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I report here how gravitational wave observations can be used to
determine the Hubble constant, H,. The nearly monochromatic
gravitational waves emitted by the decaying orbit of an uitra-
compact, two-neutron-star binary system just before the stars
coalesce are very likely to be detected by the kilometre-sized
interferometric gravitational wave antennas now being designed' ™.
The signal is easily identified and contains enough information to
determine the absolute distance to the binary, independently of
any assumptions about the masses of the stars. Ten events out to
100 Mpc may suffice to measure the Hubble constant to 3%
accoracy.

The signal from a system of two 1 M, stars (where Mg is the
mass of the Sun) will sweep from 100 Hz to 1 kHz in ~3 s. There
might be three events per year out to 100 Mpc, and if the
detectors achieve their current design sensitivity, such events
will be detectable with a signai-to-noise ratio of 30. To determine
the distance, the signal has to be observed by a worldwide
network of three, and preferably four, detectors. By measuring
both the response of the detectors and the delays between the
arrival times of the signal at different detectors, the network
should be able to locate the source in an error box of ~36 square
degrees. There is some chance that the coalescence event will
be optically identifiable (I.D. Novikov, personal communica-
tion); otherwise, clustering of galaxies provides a statistical
method that will still yield H,, after remarkably few events. Here
I give only a brief discussion; full details will be published
elsewhere.

Several detectors being developed in the United States and
Europe’™ will take the form of interferometers with arm lengths
1-4 km, observing bandwidths 102-10* Hz and r.m.s. noise levels
at 100 Hz of <107 strain Hz /2. Within 10 years we may
expect that there will be four or five such detectors in operation
in America and Europe, with typical separations of 6,500 km.
[It is possible that bar detectors could contribute to these
observations. However, because of their narrow bandwidth, their
detection of coalescing binaries requires quite different methods,
which have not been studied. 1 shall therefore concentrate on
interferometric detectors.] .

Although there are many possible sources of gravitational
waves, the most promising for detection by these instruments
seems to be the coalescence of binary neutron stars, as will
happen to the binary pulsar PSR1913 + 16 in ~10° yr. The gravi-
tational waves from these sources before coalescence can be
predicted very reliably (K. S. Thorne, personal communication).
As an orbit decays through the emission of gravitational radi-
ation, its eccentricity is reduced, so we need only consider
systems with circular orbits®. Consider a binary at a distance
100r,00 Mpc, with total mass m My and reduced mass Mo,
emitting waves at frequency 100f;e Hz (twice its orbital
frequency). The standard ‘quadrupole formula’ of general rela-
tivity®” shows that the waves will have amplitude (r.m.s.-
averaged over detector and source orientations)

(hy=1x10""m¥uf (G5 r 100 m
and that their frequency will change on a timescale
' r=f/f=18m7u G s @

Two 1.4M, neutron stars will coalesce’ when f= 10* Hz. By
using matched filters to analyse the data’, the noise can
effectively be limited to a bandwidth of ~7~'. This will enable
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the detectors to see binary neutron star sources at 100 Hz at a
distance of 100 Mpc, with a mean signal-to-noise ratio (SNR)
of >30. An observation will therefore determine r-and A to
perhaps 3%. The key to our method is that the stars’ masses
enter equations (1) and (2) in exactly the same way, so that

ri00 = 7.8f 06({ ) 7)™ &)

where (hy;) = (h) x 102, independently of the masses of the stars.

This result is not quite so strong as it seems, as equation (1)
gives the r.m.s. value of h averaged over orientations, whereas
the value of h inferred from the network’s observations will
depend on the binary system’s orientation and position relative
to the detectors as well as its distance. However, these can be
determined from the observations: as I show below, provided
that three or more detectors register the same event, they can
determine the location on the sky and the degree of elliptical
polarization of the wave. (In general relativity, gravitational
waves are transverse and have only two independent polariza-
tions®’.) Now, the radiation emitted by the binary along its
angular momentum axis is circularly polarized, whereas that in
the equatorial plane is linearly polarized. The degree of eliptical
polarization therefore determines the inclination of the orbit to
the line of sight, which enables us to solve for 7, in terms of
the observed A. Equation (3) also depends on being able to
model the system as two newtonian point masses. As we shall
see below, tidal and relativistic corrections are negligible in the
range of orbital parameters we require.

Being able to determine r directly from the observations is
remarkable in itself, but it is only really useful if the source of
the event can be identified. For this an accurate position is
required. Because this accuracy is crucial for the determination
of the Hubble constant, I will discuss it in some detail.

Each detector has quadrupolar linear polanzation, so it is not
highly directional; however, the differences in arrival time of a
wave at different detectors can be used to triangulate the posi-
tion. Between any two detectors with separation d, a wave
travelling at an angle 8 to the line joining the detectors will
arrive at the second detectorwith a delay At = d cos 8/ c relative
to the first, where c is the speed of light. For d =6.5 x 10° km,
we have |Af|=<22ms. As the two detectors will generally not
have the same polarization, there will be a further effective time
delay due to the wave’s elliptical polarization. Such a polariza-
tion can be regarded as a superposition of the two independent
linear polarizations defined by the detectors, with a phase shift
between them. This sphase shift means that differently polarized
detectors record the wave train with extra time delays of up to
one period.(+10 ms for a 100-Hz signal). The two independent
time delays measured among three detectors and the three
measured amplitudes are sufficient to determine the waves’ five
unknowns: arrival directions (two), amplitudes of the different
polarizations (two), and phase lag of the polarizations (one).

The precision with which the source’s position and polariza-
tion can be measured depends on the two sorts of errors: the
accuracy with which the arrival time of the wave at a detector
(and hence the time delays) can be determined, and the accuracy
with which the amplitude of the detector’s response can be
measured. In what follows, I will assume that m¥3 u =1 (for
example, two stars of ~1.1Mg) to illustrate the situation. We
shall see that the timing accuracy is typically 1% of the maximum
timing range (from —22 to +22 ms), and the amplitude error is
~3%. When only three detectors see an event, there are actually
two error boxes of size —10°x 10°, which may be too large for
our purposes. I will therefore consider events detected in four
instruments. The seven data overdetermine the five unknowns,
and this redundancy offers us the opportunity to reduce the
effective amplitude noise (it also allows a test of Einstein’s
polarization predictions). In this way, three timing measure-
ments at £1% and one amplitude measurement with effective
error +3% can be used to locate the source. This suggests that
a positional error of +3° is not unreasonable, giving an error
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box of 6°x 6°. Before discussing how this can be used to identify
the source, it is necessary to describe how the arrival time can
be measured to 0.5 ms.

Suppose the data are extracted from the noise by convolution
with a ‘template’ waveform (D. Dewey, in preparation) (one
way of implementing a matched filter technique). Then the
maximum value of the convolution marks the time at which the
signal best matches the beginning of the template. This is the
‘arrival’ of the wave. If the signal-to-noise ratio is 30 then this
convolution will have 3% fluctuations. The arrival time can then
be determined only to within an error ¢, which is the time shift
that reduces the noise-free convolution by 3%. I have performed
these convolutions for a template spanning 100-200 Hz with a
variety of values of f/f, and I find £=0.5 ms. (If the signal-to-
noise ratio doubles, this value decreases by v2.)

The error box is roughly the size of a Schmidt plate. If such
events are optically visible, then a search of the error box may
identify the galaxy, whose redshift will determine H, to a few
per cent (limited by the ‘random’ velocities of galaxies and the
distance accuracy). This accuracy improves with the number of
events, N, as NV2 If optical identifications are not possible,
then the following statistical method, based on galaxy clustering,
should still work.

If we accept that H, is less than some H.,, (say 120kms™
Mpc™), then the error box can be surveyed for bright galaxies
(up to ~15 mag) with velocities below H,,,,r, where we consider
at first only events with r <100 Mpc. Existing surveys (see ref.
8) show that galaxies with velocities <12,000kms™" cluster
strongly, with ~1 cluster per square degree, and that bright
galacies are good tracers of these clusters. In our error box,
therefore, the source ought to be in one of ~36 clusters. Each
cluster redshift gives a candidate value for H,. As r is known
to 3%, we can divide the range of H, into 30 bins. Each observed
coalescence event produces one ‘correct’ H, and 35 spurious
ones, which are distributed randomly among the 30 bins with
probability (H 2/3H2 ., )dH, that a value lies between H, and
Hy+ dH,. After N events, the bin at Hp = 120 therefore accumu-
lates the largest number of ‘randoms’, three times the mean
number per bin: 3.5N =(3.5N)"/2. In the worst case, if the true
H, is 120, we will need N =2(3.5N)"? to see the true values
above the fluctuations in the randoms, or N = 14. If H, is really
near 60, then we should see a good peak after only three or four
events. These values of N will give H, to 3% or better. These
numbers are only illustrative, as there are many variables which
affect them: for example, the typical masses of the coalescing
stars, the actual sensitivities achieved by the detectors, and
optical effects such as obscuration by the Galaxy. But they show
that even the statistica. method looks very promising, given a
sufficient event rate.

What, then, is the event rate? Estimates® based on the pulsar
birth rate and the fact that the binary pulsar is the only compact-
object binary system known with a lifetime <10" yr suggest
that there will be ~3 events per yr out to 100 Mpc. At this rate,
the Hubble constant would be determined in 1-10 yr. But the
event rate is highly uncertain, at least by a factor of 10. Therefore
it is possible that this method would work only in the long term,
some decades after the interferometers begin working. The ques-
tion of the event rate deserves more attention from astro-
physicists.

A small event rate can be offset to some extent by improving
the positional accuracy of each event. Obviously, increasing the
detectors’ sensitivity will reduce the size of the error box. A
dramatic improvement can also be achieved by adding a fifth
detector to the network. An extra detector in Asia would provide
a longer baseline for the timing accuracy. This would improve
the position by perhaps a factor of 2-3, and probably speed up
the determination of H, by a larger factor if the statistical method
needs to be used. If the statistical method is used, it will not be
helped by including events from further away (events are visible
to ~0.5 Gpc at moderate SNR). This is because degrading the
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SNR enlarges the error box and increases the confusion with
randoms.

Finally, how secure is the model? When two 1.4M neutron
stars are emitting 100-Hz waves, their separation will be
a~160 km, or ~10-15 stellar radii. Tidal effects on the orbital
period will be negligible: angular momentum transfers are pro-
portional to (R/a)’, where R is the radius of either star. Eardley
and Clark' considered the tidal mass transfer, which is not
important below 200 Hz unless the smalier star has a mass
<0.3Mo. It seems very likely, therefore, that tidal effects will
not seriously contaminate the sample. Post-newtonian gravity
introduces corrections of ~1% to the orbital period of these
systems; moreover, the rate at which they radiate gravitational
waves also has corrections of this order from both post-
newtonian and octupole contributions. These last have not been
accurately calculated, but it is unlikely that they will limit the
coherence of the ‘template’ with the true signal in a way that
degrades the accuracy of the timing measurement by much more
than the few per cent we have already allowed for. The great
attraction of this method is, therefore, the simplicity of the
model. Even if the event rate is low, the value of H, obtained
in this way should, in the long run, be less troubled by systematic
errors than that from other methods. All it needs is the continued
development of large-scale gravitational wave detectors.

For my discussion of clustering I received invaluable assist-
ance from Steve Phillipps. I also acknowledge helpful conversa-
tions with Brandon Carter, Mike Disney, Jim Hough, Kip
Thorne, Massimo Tinto and Harry Ward.
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