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Abstract. A generalized Bohr-Sommerfeld-type formula determining the quasinormal- 
mode frequencies of Schwarznchild black holes is derived using the phase-integral method 
with three transition points. The formula is valid provided that these poinls are well 
separated from each other, and is remarkably accurate for the high-overtone modes. It 
makes a p e a t  improvement over the mnventional BohrSommerfeld formula, derived 
from two tramition points. 

PACS numbers: 0260, 0270, 0420, 0430, 9760L 

1. Introduction 

Analytic approximation techniques based on complexified versions of the WKB 
approach have lately proved powerful methods for calculating frequencies of the 
quasinormal modes of black holes [l,Z]. We have recently reviewed one of these, 
the phase integral method, in the context of black hole perturbations [3] to which 
the reader is referred for notation, conventions and fundamentals of this method. 
Here we use the phase-integral method to develop a new and more powerful analytic 
approximation for the low-lying quasinormal modes of Schwarzschild black holes. This 
method has potential applications to other problems, such as Reissner-Nordstrom and 
Kerr. 

The first complex-wm calculations for this problem used a version of the Bohr- 
Sommerfeld (hereafter BS) formula [l]. It has been shown by Arafijo et d [4] and 
Froman ef a l [ 2 ]  that the BS formula can be derived within the phase-integral method. 
In this method a key role is played by the transition points, which are the analogues 
of the WKB turning points. The calculations in [Z] and [4] consider only two of the 
four transition points for this problem. They must be well separated from the other 
transition points if the derived formulae are to be accurate, although the two points 
may be close to each other. 
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The BS formula is very accurate for the low-lying quasinormal modes, producing 
results that are in good agreement with the numerical calculations of Leaver [SI, 
Nollert and Schmidt [6] and Andersson [7], all of whom use different methods. 
However, as the overtone index n increases (see figure 1 in [l]), the four transition 
points in the complex coordinate plane all tend to approach each other. As a 
consequence, it is reasonable to expect that the influence of the other WO transition 
points becomes significant, leading to the observed loss of accuracy of the standard 
BS formula for Y E  > 2 as seen in [l]. 

The purpose of this paper is to derive an expression for the complex 
eigenfrequencies of the Schwarzschild black hole quasinormal modes by taking into 
account three transition points. This expression, which we call the Generalized Bohr- 
Sommerfeld formula (GBS), is derived using the phase-integral method in the simplest 
possible context. 

The plan of this paper is the following: in section 2 we repeat some of the 
fundamental formulae for a phase-integral analysis of the problem. Section 3 is 
devoted to the derivation of the GBS formula In section 4 we present the numerical 
results for the quasinormal-mode frequencies calculated from the GBS formula and 
compare our results with the previously mentioned numerical resulv, of Leaver 151, 
Nollert and Schmidt [6] and Anderson [7]. Our conclusions are presented in 
section 5, where we also make suggestions for further work. 

2. Fundamental formulae 

Assuming a time dependence exp(-id), small perturbations are governed by the 
differential equation [3] 

d2W - t Rt(r)W = 0 .  dr2 

For a Schwarzschild black hole the function Rf ( r )  is given by 

and, in the case of gravitational perturbations, the 'effective potential' is 

where C is the spheric harmonica1 index of the perturbation. In the above formulae 
all dimensional quantities are scaled with the black hole mass M (This corresponds to 
setting M = 1). The quasinormal modes are solutions to the differential equation (1) 
that fulfil the boundary conditions: the waves must be outgoing at spatial infinity and 
ingoing across the event horizon (z = 2). 

Since the Wronskian of two exact, linearly independent solutions to (1) must be 
constant, the general solution can always be expressed as a linear combination of the 
two functions 

f,,2(r) = q-'/'(r)exp i i  q ( r ) d r  = q-'/'(z)exp[iiw(r)] [ I  1 (4) 
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where q(r) satisfies the nonlinear equation 

The standard WKB approximation corresponds to taking q = R;". This 
approximation is accurate when the derivative in (5) can be neglected, i.e. when 
R, ( r )  is in some sense slowly varying [8]. In the phase-integral method the function 
q(r)  is approximated at the lowest order hy an appropriately chosen function Q ( r )  
such that 

N 

where Yo is equal to unity and the higher-order contributions are given in, for 
example, [3]. Here it is convenient to take [3] 

in order to prevent the approximation from breaking down close to the horizon of 
the black hole. 

As already mentioned above, the so-called transition points, the zeros of Q2(r), 
play an important role in a phase-integral analysis. Another important concept is the 
Stokes and anti-Stokes lines. These are curves along which the quantity Q ( r ) d r  is 
either purely imaginary or real, respectively. By imposing the boundary conditions, 
defining a quasinormal mode, on anti-Stokes lines instead of on the real coordinate 
axis numerical ditliculties can be avoided4ee [3] for a comprehensive discussion. 

By considering the influence of two (of the four) transition points the BS formula 
is obtained [ M I .  It can be written as 

721 = (n  + i)7r (8) 

where n is a non-negative integer labelling the modes and, in the first order of 
approximation, 

The transition points considered in the analysis are t, and t z  see figure 1. In 
the higher orders of approximation this definition has to be replaced by a contour 
integral encircling the two transition points-ee [3]. 

3. Derivation of the generalized Bohr-Sommerfeld formula 

The BS formula generates accurate frequencies for the lowest-lying quasinormal 
modes. However, its precision deteriorates for modes of overtone index, n, higher 
than two. A possible explanation for this loss of accuracy is the change in the pattern 
of Stokes and anti-Stokes lies as n increases. We note that for the low-lying modes, 
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Figure 1. Pattern of Smkes (broken) and anti-Stokes (full) lines emerging from the three 
transition points under consideration for n = 4 and I = 2 The cuts are represented by 
the zigzagged lines. The labels max and min on the Stokes lines denote maxima and 
minima of the function Iexp(iw)l respectively. 

see figure 2 of [3], the antiStokes line emanating from tz  towards the horizon does 
not pass close to any other transition point. This is not the case for the higher 
overtones--see figure 1 of the present paper. This indicates that the assumption that 
the F-matrix connecting the horizon to the point p ,  is a unit matrix is no longer 
valid, cf section 3.4 in [3]. It is reasonable to as" that the main reason for the 
failure of the BS formula as n increases, is the growing influence of the transition 
point t3. Therefore, 1, ought to be considered in an analysis of the highly damped 
modes. 

In order to make Q(r) single-valued we must introduce cuts from each transition 
point. We choose the cuts as in figure 1, and we make the choice of phase for Q( T )  

as in section 3 of [3]. The phase-integral functions fi(r) and fZ(r) then represent 
outgoing waves as r -+ cc and waves falling across the horizon as T --t 2, respectively. 
The boundary conditions then require 

respectively, where a2 az(+2) and al Q,(CO) are undetermined normalization 
factors. 

We now want to use the phase-integral method to derive an expression for the 
eigenfunction 9 at the point p3  (figure 1) by continuing the expressions (IO) and (11) 
from the horizon and infinity, respectively. Matching the hvo expressions obtained 
yields a formula determining the quasinormal-mode frequencies. 
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We impose the boundary condition of outgoing waves falling across the horizon 
on the spiralling antistokes line that emerges from the transition point t2 towards 
the horizon. Consider the point pl lying on this anti-Stokes line far away from the 
transition point t ,  and lying between t 3  and the horizon. Then, the solution Q at p ,  
is 

Q(P1) = Qzfz(P1) (12) 

since the functional form of this solution does not change when continued along this 
anti-Stokes line (see expression (25) of 131). We can continue the solution (12) to 
the point pz, lying on the same anti-Stokes line. In so doing we must circumvent t ,  
along a path that remains far away from it. Any such path crosses a Stokes l i e  on 
which leivrl has a minimum. Provided that the two transition points t ,  and t ,  are well 
separated, the F-matrix connecting pl and p, is given by expression (32) of [3] and 
we obtain 

Q(P2) = -ia2 fl(PZ) + Qzfz(P2). (13) 

In the expression (13) the transition point i, is used as the reference level for the 
calculation of w ( r )  (see expression (24) in [3]). It is convenient for the later matching 
of the solutions that we switch to t ,  as the phase reference level. Hence (13) takes 
the form 

Q((P2) = -ia7. eq(i1(32) fl(P2) + aZ ~ ( - i 1 ( 3 2 ) f 2 ( P 2 ) ~  (14) 

We now want to continue the solution (14) to the point p ,  lying on the adjacent 
anti-Stokes lines emanating from t p  We use a path that circumvents t z  (far away 
from it) and crosses a Stokes line on which leiWl has a minimum. The F-matrix 
connecting pz and p, is then given by (27) in [3] and we have that 

W P ~ )  = -ia2 [exp(i1(32) + e x p ( - i ~ ~ d I  f1(p3) + a2 exp(-i732) fZ(P3). (15) 

Let us now consider the continuation of the solution from infinity to the intended 
matching point p3. We impose the boundary condition of outgoing waves at infinity on 
the antistokes line emerging from the transition point t l  towards infinity. Consider 
the point p4 lying on this anti8tokes line far away from the transition point tl. Then 
an analogous argument to that leading to (U), yields that the solution Q at p, is 

Q(P4) = Ql  fl(P4). (16) 

In order to continue the solution (16) to the point p,, lying on the adjacent anti- 
Stokes l i e  emerging from t ,  we use a path that circumvents tl while keeping well 
away from it. This path crosses a Stokes line on which leiW/ has a maximum. The 
F-matrix connecting p4 and p,, is then given by (26) in [3] and we obtain that 

WP,~) = al f1(p3,) - ial fZ(P31). (17) 

The expression (17) has the transition point t1 as the phase reference level for 

(18) 

the calculation of w(r) .  Switching to t ,  as the reference level yields 

W3’) = al exp(-iy2,) ~ A P ~ ~ )  - ial e~(i-h)f2(p3’) .  
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Finally, we have to continue the solution to p 3 .  This situation is identical to the 
one analysed in section 3.4 of [31 (see the discussion in connection with expression (53) 
of that paper). There we show that, provided that lImyzlI is small, the F - m a t h  
connecting p3  to p3 ,  is approximately the identity matrix. Hence, 

'Up3) = = I  ~ X P ( - ~ Y Z I )  fl(p3) -ial  exp(iYd fZ(P3). (19) 

Now, the requirement that expressions (15) and (19) must be identical yields 

(20) 
exp(-irzl) = -iaz[exp(im) + exp(-ir3d1 

- ial exp(irzl) = a2 exp (-i-d. 

Dividing equations (20) by one another gives 

exp(-2iy2,) = - (1 + e x p ( 2 i ~ ~ ~ ) l  . (21) 

Taking the logarithm of (21) we obtain the generalized Boh-Sommeifeld formula 
for the quasinormal modes of Schwarzschild black holes 

yzl = ( n + ~ ) ? r + ~ i I o g [ l + e x p ( 2 i ~ ~ ~ ) j .  (22) 

This formula is expected to be valid as long as the pattern of Stokes and anti- 
Stokes lines remain similar to that in figure 1, and all transition points are well 
separated from each other. A similar formula has previously been discwed, in 
connection with Regge poles in scattering theory, by Thylwe [9]. 

4. Numerical results 

To investigate the accuracy of the GBS formula we have done calculations for the 
two lowest values of e. For each quasinormal-mode, with index n, calculations were 
performed for the first five orders of approximation (labelled with odd numbers 1 
through 9). The numerical results are giwn in table 1 (C = 2) and table 2 (C = 3). 
In the tables the results obtained from the GBS formula (22) are compared with 
calculations using the BS formula (8) and with reliable numerical results. For the 
f i t  ten modes the independent methods of Leaver [5], Nollert and Schmidt [6] 
and Andersson [7] agree to all figures quoted in our tables. For the remaining 
high-overtone modes we compare our results with those obtained using the phase- 
amplitude method of Andersson. 

From the tables it follows that the GBS formula is much more accurate than the 
BS formula for the high-overtone modes. Generally it yields results with an error 
in the third decimal place. It is clear, from the numerical results and figure 1, that 
the main reason for the breakdown of the BS formula is the iduence of the third 
transition point tj. 

When performing calculations using several different orders of approximation it 
is necessary to determine which order to consider as the most reliable. It would 
be very simple if the higher-order contributions were to get smaller as the order of 
approximation was increased. Since we are integrating an asymptotic series expansion 
for the function q(r) ,  this is not the case. In a paper by Fr6man et d [ 2 ]  the optimal 
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Table 1. Numerical results for P = 2 

163 

BS formula GBS formula Numerical methods 

n ord Re(u) Im(u) ord Re(u) Im(u) %(U) W e )  
0 3  0.3734 -0.0891 3 0.3744 -0.0895 0.37367 -0.08896 
1 3  0.3452 -0.2742 3 03492 -0.2738 0.34671 -0.27391 
2 1  0.3009 -0.4855 3 0.3031 -0.4749 0.30105 -0.47828 
3 1  0.2510 -0.7202 3 0.2496 -0.7019 0.25150 -0.70515 
4 3  0.2022 -0.9738 3 0.2049 -0.9455 0.20751 -0.94684 
5 3  0.1768 -1.2324 3 0.1666 -1.1947 0.16930 -1.19561 
6 3  0.15% -1.4W9 3 0.1302 -1.4464 0.13325 -1.44791 
7 3  0.1450 -1.7485 5 0.0921 -1.7000 0.09282 -1.70384 
9 3  0.1257 -2,2610 3 0.0622 -23117 0.06326 -230264 

10 5 0,1198 -2.5158 3 0.0753 -25671 0.07655 -256083 
15 5 0.0961 -3.7841 3 0.0665 -3.8292 0.08859 -3.82511 
2 0 5  0.0826 -5.0455 3 0.0846 -5.0854 0.08739 -5.081 47 
2 5 5  0.07% -6.3036 3 0.0816 -6.3394 0.08497 -6.33563 
30 5 0.0670 -7.5596 5 0.0789 -7.5924 0.08260 -7.58868 

Table 2. Numerical results for e = 3. 

BS formula 

n ord Re(c) W u )  
0 7  0.599445 -0.092704 
1 7  0.582643 -0,281305 
2 5  0.55171 -0.47910 
3 5  0.51202 -0.69039 
4 3  0.47024 -0,91545 
5 3  0.4316 -1.1517 
6 1  0.3974 -1.3975 
7 1  0.3681 -1.6458 
8 1  0.3429 -1.8963 
9 1  0.3208 -21481 

10 1 0.3010 -24009 
15 1 0.2314 -3.6764 
2 0 3  0.1&47 -4.9534 
2 5 3  0.1639 -6.wO2 
30 3 0.1488 -7.4829 

GBS formula Numerical methods 

ord Re(c) Im(u) 

5 OS9947 -0.09263 
7 0.58257 -0.28085 
5 os506 -0.4779 
3 0.5079 -0.6896 
3 0.463 3 -0.920 0 
3 0.4283 -1.1637 
3 0.4027 -1.4096 
3 0.3815 -1.6548 
1 0.3567 -1,9094 
1 0.3389 -21571 
1 0.3218 -2.4055 
1 0.2529 -3.6609 
3 0.1907 -4.9178 
3 0.1542 -6.1754 
3 0.1186 -7.4314 

0.599443 -0.092703 
0.582643 -0.281 298 
0.551 68 -0.47909 
0.51196 -0.69034 
0.470 17 -0.91565 
0.431 39 -1.15215 
0.39766 -1.39591 
0.36899 -1.64384 
0.34462 -1.89403 
0.32368 -214540 
0.30546 -239735 
0,23925 -3.65868 
0.19393 -4.91832 
0.15687 -6.17616 
0.121 47 -7.43320 

order of apprm'imation (used in their tables) corresponds to the most accurate as 
compared to reliable numerical results. Since this requires the knowledge of results 
that are believed to be more a m r a t e  than those generated using the approximate 
method, this is a very impractical way of determining which order of approximation 
to use. If a method is available that gives the accurate results why bother about the 
phase-integral method at all? In order to make the present method useful in situations 
where no reliable data are available for comparison we need an independent definition 
of the optimal order of approximation. We propose that the results obtained in 
different orders of approximation should be considered as an asymptotic series. To 
the fi t-order result is then added consecutively smaller terms until, at a certain 
order of approximation, the contribution of the next order is larger. We suggest as 
a simple rule of thumb that this 'series expansion' should be truncated before the 
smallest term. Theoretically, the smallest contribution can then be considered as an 
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estimate of the error in the previous term. Therefore, the optimal order will be that 
giving rise to the term preceding the smallest term in the series. The reliability of 
this rule of thumb will be discussed elsewhere. 

It should be noted that, for calculations using the BS formula, the optimal order 
(as defined by the rule of thumb) decreases as the quasinormal-mode index n is 
increased. This may be used to conclude that the BS formula becomes less reliable. 
However, the situation is not that simple. When IIm CTI > IRe ul the contributions 
from the higher orders of approximation again become small (i.e. the optimal order is 
high). Guinn er al [l] argued that this would imply that the BS formula gives accurate 
results. On the other hand, our analysis of the pattern of anti-Stokes lines (figure 1) 
shows that this is not the case. In continuing the solution from the horizon along an 
anti-Stokes line, it is clear that the influence of transition point t3 must be taken into 
account. The higher-order contributions are small because the integration contour 
encircling t ,  and t, in the BS formula can be taken in the region of the coordinate 
plane far away from t3 .  This is exactly the case when our generalized formula can be 
used with confidence. 

5. Conclusions 

We have derived a generalization of the BS formula using the phase-integral method in 
its simplest form. The numerical results obtained from this formula are remarkably 
accurate even for large overtone index n. In this paper, the influence of three 
transition points, all considered as well separated from each other, is accounted for 
in the simplest possible way. Bearing this in mind, the numerical results obtained 
from the formula are surprisingly accurate. However, we expect the GBS formula to 
break down after some value of n for several reasons, namely: 

(i) For very high-overtone modes the anti-Stokes h e  spiraling towards the horizon 
m close to the two transition points t, and t3 several times. In the analysis of this 
situation one would have to take into account each tum of the spiral-see [IO]. 

(ii) There are situations when t2 and t3 should be considered as close (when 
IIm CT m [Re .I). This case has been considered by Andemon and Linnaeus [lo]. 
Their analysis yields reliable results in the intermediate regime where accurate results 
are not obtained from the BS formula or ow GBS formula. 

(iii) The increasing proximity of the fourth transition point to the three considered 
in this paper. 

The success of ow approach encourages further application of the phase-integral 
method to the cases of Reissner-Nordstrom and Kerr black holes. Beyond that, we 
want to investigate the possibility of applying the method to the interesting cases of 
neutron stars. However, our experience shows that the error estimates within the 
phase-integral method require a more careful consideration (see comments in [3] 
and [4]). This point is at present being investigated and the results will be discussed 
in a forthcoming paper. 
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