
CONSTRAINING THE EQUATION OF STATE WITH MOMENT OF INERTIA MEASUREMENTS

James M. Lattimer

Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800; lattimer@mail.astro.sunysb.edu

and

Bernard F. Schutz
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ABSTRACT

We estimate that the moment of inertia of star A in the recently discovered double pulsar system PSR J0737�
3039 may be determined after a few years of observation to �10% accuracy. This would enable accurate estimates
of the radius of the star and the pressure of matter in the vicinity of 1–2 times the nuclear saturation density, which
would in turn provide strong constraints on the equation of state of neutron stars and the physics of their interiors.

Subject headinggs: binaries: close — equation of state — pulsars: general

1. INTRODUCTION

The discovery of the double-pulsar system PSR J0737�3039
(Burgay et al. 2003; Lyne et al. 2004) provides physicists with a
remarkable laboratory for relativistic astrophysics. Besides its
implications for the rate of gravitational wave bursts from neu-
tron star coalescence (Burgay et al. 2003) and for the under-
standing of pulsar magnetospheres (Lyne et al. 2004), it could
provide a measurement of spin-orbit coupling. Lyne et al. (2004)
noted that accurate timing over a period of years could lead to a
determination of the moment of inertia of star A. Spin-orbit cou-
pling could be revealed either through an extra advancement of
the periastron of the orbit above the standard post-Newtonian
advance or in the precession of the orbital plane about the di-
rection of the total angular momentum of the system (Damour &
Schaefer 1988). Given that the masses of both stars are already
accurately determined by observations, a measurement of the
moment of inertia of even one neutron star could have enormous
importance for neutron star physics.

Despite the fact that over 1000 neutron stars have been dis-
covered in radio and X-ray observations, and accurate masses
have been determined for a dozen or so neutron stars in radio
pulsar binaries (Stairs 2004), there is relatively little observational
information about their radii or their interior physics. Currently,
one source of candidates for revealing radii is those neutron stars
for which thermal X-ray and optical radiation have been observed
(see Page et al. 2004 for a review). Nevertheless, these stars have
not yet provided a clear radius determination because of ambi-
guities due to atmospheric re-processing, interstellar absorption,
and distances. Moreover, the inferred radius actually refers to
the radiation radius, R1 ¼ R / 1� 2GM /Rc2ð Þ1/2, which is mass-
dependent; unless independent mass measurements of the same
stars become available, such as would be provided by a redshift,
the radii themselves remain unknown. However, most of these
sources have featureless spectra, and to date no secure redshifts
have been obtained from them.

Another possibility are X-ray bursts from the surfaces of
neutron stars. Recently, two lines observed in an X-ray burst
spectrum have been suggested to be H- and He-like Fe lines,
and these imply a redshift of 0.35 (Cottam et al. 2002). This
inference has been given additional credibility by the detection
(Villarreal & Strohmayer 2004) of a 45 Hz rotational frequency

for the neutron star EXO 0748�676. A low spin rate is con-
sistent with the observed widths of these lines if their identi-
fications with Fe are correct. Villarreal & Strohmayer (2004)
show that this consistency holds if the neutron star radius is in
the range 9.5–15 km (corresponding to masses in the range
1.5–2.3M�). Since this star is a member of an eclipsing binary,
an independent mass measurement might be possible as well.
These techniques hold promise of further constraining the radii
of this star and could be extended to other X-ray bursters if
redshifts from them can be observed.

At present, however, the constraints on the neutron star ra-
dius from X-ray bursters and thermal radiation from cooling
neutron stars are relatively weak. We demonstrate that securing
a value for the moment of inertia for a star in a radio binary
pulsar system will provide important constraints on the radius
of the star and the equation of state (EOS) of neutron star mat-
ter. Dimensionally, the moment of inertia is proportional to the
star’s mass times its radius squared, so a measurement of the
moment of inertia to a given accuracy provides approximately
twice that accuracy for a radius identification.

We begin in x 2 by exploring the remark in Lyne et al. (2004)
that themoment of inertia can be determined frommeasurements
of spin-orbit coupling. Two observable effects of spin-orbit cou-
pling, precession of the orbital plane and an extra contribution to
the advance of the periastron, are investigated. In x 3 the case of
PSR J0737�3039 is investigated. We conclude that a 10% mea-
surement of the moment of inertia of star A in this system might
be possible with observations extending over a period of a few
years. In x 4 we show how such a measurement leads to an es-
timate of the radius of the star and the density of neutron star
matter in the vicinity of the nuclear saturation density. This could
have crucial implications for delimiting the EOS. The conclu-
sion, x 5, compares the PSR J0737�3039 system with other
relativistic binaries, and possibilities for the future of this tech-
nique are discussed.

2. OBSERVABLE SPIN-ORBIT EFFECTS

There are two kinds of spin-coupled precession effects in a
binary systemof compact stars: spin-orbit and spin-spin couplings
(for a comprehensive discussion, see Barker & O’Connell [1975]
and Damour & Schaefer [1988]). Spin-orbit coupling leads to a
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precession of the angular momentum vector L of the orbital plane
around the direction of the total angular momentum J of the sys-
tem. This is sometimes called geodetic precession and is related to
the Thomas precession of atomic physics. Since the total angular
momentum J ¼ Lþ SA þ SB is conserved (at this order), there
are compensating precessions of the spins SA and SB of the two
stars. Since the orbital angular momentum dominates the spin an-
gular momenta in binaries, the geodetic precession amplitude is
very small, while the associated spin precession amplitudes are
substantial. In addition to geodetic precession, spin-orbit coupling
also manifests itself in apsidal motion (advance of the periastron).
Spin-spin coupling is generally negligible in binary systems be-
cause jLj3 jSAj; jSBj.

According to Barker & O’Connell (1975), the spin and or-
bital angular momenta evolve according to

Ṡi ¼
G(4Mi þ 3M�i)

2Mia3c2(1� e2)3=2
L < Si; ð1Þ

L̇SO ¼
X
i

G(4Mi þ 3M�i)

2Mia3c2(1� e2)3=2
Si � 3

L =Si

jLj2
L

 !
; ð2Þ

where superscript ’’SO’’ refers to the spin-coupling contribution
only (there are also first- and second-order post-Newtonian terms,
1PN and 2PN, respectively, unrelated to the spins, that contribute
to this order). Here a is the semimajor axis of the effective one-
body orbital problem (sumof the semimajor axes of the two stellar
orbits), e is the eccentricity, andMi andM�i refer to the masses of
the two binary components (we use the notation that i ¼ A; B
and �i ¼ B; A). To this order, one may employ the Newtonian
relation for the orbital angular momentum:

jLj ¼ 2�

P

MAMBa
2(1� e2)1=2

M
¼ MAMB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ga(1� e2)

M

r
; ð3Þ

where P is the orbital period and M ¼ MA þMB. Then, from
equation (1), the spin precession periods are

Pp; i ¼
2c2aPM (1� e2)

GM�i(4Mi þ 3M�i)
; ð4Þ

which are not identical for the two components unless they are
of equal mass. Note that the spin precession periods are inde-
pendent of the spins. Also note that if the spins are parallel to L,
(1) there is no spin precession and (2) the spin-orbit contribu-
tion to the advance of the periastron is in a sense opposite to the
direction of motion.

The spin precession leads to two observable effects. First, as
the spin axes change orientation in space, the pulsar beams will
sweep through changing directions in space. In many cases, this
will lead to the periodic appearance and disappearance of the
pulsar beams from the Earth. Second, since total angular mo-
mentum is conserved (to this order), the orbital plane will change
orientation. This will be observed as a change in the inclination
angle i.

Damour & Schaefer (1988) have considered the question of
how these effects influence the timing of binary pulsars. For the
change in inclination, they find

di

dt
¼ G

ac2
�

(1� e2)3=2

X
i

Ii(4Mi þ 3M�i)

Mia2Pi

sin �i cos �i; ð5Þ

where �i is the angle between Si and L and �i is the angle be-
tween the line of sight to pulsar i and the projection of Si on the

orbital plane. These angles follow the convention of Jenet &
Ransom (2004), but other references employ �i � 90

�
in place

of �i (cf. Wex & Kopeikin 1999). Also, we used jSij ¼ 2�Ii/Pi

where Ii and Pi are the moment of inertia and the spin period,
respectively, of component i. If we concentrate on the case in
which the spin of one component is much greater than that of
the other, jSAj3 jSBj, the amplitude of the precession of the
inclination of the orbital plane is given by the change inL needed
to compensate changes in SA.We define the angle between L and
J to be �� k and the angle between SA and J to be k. Since
jSAjTjLj, one has j�� kjTjkj. Using the fact that J ’ Lþ
SA, one finds jLj sin (�� k) ’ jSAj sin k ’ jSAj sin �. Thus, the
amplitude of the change in the orbital inclination angle i due to
pulsar A’s precession will be

�i ¼
jSAj
jLj sin �A ’ IAM

a2MAMB(1� e2)1=2
P

PA

sin �A: ð6Þ

This will cause a periodic departure from the expected time of
arrival of pulses from pulsar A of amplitude

�tA ¼ MB

M

a

c
�i cos i ¼

a

c

IA

MAa2
P

PA

sin �A cos i; ð7Þ

if one assumes that the orbital eccentricity is small.
For the advance of the periastron, the ratio of the spin-orbit

and 1PN contributions is (Damour & Schaefer 1988)

Ap

A1PN

¼� P

6(1� e2)1=2Ma2

X
i

Ii(4Mi þ 3M�i)

MiPi

; (2 cos �i þ cot i sin �i sin �i): ð8Þ

In the case that jSAj3 jSBj, only the i ¼ A term contributes
substantially. For comparison, the ratio of the 2PN to 1PN con-
tributions is (Damour & Schaefer 1988)

A2PN

A1PN

¼ GM

4ac2

X
i

("
27þ 6

Mi

M
þ 6

�
Mi

M

�2#

; (1� e2)�1 � 1� 46Mi

3M
þ 10

3

�
Mi

M

�2)

’ GM

12ac2

�
189

1� e2
� 47

�
; ð9Þ

where both i ¼ A and i ¼ B terms contribute. The third line of
equation (9) is valid in the case that MA ¼ MB.
In x 4 we demonstrate that a very useful constraint on the

EOS can be made if the moment of inertia can be determined to
about 10%. In practice, it is expected that the binary compo-
nents will have approximately equal masses but differing spin
periods. Therefore, the spin-orbit effects will be dominated by
the more rapidly rotating star, A. Besides being functions of the
parametersMA; MB; P; a; e; and i, the observables �tA and Ap

are also functions of �A and �A. Therefore, extraction of IA from
these observables requires that additional information about the
orientation of the spin of star A be available. Fortunately, if star
A is observed as a pulsar, observations of the beam geometry
and its precession can provide this information.

3. APPLICATION TO PSR J0737�3039

The observational parameters for the system PSR J0737�
3039 are summarized in Lyne et al. (2004): MA ’ 1:34 M�,
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MB ’ 1:25 M�, a/c ¼ 2:93 s, e ’ 0:088, PA ’ 22:7 ms, PB ’
2:77 s, and P ’ 0:102 days. We therefore observe that PpA ’
74:9 yr and PpB ’ 70:6 yr. With these parameters, we can form
the useful combinations

GM

ac2
¼ 4:32 ; 10�6;

IA

Ma2
¼ (4:00 ;10�11) IA;80;

P

PA

¼ 3:88 ; 105; ð10Þ

where IA;80 ¼ IA/(80 M� km2) scales IA to a typical value for
the moment of inertia (see x 4).

Since PB/PA ¼ 122, we can ignore contributions to the pre-
cession from pulsar B. The orientation of the spin axis of A
relative to the orbital plane has been estimated through mod-
eling of the intensity variations of pulsar B due to illumination
by emission from A (Jenet & Ransom 2004). There are two
solutions to this model: solution 1 with �A ¼ 13� � 10� (or
167

� � 10
�
) and �A ¼ 246

� � 5
�
, and solution 2 with �A ¼

�90� � 10� and �A ¼ 239� � 2�. However, solution 1 is pre-
ferred on two grounds: it is improbable that a supernova kick
would result in a spin axis that is so stronglymisalignedwith the
orbital angular momentum, and solution 2 is also inconsistent
with the misalignment angle between SA and the magnetic di-
pole axis, measured to be a few degrees (Demorest et al. 2004).
But recent measurements of the effects of geodetic precession
(Manchester et al. 2005) seem to rule out the Jenet & Ransom
solutions, as no major profile changes in the emission of star A
have yet been detected. This leaves the geometry currently un-
constrained, except that the large changes predicted by Jenet &
Ransom (2004) are ruled out. Similarly, the Demorest work
uses polarization data of pulsar A to determine the viewing
geometry, but the rotating vector model only poorly models the
position angle (Ramachandran et al. 2004). However, one can
still expect that the emission profiles will change eventually,
leading to a determination of the orbital geometry. Also, it may
be possible to get independent geometry information from the
light-bending effect (Doroshenko & Kopeikin 1995; Kramer
et al. 2005b) and the interaction for the pulsar radiation between
A and B. For the purpose of discussion, however, we assume
solution 1 of Jenet & Ransom, even though our estimates will
eventually have to be modified.We expect no qualitative changes
in our conclusions. The orientation of B has not been estimated
so far, but this is irrelevant since the spin of pulsar B can be
ignored.

Recent determinations of the inclination angle are i ¼
88:4þ1:6

�1:4 deg (Ransom et al. 2004) and i ¼ 90:26 � 0:13 deg
(Coles et al. 2005) from scintillation. However, the latter de-
termination is not consistent with recent radio observations that
yield i ¼ 87:9þ0:7

�0:6 deg (Kramer et al. 2005a). Since the scin-
tillation results may be affected by unaccounted refraction ef-
fects (see discussion in Coles et al. 2005), we employ the results
of Kramer et al. (2005a) here. The facts that the orbit is seen
nearly edge-on and that SA is only slightly misaligned from L
makes this a special case in which the amplitude of the timing
change produced by the orbital plane precessionwill be extremely
small, �tA ’ (0:7 � 0:6) IA;80 �s. Not only is the magnitude very
small, but the large relative uncertainties in both cos i (cos i ’
0:037þ0:010

�0:013) and in sin �A (sin �A ’ 0:22 � 0:17) combine to
give a huge uncertainty in �tA. Current technology allows timing
accuracies at the level of tenths of microseconds, limited by the
quality of clocks and the characterization of radio antenna signal
paths (Lorimer 2004). Given this sensitivity, and the current un-
certainties in the observed angles, observation of the changing

inclination due to orbital precession seems marginal. Even if
timing sensitivities to the order of 0.01 �s were possible, errors in
both i and �A would have to be substantially reduced in order to
measure IA to the order of 10%.

The periastron advance due to spin-orbit coupling, being pro-
portional to sin i and cos �A, is on the other hand less sensitive to
errors in these angles. In addition, since i ’ 90�, equation (8)
shows that uncertainties in the angle �A become largely irrel-
evant. The 1PN periastron advance is

A1PN ¼ 6�

1� e2
GM

ac2
rad orbit�1; ð11Þ

or 0.29 rad yr�1. The periastron advance ratio is ApA/A1PN ’
3:4þ0:2

�0:1 10�5IA;80. In practice, to measure the spin-orbit effect to
10% means subtracting out the spinless pieces of the periastron
precession (A1PN and A2PN) to about 1 part in 105. Fortunately,
both a sin i and P are well known and will be even better known
in the future, and the spinless periastron advance depends on
only the total mass, not the individual masses. The total mass
M ¼ a3(2�/P)2 is known to the accuracy of sin i. But sin i is
currently known to about 4 parts in 104, using the determination
of Kramer et al. (2005a), and its accuracy will also improve with
time. (Note that the estimate of Coles et al. [2005] would have
resulted in an error in sin i of 2 parts in 105.) But the spin-orbit
contribution depends on the individual masses, requiring for our
purposes the determination of essentially three post-Newtonian
parameters, as Damour & Schaefer (1988) have emphasized, to
the accuracy of 1 part in 105.

We do not as yet have a third observable parameter with
anything approaching the required accuracy. The accuracy of
aB sin i at present is a few parts in 103. If the refinement of this
parameter should only increase linearly inversely with the du-
ration of observations, the necessary accuracy could not be
achieved within a few years. However, the fact that one will be
observing the orbits of the pulsars from essentially all sides due
to the large precession might allow a large enough precision in
the measurement of the size of B’s orbit. Another possibility
would be a precision measurement of the parameter �, but this
will be more difficult in terms of how its measurement precision
scales with time. Even better would be a precise VLBI mea-
surement for the parallax and proper motion (in progress),
which could yield an accurate value of Ṗb (due to gravitational
radiation reaction), because its precision should scale with time
to the �2.5 power. A further reason to be optimistic is that cur-
rent measurements rely mostly on amixture of Parkes and some
Green Bank Telescope (GBT) data. With additional, much more
precise GBT data coming in, one will be in a position to obtain a
big jump in precision. Moreover, even if �, the mass ratio, and Ṗb

measurements might not be so precise on their own, they will
trace out some common contour limits that may yield the pre-
cision to within an adequate confidence limit.

The epoch of periastron changes due to spin-orbit cou-
pling by about 0.014 s yr�1. For comparison, the second post-
Newtonian correction contributes a periastron advance time of
about 0.02 s yr�1 and must therefore be included in the pulsar
timing model, but this is straightforward (Lyne et al. 2004;
Kramer et al. 2005b).

The determination of IA from periastron advance measure-
ments will only be as accurate as our understanding of �A. As
discussed above, this is not well known at present. Neverthe-
less, the large magnitude of the expected precession should lead
to substantial improvements in our knowledge of the pulse
geometry. Fortunately, we do not need to know this angle to the
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tremendous precision needed for the orbital parameters. We
therefore conclude that measurement of the spin-orbit perias-
tron advance, resulting in a moment of inertia measurement to
the order of 10% accuracy within several years, seems possible.

4. CONSTRAINING THE EOS

Estimating a neutron star’s moment of inertia from timing
observations of a radio binary pulsar has significant implica-
tions for constraining the EOS. In some respects, a moment of
inertia measurement could be more useful than a radius mea-
surement of the same accuracy. First, the neutron star mass in a
radio binary will obviously already be known to high precision,
while a radius measurement from observations of thermal ra-
diation actually refers to the radiation radius R1 ¼ R/ 1�ð
2GM /Rc2Þ1/2. To obtain the radius and mass separately requires
an estimate of the star’s redshift (1� 2GM /Rc2)�1/2 � 1, which
so far is not yet available for any thermal source. Moreover, the
accuracy of radiation radius estimates from thermal sources is
limited by uncertainties due to source atmospheric reprocess-
ing, interstellar absorption, and distances. In the case of X-ray
bursters, for the one case in which a redshift measurement may
be secure, EXO 0748�676, no independent mass measurement
is yet available, and radius information obtained from fitting the
line profile with the observed rotation rate is relatively weak.
Mass and moment of inertia measurements from radio binary
pulsars are not sensitive to distance uncertainties, and a redshift
is not required. Second, the range of moments of inertia for var-
ious neutron star models (including strange quark matter stars)
is, in relative terms, larger than the predicted range of radii (see
Fig. 1). This follows from the dimensional relation I / MR2.
For example, it is 30–240M� km2 for masses >1M� and is 53–
109M� km2 for a 1.4M� star. For comparison, the range of radii
for a 1.4 M� model is 9–16 km.

Spanning the same set of equations of state as in the com-
pendium of Lattimer & Prakash (2001), moments of inertia for
normal neutron and strange quark matter stars are displayed in
Figure 1. The moments of inertia have been scaled by a factor
M 3/2 to reduce the range of the ordinate. For most masses, the
range in I is approximately a factor of 2–3. The significance of

a measurement of I with �10% accuracy is illustrated by the
shaded band centered on the hypothetical measurement, here
taken to be I /M 3/2 ¼ (50 � 5) km2 M�1/2

� , together with an error
bar located at a precisely measured mass, taken to be 1.34M�. It
is clear that relatively few equations of state would survive these
constraints. Those families of models lying close to the measured
values would have their parameters limited correspondingly.
If the EOS does not have a large degree of softening at super-

nuclear densities, possibly introduced by hyperons, Bose con-
densates or self-bound strange quark matter, a moment of inertia
determination furthermore permits one to estimate the neutron
star radius to a relative uncertainty smaller than the relative un-
certainty in the moment of inertia measurement. Figure 2 shows
the moment of inertia as a function of the relativity parameter
M /R for the same equations of state displayed in Figure 1. Sev-
eral analytic solutions of Einstein’s equations that are applicable
to either normal or self-bound stars are displayed as well. These
solutions are all scale-free and are functions ofM /R alone; hence,
they cannot be displayed in Figure 1. Unless the EOS has an ap-
preciable degree of softening, usually indicated by a maximum
mass of order 1.6 M� or less, or unless it is self-bound, there
appears to be a relatively unique relation between I /MR2 andM /R.
For M /R values greater than approximately 0.07 M� km�1, i.e.,
for M � 1:0 M�, this relation can be approximated by

I ’ (0:237 � 0:008)MR2 1þ 4:2
M km

M� R
þ 90

M km

M� R

� �4
" #

:

ð12Þ

An analogous fit has also been suggested by Bejger & Haensel
(2002):

I ’ 2

9
1þ 5

M km

R M�

� �
ð13Þ

for M /R > 0:1M� km�1; however, this fit underestimates I for
the largest neutron star masses.
Simultaneous mass and moment of inertia measurements

could therefore usefully constrain the radius. The relevant radius

Fig. 1.—Moment of inertia scaled by M 3/2 as a function of stellar mass M.
Equation-of-state labels are described in Lattimer & Prakash (2001). The
shaded band illustrates a 10% error on a hypothetical I /M 3/2 measurement of
50 km2M�1/2

� ; the error bar shows the specific case in which themass is 1.34M�.
The dashed curve labeled ‘‘Crab’’ represents the lower limit derived by Bejger &
Haensel (2003) for the Crab pulsar.

Fig. 2.—Moment of inertia as a function of the relativity parameter M /R.
The curves labeled TIV, TVII, NIV, Inc, and Buch refer to analytic solutions of
Einstein’s equations, while other curves refer to a variety of equations of state
(see Lattimer & Prakash 2001 for details). The shaded band illustrates the
relation eq. (12).
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relation can be determined by inversion of equation (12). Fig-
ure 3 shows how the radius could be constrained for selected
moment of inertia measurements having 10% uncertainty. For a
1.4M� star, this typically results in a radius estimate with about
6%–7% uncertainty. Even in the event of significant softening
of the EOS, the uncertainty of the estimated radius would be de-
graded by no more than a factor of 2. Of course, the accumu-
lation ofmore than a single I -M pair would significantly enhance
the constraints.

The importance of a radius determination is that it immedi-
ately translates into a measure of the neutron star matter pres-
sure near the nuclear saturation density (Lattimer & Prakash
2001). In particular, the relation between these quantities is of
the form of a power law

RMP(n)
�1=4 ¼ C(n; M ): ð14Þ

Here RM is the neutron star radius in km for the massM and P(n)
is the matter pressure in MeV fm�3 evaluated at the density n.
The constant C is parameterized by both n and M, but its de-
pendence on M is weak (approximately scaling as M�1/8). In
the case of M ¼ 1:4 M�, a least-squares fit to approximately
30 equations of state yielded C(n; 1:4) ¼ 9:30 � 0:60, 7:00 �
0:31, and 5:72 � 0:25 for the cases n/ns ¼ 1, 1.5, and 2, re-
spectively. This relation could be made more precise by ad-
justing the exponent of P (Steiner et al. 2005), but we choose
not to do so here. The pressure of neutron star matter at these
densities is primarily a function of the density dependence of
the nuclear symmetry energy. In general, therefore, we expect
that measurement of the moment of inertia would provide es-
timates of pressures. Figure 4 illustrates the situation for some
representative equations of state for the case ofM ¼ 1:34M�. It
is observed that the phenomenological fits equations (12) and
(14) adequately describe all but the softest equations of state
(e.g., PS and PAL6) for each density. The uncertainties in the
estimated pressure obtained from a measured value of the mo-
ment of inertia are moderate, amounting to a factor of about 2
when a 10% uncertainty in the moment of inertia measurement is
included. Nevertheless, given the fact that present estimates of

the pressure of matter at the nuclear saturation density span a
range of a factor of 6, this information will be valuable.

5. DISCUSSION AND CONCLUSIONS

The precession of the spins and orbital plane of the pulsar
binary PSR J0737�3039 occurs with a period of about 75 yr.
Both the inclination of the orbit along the line of sight and the
position of the periastron change due to spin-orbit coupling. The
edge-on nature of this binary, coupled with the slight misalign-
ment of SA and L probably precludes observation of the changing
inclination angle, but the spin-orbit contribution to the advance
of the periastron, which amounts to a timing residual of about
0.02 s yr�1, should be measurable within a few years. In this
case, the edge-on orbital plane and near alignment of SA and L
work in favor of a precision measurement of IA. A measure of IA
to about 5%–10% accuracy seems possible, and significant con-
straints on the EOS would be forthcoming. It would also lead to

TABLE 1

Comparison of Binary Pulsars

Parameter PSR J0737�3039 PSR B1913+16 PSR B1534+12

References .............. 1, 2, 3 4, 5 6, 7, 8

a/c (s) ..................... 2.93 6.38 7.62

P (h)....................... 2.45 7.75 10.1

e.............................. 0.088 0.617 0.274

MA (M�) ................ 1.34 1.441 1.333

MB (M�) ................ 1.25 1.387 1.345

TGW (Myr) ............. 85 245 2250

i (deg)..................... 87:9 � 0:6 47.2 77.2

PA (ms) .................. 22.7 59 37.9

�A (deg).................. 13 � 10 21.1 25:0 � 3:8
�A (deg) ................. 246 � 5 9.7 290 � 20

PpA (yr) .................. 74.9 297.2 700

�ta/IA;80 (�s) ........... 0:7 � 0:6 11.2 7:9 � 1:1

ApA/(A1PNIA;80) ....... 3:4þ0:2
�0:1 ; 10

�5 1:0 ; 10�5 1:15þ0:04
�0:03 ; 10

�5

A2PN/A1PN ............... 5:2 ; 10�5 4:7 ; 10�5 2:3 ; 10�5

References.—(1) Lyne et al. 2004; (2) solution 1, Jenet & Ransom 2004;
(3) Kramer et al. 2005a; (4) Weisberg & Taylor 2002; (5) Weisberg & Taylor
2005; (6) Stairs et al. 2002; (7) Bogdanov et al. 2002; (8) Stairs et al. 2004.

Fig. 3.—Radius limits imposed by simultaneous moment of inertia and mass
measurements, established from eq. (12). Moment of inertia error bands include
measurement uncertainties of 10% and systematic uncertainties from eq. (12)
and are labeled in units of M� km2. The horizontal error bar illustrates the hy-
pothetical case inwhichM and I are measured to be 1.34M� and 80 � 8M� km2,
respectively.

Fig. 4.—Pressures at the densities ns (open triangles), 1:5ns (open circles),
and 2ns ( filled circles) as a function of the moment of inertia for 1.34 M�
stars. Solid curves show the relations between P and I derived by combining
eqs. (12) and (14). Dashed curves include the errors in these fits. Equations of
states and their labels are described in Lattimer & Prakash (2001).
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more reliable estimates of neutron star radii and matter pressures
near the nuclear saturation density than are currently available.

Previously, the moment of inertia of the Crab pulsar was esti-
mated by Bejger &Haensel (2003). They used an estimate (Fesen
et al. 1997) for the mass of the ionized portion of the Crab’s rem-
nant, 4:6 � 1:8M�, to infer a lower limit to the Crab pulsar’s mo-
ment of inertia of 97 � 38M� km2. Within errors, the lower limit
rules out only the softest equations of state, as is shown in Figure 1.

It should be noted that the binary PSR J0737�3039, although
highly relativistic, is not favorably inclined for observation of
the precession of the inclination, which is proportional to cos i.
But this particular inclination does allow a simplification of the
interpretation of the periastron advance. Not only is the spin-
orbit contribution nearly independent of the pulsar orientation
angle �A, but errors in i are also not going to be a significant
restriction to a measurement of IA.

It is interesting to compare PSR J0737�3039with other known
relativistic binaries. Table 1 compares properties of the relativistic
binaries for which spin orientation of pulsar A can be estimated.
It is noteworthy that the net timing delays caused by precession-
induced inclination shifts are more than an order of magnitude
larger for PSR B1913+16 and PSR B1534+12 than for PSR
J0737�3039, due to their smaller inclinations. However, the

precessional periods of these two systems are 4 times larger, and
their periastron advances are about 6 times smaller than for PSR
J0737�3039. This factor of 24 in observability is significant and
explains why measurements of this effect in these systems have
not been made.
The nearness and faintness of this binary gives hope that other

highly relativistic systems might eventually be observed. If fur-
ther highly relativistic systems are discovered, it seems unlikely
that any of them will have an inclination angle so unfortunate for
detecting the precession of the orbital plane. With two spin-orbit
effects to be observed, themoment of inertia might bemeasured to
even greater accuracy than contemplated for PSR J0737�3039.
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the hospitality of the Albert-Einstein-Institut, where this workwas
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