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Abstract. A method for calculating pseudotensor-based conserved quantities for isolated 
systems in general relativity, independently of the asymptotic behaviour of the coordinate 
system used, is given. This allows the evaluation of concepts like energy, momentum and 
angular momentum in any coordinate system. The calculation is carried out for the 
Schutz-Sorkin gravitational Noether operator, a pseudotensorial vector operator which 
reduces to the familiar pseudotensors for particular choices of the vector fields; it is 
illustrated for the Kerr metric using vlrious fields and coordinates. We use this to prove 
a theorem of extremality of angular momentum for vacuum solutions of Einstein’s 
equations, showing that any two of the following imply the third: ( i )  the metric is 
axisymmetric; (ii) Einstein’s field equations are satisfied; (iii) the total angular momentum 
is an extremum against all perturbations satisfying a mild (and most reasonable) restriction. 
This theorem, valid for stationary and non-stationary metrics, is generalised to include 
matter fields, and, in particular, perfect fluids. A related theorem for extremising the 
angular momentum flux across a timelike hypersurface is also proved. This theorem 
provides an alternative way to solve the field equations for axisymmetric gravitational 
collapse. 

1. Introduction 

Variational principles for the structure of stationary but rotating stars in general 
relativity have been developed by Hartle and  Sharp, Bardeen, and Schutz and Sorkin 
(see [ l ]  and references therein). They are of the nature that a field is a solution of 
Einstein’s equations if and  only if it is an  extremum of the total energy against a certain 
class of variations of the metric and  fluid variables. Such principles can be used to 
construct stellar models, and  they give us physical insight into such systems and their 
stability. However, energy is not the only conserved quantity one might have: there 
is also angular momentum. It is natural to ask whether variational principles also exist 
for angular momentum. Just as energy principles can be developed for stationary but 
non-axisymmetric systems [ 11, angular momentum principles may help one construct 
axisymmetric but non-stationary systems, such as collapsing stars. In  this paper we 
develop such principles. 

By definition, variational principles contemplate variations which are not necessarily 
solutions of Einstein’s equations, and for which the asymptotic behaviour of the metric 
will therefore not necessarily contain information about the total energy or  angular 
momentum of the configuration. For this reason, we base our  variational principles 
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on pseudotensorial measures of the conserved quantity. Although these are not coordin- 
ate independent [ 2 ] ,  they are local, and they allow us to give the total energy or  angular 
momentum of a configuration as an integral over it. 

The problem with pseudotensors is that they must be evaluated in an asymptotically 
Lorentzian coordinate system (ALCS) ,  which is inconvenient, i.e. one in which the 
metric takes the asymptotic form v P v + O ( l / r )  where here vFU is the Minkowski metric 
in rectangular coordinates. We want to free ourselves of this restriction by finding a 
method of evaluating pseudotensors that gives sensible results in any coordinate system. 

Such a method has been given in detail in [3], together with some illustrations, 
and it will be briefly reviewed in $ 2  below. In 5 3 we will prove several extremum 
theorems for angular momentum, and comment on their physical interpretation. By 
comparing the results for energy and those for angular momentum, we will be able to 
prove a related theorem for the angular momentum flux across a timelike hypersurface 
( $  4). 

2. The quasi-covariant Noether operator for gravity 

In this section we will briefly review a way to compute conserved quantities in any 
coordinate system one chooses to work with, at infinity and locally (for full details 
see [3]). This is achieved by using a very simple trick, which consists essentially on 
working in special relativity. 

Although this formalism applies to any pseudotensorial complex, we illustrate it 
here for the gravitational Noether operator f,”, (introduced by Schutz and Sorkin in 
[l]), defined, for any vector field [, by 

where 

hPauP = ( -g)(g””geP - g “ ” g f i P )  
and Gfi, is the Einstein tensor. This pseudotensor has the advantages that it does not 
depend on second derivatives of the metric, it contains the Einstein [ 5 ]  and the 
Landau-Lifshitz [6] pseudotensors as particular cases (for special choices of the vector 
field 0, and when the field and matter equations are satisfied, the Schutz and Sorkin 
[ momentum, defined [ l ]  by 

is conserved, and  may be written as 

P [ [ ,  HI  =- d,[h”””P,p[y(-g)-”2] d o  
1 6 ~  ‘ I  

Here, Z K v  is the Noether operator for matter (a covariant generalisation of the so-called 

canonical stress-energy tensor), H is a hypersurface with boundary dH, du, and dZ,,, 
are the coordinate volume and  surface elements respectively in an  ALCS. It is easy to 

N 
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show that, for the usual choices of vector fields, the quantity above gives the expected 
results at  infinity for 4-momentum and angular momentum, in the geometries of 
Schwarzschild, Reissner-Nordstrom, Kerr-Newman, Vaidya, and  many more. 

The formalism for generalising (2.3) to give a quasi-covariant expression for 
conserved quantities (for isolated systems) is basically to change partial derivatives 
into flat-space covariant derivatives, as follows. 

Let ( M ,  g P y )  be the spacetime manifold of a n  isolated gravitating system, together 
with an  asymptotically Lorentzian coordinate system covering a neighbourhood of 
infinity. Associate to it the neighbourhood of infinity of the flat spacetime with Lorentz 
coordinates that correspond to the ALCS on M ,  and give it the metric of special relativity: 
( M F ,  vP1,). (Such a manifold M F  always exists, given M.) Let h be the one-to-one 
map between these neighbourhoods provided by the coordinates, and  use it to bring 
the fields gIL” and (“ down to M F .  It is then easy to see that hP””p,p(-g)-”2( ,  is a 
tensor density of weight 1 in M F ,  and that 

P [ ( ,  H I  = ( - ~ ) - 1 ’ 2 h P ” a Y P i p ( , , - g ) - ‘ ” ( - ~ ) ’ ’ 2  dX” 
aH 

= ~ ~ ~ h Y ‘ ” , B t l . ( - g ) - ” 2  dZFo (2.4) 

(where a vertical bar denotes covariant differentiation WRT vpu and dXp, is the 
coordinate surface element in M F )  gives the same value as (2.3) for the 5 momentum, 
and  is invariant under coordinate transformations in M ‘. Since any transformation 
of coordinates in M corresponds to one in M F ,  the ( momentum (now defined as an  
integral on M F  by (2.4)) is invariant under a transformation from a n  ALCS to any 
general curvilinear system in M (cf [ 3 ]  for details). We summarise this result in the 
following. 
Proposition 2.1. Given any ALCS and a coordinate transformation from it to any 
curvilinear coordinate system, we can evaluate the 6 momentum in this second system 
obtaining the same result as in the original ALCS. 

Our procedure is still impractical because we must know the ALCS from which we 
start: arriving at a given curvilinear coordinate system from a second ALCS will give 
us for P [ t ,  H I  its value in this second ALCS. (This is just the freedom we had at the 
beginning, consistent with the non-localisability of the ( momentum in general relativ- 
ity.) To remove this ambiguity, we make use of the fact that M is asymptotically flat 
in the sense that gPu = v P y  + O( r--(’+‘”* ) asymptotically, for some E > 0, where vPu is 
the Minkowski metric and  r is a coordinate such that, to first order, surfaces of constant 
r in every spacelike hypersurface have area = 4 x r 2 ;  and therefore its connection 
coefficients asymptotically approach those of the flat metric in some class of coordinate 
systems. For M t  we choose that coordinate system, in this class, in which the 
connection coefficients exactly equal the leading order terms of those for M. This 
choice implicitly selects one particular ALCS, but we d o  not need to know how to reach 
it from our coordinates. 

To illustrate the formalism, we can use it to evaluate the energy for Schwarzschild’s 
and  Kerr’s geometries using different curvilinear coordinates and vector fields (a fuller 
account is given in [3]). 

2.1. Schwarzschild spacetime in Schwarzschild coordinates 

Use vF1, in flat spherical polar coordinates, lF = (d/dt)sc , , ,  so that = (1 - 2 M / r )  d t ,  
H = { t = constant} n [r+,  RI where r = r, is the horizon of the hole and R is some 
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radius greater than r+. One then obtains, for the total energy (field plus hole) inside 
radius R, 

P[5 ,  H1R = M (2.5) 

independent of the radius. It is interesting to note that this agrees with the Penrose 
[4] mass for the Schwarzschild hole, as calculated by Tod [ 7 ] ,  although this is defined 
in a completely different manner. 

2.2. Kerr spacetime in Boyer- Lindquist coordinates 

Again, we use vWV in flat spherical polar coordinates, 5” = ( d / d t ) , , ,  H = { t = constant} n 
[ r+ ,  RI. The total energy inside a sphere of radius R is then obtained as an exact 
expression in terms of hypergeometric functions [ 3 ] .  At infinity one has, as expected, 
P [ &  HI  = M. Also, for a = 0: P[( ,  HI = M in agreement with the previous result. For 
small values of a, one has 

2Ma2  2 M 2 a 2  
3A 3Ar P [ ( ,  H ] R  = M --+- + 0(a4) A = r2  -2Mr  + a*. (2.6) 

This expression, as w‘ell as the full exact expression, is singular at the horizon, where 
A = 0. The problem arises from the combination of two facts: (i) the singularity of the 
coordinates themselves at the horizon; (ii) the fact that 5” is spacelike at and near the 
horizon. That this is so may be seen in the following two examples. 

2.3. Kerr spacetime in Kerr-Schild coordinates 

These coordinates are obtained from the Boyer-Lindquist system via the transformation 

2 Mr  2 Mar 
A I-A 

d T =  d t  -- d r  d @ = d 4 + -  d r  (2.7) 

with = r2+ a2. They reduce to the Eddington-Finkelstein coordinates for 
Schwarzschild spacetime. 

Using vW,, in spherical polar coordinates (note that this leads to a different ALCS 

than one would have got from Boyer-Lindquist coordinates), 5” = (a/dT),  and H = 
{ t = constant} n [ r+, r ] ,  one obtains an exact expression for P [ &  HI in terms of hyper- 
geometric functions, which is well behaved everywhere and has the following limiting 
behaviour: 

for a =0:  P [ f ,  H ] =  M + ( 2 M 2 / r )  

far away from the horizon: + O( r - 3 )  

on the horizon, to order a*: 

2M2r:  2Ma’r: 2Mza2r+ 
P [ [ ,  HI  = M +--- + + o ( ~ ~ )  r: 3r :  3 r :  

2.4. Kerr spacetime in Boyer- Lindquist coordinates, second version 

This time consider vWu in spherical polar coordinates, H = { t = constant} n [ r+, r ] ,  and 
5 = e, + we4, where w = -g,,/g4, is the angular velocity of a zero-angular-momentum 
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observer (cf [ 3 ]  for motivation). Note that w is not constant and so ( is not a Killing 
vector, but it is timelike outside the horizon and null on it. 

Again, a well behaved exact expression is obtained for P [ ( ,  H I ,  with limiting 
behaviour: 

far away: 

+- [ ‘ M a 2 r 2 - ~ M 2 a 2 r ] + O ( a 4 ) .  
r 2 - ~ , 2  (2.9) 

Thus, sensible results can be obtained, even near black hole horizons, provided the 
coordinates and vector fields are chosen carefully. The flexibility that this gives us is 
exploited in the next section. 

3. Extremum theorems for angular momentum (at spatial infinity) 

The flexibility of evaluating conserved quantities in any coordinate system allows us 
to analyse properties that might help us in the study of isolated gravitating systems. 
We have in mind properties such as stability, or the very satisfaction of the field 
equations. 

Extremality of conserved quantities has been proved by Schutz and  Sorkin [ 1 1  in 
the following form, which applies to the simplest non-gravitational systems. 

Theorem (Schutz and Sorkin). Given 
L:  Lagrangian for an  unconstrained variational principle, 
Q: set of field variables on which L depends, 
(: vector field for which 6,s = 0, where S = 5 L[  Q] d4x, 

( a )  Q is stationary WRT 5: LcQ = 0 
( b )  Q is a solution of the equations for the variational principle: 6L/  SQ = 0. 
( c )  P [  5, HI is an  extremum against all variations SQ of compact support. 

In the case of a gravitating system, any variation is likely to alter the asymptotic form 
of the metric as well, so SgPu would not have compact support and  therefore the above 
theorem would not apply. Schutz and Sorkin were able to remove the constraint of 
compact support in the case of energy by assuming that, if the metric is written as 
g,” = v,,, + h,, on the spacelike hypersurface H, then 

(3 .1 )  
We are here interested mainly in angular momentum, and we will assume that the 

metric has the following asymptotic behaviour in an  ALCS near spatial infinity: 
goo= 1 + O ( l l r )  g,, = - 6 , + 0 ( 1 / r )  go!, = o( 1 /  r l tF)  s>O. (3.2) 

For the sake of brevity, we will say that a metric is in class A in a region E of 
spacetime if it satisfies (3 .2 )  asymptotically in an ALCS on every spacelike hypersurface 
in that region. Note that class A is very general; only go!, has been ‘mildly’ restricted, 
and it certainly allows for gravitational radiation to be present. We will also say that 
a spacelike hypersurface H without boundary is asymptotically regular if it is asymptoti- 
cally flat and  g,, belongs to class A on H. 

then any two of the following imply the third: 

) asymptotically, for some F > 0. h,” = O(r--(l+F)/Z 
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3.1. Stationary empty spacetimes 

Let us concentrate first on stationary empty spacetimes in class A, and take H to be 
an asymptotically regular spacelike hypersurface. Since we are interested in angular 
momentum, we take 5 to be a vector field with the asymptotic behaviour 

(3.3) 

in an ALCS ( T ,  x, y ,  z ) .  We want to see how the 5 momentum is altered when changing 
the metric asymptotically. To this end, consider another metric in class A and 
'patch' it asymptotically to g p y ,  i.e. consider the transformation 

5,  = x6: -y67  (asymptotically on H )  

g,v + &," + (1 - flip" 

h," + th," + (1 - t)h,, 

(3.4) 

w i t h o s t c l ,  t = 1 f o r r < R , t = O f o r r > 2 R , / d k t / c 2 / R a n d R l a r g e .  T h e n w e h a v e  
A 

gpLY, ,  + tgCL",e + ( I  - t ) i P v a a  + t , ,  ( hp" - h P v  A )  

etc. 
/. 

where h,, and h,, are defined by 

g,, = 77," + h," 

tpv = 77,u + l," 

(3 .5a)  

(3 .5b)  

(all the hatted quantities will refer to i,,,). 
Under the transformation (3 .4) ,  the change in the integrand of (2.2) (here Z p L ,  = 0 

since spacetime is empty, but Ggv does not necessarily vanish since we are not assuming 
that Einstein's equations hold) takes a complicated form, but it may be shown that it 
can be reduced to 

(3 .7a)  

To show that the total 5 momentum is unaltered under asymptotic changes in the 
metric, we need to show that the integral in (3.6) vanishes as R + W. Noting that 

hoavA .k  + t2h0uuk,k + 2tt,kh0U"K + (1 - t ) 2 f i " u u r , h  - 2( 1 - t ) t , A i O " " k  + t (  1 - t )  

x [ ( - g )  ( g O y j k  
g " k p  - g U y k  - g o " g " " ) ] , A  

+(1 -2 t ) t , , [ ( -g ) (g " " i "~+g" "0 " -g " " iO"g0h i " " ]  

and 

SY,, + t , , [ X ( 8 2 U  - i 2 " ) - . Y ( g l 2 J - i l Y ) l +  t [ & r ( g 2 v - i 2 v )  

- 62, (SI E ,  - i 1  " ) I  + [ 6 , " i 2 "  - 8 2 2 ,  Y + t [ x ( g * v  - i 2 Y  ) , U  - y(g1 Y - i1 v 11 
(3 .76)  + [ x i2  Y , U  - Y t  I U,* 1 

we see that the integral in (3.6) vanishes as R + E  iff 
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for some E > 0, where (. . .) denotes integration over the unit sphere, i.e. ( f )  = $f d R  = 
$f sin 0 df3 d 4 ,  and n is the unit radial vector: n, = ar/dx' .  In  other words, the integral 
in (3.6) will vanish as R +CO, i.e. the 5 momentum will be unaltered under an  asymptotic 
metric change, if the above average is equal asymptotically for both metrics up  to 
second order in r - ' .  (The index '3' arises explicitly in (3.8) because of the form we 
have chosen for the vector field 5, equation (3.3).) 

We then have the following extension of the Schutz and Sorkin theorem. 

Theorem 3.1. Any axisymmetric stationary empty spacetime is a solution to Einstein's 
equations in some region iff it is an extremum of the angular momentum against all 
variations satisfying (3.8) on each spacelike hypersurface in that region. When the 
region extends out to infinity, the metric is assumed to have the asymptotic fall-off 
given by (3.2). 

By analogy with El], the stronger version in the form 'any two of the three statements 
imply the third' is also obtained. The only proof that has been strengthened is 
( a )  + ( b )  + ( c ) ,  by showing that any variation of non-compact support which satisfies 
(3.8) affects the angular momentum in just the same way as one of compact support. 

Actually, our result so far is stronger than stated, for stationarity was only used 
asymptotically. Thus, provided that P [  5, H I  is well defined for a certain non-stationary 
spacetime, we have shown that it is unchanged under the transformation (3.4) if this 
spacetime is asymptotically stationary. Theorem 3.1 is also valid for this more general 
case. 

What is the meaning of the restriction (3.8) on the variations? One can calculate 
this quantity for a few known simple spacetimes and see that it is essentially the angular 
momentum of the spacetime. In fact, that it is essentially the angular momentum for 
metrics that solve the field equations can be seen in linearised theory, where one has 

+ mass quadrupole terms and  their derivatives, which we neglect 
(3.9) 

where the integrals are taken over the sources. Now the first of these integrals does 
not contribute to the average in (3.8), and  the second gives 

1 6 7 ~  
r' 

(3.10) -- - [angular momentum]. 

However, for spacetimes which d o  not solve Einstein's equations, the integral over the 
3-surface H does not convert to an integral over dH and so (&"'Thgo,) is nor the 
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angular momentum of the metric as we have defined it. Thus, when comparing a 
solution to the field equations with neighbouring non-solutions, the variations are 
allowed to range over spacetimes with different angular momentum, but if other 
solutions are covered by the variation, then the theorem applies only if these other 
solutions have the same value of the angular momentum (at spatial infinity). In this 
sense general variations are allowed, for the 'restriction' is the obvious one: the theorem 
is singling out that metric (out of a whole set of neighbouring metrics) which satisfies 
Einstein's equations, and  it is implying that this metric is an extremum of the angular 
momentum; if two (or  more) metrics in the set solve Einstein's equations, they cannot 
but have the same angular momentum. 

3.2. Non-stationary electrovac spacetimes 

The results above may be generalised to non-stationary metrics in class A. We assume 
here that matter fields are not present and only allow gravitational and electromagnetic 
radiation in the spacetime. (Matter fields will be considered in the next section.) In  
this case, however, one must first impose conditions on the metric coefficients which 
guarantee that the angular momentum of the spacetime is well defined at spacelike 
infinity (i.e. that relevant integrals d o  indeed converge). 

A careful analysis of orders of magnitude reveals that these conditions are 

(3 .11a)  

(3.11 b )  

asymptotically in an ALCS, for some E > 0, and where the index '0' refers to time. 
When we compute the variation of the angular momentum under an asymptotic 

patching of the form (3 .4) ,  in the same manner as for the stationary case but now 
allowing for time derivatives of all the quantities involved, we see that the conditions 
for this variation to be zero are precisely that the equations (3 .8)  and (3 .11)  be satisfied, 
i.e. we have the following. 

Theorem 3.2. Any axisymmetric vacuum solution to Einstein's equations is an 
extremum of the angular momentum against all variations of the metric satisfying 

(3.8 

(3.12a 

(3.12b 

(When the region under consideration extends out to infinity, the metric is assumed 
to have the asymptotic fall-off given by (3 .2) . )  

As before, the other two implications are also obtained. Equation (3 .8)  was expected 
from the stationary case, and we have already seen its meaning above. Equations 



Conserved quantities .from pseudotensors 937 

(3.12) guarantee that the angular momentum is well defined for both gWl, and and 
for its mixture tg,, + (1 - t)&,,. One may ask how strong these conditions are, i.e. how 
much should one restrict the metric in order to be able to talk about angular momentum 
and work with it? 

Equation ( 3 . 1 1 ~ )  is actually a mild restriction on the metric coefficients, and it is 
always satisfied in linearised theory. To see how strong (3.11b) is, let us look at the 
Cauchy problem for asymptotically flat spacetimes in general relativity. 

In  order to construct gravitational initial data (1, y, K )  (where C is an initial 
spacelike hypersurface, and  y and K are two 2-index tensor fields) that satisfy the 
momentum constraints or  initial-value equations (which are just the Gauss-Codazzi 
equations expressing the necessary and sufficient conditions that y and K are indeed 
the metric and extrinsic curvature of the submanifold C of a spacetime that satisfies 
Einstein's equations, plus the constraints for the electromagnetic field which are of 
the form (in Gaussian units): D , E ' = 4 r q ,  D,B'=O) one assumes [8] that 

K ' ,=0 (1 / r2 )  (3.13) 

hi ,  = O ( l / r )  (3.14) 

where y,, = v,, + h!]. (When electromagnetic fields are present, one must ask for the 
energy and momentum densities ( p ,  j , )  of the field to fall off fast enough to render the 
total energy and momentum finite.) These conditions ensure that at least the energy 
and the linear momentum associated to the initial data set (which may contain matter 
fields and  currents) are well defined. To guarantee that these restrictions are preserved 
in the evolution of the initial data, one asks for the (cf [8]) 

lapse function = (Y = (goo)-'" = 1 + O(r - ' )  (3.15) 

shift function = p = go" = O( r - I ) .  (3.16) 

In our case, we have hh, = O ( r - ' )  in agreement with (3.14), (Y = 1 + O ( r - l )  in 
agreement with (3.15), and  p" =O( l / r " ' )  which is slightly stronger than (3.16). In  
other words, our requirements on gWv agree with (3.14) and guarantee that (3.13) and  
(3.14) are preserved under the evolution of the data. What is (3.13)? 

If n̂  is the unit normal vector field to 1, we have 

K,, = y y p p  (V, n̂ , + V,n ,̂ ). 
When C is given by X = {xo = O} this reduces to 

(3.17) 

Now, 

K',  = g!"K,, = ( g o o ) - 1 ' 2 ~ o , ~ k ' ~ o ( l / ~ )  

and therefore (3.13) implies 

(3.19) 

which is a stronger condition than the one we have used (g!,," = O( r - I ) )  for the proof 
of the theorems above. In fact, the restriction (3.11b) arises from the condition of 
convergence of the integral 

(3.21) 

but when (3.20) is satisfied, restriction (3.11b) is no longer needed! In other words, 
the conditions used for the initial-value problem to be well defined are consistent with 

l H ( - P ) P  00 g hi ,oti,h(-g)-"2 d3x 
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and imply our restriction (3.11b) on the metric coefficients for the angular momentum 
to be well defined, so that only ( 3 . 1 1 ~ )  is needed. In  this sense, our restrictions do  
not limit ourselves significantly in the choice of metrics with which we are able to work. 

3.3. Extension to matter Jields 

We will now generalise the above results to include any matter field of compact support 
in the spacetime, and, in particular, perfect fluids. 

Writing the action as S = SG + S F ,  where Sa is the action for the gravitational field 
and SF is that for the matter field, the vanishing of its variation in any region Z of 
spacetime takes the form [ 13 

= ( t i- ZL',[') du, (3  2 2 )  Q, 
where T", is the energy-momentum tensor of the  matter, and I " ,  its energy-momentum 
tensor density (which is a Noether operator for the matter field). 

The total 5 momentum P [ [ ,  HI  = j H (  t '*,  . tu+ I " ;  t'') dcr, will be conserved if 

either ( a )  Einstein's equations are satisfied; or ( b )  [ is a Killing vector of g,, and 
the matter's € momentum is locally conserved: d , ( ( U Z P c t )  = 0. The first variation of 
(3.22) is 

iL 

(3.23) 

We then have the following. 

Theorem 3.3. Let H be any asymptotically regular, spacelike hypersurface in a region 
Z of spacetime, and let 5" = x6$' - y a y  asymptotically in an ALCS. Then any two of 
the following imply the third. 

( a )  Axisymmetry: LEgC2, = 0. 
( b )  Einstein's equations are satisfied in Z: G"' - 8.rrTap = 0. 
( c )  The angular momentum P [ &  H I  of every such H is an extremum against all 

variations of the metric and  matter fields that satisfy 

(1) 6(ZP,,,)(" = 0  

( 2 )  (e3'hn,6g,,,) = o ( - r;+i) asymptotically 

(3) (F'i'n,gh,) - (F3"n,&,) = o - asymptotically ( r '+.> 
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and 

Proof: ( a ) +  ( c ) + ( b ) .  For any region E and allowed perturbation 6 we get from (3.23) 

(G", -8 . r rT"P) ( -g )"2~66g , ,  - 0  5: 
and since, apart from the restriction (3.8), Sg,, is free at every point, this implies 
G"' - 8nT"'  = 0. 

( b ) + ( c ) + ( a ) .  As before, we obtain 

[ES[(G"d - 8 ~ T " ~ ) ( - - g ) " ~ ] L ~ g ~ ,  = 0. 

At any point we can choose Sg,, so that all ten S[(G", -8 , r rT"p) ( -g ) "2]  are linearly 
independent, so that &geP = 0 there. 

( a ) + ( b ) + ( c ) .  Conditions ( a )  and ( b )  make the first two terms on the LHS of 
(3.23) vanish. Assume first that the variations are of compact support, then take a 
hypersurface H '  away from this support and joining H asymptotically, and let 5 be 
the region between the two hypersurfaces. Then the third term on the LHS of (3.23) 
vanishes by restriction (1) in (c),  and the RHS reduces to S P [ &  H I ,  which proves the 
theorem. Now, for variations with arbitrary support, theorem 3.2 shows that, subject 
to restrictions (2) and (3) in (c ) ,  these are equivalent on H to variations of compact 
support, so that P [ &  HI remains an extremum. 

Restriction (1) in (c )  of theorem 3.3 becomes more transparent when not only the 
metric itself is axisymmetric, but also the energy-momentum of the matter, for if 
L6gap  = L6Tap = 0 we can write 

and  if TC, is the energy-momentum of a perfect fluid 

Tu ,  = p n U a U p  +p6",  

then, further [ l ]  

(3.24) 

(3.25) 

(3.26) 

where n is the number density of particles, p the pressure, p the mass-energy density, 
p = ( p  + p ) / n  the relativisitic enthalpy, S the specific entropy, T the temperature, 
q n  = n(  - g )  1'2U" the flux density, and V, = VU,, the momentum per particle of the fluid. 

From the axisymmetry condition one may also write 

(G"' - 8 ~ r T " ~ ) ( - g ) " ' L ~ S g , ,  d4x 
: 1 6 ~  

1 -- - (Goo - 8 ~ T " ~ ) ( - g ) " ~ 6 g , & "  du, 
1 6 ~  6, (3.27) 
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and using (3.26) and (3.27), (3.23) reduces to 

( ~ " S V y S ~ - ~ p S V m  - V,6TP+nT(-g)"26SSP,)6a du, 

= $ 6 [  A"~,. [" + I",["] dup  (3.28) 
6 E 

for any region E. We then have the following theorem. 

Theorem 3.4. Any axisymmetric spacetime containing a perfect fluid is a solution of 
Einstein's equations if and  only if its angular momentum, measured on any asymptoti- 
cally regular spacelike hypersurface H containing 6, is an extremum against all 
perturbations obeying 

( a )  ["SV, = O  
( b )  the number of particles is constant if V,[" # 0 
( c )  ( ~ ~ ' ~ n , 6 g , , )  = O ( l / r 2 + ' )  asymptotically 
( d )  ( ~ " ~ n , g ~ , ) - ( ( ~ ~ " n , $ ~ , )  = O ( l / r l + f )  

(E3fkn,gk,nigii,oj - (~"~n ,&,n ,$~ , , )  = O(I/  r3+') asymptotically. 

When the region under consideration extends out to infinity, the metric is assumed to 
have t6e asymptotic fall-off given by (3.2). 

Proof: Assume first that the perturbations are of compact support, and  arrange dE as 
in theorem 3.3 so that only H contributes to the integrals in (3.28), which we call I,, 
I, and I, (in that order) for short. Now, since 5" is contained in H, then Sp,(" duo = 0 
and only two terms remain in the integrand of I,, and these vanish for perturbations 
satisfying ( a )  and ( b ) .  Since I ,  is just the variation in the angular momentum, and 
since Sg,, is arbitrary at every point, it is immediate that the angular momentum is 
an extremum (i.e. I ,  vanishes) if and only if Einstein's equations are satisfied (i.e. I ,  
vanishes). 

Conditions ( c )  and ( d )  make the more general variations equivalent (as far as 
extremality is concerned) to those of compact support (cf theorem 3.2). 

Comments. Restriction ( a )  does not allow the perturbations to add momentum in the 
direction of 6 (i.e. angular momentum) to the matter. Restriction ( b )  says that, if the 
angular momentum per particle is not zero, the perturbations should not alter the 
number of particles (thereby altering the total angular momentum to first order, as in 
the case of ( a ) ) .  Restriction ( c ) ,  as seen already, is the equivalent of the above 
restrictions for the gravitational field. Restriction ( d )  ensures that the angular momen- 
tum is well defined. The restrictions above are, then, what one intuitively expects must 
be restricted. 

This theorem offers a different approach to calculating, say, axisymmetric gravita- 
tional collapse. Rather than solve the Einstein equations one can determine the solution 
by demanding its angular momentum be an extremum on every hypersurface. Such a 
method is harder to use than energy variational principles, because for energy the 
resulting variational solution is stationary, determined for all time by a variational 
calculation on one hypersurface. This difference can be traced back to the fact that, 
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for energy, 5 is transverse to H,  while for angular momentum it lies in it. This provides 
motivation for studying extrema of the angular momentum flux, which we now do. 

4. Momentum flux across a timelike hypersurface 

To obtain the theorems in 0 3 for angular momentum, not only were stronger assump- 
tions necessary on the metric coefficients, but also extra restrictions on the variations 
had to be introduced, as compared with the situation for energy. It seems natural then 
to ask, what is it about time as opposed to space that makes it easier to prove extremum 
theorems? 

The most obvious difference in both approaches is that, whereas to measure energy 
one uses a timelike vector field which is transverse to the hypersurface H of 
integration (the hypersurface containing all the fields), to measure angular momentum 
one uses a spacelike field which is contained in H. This suggests that it would 
be easy to obtain an extremum theorem for the momentum flux P [ [ ,  HI across a 
timelike hypersurface H,  with 5 = d / d 4 ,  where the relation between surface and vector 
field is as in  the case of energy. (Here 4 is an  azimuthal parameter with closed orbits.) 
We prove that this is indeed so. 

Assume that the metric coefficients satisfy (3.2) in an ALCS ( T ,  x, y ,  z ) ,  and let 
H = {d = constant} n { T E [0, To]} for a certain value To > 0. We write, as before, 

P [ [ ,  HI  = -- { ( -g ) ”2G ’ ” ,5 ” -~a , (h ’ ” “ ”p ,pS , ( -g )~ ”2 ) }  da, (4.1) ‘ I  H 

where du, is now the coordinate volume element of the timelike H. Under an  
asymptotic metric transformation of the form given by (3.4), this changes as (cf (3.6)) 

T~l0 ,Ti i l  [ O , T n I  

Writing gPu = v , ~  + h S V ,  (3.4) implies (we d o  not write indices) 

ah -+ ah + ( t  ah + h a t )  (4.3) 
and so the integrand in (4.2) transforms into ~ d h  + ~t ah + ~h a t  +lesser terms, and  a 
simple order-of-magnitude analysis shows that the integral vanishes as R +CO, so that 
P [ ( ,  HI  is unaltered under an asymptotic change of metric, for a finite time interval. 

Theorem 4.1. Let H be a timelike hypersurface transverse to a/a4, that is asymptotically 
regular in the spatial directions. Let 5” = x6$’-ySy asymptotically in an  ALCS. Then, 
any solution of Einstein’s equations is an extremum of the momentum flux across H 
measured by 6, against all variations of finite time duration. 

This variational principle has more teeth. Here we can study axisymmetric collapse 
in a radically different way. On a surface 4 =constant, we guess the time behaviour 
of the metric and fluid. If and only if the resultant flux integral is an  extremum against 
perturbations of finite duration will the guess be a solution of Einstein’s equations. 

The variations of the field variables are required to be of finite time duration because 
the spacetime is asymptotically flat in the spatial directions, but not in the time direction. 
However, a real perturbation satisfying Einstein’s equations will not go away after a 
finite amount of time. It would be interesting to see what conditions this requirement 
would lead to. 
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5. Conclusions 

We have shown how one can have a considerably enhanced flexibility in the use of 
pseudotensors for conserved quantities, since spherical coordinate systems are the 
natural frames to use for isolated systems. We have developed and proved extremum 
theorems for the angular momentum of solutions of Einstein’s equations. These 
theorems may be very useful in showing that a given metric solves the field equations, 
without having to solve the equations themselves. They can also help with the very 
construction of spacetime metrics. The feasibility of implementing these techniques 
to interesting self-gravitating systems is under study. 
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