for d 0,1
1 : E0,1 → E1,1:

H1(OX)⊕4

⊕⊕
i,j H

1(OX(qi − qj))

⊕
H1(OX)

d 0,1
1 //

⊕
iH

1(OX(qi))
⊕2

⊕⊕
iH

1(OX(Q− qi))

(A.9)

In our case this becomes

H1(O(−2, 0))⊕3

⊕
H1(O(−3, 1))⊕2

d 0,1
1 //H1(O(−2, 1))⊕2. (A.10)

Note that in each case here the restriction of H1(OV (q)) to H1(OX(q)) is the identity, and

so we have dropped the subscript from O.

The map d 0,1
1 is induced from the map E in (3.7), which is given by

O⊕2


0 x0
0 x1
0 x2
x3 0
x4 0
−2x5 x5


//

O(0, 1)⊕3

⊕
O(1, 0)⊕2

⊕
O(−2, 1)

. (A.11)

Using the Laurent monomial representatives of these cocycles we easily obtain the map d 0,1
1 :

d 0,1
1 =

 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

 . (A.12)

14For a quick method see, for example, section 3 of [49].
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The spectral sequence at the E1 stage is given by (5.24). Now we have computed all the

d1 maps, and we obtain

Ep,q2 :

C6

d2 ))

C185 C

C9

C9

d2

))
C C185 C6

//

OO

p

q

(A.13)

So now we need to compute the d2 maps. Fortunately they are related by Serre duality.

Let us focus on d 0,1
2 : C9 → C6.

The map d2 will depend upon the defining equation W . Only certain monomials terms

will contribute to d2. For purposes of argument we concentrate first on a single monomial

x0x
2
2x

2
3x5.

The process of computing d2 can be quite formidable in a general spectral sequence, but

the explicit representatives of elements of the double complex Kp,q as Laurent monomials

makes the procedure straight-forward. Consider, as an example, the monomial x0x
−2
3 x−1

4

representing an element of H1(O(−3, 1)) in K0,1.

The map to K1,1 has two contributions. First we map Č1(O(−3, 1)) to Č1(O(−2, 1)

by multiplying by xiqi, which in the case of interest amounts to multiplying by x4. We also

map Č1(O(−3, 1)) to Č1(O(−1, 4)) by multiplying by ∂5W . Thus we map x0x
−2
3 x−1

4 to(
x0

x2
3

,
x2

0x
2
2

x4

)
∈ Č1(O(−2, 1))⊕ Č1(O(−1, 4)). (A.14)

This is a Čech coboundary, and we can chase it downwards as follows. Recall that

these monomial representatives of Č1(O(q)) are really 16 copies of the same monomials

under the localization Rmi,mj . Computing the chain complex C∗B(R)(0,0,0,−1,0,0), we see

that x0x
−2
3 lies in the coboundary of the 4 copies of the monomial localized to Rmi , where

i = 0, . . . , 3. Similarly x2
0x

2
2x
−1
4 lies in the coboundary of the 4 copies of the negated

monomial localized to Rmj , where i = 4, . . . , 7.

Finally we apply d1 to push our element to K0,2. x0x
−2
3 is multiplied by ∂5W , while

x2
0x

2
2x
−1
4 is multiplied by −x4. Paying attention to signs, the result is x2

0x
2
2 in both cases.

That is, we have a Čech cochain which takes the value x2
0x

2
2 in all eight patches Rmk

,

k = 1, . . . , 8.

The fact this has the same value in all 8 patches means that this is the localization of

a monomial in R itself. This had to be, since H1
B(R) = 0, and allows us to interpret x2

0x
2
2
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as an element of H0(O(Q)). The computation of d2 can be summarized in the following

diagram:

(
x0
x23x4

)
ij

( x4
x0x22x

2
3

)
//
(
x0
x23

)
ij
,
(
x20x

2
2

x4

)
ij

(
x0
x23

)
i
,−
(
x20x

2
2

x4

)
j

d

OO

(x0x22x
2
3,−x4)

//
(
x2

0x
2
2

)
k

x2
0x

2
2

d

OO

(A.15)

Thus, d2 is nonzero.

Given a generic defining equation W with all possible monomials, this d2 map is

surjective and the sequence degenerates at the E3 term:

Ep,q3 :

C185 C

C3

C3

C C185
//

OO

p

q

(A.16)

So dimH1(X,End(T )) = 188.

However, suppose we pick the Fermat form of the defining equation W . Studying the

above computation of d2, it is clear that we can never hit monomials in K0,2 of the form

x2
0x

2
2, etc. Thus, the d2 maps are actually zero. Now we go to the E4 stage:

Ep,q4 :

C6

d4

%%

C185 C

C9

C9

C C185 C6
//

OO

p

q

(A.17)

The source of the d4 map is a C6 subspace of H3(OX(−Q))⊕2. This third cohomology

group is not the isomorphic image of H3(OV (−Q)) under restriction, and so we need to
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work a little harder to describe everything in terms of cohomology of the toric variety and

thus local cohomology. To this end we may use the short exact sequence

0 //OV (−Q) //OV
//OX

//0, (A.18)

to write OX in terms of OV . By using mapping cones, we may write the complex (3.7)

representing the tangent sheaf as

OV (−Q)⊕r

(
W1r
xiqi

)
//

O⊕rV
⊕⊕

i OV (qi −Q)

(
xiqi −W1n

Q ∂iW

)
//

⊕
i OV (qi)

⊕
OV

( ∂iW W ) //OV (Q) ,

(A.19)

and we can take the Hom of this complex into itself to form a complex for End(T ). The

H3(OX(−Q))⊕2 from above now manifests itself as H4(OV (−2Q))⊕2, and the interesting

map appears in E5 as15

d5 : H4(OV (−2Q))⊕2 → H0(OV (Q))⊕2. (A.20)

With a little organization one can show, for example, that the Fermat form of W cannot

give rise to a nonzero map.16 Thus, in this case, the spectral sequence degenerates at the

E2 stage again, and now dimH1(X,End(T )) = 185 + 9 + 6 = 200. That is we have 12

extra states compared to the generic hypersurface.
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[27] M.G. Eastwood and T. Hübsch, Endomorphism valued cohomology and gauge neutral matter,

Commun. Math. Phys. 132 (1990) 383 [INSPIRE].
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