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Data processing, analysis, and storage for
interferometric antennas

BERNARD F. SCHUTZ

16.1 Introduction

Laser-interferometric gravitational wave antennas face one of the most for-
midable data handling problems in all of physics. The problem is compounded of
several parts: the data will be taken at reasonably high data rates (of the order of
20 kHz of 16 bit data); they may be accompanied by twice as much *housckeeping’
data to ensure that the system is working appropriately; the data will be collected
24 hours a day for many years; the data need to be searched in real time for a
variety of rare, weak events of short duration (one sccond or less); the data need
to be searched for pulsar signals; the data from two or more detectors should be
cross-correlated with each other; and the data need to be archived in secarchable
form in case later information makes a re-analysis desirable. One detector might
generate 400 Mbytes of data each hour. Even using optical discs or digital
magnetic tapes with a capacity of 3 Gbytes, a network of four interferometers
would generate almost 5000 discs or tapes per year. The gathering, exchange.
analysis, and storage of these data will require international agreements on
standards and protocols. The object of all of this effort will of course be to make
astronomical observations. Because the detectors are nearly omni-directional, a
network of at least three and preferably more detectors will be necessary to
reconstruct a gravitational wave event completely, from which the astronomical
information can be inferred.

In this chapter I will discuss the mathematical techniques for analysing the data
and reconstructing the waves, the technical problems of handling the data. and
the possibilities for international cooperation, as they appear in mid-1989. This
discussion can only be a snapshot in time, and a personal one at that. The subject
is one that can be expected to develop considerably in the next decade. 1 will
orient the discussion toward ground-based interferometers, with the sensitivity
and spectral range expected of the instruments that are planned to be built in the
next decade. Much of the discussion naturally is equally applicable to present
prototypes, but it is important to look ahead towards future detectors so that
their data problems can be anticipated in their design. A large part of the section
on data analysis also applies to space-based interferometers or to the analysis of
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ranging data for interplanetary spacecraft, although in these cases the volume of
data is much lower because they operate as low-frequency detectors. I will also
assume that the interferometers will operate with a bandwidth greater than that
of the signal, even when they are configured in a resonant mode. In the extreme
narrow-banding case, in which the detectors have a bandwidth smaller than that
of the waves, the data analysis problem resembles that for bar detectors, as
discussed by Pallottino and Pizzella in chapter 10.

16.1.1 Signals to look for

The likely sources of gravitational radiation are described by David Blair in part [
of this book. If a source is strong enough to stand out above the noise in the
time-series of data coming off the machine, then simple threshold-crossing criteria
can be used to isolate candidate cvents. If the event is too weak to be seen
immediately, it may still be picked up by pattern-matching techniques, but the
sensitivity to such events will depend upon how much information we have about
the expected waveform. At the present time, we have little idea of what
waveform to expect from bursts of radiation from gravitational collapse (super-
novae or electromagnetically quiet collapses), so their detectability depends upon
their being strong enough to stand up above the broad-band noise. (Future
detailed numerical calculations of gravitational collapse may change this, of
course.) On the other hand, we have detailed predictions for the waveforms from
binary coalescence and from continuous-wave sources such as pulsars; these can
be extracted from noisy data by various techniques. such as matched filtering.
Pulsars with a known position may be found from the output of a single detector
by sampling techniques. An all-sky search for unknown pulsars will be performed
at a sensitivity that will ultimately be limited by the available computing power.
Cross-correlation techniques between detectors can search for a stochastic
background of radiation and detect weak, unpredicted signals.

16.2 Analysis of the data from individual detectors

Bursts and continuous-wave signals can in principle be detected by looking at the
output of one instrument. Of course, one must have coincident observations of
the same waves in different detectors, for several reasons: to increase one's
confidence that the event is real, to improve the signal-to-noise ratio of the
detection, and to gain extra information with which to reconstruct the wave. The
simplest detection strategy splits into two parts: first find the events in single
detectors, then correlate them between detectors. In most cases this is likely to
work, but in some cases it will only be possible to detect signals in the first place
by cross-correlating the output of different detectors. In this section I will address
the problem of finding candidate events in single detectors. Cross-correlation will
be treated later.
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16.2.1 Finding broad-band bursts

A broad-band burst is an event whose energy is spread across the whole of the
bandwidth of the detector, which I will take to be something like 100-5000 Hz
(although considerable efforts are now being devoted to techniques for extending
the bandwidth down to 40 Hz or less). To be detected it has to compete against
all of the detector’s noise, and the only way to identify it is to see it across a
pre-determined amplitude threshold in the time-series of data coming from the
detector. The main burst of radiation from stellar core collapse may be like this.
Numerical simulations of axisymmetric collapse (Evans, 1986; Piran and Stark,
1986) reveal, among other things, that after the main burst there is — at least if a
black hole is formed — a ‘ringdown phase’ in which the radiation is dominated by
the fundamental quasi-normal mode of the black hole. This phase lends itself to
some degree of pattern-recognition, such as that which I will describe for
coalescing binaries in the next section. But it is unlikely that ringdown radiation
will substantially improve the signal-to-noise ratio of a collapse burst, since it is
damped out very quickly. Some simplified models of non-axisymmetric collapse
(e.g. Ipser and Managan, 1984) suggest that if angular momentum dominates and
non-axisymmetric instabilities deform the collapsing object into a tumbling
tri-axial shape, then a considerable part of the radiation will come out at a single
slowly changing frequency. If future three-dimensional numerical simulations of
collapse bear this out, then this would also be a candidate for pattern-matching.
But one must bear in mind that even if we have good predictions of waveforms
from simulations, there will be an intrinsic uncertainty due to our complete lack
of knowledge of the initial conditions we might expect in a collapse, particularly
regarding the angular momentum of the core. So it is not yet clear whether
collapses will ever be easier to see than the time—series threshold criteria
described next would indicate.

(i) Simple threshold criteria

The idea of setting thresholds is to exclude ‘false alarms’ — apparent events that
are generated by the detector noise. Thresholds are set at a level which will
guarantee that any collection of events above the threshold will be free from
contamination from false alarms at some level. The ‘guarantee’ is of course only
statistical, and it relies on understanding the noise characteristics of the detector.
I will assume here that the noise is Gaussian and white over the observing
bandwidth.

This should be a good first approximation, but there are at least two important
refinements: first, detector noise is frequency-dependent, and when we consider
coalescing binaries this will be important; and second, we must allow for unmodelled
sources of noise that will occasionally produce large-amplitude ‘events’ in
individual detectors.

This latter noise can be eliminated by demanding coincident observations in
other detectors, provided we assume that it is independent of noise in the other
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detectors and that it is not Gaussian, in particular that there are fewer
low-amplitude noise events for a given number of large-amplitude ones than we
would expect of a Gaussian distribution. This implies that the cross-correlated
noise between detectors will be dominated by the Gaussian component. These
assumptions are usually made in data analysis, but it is important to check them
as far as possible in a given set of data.

Thresholds for single detectors Assuming that the noise amplitude n in any
sampled point has a Gaussian distribution with zero mean and standard deviation
o, the probability that its absolute value will exceed a threshold T (an event that
we call a ‘false alarm’ relative to the threshold T) is
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In the asymptotic approximation given by the second equality, the first term gives
10% accuracy for T >3.20, and the first two terms give similar accuracy for
T >2.50. If we want the expected number of false alarms to be one in N, data
points, then we must choose T such that

p(in|>T) = 1/Ny,. (16.2)

This is a straightforward transcendental equation to solve. For example, if we
imagine looking for supernova bursts of a typical duration of 1 ms, then we might
be sampling the noise in the output effectively 1000 times per second. (If we want
to reconstruct the waveform we might use the data at its raw sampled rate, say
4 kHz; but this would require a larger signal-to-noise ratio than simple detection,
for which we could use the data sampled at or averaged over | ms intervals.) If
we wish no more than one false alarm per year, then we must choose T = 6.60.

Thresholds for multiple detectors If we have two detectors, with independent
noise but located on the same site, then we can dig deeper into the noise by
accepting only coincidences, which occur when both detectors simultaneously
cross their respective thresholds 7, and 7. Given noise levels o, and o>,
respectively, the criterion for the threshold is

p(Inl1>T)p(ln] > T5) = 1/ Ny, (16.3)

For two identical detectors (o, = 0,), each making 1000 observations per second,
the threshold T needs to be set at only 4.50, to give one false alarm per year.
Similarly, three identical detectors on the same site require T = 3.60 and four can
be set at T = 3.00. The improvement from two to four detectors is a factor of 1.5
in sensitivity, or a factor of three in the volume of space that can be surveyed,
and hence a similar improvement in the expected event rate. This favourable
cost/benefit ratio — in this case, a factor of three improvement in event rate for a
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Table 16.1. Thresholds (in units of o) for various arravs and false-alarm probabilities.

Number of False-alarm probability

detectors 1/3 x 10" 1/1.5x 10" 1/6 x 10" 1/3 x 10"
1 6.63 7.19 7.37 7.88

2 4.53 4.93 5.06 5.43

3 3.59 3.92 4.03 4.33

4 3.03 3.31 3.41 3.67

factor of two increase in expenditure —is characteristic of networks of gravita-
tional wave detectors, and indeed of any astronomical detector network whose
sensitivity is limited by internal noise uncorrelated between instruments. In table
16.1 appropriate thresholds for a number of possible computer arrays and
interesting false-alarm probabilities are given. (The last two columns are relevant
to coalescing binaries, as discussed later.) The detectors are assumed to be
identical. Notice that the thresholds are relatively insensitive to the false-alarm
probability, since we arce far out on the Gaussian tail. Thresholds are given in
units of o, the r.m.s. noise amplitude.

(ii) Threshold criteria with time delays

I have qualified the discussion of multiple detectors so far by demanding that they
be on the same site; the reason is that if they are separated, then allowing for the
possible time delay between the arrival of a true signal in different detectors
opens up a larger window of time in which noise can masquerade as signal.
Suppose that two detectors are separated by such a distance that the maximum
time delay between them is W measurement intervals. (For example, Glasgow
and California are separated by about 25 ms, which we take to be effectively +25
measurement intervals for collapse events. This gives a total window size of 50
measurements.) Then in equation (16.3), the appropriate probability to use on
the right-hand side is 1/N,../W, since each possible ‘event’ in one detector must
be compared with W possible coincident ones in the other.

In table 16.1, the second and fourth columns of thresholds correspond to
talse-alarm probabilities that are one-fiftieth of the first and third columns,
respectively. For two identical detectors, this ‘typical’ window W = 50 raises the
threshold T from 4.530 to 4.930. This is a 9% decrease in sensitivity, or a 29%
decrease in the volume of space that can be surveyed.

For three detectors, the situation begins to get more complex: as we will see
later, if three detectors see an event that lasts considerably longer than their
resolution time, there is a self-consistency check which may be used to reject
spurious coincidences. (The check is that three detectors can determine the
direction to the source, which must of course remain constant during the event.)
For four detectors, even a few resolution times are enough to apply 2
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self-consistency check. In principle, the quantitative effect of these corrections
will depend on the signal-to-noise ratio of the event, since strong events can be
checked for consistency more rigorously than weak events. But the level of the
threshold in turn will determine the minimum signal-to-noise ratio. A full study of
this problem has not yet been made, and can probably only be undertaken in the
light of a more thorough investigation of the signal-reconstruction probiem (see
section 16.5).

16.2.2 Extracting coalescing binary signals

Coalescing binaries are good examples of the type of signal that will probably
only be seen by applying pattern-matching techniques: the raw amplitude from
even the nearest likely source will be below the level of broad-band noise in the
detector. Nevertheless, the signal is so predictable that interferometers should be
able to see such systems ten times or more as distant as collapsed sources. We will
see that the signal depends on two parameters, so when we discuss the
coincidence problem from the point of view of pattern-matching, we will have to
consider the added uncertainty caused by this.

(i) The coalescing binary waveform

The amplitude of the radiation from a coalescing binary depends on the masses of
the stars and the frequency f of the radiation, which together determine how far
apart the stars arc. It is usual to assume that the stars arc in circuiar orbits. This is
a safe assumption if the binary system has existed in its present form long enough
for its orbit to have shrunk substantially, since the timescale for the loss of
eccentricity, e/é, is 2/3 of the similar timescale for the decrease of the semimajor
axis a. If the binary has only recently been formed, ¢.g. by tidal capture in a
dense star cluster, then more general waveforms can be expected. This
complication will not be treated here.

Amplitude The model assumes point particles in a Newtonian orbit, with energy
dissipation due to quadrupolar gravitational radiation reaction; corrections to this
are discussed briefly below. The radiation amplitude when the radiation fre-
quency is f is given by the function:

2/3

MNP f 100 Mpc
(f)=2.6x% 0“23( ( ) )
Ailf) ! M@) 100 Hz) ( r ) (16.4)

where . is what I shall call the mass parameter of the binary system. defined for a
system consisting of stars of masses m, and m, by the equation

M=m"m¥?(m, +m-)'", (16.3)
or equivalently by the more transparent formula,

A = uM3, (16.6)
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where u is the usual reduced mass and My the total mass of the system. A system
consisting of two 1.4M,, stars has 4 = 1.22M.,.

The numerical value of A,(f) is actually the maximum observable value of the
amplitude which one obtains when the system is viewed down the axis of its
angular momentum. One must insert angular factors in front of the expression to
get the wave amplitude in other directions. If one averages over these angular
factors and over the angular factors that describe the antenna pattern of an
interferometer, one obtains an effective mean amplitude only 2/5 of the maximum
(Kroiak, 1989; Thorne, 1987).

Frequency The binary’s orbital period changes as gravitational waves extract
energy from the system. The frequency of the radiation is twice the orbital
frequency, and its rate of change is

df ‘/“ 5/3 f 11/3
—=13( ) ( ) -t 16.
dr m.) \loomz) S (16.7)

The maximum wave amplitude we expect, therefore, has the time-dependence

Heoax(t) = ALLF(0)] c05<2:r f’f(t’) de’ + d)) , (16.8)

where ¢, ts an arbitrarily defined ‘arrival time’, at which the signal reaches the
frequency f,, and @ is the signal’s phase at time ¢,. This depends on where in their
orbits the stars are when the frequency reaches f,. The amplitude increases slowly
with the frequency-dependence of A,,.

Doing the frequency integral explicitly gives

f(t)=100Hz x [(10({“}&)%3 - 0.33(%)”([ 1_5’“)}4/8. (16.9)

The phase integral is then

—5/3

2 ff(r')dz' =3ooo(ﬁ”;)

lam) - llit) oG (5] aow

Putting this into equation (16.8) for A, (?) gives the desired formula, which we
will use in the next section.

Notice that coalescence in the two-point-particle model occurs when f = «. For
a system whose radiation is at frequency f, the remaining lifetime until this occurs
is

)

Teoul(f) = 3-0(ﬂ)_m( 100 Hz

16.11
M, (16.11)

This is 3/8 of the formal timescale f/f deducible from equation (16.7). Of course.
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for realistic stars the Newtonian point-particle approximation breaks down before
this time, but if the stars are neutron stars or solar-mass black holes, corrections
need be made only in the last second or less. Corrections due to post-Newtonian
effects are the first to become important in this case, followed by tidal and
mass-transfer effects. These have been considered in detail by Krolak (1989) and
Krolak and Schutz (1987). If at least one of the stars is a white dwarf, tidal
corrections will become important when T, is still 1000 years or so, and f is tens
of millihertz; the system would only be observable from space (Evans, Iben and
Smarr, 1987).

Fourier transform of the coalescing binary signal We shall need below not only
the waveform h(f), but also its Fourier transform. We shall denote the Fourier
transform of any function g(¢) by g(f), given by

§(f)= f_ g(t)e ™ dr. (16.12)

Provided that the frequency of the coalescing binary signal is changing relatively
slowly (i.e., that T, > 1/f), the method of stationary phase can be used to
approximate the transform of h,,,.(¢), A ax(f) (Dhurandhar, Schutz and Watkins,
1990; Thorne, 1987). We shall only need its magnitude,

M)”“( f )_7”’<1()()Mpc>Hv‘ 1613
M,/ \100Hz r 2. (16.13)

Vo)l = 3.7 % 10*24(

This gives good agreement with the results of some numerical integrations
performed by Schutz (1986). We shall use it in the following sections.

(i) The mathematics of matched filtering: finding the signal

Matched filtering is a linear pattern-matching technique designed to extract
signals from noise. For references on the theory outlined in this and subsequent
sections, the reader may consult a number of books on signal analysis, such as
Srinath and Rajasekaran (1979).

Describing the noise To use matched filtering we have first to define some
properties of the noise, n(f). We expect that n(r) will be a random variable, and
we use angle brackets { ) to denote expectation values of functions of this noise.
It is usually more convenient to deal with the noise as a function of frequency, as
described by its Fourier transform A(f). We shall assume that the noise has zero
mean,

(n()) = {a(f)) =0.
We shall also assume that the noise is stationary, i.e. that its statistical properties

are independent of time. Then the spectral density of (amplitude) noise S(f) is
defined by the equation

AHr=(f) =SHo(f -1, (16.14)
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where a * denotes complex conjugation. This says two things: (i) the noise at
different frequencies is uncorrelated; and (ii) the autocorrelation of the noise at a
single frequency has variances S(f), apart from the normalization provided by
the delta function, which arises essentially because our formalism assumes that
the noise stream is infinite in duration. (Texts on signal processing often define
S(f) in terms of a normalized Fourier transform of the autocorrelation function
of a discretely sampled time-series of noise n,(t). The continuous limit of this
definition is equivalent to ours.) Since n(t) is real. S(f) is real and an even
function of f.

Noise in an interferometer White noise has a constant spectrum. which means
that S(f) is independent of f. Interferometers have many sources of noise. as
described in chapter 11 by W. Winkler in this volume or by Thorne (1987). In this
treatment we will consider only two: shot noise. which limits the sensitivity of a
detector at most frequencies: and seismic noise, which is idealized as a “barrier’
that makes a lower cutoff on the sensitivity of the detector at a frequency f..

The shot noise is intrinsically white (that is, as a nois¢ on the photodetector),
but — depending on the configuration of the detector — the detector’s sensitivity
to gravitational waves depends on frequency, so the relevant noise is the photon
white noise divided by the frequency response of the detector (called its transfer
function). We denote this “gravitational wave’ spectral density by $,(/). T will
assume that the detector is in the standard recycling configuration, so that
(allowing for the seismic cutoft) we have

L, . o e o
$,(f) = Eof(f,\)[l + (f/f)7) for f=>f. (16.15)
x for f<f '

Here f, is the so-called ‘knee’ frequency, which may be chosen by the
experimenter when recycling is implemented, and o,(f;) is the standard deviation
of the frequency-domain noise at f,.

In the usual discussions of source strength vs. detector noise (e.g. Thorne,
1987). what is taken to be the detector noise as a function of frequency fis o;(f),
not [S,(f)]'? because it is assumed in those discussions that the knee frequency
f. will be optimized by the experimenter for the particular range of frequencies
being studied, so that o, is representative of the noise that the experimenter
would encounter. Later in this section we will see that the optimum value of f; for
observing coalescing binaries is 1.44f,.

The matched filtering theorem Now, the fundamental theorem we need in order
to extract the signal from the noise is the matched filtering theorem. If we have a
signal h(t) buried in noise n(t), so that the output of our detector is

o(t)=h(t) +n(),
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and if the Fourier transform of the signal is h(f). then any stationary, linear
operation on the output can be expressed as a correlation with a filter q(t):

c(y=(0°q)1)

=f o(tYg(t' + ) dr’ (16.16)

= snarpeay (16.17)

The expectation value of the output c(t) of the filter is the filter’s signal,

(c(r)) = (h > q)(0). (16.18)

The noise that passes through the filter is Gaussian if n(r) is Gaussian, and its
variance is

ety = (cun Py = [ St 1agr s (16.19)
This gives a ‘raw’ signal-to-noisc ratio of
(h o g)(1)
|| sianrar]

. (16.20)

3=
N =

The idea of matching the filter to the signal comes from finding the filter ¢(¢) that
maximizes this signal-to-noise ratio. It is not difficult to show that the optimal
choice of filter for detecting the signal A(t) is

g f)=kh(f)/S.(f). (16.21)

where k is any constant. With this filter, if the output contains a signal, then ¢(f)
will reach a maximum at a time ¢ that corresponds to the time in the output
stream at which the signal reaches the point ' =0 in the waveform h(¢'). Of
course, noise will distort the form of c(¢), but the expected amplitude signal-to-
noise ratio S/N in ¢(¢) (ratio of maximum value to the standard deviation of the
noise) is given by the key equation

(3} <[ ok
Nope o Su(f)
This is the largest S/N achievable with a linear filter. Moreover, given a
waveform h(t) that one wants to look for, and given a seismic cutoff frequency f,,
one can ask what value of the knee frequency f, one should take in §,(f) in
equation (16.22) to maximize S/N. For coalescing binaries, one can use the

explicit expression for h(f) given in equation (16.13) to show that this value, as
mentioned earlier, 1s (Krolak, 1989; Thorne, 1987)

(fk)opl = 144f;

df. (16.22)
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Thresholds for the detection of coalescing binaries Naturally, in a real experi-
ment one does not know if a signal is present or not. One then uses the size of
S/N to decide on the likelihood of the correlation being the result of noise. A
widely used criterion is the Neyman—Pearson test of significance (Davis, 1989),
based on the likelihood ratio, defined as the ratio of the probability that the signal
is present to the probability that the signal is absent (false alarm). If the noise is
Gaussian, then the Neyman-Pearson ‘best’ criterion is just to calculate the
chance of false alarm in the matched filter given by equation (16.21), exactly as
described in section 16.2.1(i) with x/o replaced by S/N.

Searches for coalescing binaries can therefore be carried out by applying
threshold criteria to the correlations produced by filtering. The false-alarm
probabilities for detecting a coalescing binary have to be calculated with some
care, however, because we must allow for the fact that we have in general to
apply many independent filters, for different values of the mass parameter .#, and
this increases the chance of a false alarm. I will consider the necessary corrections
in section 16.2.2(111) below.

Determining the time-of-arrival of the signal It is important for gravitational
wave experiments that, by filtering the data stream, one not only determines the
presence of a signal. but one also fixes its ‘time-of-arrival’, defined as the time t,,,
at which the signal reaches the ' =0 point in the filter h(t"). The standard
deviation in the measurement of ¢, is ¢,,.. which is given by an equation similar
to equation (16.22) (Dhurandhar, Schutz and Watkins, 1990; Srinath and
Rajasekaran, 1979):

; Kfm—(f)rdf, (16.23)

1 " JR()

=2 LaS)l df =8z
ot o Su(f) o S(f)

where l;(f) is the Fourier transform of the time derivative of h(r). If either the

signal or the detector’s sensitivity is narrow-band about a frequency f,, then a

reasonable approximation to equation (16.23) is

1 1

oty =———, .24
2xf, SIN (16.24)

where S/N is the optimum signal-to-noise ratio as computed from equation
(16.22). This is a good approximation as long as S/N is reasonably large
compared to unity. If we use equation (16.13) for i(f) then it is not hard to show
that, for coalescing binaries (Dhurandhar, Schutz and Watkins, 1990)

100 Hzy 1
7 Z)——ms. (16.25)

S/IN
For example, if the signal-to-noise ratio is 7 (the smallest for detection by a single
detector) and the seismic limit is 100 Hz, then the timing accuracy would be
0.1 ms. If the signal-to-noise is as high as 30. which could occur a few times per

0Ty = 0.84(
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year (see below), then the signal could be timed to 30 us. Considering that the
time it takes the wave to travel from one detector to another will typically be
15-20 ms, this timing accuracy would translate into good directional information.
I will explain below how this can be done.

However, in practice it will turn out that these numbers are too optimistic,
perhaps by a factor of two. The reason is that one needs to determine other
parameters as well from the signal, such as the mass parameter # and the phase.
The errors in these parameters correlate, with the result that or,, is affected by,
for example, 4. Schutz (1986) has shown numerically that a small change in the
mass parameter can masquerade as a displacement in the time-of-arrival of the
signal. This effect will have to be quantified before realistic estimates of the
timing accuracy can be made.

Another serious source of error in timing has been stressed by Alberto Lobo
(private communication). As is apparent in the calculations of Schutz (1986),
when a waveform has a frequency that changes only slowly with time, there can
be an ambiguity in the identification of the peak in the correlation that gives the
correct time-of-arrival. This is because a shift of the filter by one cycle relative to
the waveform will not degrade the correlation much if the frequency is roughly
constant. Our timing accuracy formula gives in some sense the width of the
correlation peak, but the spacing between peaks is much larger, of order 1/f, for
coalescing binaries. Unless the signal-to-noise ratio is high enough to permit
reliable discrimination between peaks, this may be the dominant timing error. It
is possible that cross-correlation between detectors will still be able to give correct
time delays, as in section 16.4.2 below, but this remains to be investigated.

It may seem paradoxical that, if detector physicists succeed in lowering the
seismic barrier to, say, 50 Hz, the arrival-time-resolution given by equation
(16.24) appears to get worse as f,'! This is not a real worsening, of course: the
increase in §/N due to the lower seismic cutoff (gaining as f,7° if f, remains
optimized to f;) more than compensates the 1/f, factor. and the timing accuracy
improves.

Implications for the sampling rate In practice, one only samples the data stream
at a finite rate, not continuously. It is clear from equation (16.22) that one must
sample at least as fast as is required to determine A(f) at all frequencies that
contribute significantly to the integral for the optimum signal-to-noise ratio: at
least twice as fast as the largest required frequency in A(f). For the coalescing
binary, whose transform is given approximately by equation (16.13), the power
spectrum |A(f)}? falls off as f =7, and the recycling shot noise multiplies a further
factor of f 2 into this. Thus, when f rises to, say, four times f,, the integrand in
equation (16.22) will have fallen off to about 0.005 of its value at f.. Truncating
the integration here should be enough to guarantee that the filter comes within
1% of the optimum signal-to-noise ratio. This would require a sampling rate of
8f., or 800 Hz if we take f, = 100 Hz.
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Similar but more stringent requirements apply if one wants good timing. If the
sampling rate is smaller than twice the largest frequency at which the integrand in
equation (16.23) contributes significantly, then in the numerical calculation the
arrival time accuracy will be worse than optimum. This is an important lesson: in
choosing one’s sampling speed one should ensure that one can get good accuracy in
equation (16.23), whose integrand falls off less rapidly with frequency than that of
equation (16.22). If one does sample at an adequate rate. then it is possible to
determine the time-of-arrival of a signal to much greater precision than the
sampling time, provided the signal-to-noise ratio is much greater than unity. (See,
for example, the numerical experiments reported by Gursel and Tinto, 1989.) For
a coalescing binary, taking timing accuracy into account does not significantly
increase the sampling rate over that required for a good signal-to-noise ratio.

Determining the parameters of the waveform Naively, one might expect that by
performing filtering of the incoming data strcam with many independent filters,
one would just identify the filter that gives the best correlation with the signal and
then infer the mass parameter, phase, amplitude, and time-of-arrival from that. It
is possible to do better than this, however, using these values as a starting point.
This is called non-lincar filtering, and therc are many possible ways to proceed.
For our problem, one of the most attractive is the Kallianpur—Striebel (KS) filter,
described by Davis (1989). Rather than reproduce Davis’s clear discussion of this
method, I will simply refer the reader to his article and to the M.Sc. thesis of
Pasetti (1987), which is the first attempt to design a numerical system capable of
detecting coalescing binary signals and estimating their parameters. Pasetti gives
listings of his computer programs and tests them on simulated data.

(iii) Threshold criteria for filtered signals

Number of filters needed When searching a data stream for coalescing binary
signals, we cannot presume ahead of time that we know what the mass parameter
A will be: not all neutron stars may have mass 1.4M,,, and some binaries may
contain black holes of mass 15 or 20M,.,. We therefore will have to filter the data
with a family of filters with .# running through the range. say, 0.25-30M,,.

How many filters should there be? This question has not yet received enough
study. The calculations of Dhurandhar, Schutz and Watkins (1991) show that two
filters with mass parameters differing by a few per cent have significantly reduced
correlation, so the filters in the family should not be more widely spaced than
this. However, it is not known whether they should be more closely spaced, to
avoid missing weak signals. If we take successive filters to have mass parameters
that increase by 1% at each step, then we need about 500 filters to span the range
(0.25, 30) in .

However, there is also another parameter in the filter, equation (16.8): the
phase @, about which I have so far said little. When the wave arrives at the
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detector with frequency £, so that it is just becoming detectable, its phase may be
anything: this depends on the binary’s history. Filters with different phases must
therefore be used. Inspection of equation (16.8) reveals that the phase is a
constant within the cosine term for the duration of the signal. It follows that only
two filters with different phases will suffice to determine the phase and amplitude
of the signal on the assumption of a given mass parameter. For convenience one
might choose ® =0 and ® = /2. This increases the number of filters to about
1000. In section 16.2.2(v) we will look at the computing demands that this
filtering makes on the data analysis system. In the present section we shall
consider the signal-to-noise implications.

Effective sampling rate First it will be necessary to establish what the filtering
equivalent of the sampling rate is, so that we can calculate the probability of, say.
one false alarm per year. In our original calculation of the false-alarm probability,
the sampling rate told us how many independent data points there were per year.,
on the assumption of white noise, which meant that each data point was
statistically independent, no matter how rapidly samples were taken. In the
present case, the output of the filter is the correlation given in equation (16.16). It
has noisc in it, but the noise is no longer white, having been filtered. The key
number that we want here is the ‘decorrelation time’, defined as the time interval
7, between successive applications of the filter that will ensure that the outputs of
the two filters are statistically independent. The analogue here of the sampling
rate in the burst problem is 1/7,, which [ will call the effective sampling rate. This
is the rate at which successive independent data points arrive from each filter.
To develop a criterion for statistical independence, we consider the autocor-
relation function of the filter output when the detector output o(t) is pure noise

n(t):
a(r) = f c(te(t + 1) de (16.26)

We shall take the decorrelation time to be the time 7, such that a(t) is small for all
7> 1,. We can learn what this is by noting that it is not hard to show that the
Fourier transform of a(t) is, when the optimal filter given in equation (16.21) is
used,

lA(H)I?
Su(f)

For coalescing binaries, we have already discussed some of the properties of this
function in section 16.2.2(ii). It is strongly peaked near f, and in particular the
seismic barrier cuts it off rapidly below f,. It follows that for times 7>>1/f the
autocorrelation function is nearly zero: the effective sampling rate is about f,. To
play it safe, we will work with a rate twice this large. or an effective sampling time
of 0.005s. This gives effectively 6 x 10 samples - statistically independent filter
outputs — per year.

a(f)=

(16.27)
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Thresholds for coalescing binary filters Now, assuming that the noise js
Gaussian, the calculation of the false-alarm probability for any size network looks
similar to our earlier one in section 16.2.1(ii). What we have to allow for is that
there will be some 1000 independent filters, each of which could give a false
alarm. Of course, the false alarm occurs only if cach detector registers an event in
the same filter, so it is like doing 1000 independent experiments with no filter at
all and a sampling time of 0.005 s, or onc experiment with no filter and a sampling
time of 5 X 10™°s. This increases the number of points by a factor of 200 over the
number we used in section 16.2.1(i), but this factor makes only a modest
difference in the level of the thresholds. For cxample, for one faise alarm per
year. and no correction for time-delay windows, the thresholds are: for one
detector, 7.4; for two, 5.1; for three, 4.0; and for four, 3.4. For example, the
three-detector threshold is 12% higher than for unfiltered data taken at 1 kHz.
For further details see table 16.1.

These figures should not be taken as graven in stone: they illustrate the
consequences of a particular set of assumptions. A better calculation of the noise
properties of the filters is needed, and in any casc one will have to ensure that the
detector noise really obeys the statistics we have assumed.

(iv) Two ways of looking at the improvement matched filtering brings

The discussion of matched filtering so far has been fairly technical, with the
emphasis on making reliable and precise cstimates of the achievable signal-to-
noise ratios and timing accuracy. In this scction I will change the approach and
try to develop approximate but instructive ways of looking at the business of
matched filtering. The idea is to understand how matched filtering improves the
sensitivity of an interferometer beyond its sensitivity to wide-band bursts. We will
look at two points of view: comparing the sensitivity of the detector to
broad-band and narrow-band signals that have cither (i) the same amplitude or
(i1) the same total energy.

Improving the visibility of signals of a given amplitude Let us consider two
signals of the same amplitude k, one of which is a broad-band burst of radiation
centred at f, and the other of which is a rclatively narrow-band signal with n
cycles at roughly the frequency f,. The signals are observed with different
recycling detectors optimized at their respective frequencies, f, and f;, possibly
contained in the same detector system, as is cnvisioned in some present designs.
The broad-band signal has

B |h</)|~
N2, s,,(/)
2 _
~ h( 2d
| ’ 5
~ h(t)|”de. 16.28)
of_ij ) (
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Now, the integrand in equation (16.28) for a burst lasts typically only for a time
1/f,, so we have

<%)hh A —.0,-(;:)f(',/2 . (16.29)

For the narrow-band signal, we obtain again equation (16.28), but with f,
replaced by f;. Now, however, the signal lasts n cycles, a time n/f,. This leads

immediately to
S hn'?
<N> hzm. (16.3())

Comparing equations (16.29) and (16.30), we see that a narrow-band signal has
an advantage of n'"? over a burst of the same amplitude and frequency, provided
we have enough understanding of the signal to use matched filtering™.

For the coalescing binary one may approximate n by f?/f, and this can be large
(of order 200). Coalescing binaries gain further when compared to supernova
bursts because of their lower frequency: because o, depends on fas f'*, there is a
further gain of a factor of f,/f,, which can be 7 or so. Therefore, a coalescing
binary signal might have something like 100 times the §/N of a supernova burst of
the same amplitude! This exaggerates somewhat the advantage that coalescing
binaries have as a potential source of gravitational waves, since their intrinsic
amplitudes may be smaller than those from supernovae, but it does show why
they are such interesting sources.

Improving the visibility of signals of a given energy The other way of looking at
filtering is in terms of energy. This is very instructive, because it shows ‘why’
matched filtering works. We have just seen that a narrow-band signal with n
cycles has a higher S/N than a broad-band burst of one cycle that has the same
amplitude and frequency, by a factor of n'?. But the energy in the narrow-band
signal is n times that in the burst. This is because the energy flux in a gravitational
wave is

4c?
9.wx———h2 2 16.31
w8 f ( )

and thus the total energy E in a signal passing through a detector during the time
n/f that the burst lasts is given by the proportionality

E xh*fX(n/f) = nfh™.
If we solve this expression for nhA* and put it into equation (16.30), we find
S EI/Z
2« '
N for(f)

(16.32)

* For this reason, plots of burst sensitivity for broadband detectors. such as one finds in
Thorne (1987), typically plot the effective amplitude hn'” of a signal, rather than just h.
This allows one to compare supernova bursts and coalescing binary signals on the same
graph.
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Since this is independent of n, it applies to broad-band and narrow-band signals
equally. It shows that if two signals send the same total energy through an
interferometric detector, and if they have the same frequency. then they will have
the same signal-to-noise ratio, again provided we have enough information to do
the matched filtering where necessary.

This provides a somewhat more realistic comparison of coalescing binaries and
supernovae, since a coalescing binary radiates a substantial amount of energy in
gravitational waves, of the order of 0.01M.. This is similar to the energy one
might expect from a moderate to strong gravitational collapse. The advantage
that coalescing binaries have is that they emit their energy at a lower frequency.
The factor of fo, = f** in equation (16.32) gives them an advantage of a factor of
roughly 20 over a collapse generating the same energy at the same distance. If
laser interferometric detectors achieve a broad-band sensitivity of 107, as
current designs suggest will be possible, then they will be able to see moderate
supernovae as far away as 50 Mpc. This volume includes several starburst
galaxies, where the supernova rate may be much higher than average. They will
therefore also be able to see coalescing binaries at distances approaching 1 Gpe.

(v) The technology of real-time filtering

Basic requirements In this section I will discuss the technical feasibility of
performing matched filtering on a data stream in ‘real time’, i.e. keeping up with
the data as it comes out of a detector. Since coalescing binaries seem to make the
most stringent demands, I will take them as fixing the requirements of the
computing system. We have seen that we need a data stream sampled at a rate of
about 1 kHz in order to obtain the best §/N and timing information, so [ will use
this data rate to discover the minimum requirecments. [t is likely that the actual
sampling rates used in the experiments will be much higher, but they can easily be
filtered down to | kHz before being analysed. If the seismic cutoff is 100 Hz, then
the duration of the signal, at least until tidal or post-Newtoman effects become
important, will be less than 2s in almost all cases. This means that a filter need
have no more than about 2000 2-byte data points.

The quickest way of doing the correlations necessary for filtering is to use fast
Fourier transforms (FFTs) to transform the filter and signal, multiply the signal
transform by the complex conjugate of the filter transform, and invert the product
to find the correlation. The correlation can then be tested for places where it
exceeds pre-set thresholds, and the resulting candidate events can be subjected to
further analysis later. This further analysis might involve: finding the best value of
the mass parameter and phase parameter; filtering with filters matched to the
post-Newtonian waveform to find other parameters that could determine the
individual masses of the stars; looking for unmodelled effects, such as tides or
mass transfer; looking for the final burst of gravitational radiation as the two stars
coalesce; and of course processing lists of these events for comparison with the
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outputs of other detectors. Since the number of significant events is likely to be
relatively small, the most demanding aspect of this scenario is likely to be the
initial correlation with 1000 coalescing binary filters.

Discrete correlations One way the processing might be done is as follows. The
discrete correlation between a data set containing the N values {d,, j=
0,...,N—1} and a filter containing the N values {h, k=0,..., N—1} is
usually given by the circular correlation formula:

N—-1
c=(doh) =2 dh  k=0,...,N—1, (16.33)

j=0

where we extend the filter by making it periodic:
hj+N = h, V]

The circular correlation formula has a danger, because the data set and filter are
not really periodic. In practice, this means that we should make the data set much
longer than the (non-zero part of the) filter, so that only when the filter is ‘split’
between the beginning and the end of the data set does the circular correiation
give the wrong answer. Thus, even if each filter requires only N,, = 2000 points, it
1s more efficient to split the data set up into segments of length N >> N, points,
and to use a filter which has formally the same length, but the first N — N, of
whose elements are zero. (I am grateful to Harry Ward for stressing the need to
pay attention to this point.) The ‘padding’ by zeros ensures that the periodicity of
h corrupts only the last N, elements of the correlation. This can be rectified by
forgetting these elements and beginning the next data segment N, elements
before the end of the previous one: this overlap ensures that the first N, elements
of the next correlation replace the corrupt elements of the previous one with
correct values. Since this procedure involves filtering some parts of the data set
twice, it is desirable to make it a small fraction of the set, namely to make N,
small compared to N. This efficiency consideration is, however. balanced by the
extra numerical work required to calculate long correlations, increasing as In N.
This arises as follows.

Correlation by FFT The fastest way to do long correlations on a general-
purpose computer is to use Fourler transforms (or related Hartley transforms).

For a discrete data set {d,j=1,..., N—1} the discrete (circular) Fourier
transform (DFT) is the set {d,, k=1,..., N —1)} given by

- N_l L.

dp= 2 de >, (16.34)

j=0
whose inverse is

de>™ N, (16.35)
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Then the discrete version of the convolution theorem equation (16.17) is as
follows. Given the (circular) correlation {c;} of two sets {d,} and {h;} as in
equation (16.33), its DFT is

¢ =(dy)*h,, (16.36)

where an asterisk denotes complex conjugation.

Fast Fourier transform (FFT) algorithms may require typically 3N log, N real
floating-point operations (additions and multiplications) to compute the transform
of a set of N real elements, provided N is an integer power of two (which can
usually be arranged). (I neglect overheads due to integer arithmetic concerned
with the index manipulations in such routines and, possibly significantly, memory
access overheads.) To compute the correlation of two such sets, then, would
require three transforms - two to produce d, and A, and a third to invert the
product ¢, — and the multiplication of the two original transforms, giving a total
of 9N log, N + 4N real floating-point operations. This is to be compared with the
2N* — N operations required to calculate the correlation directly from equation
(16.33). As long as N =16 it will be quicker to use FFTs.

In practice, one would compute once and store the DFT of all M filters, so that
in real time the data would have to be transtormed only once, and then M
products of data and filter calculated and inverse-transformed. This would require
IN(M + 1) log, N + 4NM floating-point operations.

Optimal length of a data set We must now remind ourselves that in order to
achieve the economies of the FFT algorithm, we must use the circular correlation,
which has an extra cost associated with the overlaps we are required to take in
successive data sets. For a given filter length (say N, <N non-zero points in the
filter time-series), we can reduce the fractional size of these overlaps by making N
larger, but this increases the cost of the FFT logarithmically in N. Is there an
optimum ratio N;/N? The total cost of analysing a data set containing a very large
number N, >> N of elements, split up into segments of length N is
Npptops = Do [BN(M + 1) log, N + 4NM|.
pt ops N — Nf 2

We want to minimize this with respect to variations in N holding N; and M (the
number of filters) fixed. It is more convenient to introduce the varible x = N;/N,
which measures the fractional overlap of successive data sets. In terms of x the
expression is:

No
Nﬂ-p( ops(x) = ﬁ

N,
[3(/\4 +1) logz——f+4M]. (16.37)
x
As long as the number of filters M is large. the optimum x will be independent of
M: it will depend only on N, the ‘true’ length of the filter. This is illustrated in
table 16.2, which gives x and Ny, ops/NiM, the number of floating-point
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Table 16.2. The consequences of various strategies for applying
filters of ‘true’ length Ny, padded out with zeros to a length N,
to very long data sets. See text, especially equation (16.37), for

details.

Nf N X Nﬂ-p( np_\/leM
1000 2! 0.488 72
1000 212 0.244 53
1000 21 0.122 49
1000 2 0.061 49
1000 21 0.031 50
2000 212 0.488 78
2000 2 0.244 57
2000 2 0.122 52
2000 21 0.061 52
2000 20 0.031 54

operations per data point per filter, as required by various strategies, always
taking N, to be an integer power of two.

If we take N, to be 2000, then the optimum x is 0.057; if N, = 1000 then the best
x is 0.061. But the minimum in Ny, is a flat one, and one can increase the
value of x quite a bit without compromising speed. This is important, because
each stored filter transform must contain N points, so the larger we make x, the
smaller will be our core memory requirements. From this it is clear that choosing
an overlap between successive data sets of around 25% gives a CPU demand that
is only slightly higher than optimum and reduces storage requirements to a
minimum.

Demands on computing power Based on these calculations, and assuming a data
rate of 1000 2-byte samples per second with a 2s filter length (N;=2000), it
follows that doing 1000 filters in real time requires a computer capable of
60 Mflops (where 1 Mflop is 10° floating-point operations per second), and storage
for 1000 filters, each of length 16 kbytes. This is within the capabilities of
present-day inexpensive (<$100k) workstations with add-on array-processors, or
of stand-alone arrays of transputers or other fast microprocessors. In five years it
should be trivial.

There are many possible ways to speed up the calculation if CPU rates are a
problem. It may be that special-purpose digital-signal-processing chips would be
faster than general-purpose microprocessors for this problem. It might be possible
to do the calculation in block-integer format rather than floating-point, with filters
that consist of crude steps rather than accurate representations of the waveform
(Dewey, 1986). These should be analysed further. Another possible CPU-saver is
described in the next section.



426 16 Data processing, analysis and storage

(vi) Smith’s interpolation method for coalescing binaries

A different way of looking at coalescing binary signals An alternative strategy
for coalescing binaries has been proposed and implemented by Smith (1987). This
interesting idea is based upon the following observation: if two coalescing systems
of different mass parameters happen to have the same time of coalescence, then
their signals’ frequencies will remain strictly proportional to one another right up
to the moment of coalescence. This follows from the fact that df/dr is
proportional to a power of f, so that, as remarked after equation (16.11), there is

a constant « independent of the masses such that T, = a(f/f. If two signals with
present frequencies f; and f, have the same T, then it follows that

dh_fi_f,

b £ h

Since if their times to coalescence are equal at one time then they are necessarily
equal for all later times, this equation can be integrated to give f,/f, = const.

Now suppose that the data stream is sampled at constant increments of the
phase of signal 1, i.e. it is sampled at a rate that accelerates with the frequency f;.
Then if a Fourier transform is performed on the sampled points, the signal will
appear just as pure sinusoid, allowing it to be identified without sophisticated
filtering. Moreover, and this is the key point, every other signal with the same
time to coalescence will have been sampled at constant increments of its phase as
well, since its frequency has been a constant times the first signal’s frequency. So
signals from any binary coalescing at the same time, no matter what its mass
parameter, will be exposed by the single Fourier transform. Thus, one Fourier
transform would seem to have done the work of all 1000 filters!

How much work is required? The situation is not quite that good, however,
because a signal with a different coalescence time will not be visible in the
transform of the points sampled in the manner just described. Therefore, data
must be sampled over again at the increasing rate ending at each possible time of
coalescence of the binary. If this is done, then every possible signal will be picked
up.

One way of implementing this method would be to sample the detector output
at a constant rate (e.g. 1000 Hz) and then interpolate to form the data sets that
are given to the FFT routine. (Livas, 1987, used this method to search for pulsars
in a particular direction.) If we compare this interpolation method with the
filtering described earlier, one trades the work of doing 1000 Fourier transforms
on a stretch of data for the work of interpolating many times. The actual
comparison depends on the number of operations required by the interpolation
algorithm, but in general Smith’s method with interpolation becomes more
attractive as the number of filters one must use increases.

Stroboscopic sampling Another way of implementing Smith’s method — and the
way she herself used — would be to sample the detector output very fast, say at
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10 kHz, and then to extract a data set at a slower rate (perhaps 500-1000 Hz) by
selecting from the sampled points those points closest in time to the places one
ideally would wish to sample. This is a far faster procedure than interpolating,
and it seems to me that it would not necessarily be less accurate than a simple
interpolation algorithm. I will call this stroboscopic sampling; we will meet it
again when we discuss searches for pulsars. 1 do not know of any detailed
theoretical analysis of it; in particular, one would like to understand what it does
to the noise background. One also has to be careful about aliasing problems. The

idea, at least in astronomy, seems to go back to Horowitz (1969), who devised it
for optical searches for pulsars.

Comparison with matched filtering It may well be that for 1000 filters Smith’s
method will be more efficient than filtering. However, it has at least two
significant disadvantages over filtering:

(1) It is restricted only to looking for the Newtonian coalescing binary signal:
even any corrections (such as for post-Newtonian effects) will have to be
searched for by filtering the sampled data sets, and the sets are essentially
useless in searches for other kinds of signals that we may wish to filter
from the data.

(2) Signals with the same coalescence time but different mass parameters will
enter the observing window (say, f > 100 Hz) at different times, and this
presents a possible problem that was first pointed out by Harry Ward. If
one decides to break the data stream into sets of length, say, 2-3s,
appropriate to coalescing 1.4M,, neutron stars starting at 100 Hz, then the
set will be much too long for a signal from a binary system of two 14M,,
black holes that will coalesce at the same time. The black hole system will
have frequency 24 Hz when the data set begins, and will be buried in the
low-frequency detector noise. When the data are transformed, this noise
will be included in the transform, and the signal-to-noise ratio will
accordingly be reduced. The matched filtering method does not suffer
from this drawback, since it filters out the low-frequency noise. It might
be possible to avoid this problem by pre-fiitering the data stream before it
is sampled or interpolated, removing the low-frequency noise (and
signal).

Given our present uncertainties about sources, my own prejudice is to use
filtering because of its inherent flexibility; but Smith’s method may become
important if filtering places too great demands on the computing system.

16.2.3 Looking for pulsars and other fixed-frequency sources
(i) Why the data-analysis problem is difficult

There are many possible sources of gravitational radiation that essentially radiate
at a fixed frequency. Pulsars, unstable accreting neutron stars (the Wagoner
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mechanism), and the possible long-term spindown of a newly formed neutron star
are examples. In some cases, such as nearby known pulsars, we will know ahead
of time the frequency to look for and the position of the source. But most
continuous sources may have unknown frequencies; indeed they will only be
discovered through their gravitational waves. I will first discuss the detection
problem for sources of known frequency, and then consider searches for
unknown sources. Throughout this discussion, the word ‘pulsar’ will stand for any
continuous source with a stable frequency. The most complete discussion of this
problem of which I am aware is the Ph.D. thesis of Livas (1987).

If we were on an observing platform that had a fixed velocity relative to the
stars, and therefore to any pulsar we might be looking for, then finding the signal
would be just a matter of taking the Fourier transform of the data and looking for
a peak at the known frequency. This is a special case of matched filtering, since
the Fourier integral is the same as the correlation integral in equation (16.17)
with the filter equal to a sinusoid with the frequency of the incoming wave.
Therefore, the signal-to-noise ratio for an observation that lasts a time T,,, would
increase as T.2, just as in equation (16.30). However, the Earth rotates on its
axis and moves about the Sun and Moon, and these motions would Doppler-
spread the frequency and reduce its visibility against the noise.

How long do we have to look at a source before it becomes necessary to correct
for the Earth's motion? If we consider only the Earth’s rotation for the moment,
then in a time T, the detector’s velocity relative to the source changes by an
amount Av = Q§Rg T, where Rg is the Earth's radius and Qg its angular
velocity of rotation. In a source of frequency f, this produces a change
Afpop = Uf /c. But the frequency resolution of an observation is Afip, =2/ T s
The Doppler effect begins to be important if Af},,, = Afin,. Solving this for T,
gives T,.,, the maximum uncorrected observing time:

2C 172 f —1/2
= (525 ) =0 L) i |
. OL R Tkiz min (16.38)

Using the same formula for the effects of the Earth’s orbit around the Sun gives a
time roughly 2.8 times as long. The Earth’s motion about the Earth-—Moon
barycentre also has a significant effect. Since any serious observation is likely to
last days or longer, the Doppler effects of all these motions must be removed,
even in searches for very low-frequency signais (10 Hz).

(ii) Angular resolution of a pulsar observation
The Doppler corrections one has to apply depend on the location of the source in
the sky. Since the spin axis of the Earth is not parallel to orbital angular
momentum vectors of its motion about the Sun or Moon, there is no symmetry in
the Doppler problem, and every location on the sky needs its own correction.

It is of interest to ask how close two points on the sky may be in order to have
the same correction; this is the same as asking what the angular resolution of an
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observation might be. Let us first imagine for simplicity that our detector
participates in only one rotational motion, with angular velocity € and radius R.
If two sources are separated on the sky by an angle A# (in either azimuth or
altitude), then the difference between the Doppler corrections for the two sources
depends on the difference between the changes in the detector’s velocities relative
to the two sources. For small A6 this is Av = AOQRT,,,. Its maximum value is
2QRA6. Using this velocity change, the argument is otherwise identical to that
given in the previous section, provided that we keep Av no larger than 2QR. The
result is that

@ | ) (16.39)

AB=T%., max(—, —
4 Tl
The dependence of this expression on T, will be significant when we come to
discuss all-sky searches for pulsars in section 16.2.2(v) below, so it is well to
remind ourselves how it comes about. There are two factors of T, because, as
T... increases, (i) our frequency resolution increases, so we are more sensitive to
the Doppler effect; and (ii) the Doppler velocity change over the observing
period becomes larger.
When looking at a source with a frequency of 1kHz, then for the Earth’s
rotation, and an observation lasting longer than half a day, this gives
f -1
AH,(,,=().()2<1—E> rad, (16.40)
which is about half a degree for a millisecond pulsar. The Earth’s motion about
the Earth-Moon barycentre can have a greater effect, falling to a minimum of
0.002 rad at two weeks. But this is swamped by the effect of the Earth’s motion
about the Sun, which gives

-1 -2
Ao = 1 X 10“‘<ﬁ(f§;) (12;’5> rad,  for T,,,<1x107s. (16.41)
This reaches a minimum of about 0.2 arcsec for a millisecond pulsar observed for
four months. Even at two weeks this motion gives a resolution of 2 x 1077 rad,
much finer than the Earth—-Moon motion gives. So the orbital motion of the
Earth always dominates the Earth—-Moon motion. But it does not dominate the
Earth’s rotation for short times: up to about 20 hours the limit is given by
equation (16.40).

For observations longer than about a day, the Earth’s orbital motion therefore
affords the better angular resolution, but it also makes the most stringent
demands on applying the corrections. In particular. uncertainties in the position
of the pulsar being searched, for orbital motion of the pulsar in a binary system.
proper motion of the pulsar (e.g., a transverse velocity of 150 kms™" at 100 pc),
or unpredicted changes in the period (anything larger than an accumulated
fractional change Af/f of 107'°(f/1kHz)™") will all require special techniques to
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compensate for the way they spread the frequency out over more than the
frequency resolution of the observation.

(iii) The technology of performing long Fourier transforms

We shall see that there are several different strategies one can adopt to search
for pulsars, whether known ahead of time or not, but all of them can involve
performing Fourier transforms of large data sets. It will help us compare the
efficiencies of different strategies if we first look at how this might be done.

If one imagines that the observation lasts 10’ s with a sampling rate of 1 kHz,
then one must perform an FFT with roughly 10" data points. This requires
roughly 3N log, N operations for N =2* = 1.7 x 10'". This evaluates to 1.7 x 10'?
operations per FFT. Given the 50 Mflops computer we required earlier for
filtering for coalescing binaries, this would take about 10 hours. This is not
unreasonable: over 200 FFTs could be computed in the time it took to do the
observation.

The real difficulty with this is the memory requirement: FFT algorithms require
access to the whole data set at once. To achieve these processing speeds, the
whole data set would have to be held in fast memory, all 20 Gbytes of it. Unless
there is a revolution in fast memory technology, it does not seem likely that this
will be possible, at least not at an affordable level. One could imagine being able
to store the data on a couple of 10-Gbyte read/write optical discs, and then using
a mass-store-FFT algorithm, which uses clever paging of data in and out of store.
This would still be very slow, but its exact speed would depend on the computer
system.

One method of calculating the Fourier transform would be to split the data set
up into M chunks of length L, each chunk being small enough to fit into core. by
performing FFTs on data sets of length L it is possible to calculate the
contribution of each subset to the total transform. It is not hard to show that the
work needed to construct the full transform from these individual sets is about M
times the work needed to do it as a single set (see, e.g., Hocking, 1989). With a
memory limit of 200 Mbytes and a machine capable of 50 Mflops, it might be
possible to do one or two Fourier transtorms in the time it takes to do the
observation. With the same memory in a machine capable of | Gtlop, one could
do 40 Fourier transforms in the same time. These are big numbers for memory
and performance, but they may be within reach of the interferometer projects by
the time they go on-line. The numbers become even more tractable if we are
looking for a pulsar under 100 Hz: with a data rate of only 100 Hz, say, the work
for a given number M of subsets goes down by a factor of about 11. It is clear that
it is possible to trade-off memory against CPU speed; the technology of the time
will dictate how this trade-off is to be made.

If it proves impossible to compute the full transform exactly, there are
approximate methods available, such as to subdivide the full set into M subsets as
above, but then only to compute the power spectrum of each subset and to add
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the power spectra together. This reduces the frequency resolution by a factor of
M, with a proportionate decrease in the spatial resolution and in the number of
different positions that an observation might need to search. It also reduces the
signal-to-noise ratio of the observation. it is likely that techniques developed for
radio pulsar searches (Lyne, 1989) will be useful here as well.

(iv) Detecting known pulsars

The earliest example of using a wide-band detector to search for a known pulsar
is the experiment of Hough et al. (1983), which set an upper limit of £ <8 x 107>
on radiation from the millisecond pulsar, PSR 1937 + 214. Future interferometers
could better this limit by many orders of magnitude, but they will have to do long
observing runs (some 10’ s) to achieve maximum sensitivity. The analysis of the
vast amount of data such experiments will generate poses greater problems for
analysis than those we addressed for coalescing binaries.

Let us assume that we know the location and frequency of a pulsar, and we
wish to detect its radiation. We need to make a correction for the Doppler effects
from the known position, or from several contiguous positions if the position is
not known accurately enough ahead of time. One might be tempted to approach
this problem by filtering, as for coalescing binaries. But because of the
computational demands, this is not the best method. Much better is a numerical
version of the standard radio technique cailed heterodyning®, followed by
stroboscopic sampling.

Difficulties with filtering for pulsars Let us consider first why filtering is
unsuitable. In this context a filter is just a sinusoidal signal Doppler-shifted to
give the expected arrival time of any phase at our detector. If only one rotational
motion of our detectors were present, and if the observation were to last several
rotation periods, then only points separated in the polar direction would need
separate filters: points separated in azimuth have waveforms that are simply
shifted in time relative to one another, and so correlating the data in time with
only one filter would take care of all such points. This might be useful even for a
pulsar of known position, since it might not be known to the accuracy of
equations (16.40) and (16.41).

However, our detectors participate in at least three rotational motions about
different centres, and the observations will probably last only a fraction of a
period of the most demanding motion, the solar orbital one. This means that
filters lose one of their principal advantages: searching whole data sets for similar
signals arriving at different times.

Filtering requires that at least three FFTs of long data sets must be performed:
of the filter, of the sampled data, and of their product to find the correlation.

* I am indebted to Jim Hough and Harry Ward for suggesting this method. The details in
this section are based on conversations with them and with Norman MacKenzie, Tim
Niebauer, and Roland Schilling.



432 16 Data processing, analysis and storage

Even for a well-known source, there will have to be several filters, because the
phase of the wave as it arrives will not be predictable, nor will its polarization.
The phase of the wave depends on exactly where the radiating ‘lump’ on the
pulsar is. A given detector will respond to the two independent polarizations
differently as it moves in orbit around the Sun; the polarization will generally be
elliptical, but the proportion of the two independent polarizations and the
orientation of the spin axis are unknown. Each of these variables must be filtered
for, and each filter needs two more FFTs (the data set needs to be transformed
only once). If the source’s position and/or frequency are not known accurately,
then even more filters will be required, each adding two further FFTs. Given the
problems we saw we might have with FFTs, this could be a costly procedure.

Heterodyne detection Suppose the frequency of the pulsar is f, in the
barycentric frame (Solar System rest frame). Then Doppler effects of the Earth’s
motion plus uncertainties in the pulsar’s frequency and its rate of change will
require us to look in a narrow range of frequencies (f;, f, + Af) containing f,. The
idea underlying heterodyning is that if the data contain a sinusoidal signal of
frequency f,

s(t)y =sin(ft + ¢),

where ¢ is a possible phase, then if we multiply the signal by a ‘carrier’ sinusoid
of frequency f. in the bandwidth, the result can be written as

sin( f.t)s(t) = % cos[(f —ft+ o]+ % cos[(f + for + o]

We may choose f. so that the difference frequency f — f. is within a bandwidth Af
about zero, and yet it contains all the information (amplitude and phase) of the
original signal. By filtering the resultant data set down to that bandwidth about
the origin, and then re-sampling it at its (now much lower) Nyquist frequency,
one can produce a data set containing many fewer points that will still contain all
the information in the original band of frequencies. This set will be easier to
apply Fourier transforms to than the original.

The saving in size is of order Af/f, or 1 x 107" for the Doppler broadening due
to the Earth’s orbital motion. This would reduce the typical data set discussed in
the previous section down from 10'" points to 10°. This is of a size that can
reasonably be handied on our 50 Mflops computer: an FFT can be done in a
matter of seconds, so that complicated filtering and searches for signals become
practical without expensive computing machinery.

When one looks at the details of how to implement heterodyning, one has to
worry about how the noise is affected and how the procedure can be done with
minimum cost. Much more work needs to be done on this question, but two
possible implementations might be as follows. The first step in both is to filter the
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data stream with a narrow band-pass filter that allows only the required
bandwidth through. This is to ensure that subsequent steps do not introduce noise
(or signals) from other regions of the spectrum into our bandwidth.

In the first implementation, the next step would be to multiply by the
heterodyne carrier with frequency f, = f,, i.e. at the lower edge of the bandwidth.
This will ensure that noise from outside the bandwidth is not heterodyned. This
allows the band-pass filter to be imperfect, as it must be if it is not to involve
prohibitive amounts of computing: it will perhaps need to fall off by a factor of
ten within a distance of Af/2 of the edges of the band. Then a low-pass filter
needs to be applied to get rid of the sum frequencies f, + f. The resulting data set
is still running at the rate of 10 kHz or so, but all we want is a narrow band,
perhaps less than 1Hz, about zero frequency. By stroboscopically sampling
(defined earlier) this set at a rate equal to the appropriate Nyquist frequency
(2Af) in the barycentric frame for signals arriving from the pulsar’s direction, one
can produce a data set that is at once small and Doppler-corrected. This sampling
involves accepting only one point in every 10* or so.

The alternative implementation, which might be even faster, is based on a
suggestion of Norman Mackenzie. This is to apply stroboscopic sampling (at a
slow rate f; near the Nyquist rate) directly to the data set after it has been put
through the band-pass filter but before heterodyning. This may be thought of as
heterodyning by aliasing: what appears in the low-frequency spectrum of the
sampled data set is the aliased signal. The aliasing condition is that an original
frequency f will appear in the sampled set at a frequency f — nf,, where n is an
integer. By choosing n and f, appropriately, it should be possible to alias the
required range of frequencies into a range near zero, without introducing
extraneous noise. If the sampling is done at a rate equal to the phase arrival rate
for a constant frequency in the barycentric frame at the pulsar’s position, it will
make all the necessary Doppler corrections automatically. Because this is
potentially a very fast method, it deserves more study.

Further refinements can be made. For instance, in the first heterodyning
implementation, one should multiply independently by two carriers 90 degrees
apart in phase, and then add the resultant difference signals with a similar 90
degree phase shift. This reinforces the signal but adds the two independent
quadratures of noise together incoherently, so that the noise is reduced by V2
relative to the signal.

Moreover, once a ‘slow’ data set (near zero frequency) is produced, it may still
be necessary to do quite a lot of work on it to extract a pulsar signal. One will
have to correct for uncertainties in the pulsar position (and hence in the
stroboscopic sampling rate), for changes in the pulsar’s intrinsic frequency during
the observation period, for possible proper motion or binary motion effects, for
the changing orientation of the detector relative to the pulsar direction and so on.

However, regardless of which of the two types of heterodyning implementa-
tions turns out to be best, the general principle is clear: if we are only interested
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in a bandwidth Af about a frequency f,, then we should be able to deal with a
data set sampled at an effective rate 2Af rather than 2f,. The resultant savings in
computing effort make it possible to contemplate on-line searches for a few
selected pulsars with computing resources that are no larger than are needed for
filtering for coalescing binaries.

(v) Searching for unknown pulsars

One of the most interesting and important observations that interferometers
could make is to discover old nearby pulsars or other continuous wave sources.
There may be thousands of spinning neutron stars — old dead pulsars — for each
currently active one. The nearest may be only tens of parsecs away. But we would
have to conduct an all-sky, all-frequency search to find them. We shall see in this
section that the sensitivity we can achieve in such a search is limited by computer
technology.

The central problem is the number of independent points on the sky that have
to be searched. As we saw in equation (16.39), the angular resolution increases as
the square of the observing time, so the number of patches on the sky increases as
the fourth power. For observations longer than 20 hours, equation (16.41) implies

R4 2 T:n\ 4+
N = 47/ (A0) = 1.3 x 10 L} (o), (16.42
P

1kHz/ \107s

We will now look at what seems to me to be the most efficient method of
searching these patches.

The barycentric Fourier transform The signal from a simple pulsar (i.e. one that
does not have added complications like a binary orbit, a rapid spindown, or a
large proper motion) would stand out as a strong peak if we were to compute its
Fourier transform with respect to the time-of-arrival of the waves at the
barycentre of the Solar System, which we take to be a convenient inertial frame.
In this section I shall look at the relationship between this transform and the
raw-data transform with respect to time at the detector, which relationship
depends on the direction we assume for the pulsar. I also look at the relationship
between the barycentric transforms of the same signal on two different assump-
tions for the pulsar position.

We shall need some notation. Let r, be the time that a given part of the pulsar
signal arrives at the detector. Let #,(6, ¢, t;) be the time that the same signal
would arrive at the barycentre if it comes from a pulsar at angular position

(8, ¢). Let sy(ty) be the signal itself at the detector and si(¢,) the signal at the
barycentre. Note that

solte(0, @, ta)] = sa(ta),
by definition. The relation between the two timescales is given by

L=ty + k(6, ¢, 1), (16.43)
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where the function k is slowly varying in time for our problem,

ok

aty

«1

due to the slow velocities that the Earth participates in. The inverse of equation
(16.43) is

ta=t, +8(6, @, 1) (16.44)
Again the derivative of g is small. From the definition it is evident that
g(6, ¢, t,) = —k[0, ¢, 1, + (0, ¢, 1,)]. (16.45)

The exact forms of the functions g and k& are complicated. but they need not
concern us here.

Now we wish to find the relation between the Fourier transform of s, and that
of s, with respect to their respective local times. For a given set of detector data,
we have

5o(fun 6. ¢) = f selt(B, @)]e™> " dr,.

= j Sd(fd)c_z"'ﬁ‘“‘ dth, (1()46)
=[] suermmmag ez an,
= [ sgm(o. o.5ufo d. (16.47)
where we define
m(0, ¢, fu. fo) = f g T talin) @ =2 (i, (16.48)

The inverse of this relation is obtained by a simple permutation of indices:

S = | SO, . i f) e (16.49)

where the kernel here is

n(g, (1)' fd’fh) = J' ez:riﬁv[h“d) e~31lfulu dtd. (1650)

These equations allow us to find the barycentric transform from the detector
transform, and vice versa. In principle, by applying equation (16.47) to the
Fourier transform of the detector data one produces a transform in which the
signal from a pulsar at a given position should stand out much more strongly. In
practice, if one only wants to do this for a few cases, it is much more efficient to
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use stroboscopic sampling, which effectively computes equation (16.46) by
selecting the appropriate values of the integrand. However, when searching the
whole sky for pulsars this would involve more work than the method of the next
section.

Barycentric transforms for nearby locations If one has computed the barycentric
transform §,, for some location on the sky, the quickest way to find the transform
for a nearby location is to find a direct transformation of s, rather than to start
again with s, or §,. In this manner one can compute §,, for one location and then
‘step’ around the sky from there. We derive in this section the appropriate
equations.

Consider two locations (6, ¢) and (0', ¢'). We want s, at (6’, ¢’) in terms of
that at (0, ¢). From equations (16.47) and (16.49) we have

Sl 800 = [ Sulfom(8', 9", fuf1) o

—x

- f f ol for 0, DINCO, B, fu fiym(0'. &', fi. f1) dfy dfe.

| S 0. 000", 07 1120, 0. ) . (16.51)

where we define the ‘stepping’ kernel ¢ by

q(8'. ¢".[:6,9¢,f) =f_ m(6', @', [, f)n(8, ¢, f". f)df".  (16.52)

If (8, ¢') is close to (6, ¢), then the kernel g should be sharply peaked in
frequency near f = f'. In fact, it is easy to show from the inverse properties that

q(0, ¢.f';0, 0, f)=0(f = f") V6O, ¢.

The peaking of this function is in fact the mathematically precise way of doing the
calculation we did roughly earlier, namely seeing how many independent patches
on the sky one would have to search. Two angles are independent if g is wider
than the frequency resolution of the observation.

The stepping method The way to do an all-sky search uses in fact the converse
of the last statement. In order to convert the barycentric Fourier transform for a
source at one position to that at another, one must do the integral given in
equation (16.51). If the two positions are adjacent patches on the sky, then by
definition the function g will be only (at least on average) two frequency bins
wide, so that one can produce the barycentric transform for the second patch
from that for the first by a calculation taking of order N operations, where N is
the number of data points. This can represent a significant saving over doing
stroboscopic sampling and an FFT for each patch. This is particularly true for
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large data sets that exceed the core memory capacity of the computer, because
FFT algorithms on such data sets will be very much slower. The present method
does not suffer from this drawback because — after the first barycentric transform
has been computed —it does not require the whole transform to be held in
memory at once. I shall refer to this method as stepping around the sky.

Depth of a search as a function of computing power We can now assemble what
we know and make an assessment of the computing power required to make a
search of a given sensitivity, at least by the method of stepping described here.
From equation (16.42) the number of patches on the sky is

2 T . 4
N'lc cg—-l.3>< 1013< f ) ( nhs) .
patches lk Z 1()75

The data set will have a length

N, =2 1()'“(—f—)( Toe ) points,
' 1 kHz/\10"s

provided we interpret f as the highest observable frequency, so we sample at a
rate 2f. If the stepping operation between adjacent patches requires ten real
floating-point operations per data point, then we need to perform

3

3 f 3 7:)h'~; \
Nyt ooe = 2.5 X 10—4<——) ( )
fptop: 1kHz/ \107 s

floating-point operations to search the whole sky.

In order to do repeatable searches, it must be possible to analyse the data in
roughly the time it takes to take it. If the computer speed is called /£, measured in
floating-point operations performed per second, then the time to perform Ny ops
operations is Ny ops/ S s. Ignoring overheads due to other factors, we therefore
find that the time to analyse the data is

T :25x1()"‘< ! )3(T°'“>5< ; )45
anal = 2. 1kHz/ \107s/ \100 Mflops/

By equating T,,, and T,,. we obtain the maximum observation time allowed by a
computer of a given speed:

= 10 L) (L) (16.53)
X 1 kHz 100 Mflops

This is about 12 hours for a 100 Mflops computer analysing data for millisecond
pulsars (up to 1 kHz). If we lower our sights and try to search for pulsars under
100 Hz (still very interesting), we can run for about three days. Another
improvement comes from making a narrow-band search. This is attractive
anyway, since narrow-banding enhances the detector’s sensitivity in the band-
width. In a narrow-band search one would use heterodyning to reduce the size of
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the data set. For a bandwidth B, the analogue of equation (16.53) is

-1/2 —1/4 1/4
T =2.1x% 105< f ) ( B ) <—y—) S. (16.54)
1 kHz 2Hz 100 Mfiops

This is better, but still permits only about 2.4 days of observing in a narrow
bandwidth at 1 kHz.

The actual figures given here may change with the invention of more efficient
algorithms, but what is not likely to change is that the minimum number of
operations per patch on the sky scales linearly with the number of data points.
This means in turn that the permissible observation time will grow only as the
fourth root of the computer speed. Even worse, since the sensitivity one can
reach in & scales as the square root of the observation time, the limits on 4 will
scale as the eighth root of the computer speed! Changing from a desktop
computer capable of 0.1 Mflops to a supercomputer capable of 10 Gflops
improves one’s limits on & by only a factor of four.

This is the central problem of the all-sky search for pulsars: it is quite possible
to run detectors for several months gathering data, and this will probably be done
to search for known pulsars, but computing power limits any all-sky, all-
frequency search for unknown pulsars to periods of the order of days.

16.3 Combining lists of candidate events from different detectors

Until now I have kept the discussion to the analysis of one detector’s data, but it
is clear that for the best signal-to-noise ratio and for the extraction of complete
astrophysical information, detectors must operate in coincidence. [ will consider
in this section the simplest method of coordinated observation: exchanging lists of
events detected in individual detectors. I have elsewherc (Schutz, 1989) called
this the ‘threshold mode’ of network data analysis, because each detector’s
criterion for an ‘event’ is that its amplitude crosses a pre-set threshold.

16.3.1 Threshold moce of data analysis

We have seen in section 16.2.1(ii) how the thresholds can be determined. Once
events have been identified by the on-line computer — either in the time-series of
data directly or by filtering — it is important that the data from these events be
brought together and analysed as quickly as possible. If the event is a supernova,
we have considerably less than a day before it might become bright enough to be
seen optically, and optical astronomers need to be told of it as quickly as possible.
If the event is a coalescing binary, there may be even more urgency: the absence
of an envelope around a neutron star means that any radiation emitted may come
out with much less delay than in a supernova. Since we know so little about what
such events look like, it would be valuable to have optical telescopes and orbiting
X-ray telescopes observe the region of the event as quickly as possible.



Bernard F. Schutz 439

The rapid exchange of data is certainly possible: with modern computer
networks, it would be easy to arrange that the on-line computers could
automatically circulate lists of events and associated data periodically, such as
every hour. We should bear in mind that, if the threshold is set so that a network
would have a four-way false alarm only once per year at a data rate of 1kHz,
then each detector will see a spurious noise-generated event three times per
second! It will be impossible to distinguish the real events from the spurious until
the lists of events from the various detectors are compared. The initial lists need
not contain much data, so links over the usual data networks will be fast enough
at this stage.

What sort of data must be exchanged? If the event is seen in a filter, the list
should include the amplitude of the event, the parameters of the best-fit filter,
and an agreed measure of the time the signal arrived at the detector (such as
when a coalescing binary signal reached some fiducial frequency, e.g. 100 Hz). It
will probably also be necessary to include calibration data, as the sensitivity of
interferometers will probably change from time to time. If the signal has a high
signal-to-noise ratio, then it may be desirable to include other information, such
as its correlation amplitude with other filters, or even the raw unfiltered data
containing the signal. The feasibility of this will depend upon the bandwidth of
available communication channels.

If the event is a broad-band burst seen in the time-series, then it will be even
more important to exchange the raw data, along with timing and calibration
information. If raw-data exchange is impossible, then at least some description of
the event will be needed, such as when it first crossed the threshold, when it
reaches its maximum, and when it went below threshold.

Once likely coincidences among detectors have been identified, it will then be
useful to request the on-line computers to send out more detailed information
about the selected candidate coincidences. Since these requests will be rarer, it
will not overburden the communications networks to exchange raw data and
more complete calibration information for the times in question. If the events
then still seem significant, they should be broadcast to other astronomers and
analysed more thoroughly at leisure.

16.3.2 Deciding that a gravitational wave has been detected
The question that underlies all of the present article is. how do we decide that a
gravitational wave has actually arrived? Various of our topics, such as the
construction and use of filters and the setting of appropriate thresholds, are
important components of such a decision. What we want to stress in this section is
that the laser interferometer community must make sure that it has well-defined
criteria for accepting a gravitational wave event as real, and a well-defined
procedure for modifying and updating these criteria. before it begins observing in
earnest.

The first detection of a gravitational wave will be such a momentous event
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that — if it occurs in an interferometer network — those who operate the network
should leave no room for doubt that the event was well above the threshold
expected of known noise sources during the time of observation. If criteria are
established ahead of time, there can be no question that they have been *adapted’
to the data; conversely, if criteria for gravitational wave detection are formulated
after looking at the data, there is always doubt that the events that are then
identified really have the significance that might be claimed for them.

In this connection, one should not naively believe that because an unexpected
event has a signal-to-noise ratio that would give it a small probability p of arising
by chance, then that automatically means that the probability of its being real is
correspondingly high. It is very hard to make an accurate calculation of p, since it
involves not only the modelled noise but also unmodelled noise and even the
circumstances of an experiment. Some Bayesian-type criterton. which involves an
a priori estimate of the probability that the candidate event would be real, should
also be used in such circumstances.

This is not to say that there should be no criteria for accepting unexpected
events or unpredicted waveforms. Provided the signal-to-noise ratio of such
events is high enough and they have been processed in the same way as all other
data, there should be no problem accepting them. But when the signal-to-noise
ratio is relatively small and/or the data have been processed in a way that had not
been agrced ahead of time. there is considerable danger of accepting false alarms
as real.

What can and should be done, however, if unusual events with marginal
signal-to-noise ratio are seen, is that new criteria can be adopted to look for them
in subsequent data. If they continue to turn up — or if re-analysis of archived data
show them - then they can be accepted as real. Similarly, if new theoretical
models of gravitational wave sources are evolved, they can be incorporated into
the criteria. But the community should not claim detections before this second
stage of verification. In particular, if there are marginal and unexpected one-off
events apparently associated with rare astronomical phenomena, then it may not
be possible to call them real until they have been seen again, however long that
may take.

16.4 Using cross-correlation to discover unpredicted sources

The threshold mode of analysis is unsuitable for some sources, such as continuous
waves or weak events that we have not predicted well enough ahead of time to
construct filters for. In these cases, the ‘correlation mode’ is appropriate: using
cross-correlations between the data streams of different detectors.
Cross-correlation has its own problems, however: its signal-to-noise relations
are rather different from filtering, and the different polarizations of different
detectors mean that signals in two different detectors from the same gravitational
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wave may not exactly correlate. In the next section I will give a general discussion
of cross-correlation, addressing the behaviour of noise and assuming that the two
data streams contain the same signal. One solution to the problem of polarization
has been given by Gursel and Tinto (1989). Their approach will be discussed in
section 16.4.2.

16.4.1 The mathematics of cross-correlation: enhancing unexpected signals

It is useful to think of cross-correlation as the use of one data stream as a filter to
find things in the other data stream. Thus, if the first stream contains a signal that
hasn’t been predicted, one can still find it in the second. If we adopt this point of
view, then we must face two important differences between matched filtering and
cross-correlation as a means of enhancing signal-to-noise ratios. These are:

(1) The ‘filter’ is noisy. In fact, in the case of most interest, the signal is below
the broad-band noise and the power in the filter is dominated by the
noise. If we really had an instrument with an infinite bandwidth, then the
noise power would be infinite and we would never see the signal. In
practice, we will see below that we must filter the data down to a finite
bandwidth before performing the correlation in order to achieve an
acceptable signal-to-noise ratio.

(2) The ‘filter’ also contains the signal we wish to find, of course, but the
amplitude of this part of the filter is not known g priori: it is the amplitude
of the incoming signal. This means that if the incoming signal is reduced
by half, the response of the filter to it will go down by a factor of four. We
shall see that this leads to the biggest difference between matched filtering
and cross-correlation when they are applied to long wavetrains: the
enhancement of signal-to-noise in cross-correlation increases only as the
fourth root of the observing time or the number of cycles in the signal, not
as the square root we found in equation (16.30).

If we have two data streams o, and o0, containing the same signal A but
independent noise amplitudes n, and n,,

o(t)=h(t) +n(), 0-(t) = h(t) + ns(t), (16.55)
their cross-correlation is
0,°0,=hoh+n,ch+hon,+n, °n,. (16.56)

The ‘signal’ is the expectation of this (averaged over both noise amplitudes),
which is just h ° h. The variance of the correlation, however, is a problem. The
final term contributes

(e nal?) = ([ AOATUIRT PR 7 of af)

= [ SNS:NO =118 = Fem T v o
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The presence of two delta functions in the integrand makes this expression
infinite: if we allow all the noise in the detectors to be cross-correlated, then the
variance of the correlation will swamp the signal. The solution is (i) to filter the
output down to a suitable bandwidth B before correlating, and (ii) to perform the
correlation only over a finite stretch of data lasting a time T. If we use a
superscript F to denote the filtered version of a quantity, then the analogue of
ny°n,is

T
1,2(1)=J' nt(tHnS (¢ + 1) dr’. (16.57)
(})
Its variance is
T T ‘ _ _
(1)) =J f (nY()nY (yHnS(y +nS (y' + )y dy dy’.  (16.58)
0 0
The key to evaluating this is the expectation
/>
(nf(mb))y =2 Si(f) cos[2af (¢t — t')] df, (16.59)
h

where fi and f; are the lower and upper limits of the filtered frequency band
(f,=/fi+ B), and where the factor of two arises because negative frequencies
must be included in the filtered data as well as positive ones. It is a
straightforward calculation to show that, assuming for simplicity that S;(f) has the
constant value 0,:, over the bandwidth, then for the most important case
2afy,T> 1 and 2xBT > 1,

(20)P) =207,04BT. (16.60)

This part of the noise is proportional to the bandwidth of the data and the
duration of the correlation. The duration will usually be chosen so that the above
conditions on B and T are satisfied, for otherwise the experiment would be too
brief to detect any signal that fits within the bandwidth B. The remaining
contributions to the variance of the cross-correlation come from the second and
third terms of equation (16.56) (strictly, from their filtered and finite-time
analogues). These are just like equation (16.19), and add to equation (16.60) a
term equal to (o7, + 03 [ |h"(r)* d.

The case of most interest to us is where the ‘raw’ signal £7(¢) is smaller than the
time-series noise in the bandwidth B in each detector, nf(¢). Then the variance is
dominated by equation (16.60) and we have the following expression for the
signal-to-noise ratio of the cross-correlation:

T -
f IhE(0)]? dt
0

correlation noise  |207,03,BT]"*"

correlation signal

(16.61)

This has considerable resemblance to the filtering signal-to-noise ratio given in
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equation (16.20), and this justifies and makes precise our notion that cross-
correlation can be thought of as using a noisy data stream as the filter. To convert
equation (16.20) into equation (16.61), we must (i) replace the filter in the
numerator with the signal A" that is in the noisy ‘filter’, and (ii) replace the filter
power in the denominator with the noise power of the noise filter, since we have
assumed this power is the largest contributor to the noise.

However, equation (16.61) does not give us the signal-to-noise ratio for the
gravitational wave signal, since its numerator is proportional to the square of the
wave amplitude. This is the effect that we noted at the beginning of this section,
that the ‘filter’ amplitude is proportional to the signal amplitude. A better
measure of the amplitude signal-to-noise ratio is the square root of the expression

in equation (16.61):
T 172
ht(t ldt]
s [ wro)

= R . 16.62
N  [20%05BT}|" ( )

There are two cases to consider here: long wavetrains and short pulses.

(i) Long wavetrains

The best signal-to-noise is achieved if we match the obscrvation time T to the
duration of the signal or, in the case of pulsars, make T as long as possible. Let us
assume for simplicity that the two detectors have the same noise amplitude, and
let us denote by R the ‘raw’ signal-to-noisc ratio of the signal (its amplitude
relative to the full detector noise in the bandwidth B),

_ h
~(2Bop)'"?
Then we find
S 1 1/4
Nx<§BT) R. (16.63)

The signal-to-noise ratio increases only as the fourth root of the observation time.
If we are looking at, say, the spindown of a newly formed pulsar, lasting 1 s, and
we filter to a bandwidth of 1 kHz because we don’t know where to look for the
signal, then the enhancement factor (BT/2)'" is about five: short wavetrains are
improved, but not dramatically. If we are looking at a pulsar, again in a
broad-band search with 1 kHz bandwidth. but in an observation lasting 10’ s, then
the enhancement of signal-to-noise is a factor of about 250. This enhancement
could be achieved by the T!p effect in a single-detector observation lasting only
three minutes, for which the data could be trivially analysed. If the single detector
is narrow-banded, the time would be even less. Therefore. cross-correlation is not
a good way of finding pulsars.

There are other differences between filtering and cross-correlation. Since for
signals below the broad-band noise (R < 1), we do not know where the signal is
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in the data stream used as a filter, it follows that we cannot determine the
time-of-arrival of the signal from the correlation, apart from a relatively crude
determination based upon the presence or absence of correlations between given
data sets of length T. The correlation also does not tell us the waveform and
therefore it cannot determine the true amplitude of the signal. It can, however,
determine the time-delays between the arrival of brief events at different
detectors.

(ii) Short pulses

Here one would set the bandwidth B equal to that of the pulse; if the pulse has
duration roughly T =1/B, and if again the two detectors have the same noise
amplitude, then equation (16.62) gives a signal-to-noise ratio that is a factor of
roughly 2" = 1.2 smaller than the optimum that filtering can achieve. For TB =1
our approximations are breaking down, but it is reasonable that using this noisy
filter would reduce the signal-to-noise by a factor of order two. Since in this case
filtering does not enhance the signal-to-noise ratio, neither does cross-correlation:
if a pulse is too weak to be seen above the broad-band (bandwidth B) noise in
one detector, if will not be found by cross-correlation.

16.4.2 Cross-correlating differently polarized detectors

A more sophisticated approach to correlation has been devised by Gursel and
Tinto (1989) in their approach to the signal-reconstruction problem, which [ will
describe in detail in section 16.5 below. It works if there are at least three
detectors in the network. I shall neglect noise for simplicity in describing the
method. If we let 8 and ¢ be the angles describing the position of the source on
the sky and we use a,, f3;, and y to represent the latitude, longitude, and
orientation of the ith detector, respectively, and if we have some definition of
polarization of the waves so that we can describe any wave by its amplitudes h.,
and h ., then the response r = 6//l of the ith detector is a function of the form
r(t)=E.(6, ¢, a, B;, x)h.[t — ©.(6, §)]

+ E.(6, ¢, a;, B x)h [t — 10, ¢)], (16.64)
where 7,(8, ¢) is the time-delay between receiving a wave coming from the
direction (8, ¢) at some standard location and at the position of the detector. We
shall define the ‘standard location’ by setting 7, =0. We need not be concerned
here with the precise form of the functions E,;, E,;, and t;, nor with the exact
definitions of the various angles.

The response equations of the first two detectors may be solved for &, and h.
and substituted into the response equation for the third to predict its response,
for an assumed direction to the source. Let this prediction be ry eq:

T3 prea(t) = —[Daani(t — 13) + Dyt + 75, — 73)]/ D2, (16.65)
where Dj; is the determinant

D,=E E.—-E E,;
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If there were no noise in the detectors, then for some choice of angles 8 and ¢
there would be exact agreement between p; .4 and the actual data from detector
3, r3.0bs- Given the noise, the best one can do is to find the angles that minimize
the squared difference d(0, ¢) between the predicted and observed responses
during the interval of observation:

T

468, 9)= | Irran(t) = reprea)F . (16.66)
Hidden in the integral for d are the correlation integrals we began with, e.g.
I r(t)ri(t — t3) dt. These will normally be the most time-consuming part of the
computation of d for various angles, and should usually be done by FFTs. Once
the correlations have been computed for all possible time-delays, they may be
used to find the minimum of d over all angles; this will determine the position of
the source. Notice that if the noise is small, this information can then be
substituted back into equation (16.64) for the first two detectors to find h_(f) and
h.(t). This reconstructs the signal. But if the source is weaker than the noise,
then this substitution will give mostly noise.

The information we have gained about the unpredicted source, even if it is
weak, is that it is there: its position is known and its arrival time can be
determined roughly by restricting the time-interval over which the correlation
integrals are done and finding the interval during which one gets significant
correlations. This is enough to alert other astronomers to look for something in
the source’s position.

The paper by Gursel and Tinto (1989) contains a more sophisticated treatment
of the noise than we have described here, allowing for different detectors to have
different levels of noise, and constructing almost optimal filters for the signals that
weight given detector responses according to where in their antenna pattern the
signal seems to be coming from. They also give the results of extensive
simulations and estimate the signal-to-noise ratio that will be required to give
good predicitons. This paper is an important advance towards a robust solution of
the reconstruction problem.

16.4.3 Using cross-correlation to search for a stochastic background

Another very important observation that interferometers will make is to find or
set limits upon a background of radiation. This is much easier to do than finding
discrete sources of continuous radiation, because there is no direction-finding or
frequency-searching to do. This problem has been discussed in detail by
Michelson (1987).

The most sensitive search for a background would be with two detectors on the
same site, with the same polarization. Current plans for some installations
envision more than one interferometer in one vacuum system, which would
permit a correlation search. One would have to take care that common external
sources of noise are excluded, especially seismic and other ground disturbances,
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but if this can be done then the two detectors should respond identically to any
random waves coming in, and should therefore have the maximum possible
correlation for these waves. The correlation can be calculated either by direct
multiplication of the sampled data points (2N operations per time delay between
the two data sets) or by Fourier transform methods as in section 16.2.3(iii) above.
We are only interested in the zero-time-delay value of the correlation, but in
order to test the reality of the observed correlation, one would have to compute
points at other time delays, where the correlation is expected to fall off. (How
rapidly it falls off with increasing time delay depends on the spectrum of the
background.) The choice of technique —direct multiplication or Fourier
transform — will depend on the number of time-delays one wishes to compute and
the capacity of one’s computer.

If separated detectors are used, the essential physical point is that two
separated detectors will still respond to waves in the same way if the waves have a
wavelength A much longer than the separation between the detectors. Con-
versely, if the separation between detectors is greater than A/2m, there is a
significant loss of correlation. It is important as well to try to orient the detectors
as nearly as possible in the same polanzation state. In order to perform a search
at 100 Hz, the maximum separation one would like to have is 500 km. This may
be achievable within Europe, but it scems most unlikely that detectors in the
USA will be built this close together. The data analysis is exactly the same as for
two detectors on the same sitc.

16.5 Reconstructing the signal

The inverse problem is the problem of how to reconstruct the gravitational wave
from the observations made by a network of detectors. A single detector
produces limited information about the wave; in particular, on its own it cannot
give directional information and thercfore it cannot say what the intrinsic
amplitude is. With three detectors, however, one can reconstruct the wave
entirely. In the last two or three years there has been considerable progress in
understanding the inverse problem: see Boulanger, le Denmant and Tourrenc
(1988), Dhurandhar and Tinto (1988), Gurse! and Tinto (1989), and Tinto and
Dhurandhar (1989). I will summarize the main ideas as I understand them at
present but this is an area in which much more development is likely soon. My
thinking in this section has been shaped by conversations with Massimo Tinto and
Kip Thorne.

16.5.1 Single bursts seen in several detectors

(i) Unfiltered signals
A gravitational wave is described by two constants — the position angles of its
source, (6, ¢) — and two functions of time — the amplitudes of the two independ-
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ent polarizations h,(t) and h.(t). Simple counting arguments give us an idea of
how much we can learn from any given number of detectors. I will assume here
that we do not have an a priori model (filter) for the signal. For signals that stand

out above the broad-band noise:

» A single detector gives its response r(t) and nothing else. Nothing exact can
be said about the waves unless non-gravitational data can be used, as from
optical or neutrino detections of the same event.

e Two detectors yield two responses and one approximate time-delay
between the arrival of the wave in one detector and its arrival in the other. Two
functions of time and one constant should not be enough to solve the problem.
and indeed they are not. The time-delay is only an approximate one, because
the two detectors will generally be responding to different linear combinations
of h_.(t) and h (1), so there will not be a perfect match between the responses
of the two detectors, from which the time-delay must be inferred. The
time-delay will confine the source to an error-band about a circle on the sky in
a plane perpendicular to the line joining the detectors. The antenna patterns of
the detectors can then be used to make some places on this circle more likely
than others, but the unknown polarization of the wave will not allow great
precision here. If the location of the source can be determined by other means,
and if noise is not too large, then the two responses can determine the two
amplitudes of the waves.

» Three detectors cross the threshold into precision astronomy, at least when
the signals stand out against the broad-band noise. Here we have three
functions of time (the responses) and two constants (the time-delays) as data,
and this should suffice. As described in section 16.4 above, correlations among
the three detectors can pin down the location of the source and, if noise is not
too important, the time-dependent amplitudes as well. In this case, there is
redundant information in the data that effectively test Einstein's predictions
about the polarization of gravitational waves: the waveforms constructed from
any pair of detectors should agree with those from the other two pairs to within
noise fluctuations.

(ii) Filtered signals

If noise is so important that filtering is necessary, there is a completely different
way of doing the counting. A given filter yields only constants as outputs, such as
the maximum value of the correlation and the time the signal arrives (i.e. when it
best matches the filter). It does not give useful functions of time. We can only
assume that the signal’s waveform matches the ‘best’ filter. so instead of two
unknown time-dependent amplitudes we will have the response of the filter, the
time-of-arrival, and a certain number of parameter constants that distinguish the
observed waveform from others in its family.

Let us concentrate on coalescing binaries. The signal from a coalescing binary
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is an elliptically polarized, roughly sinusoidal waveform. The filters form a
two-parameter family, characterized by the mass parameter # and the phase of
the signal @, as in equation (16.8). The parameters we want to deduce are: the
amplitude & of the signal, the ellipticity e of its polarization ellipse (one minus the
ratio of the minor and major axes), an orientation angle y of the ellipse on the
sky, and the binary’s mass parameter /. From these data we can not only
determine the distance to the system. but also the inclination angle of the binary
orbit to the line of sight (from e) and the orientation of the orbital plane on the
sky ().

The mass parameter # will be determined independently in each detector, and
of course they will all agree if the event is real. Each detector in addition
contributes the response of the filter, the phase parameter, and the time-of-
arrival; these data must be used to deduce the five constants {6, ¢, h, e, y}.
Here is how various numbers of detectors can use their data*:

* One detector does not have enough data, so it can only make average
statements about the amplitude.

* Two detectors provide four useful data: two responses, one phase difference,
and onec time-delay. (Only the differences between the phases and times-of-
arrival matter: the phase and time-of-arrival at the first detector are functions
of the history of the source.) If the two detectors were identically polarized, the
phase difference would necessarily be zero. A non-zero phase difference arises
because the two principal polarizations in an elliptically polarized wave are 90°
out of phase, so if the detectors respond to different combinations of these two
polarizations, they will have different phases. With four data chasing five
unknowns, the solution will presumably be a one-dimensional curve on the sky,
but the problem has not yet been studied from this perspective.

* Three detectors have seven data: three responses, two phase differences and
two time-delays. The two time-delays are sufficient to place the source at either
of the intersections of two circles on the sky. For either location, the three
responses determine A, e, and y. Presumably the phase differences would be
consistent only with one of these positions, thereby solving the problem
uniquely and incidentally providing the phase differences as a test of general
relativity’s model for the polarization of gravitational waves.

16.6 Data storage and exchange

Although the amount of data generated by a four-detector network will be huge.
I would argue strongly that our present ignorance of gravitational wave sources

* This discussion is very different from previous ones I have given, e.g. Schutz (1989). In
these [ had not yet appreciated the importance of being able to determine the phase
parameter independently of the time-of-arrival. This extra information makes it possible
to solve the inverse problem with fewer detectors than I had previously believed.
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makes it important that the data should be archived in a form that is relatively
unprocessed, and kept for as long a time as possible, certainly for several years. It
may be that new and unexpected scurces of gravitational waves will be found,
which will make it desirable to go over old data and re-filter it. It may also be that
new classes of events will be discovered by their electromagnetic radiation,
possibly with some considerable delay after the event would have produced
gravitational waves, and a retrospective search would be desirable. In any case,
we have already seen that it will be important to exchange essentially raw data
between sites for cross-correlation searches for unknown events. Once ex-
changed, it is presumably already in a form in which it can be stored.

16.6.1 Storage requirements

We have seen in the introduction that a network could generate 5000 optical discs
or videotapes per year. Data compression techniques and especially the discard-
ing of most of the housekeeping data at times when it merely indicated that the
detector was working satisfactorily could reduce this substantially, perhaps by as
much as a factor of four. The cost of the storage media is not necessarily trivial.
While videotapes are inexpensive, optical discs of large capacity could cost $250k
at present prices (which will, hopefully, come down). Added to this is the cost of
providing a suitable storage room, personnel to supervise the store, and
equipment to make access to the data easy.

16.6.2 Exchanges of data among sites

We have already seen how important it will be to cross-correlate the raw data
streams. At a data rate of some 100 kbytes per second, or even at 30 kbytes per
second if the data volume is reduced as described above, one would have
difficulty using standard international data networks. But these networks are
being constantly upgraded, and so in five years the situation may be considerably
different: it may be possible, at reasonable cost, to exchange short high-
bandwidth bursts of data regularly via optical-fibre-to-satellite-to-optical-fibre
routes. Alternatively, a cheaper solution might be to exchange optical discs or
videotapes physically, accepting the inevitable delay. If lists of filtered events
were exchanged on electronic data networks, then there may be less urgency
about exchanging the full data sets.

(i) Protocols, analysis and archiving

It will be clear from our discussion that exchanging and jointly analysing data will
require careful planning and coordination among all the groups. Discussions to
this end are in a rudimentary stage now, but could soon be formalized more.
Besides decisions on compatible hardware, software. data formats and modes of
exchange, there are a number of ‘political’ questions that need to be resolved
before observations begin. We are dealing with data that the groups involved
have spent literally decades of their scientific careers to be in a position to obtain,
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and the scientific importance of actual observations of gravitational waves will be

momentous. Questions of fairness and proprietary rights to the data could be a

source of considerable friction if they are not clearly decided ahead of time. A

model for some of these decisions could be the protocols adopted by the

GRAVNET network of bar antennas, described elsewhere in this volume. Other

models might be international VLBI, or large particle-physics collaborations.
Some of the questions that need to be addressed are:

» how much data needs to be exchanged;

» what groups have the right to see and analyse the data of other groups and
what form of acknowledgement they need to give when they use it;

» what powers of veto groups have over the use of their data, for example in
publications by other people;

» how long the proprictary veto would last before the data become ‘public
domain’ (the funding agencies will presumably apply pressure to allow ready
access to the data by other scientists after some reasonable interval of time);

« how long the data need to be archived.

Given the volume of data and the logistical complications of multi-way exchanges
of it, it may be attractive to establish one or more joint data analysis and
archiving centres. These could be particularly attractive as sites for any large
computers dedicated to the pulsar-search problem. These would collect the data
and store it, and perform the cross-correlations that can only be done with the full
data sets on hand.

16.7 Conclusions

In this review I have set out what I understand about the data analysis problem as
of September, 1989. Evidently, the field is covered very non-uniformly: coalesc-
ing binaries have received much more attention than pulsars or stochastic sources
so far, and protocols for data exchange are something mainly for the future.

Nevertheless, it is clear that questions of the type we have discussed here will
influence in an important way decisions about the detectors: how many there will
be, where they will be located, what their orientations will be, what weights one
should apply to the various important parameters affecting their sensitivity (e.g..
length, seismic isolation, laser power) when deciding how to apportion limited
budgets to attain the maximum sensitivity. Other questions that I have not
addressed will also be important, particularly choosing the particular recycling
configuration most suitable to searching for a given class of sources.

From the present perspective, it seems very likely that in ten years or so a
number of large-scale interferometric detectors will be operating with a broad-
band sensitivity approaching 107**. The data should contain plenty of coalescing
binaries and at least a few supernovae; but the most exciting thing that we can
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look forward to is the unexpected: will this sensitivity suffice to discover
completely unanticipated sources? The best way to ensure that it does is to make
sure that our data-analysis algorithms and data-exchange protocols are adequate
to the task: given the enormous efforts being made by the hardware groups to
develop the detectors, and the considerable amount of money that will be
required to build them, it is important that development of the data-analysis tools
not be left too late. Solutions to data-analysis problems must be developed in
parallel with detector technology.
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