Please cite as: Majid, Asifa, Gunter Senft & Stephen C. Levinson. 2007. The language of olfaction. In Asifa Majid (ed.), Field Manual Volume 10, 36-41. Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492910. # You can find this entry on: http://fieldmanuals.m pi.nl/volumes/2007/language-of-olfaction/ #### **REGULATIONS ON USE** # Stephen C. Levinson and Asifa Majid This website and the materials herewith supplied have been developed by members of the Language and Cognition Group of the Max Planck Institute for Psycholinguistics (formerly the Cognitive Anthropology Research Group). In a number of cases materials were designed in collaboration with staff from other MPI groups. # **Proper attribution** Any use of the materials should be acknowledged in publications, presentations and other public materials. Entries have been developed by different individuals. Please cite authors as indicated on the webpage and front page of the pdf entry. Use of associated stimuli should also be cited by acknowledging the field manual entry. Intellectual property rights are hereby asserted. #### No redistribution We urge you not redistribute these files yourself; instead point people to the appropriate page on the Field Manual archives site. This is important for the continuing presence of the website. We will be updating materials, correcting errors and adding information over time. The most recent versions of materials can always be found on our website. #### Be in touch The materials are being released in the spirit of intellectual co-operation. In some cases the authors of entries have not had the chance to publish results yet. It is expected that users will share results garnered from use of these materials in free in tellectual exchange before publication. You are encouraged to get in touch with us if you are going to use these materials for collecting data. These manuals were originally intended as working documents for internal use only. They were supplemented by verbal instructions and additional guidelines in many cases. The contents of m anuals, entries therein and fiel d-kit materials are modified from time to time, and this pro vides an ad ditional motivation for keeping clo se contact with the Language and Cognition Group. We would welcome suggestions for changes and additions, and comments on the viability of different materials and techniques in various field situations. ## **Contact** Email us via http://fieldmanuals.mpi.nl/contact/ Language and Cognition Group Max Planck Institute for Psycholinguistics Postbox310, 6500AH, Nijmegen, The Netherlands # THE LANGUAGE OF OLFACTION Asifa Majid, Gunter Senft & Stephen C. Levinson **Project** Categories and concepts across language and cognition **Task** Linguistic elicitation for odor vocabul ary using "scratch and sniff" booklets Goal of task To investigate how languages en code olfactory experiences – specifically (1) wheth er there is dedicated vocabul ary for encoding olfaction and (2) how mu ch consistency there is with in a community for describing smell experiences. **Prerequisite** You must have completed "Language of perception" (pp. 10-21). To conduct this task you need – (i) The Brief Sm ell Identification TestTM, (ii) a pencil, (iii) a pencil sharpener, (iv) T he Picture **Identification Test** # **Background** Early research on the sense of s mell sought to find a systematic relationship between the physical characteristics of a che mical stimulus and the resulting percept of smell, hoping to identify the basic building blocks out of which other smells could be built. Attempts to classify smells through individual introspection date back to Aristotle through Linnaeus to the Dutch psychologist Zwaardem aker in the late nineteenth century. The first attempt to produce an empirical classification was by Henning (1916), who asked six participants to identify the basic sensory experience of over 400 odorants. Henning proposed that there were six basic odorants, "putrid", "etheral", "r esinous", "spicy", "fragrant", and that all other odors could be located in a multidimensional space, with each one of the odorants as points of a prism. But further studies di d not support this mode 1. Amoore (1967, 1977) attempted to outline a different approach, wher e primary odorants were to be identified through specific anosmias. Anosmia is the inab ility to smell, and specific anosm ia is the inability to recognize a di screet arom a. Am oore took sp ecific anosm ias as prima facie evidence for basic building blocks of odor. However, the range of specific anosmias seems to be very large – arou nd 70 – and other evid ence suggests that loss of ability to detect one sm ell correlates highly with detecti ng other sm ells too (Yoshida 1984). T approaches attempting to identify prim ary odorants have failed and current experts in the field assume that odor perception is largely determ ined by experience (W ilson & Stevenson 2006). One experiential factor relevant to this project is the role language plays in odor perception. There is evidence that language m ay play some beneficial role. For example, odor labels can affect the percept of an odor source. When presented with an odor and told that it is cheddar cheese people rate that scen t as much more pleasant than when they are presented with the same odor and told it is body odor (de Araujo, Rolls, Velazco et al. 2005). More generally, odor labeling can faci litate odor memory (Lyman & McDaniel 1986), with correctly labeled and familiar odors being identified and remembered better than incorrectly labeled or unfamiliar odors (Rabin & Cain 1984). Also, verbal distractor tasks can interfere with recognition of odor s (Murphy, Cain, Gilmore et al. 1991, Perkins & Cook 1990), suggesting a crucial role for language in odor memory. On the other hand, there is evidence sugge sting limited interplay between language and olfaction. For instance, some studies have failed to find facilitative effects of language on odor recognition (Engen, Kuism a & Eim as 1973). Furthermore, in a s tudy of aph asics, Goodglass, Barton & Kaplan (1968) found t hat patients were i mpaired far worse in naming olfactory stimuli in comparison to visual, tactile, or auditory stimuli – even though olfactory perception in these patients was uni mpaired. This suggests that the relationship between language and perception may be much weaker for smell than for the other senses. Consistent with this, there is quite some disagreement in verbal descriptions for olfactory stimuli. Identification of very fa miliar odors rarely exceeds 50% (Cain 1979), and there can be large num bers of unique descriptions – up to 80% – given to the sam e stimuli set (Dubois 2000). Part of the goal of this project, then, is to investigate the relationship between language and olfaction more closely. Specifically, we will focus on the linguistic coding of smell. It appears that there is poor mapping of language to olfaction, as evidenced by the vulnerability to brain damage, and poor in ter-speaker agreement in naming. But this evidence is severely limited, since it is founded primarily on study of English speakers, a language with poor vocabulary for the olfactory sense. There is some tantalizing evidence in the ethnographic literature, that this is just a limitation of English (or perhaps Indo-European languages), rather than being an essential feature of language design. Indo-European languages appear to have limited resources for talking about smell, with the main strategies being to identify the source with a noun—either a specific source (e.g., rose) or a generic source (e.g. floral). Other strategies include using a prepositional phrase (e.g. smell of lemon), denom inal adjectives (e.g., fruity), deverbal adjectives (e.g., pleasant, unbearable), or verb phrases (e.g., seems good to eat) (Dubois 2000). We wish to investigate whether the same sorts of stirategies appear in other languages, and the prevalence of different strategies. Totonac, for example, appears to have a much richer smell vocabulary (Aschmann 1946). According to Aschmann, Totonac has no general word for expressing that something smells—the exact "shade" of the smell must be taken into account. Totonac has eight major classes of smell terms formed from a basic root. The roots can be used as verbs with the addition o f causative, ingress ive or abstractive affixes. The causative prefix plus suffix indi cates that the subject of the verb causes the object to take on the smell of the original root, the ingressive suffix indicates that the subject of the verb gets or is getting into the state of the root and the abstractive suffix indicates that the smell of the stem is around without any object or subject indicated (an ad ditional suffix can be added to increase the abstraction). To form a noun a suffix can be added to the root, which would indicate the thing itself has such a nd such sm ell, and a different suffix would produce a static adjective or noun exaggerating the intensity of the smell. ⁴ There is some evidence suggesting that this poor mapping is due to the nature of olfaction itself. Herz & Engen (1996) report a study where 140 undergraduates were asked to conjure a sensation in the absence of any stimulation. The study found that ability to imagine an odor was poor, and significantly worse than their ability to imagine a visual, tactile, or auditory experience. Thus cross-linguistic evidence is essential to tease apart whether olfactory experiences in themselves are ineffable, or whether poor coding in language is merely an accident of some languages. The broad sem antic classes of the T otonac roots are (i) vegetati on and good sm ells, (ii) bad sm ells, (iii) m edicinal and arom atic sm ells, (iv) body and anim al sm ells, (v) sour smells, (vi) sm ells that leave a tas te in the mouth, (vii) ar tificial sm ells and (viii) airpermeating sm ells (this last class cannot take all of the morphology described above). Aschmann notes that these are not entirely adequate definitions, that the range of meaning of the stems overlap, and more importantly that although the stems have a central "sm ell" meaning, some of the terms also include the idea of taste, desirability, etc. The general class es can be further specified with the addition of various affi xes. For instance, the class on e term for vegetation a nd good smells has the basic root $mu \cdot ?-u?n$, which gives rise to $mu \cdot ?klu?n$ for 'a pleasant smell of flowers, food, etc.', $mu \cdot ?ksu?n$ 'smell of m int, parsley, tobacco, and other he rbs, Slo ane's Lin iment, incen se, etc.', $mu \cdot ?qsu?n$ 'smell of ground hom iny (masa) that still sm ells strongly of the lim e with which it is made', $mu \cdot ?qu?n/mu \cdot ?ku?n$ 'smell of fresh vegetables, unripe fruit'. Totonac does not appear to be alone in havi ng dedicated smell vocabulary. The Waanzi of Gabon are said to have a dedicated vocabulary for describing smells, with up to 15 "basic" odor terms (Mouélé 1997). The Kapsiki of Braz il are said to have 14 term s (Tyler 1996) and the Seerer N'dut of Senegal have 5 (Dupi re 1987). A systematic cross-linguistic study can help establish whether these exam ples are rara (P lank & Plank 1995) and whether smell is indeed "ineffable". ## **Research questions** What resources do languages have for describing smells? Is there dedicated vocabulary for encoding olfaction, and if so what are the type s of distinctions that are encoded? And, finally, how m uch consistency there is within a commun ity for describing smell experiences? #### **Task** The task is designed to elicit smell vocabulary from speakers using a standardized kit. The primary goal is to establish how people de scribe de-contexualized scents, and what resources the language provides for doing so. ## **Consultants** Test 10 participants. Please k eep a note of participants ag e (approx imate age is fine), gender, and full linguistic background. It m ay also be useful to note whether your consultant smokes, and if so how many cigarettes/cigars they consume a day. ⁵ # Stimuli The "sm ell kit" is 10 booklets (one per consultant), entitled "The Brief Sm ell Identification Test TM", a pencil and a pencil sharpener. You must only use a pencil on the smell booklets – preferably the provided pencil. Any other implement will damage the patches. _ ⁵ There is age-related decline of olfaction which becomes more pronounced from 60 years of age. Women also perform better in smell detection than men, as do non-smokers (Doty, Shaman & Dann 1984). If possible, seek younger female non-smoking consultants. This is not necessary, however. But do be sure to collect full background information about the consultant. Each booklet has instructions on the front page, which you should familiarize yourself with before proceeding with testing. Note that the original booklet was designed to be a forced-choice task, but we are interested in free naming thus the English descriptors have been covered in the stimulus booklets. Do not remove the covering stickers! There is also 1 picture booklet for this task. The picture booklet depicts visually the objects f rom the sm ell kit. This is to check consultant's f amiliarity with the objects featured in the smell booklets. #### **Procedure** Remember to video~audio-tape your session. ## (1) The Brief Smell Identification Test Explain to the consultant that you will have a book that has different smells on each page. You will present them with a smell and they should describe for you what they experience. The booklet contains 12 pages. At the bottom right-hand corner of each page is a brown label. This contains the scent. The scents—should be presented to consultants in a fixed order, beginning with item 1 on page 1 and progressing through the pages consecutively until the booklet is completed. For each page the researcher will p resent the scent to the consultant (as outlined below) and ask the consultant in their native language *What smell is this?* or *How does this smell seem?* (check section on "Language of Perception" pp. 10-21 before proceeding with this task). To release the fragrance from the brown label, the researcher should use the pencil provided to scratch the label. It is very important to use a sharp pencil (a dull pencil, or a different object will not be effective for releasing the fragrance and will damage the stimulus). Tracing the letter M or Z should be enough to release the fragrance. As soon as the fragrance is released present to the consultant so that they can sniff the released scent. Repeat the process with the same stimulus until the consultant is able to smell and name the scent. After each scent ask *What smell is this?* and record the consultant's answer. Proceed till completion. ## (2) The Picture Identification Test In order to test whether consultants are familiar with the objects in the smell booklets, we also have a visual analogue. A single booklet with 12 pages depicts the objects featured in the smell booklet. After conducting the elicitation with the actual smell booklet, present the pictures one at a time to the consultant and ask them simply to name the object. Note – three of the objects rely on speakers being able to read English to identify the object co rrectly (these pictures are from a standardized test and apparently the creators did not think about the use of labels!). Yo u can either omit these from testing, or just note what people say to these stimuli. While we are interested in whether people are familiar with these objects (and thus answers to these pictures may not be the most informative) we are also interested in whether responses to smell stimuli are more or less consistent than answers to stimuli in other senses, such as vision. Thus it is also of interest to see whether there is more consistency across consultants for the visua lly depicted objects than there is for the olfactory objects – or vice versa. #### Analysis Each consultant's re sponse will be coded for word/phrase/construction used to describe smell. This will then be analyzed for (1) consistency across consultants and (2) category of response, i.e., are responses (a) evaluative, (b) descriptive, or (c) source-oriented. #### Outcome Data will contribute to a description of the grammar of per rception in the field language, intended for a collected volume. The pooled cross-linguistic data will also contribute to an overview publication on the encoding of the senses across languages. ## **Optional post-task elicitation** Obviously this sm all set of smells will not exhaustively tap the olf actory lex icon of the language. A fter completing the standardized elicitation, take the opportunity to ask your consultant follow-up questions to probe for further vocabulary. One simple method you can use is simple "free-listing". Ask your consultant: What are all the different smells an object can have? Or if you have already elicited specific term s you can use them as the basis of the question Things can smell flowery, musky – how else can things smell? Also, you may wish to establish form classes of elicited terms and do extra elicitation with one or two consultants on the precise semantics of terms used in this task. #### References - Amoore, J. E. (1967). S pecific anosmia: A clue to the olfactory code. *Nature*, 214, 1095-1098 - Amoore, J. E. (1977). Specific anosm ia and the concept of prim ary odors. *Chemical Senses*, 2, 267-281. - Aschmann, H. P. (1946). Totonac categories of smell. *Tlalocan*, 2, 187-189. - Cain, W. S. (1979). To know with the nose: Keys to odor identification. *Science*, 203, 467-470. - de Araujo, I. E., Rolls, E. T., Velazco, M. I., Margot, C. & Cayeux, I. (2005). Cognitiv e modulation of olfactory processing. *Neuron*, 46, 671-679. - Doty, R. L., Sha man, P. & Dann, M. (1984). Development of the University of Pennsylvania Smell Identification Test: A st andardized microencapsulated test of olfactory function. *Physiology & Behavior*, 32, 489-502. - Dubois, D. (2000) Categories as acts of m eaning: The case of categor ies in olfaction and audition. *Cognitive Science Quarterly*, 1, 35-68. - Dupire, M. (1987). Des goûts et des ode urs: Classification et universaux. *L'Homme*, 104, 5–25. - Engen, T., Kuisma, J. E. & Ei mas, P. D. (1973). Short-term memory of odors. *Journal of Experimental Psychology*, 99, 222-225. - Goodglass, H., Barton, M. I. & Kaplan, E. F. (1968). Sensory modality and object-naming in aphasia. *Journal of Speech and Hearing Research*, 11, 488-496. - Henning, H. (1916). Der Geruch. Leipzig: Barth. - Herz, R. S. & Engen, T. (1996). O dor m emory: Review and analysis. *Psychonomic Bulletin and Review*, *3*, 300-313. - Lyman, B. J. & McDaniel, M. A. (1986). Effects of encoding strategy on long-term memory for odors. *Quarterly Journal of Experimental Psychology*, 38,753–765. - Mouélé, M. (1997). L'apprentissage des od eurs chez les Waanzi: No te de recherches. *Enfances*, 1, 209–222. - Murphy, C., Cain, W. S., Gilmore, M. M. & Sk inner, R. B. (1991). Sensory and semantic factors in recognition memory for odors and graphic stimuli: Elderly versus young persons. *The American Journal of Psychology*, *104*, 161-192. - Perkins, J. & Cook, N. M. (1990). Recognition and recall of odors: The effects of suppressing visual and verbal encoding processes. *British Journal of Psychology*, 81, 221-226. - Plank, S. & Plank, F. (1995). Unsägliche Gerüche: Versuche, trotzd em vom Riechen zu sprechen. In B. Busch & U. Brandes (Eds.), *Das Riechen: Von Nasen, Düften und Gestank* (pp. 59-72). Göttingen: Steidl. - Rabin, M. D. & Cain, W. S. (1984). Odor re cognition: Familiarity, identifiability, and encoding consistency. *Journal of Experimental Psychology: Learning, Memory & Cognition*, 10, 316-325. - Tyler, S. A. (1996). The essence of aroma. American Anthropologist, 98, 617-619. - Wilson, D. A. & Stevenson, R. J. (2006). *Learning to Smell: Olfactory Perception from Neurobiology to Behavior*. Baltimore: John Hopkins University Press. - Yoshida, M. (1984). Correlation analysis of de tection threshold data for "standard test" odors. *Bulletin of the Faculty of Science & Engineering of Chuo University*, 27, 343-353.