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Figure 4. The ellipticities of over 50 000 faint galaxies can be
inverted to reconstruct a map of the intervening mass
distribution. Several projected mass concentrations are seen in
this weak-lensing mass map covering 0.8 degrees of the sky. One
of these structures spans 6 Mpc, twelve times the size of the map
shown in figure 2. At the center of the mass structure is a cluster
ot galaxies.

comparable to clusters without first knowing a cluster is
there. Some clusters have already been found via thejr
mass in this way. More importantly for our understandin
of cosmology, weak lensing may be used to directly
investigate the evolution of mass structures over cosmic
time, and surveys are currently under way. Figure 4
shows a mass map of a 0.8 degree wide field, revealing
several mass concentrations. If the shear pattern of
sufficiently distant galaxies is measured over a wide field,
then intervening mass overdensities over a wide range of
redshift are revealed.

In different cosmologies mass structure develops
differently; this leads to a weak-lens cosmological
diagnostic. Generally, the net effect of all intervenip
mass overdensities is a correlation of orientations of fajnt
galaxies separated by some angle on the sky. A direct
probe of the development of mass structures, this ‘cosmyjc
shear’ has recently been detected. Meaningful tests of
cosmological models will result from the comparison
of what is found for this cosmic shear (as wel]] 4
counts of discrete clusters found via weak lensing)
with theoretical models for the evolution of large scale
structure. Comparing mass maps from deep Weak-lensing
observations with data from upcoming satellite CosMIC
MICROWAVE BACKGROUND anisotropy missions will lead tq ,
precision test of the nature of cosmic mass-energy, probin
the basic theory of structure formation in our universe
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Gravitational Radiation

Gravity is one of the fundamental forces of nature, and it
is the dominant force in most astronomical systems. In
common with all other phenomena, gravity must obey the
principles of spECIal RELATIVITY. In particular, gravitational
forces must not be transmitted or communicated faster
than light. This means that, when the gravitational field
of an object changes, the changes ripple outwards through
space and take a finite time to reach other objects. These
ripples are called gravitational radiation or gravitational
waves!.

In Einstein’s theorv of gravitation (see GENERAL
RELATIVITY AND GRAVITATION), as in many other modern
theories of gravity, gravitational waves travel at exactly
the speed of light. Different theories make different
predictions, however, about details, such as their strength
and polarization. There is strong indirect observational
evidence (see GENERAL RELATIVITY TESTS: BINARY PULSARS) that
gravitational waves follow the predictions of general
relativity, and instruments now under construction are
expected to make the first direct detections of them in the
first years of the 21st century.

These instruments and plans for future instruments in
space are described in the article GRAVITATIONAL RADIATION
DETECTORS ON EARTH AND IN $PACE. Detectors must look
for gravitational radiation from astronomical systems,
because it is not possible to generate detectable levels of
radiation in the laboratory. It follows that gravitational
wave detection is also a branch of observational
astronomy.

The most striking aspect of gravitational waves is
their weakness. A comparison with the energy in light
will illustrate this. The human eye has no trouble sensing
the light from the planet Jupiter: the amount of energy
that passes through the iris of the eye is far more than the
minimum the eye can detect. Yet scveral times a week
a gravitational wave, generated in a far distant galaxy,
carries a similar amount of energy into the eye, and we
do not notice it.

The reason is that gravity is the weakest of the
fundamental forces, and the disturbance created by even
such an energetic wave is so tiny that no man-made
instrument has so far registered it. While all the energy in
the light from Jupiter that enters the eyeis absorbed in the

1 They are also sometimes referred to as gravity waves, but
since this term has a different meaning in‘ meteorology and
stellar hydrodynamics, we will avoid it here. See 501 AR INTERIOR
HELIOSEISMOLOGY.



eye, the gravitational wave passes right through, leaving
behind almost none of its energy. All the matter in the
present universe is similarly transparent to gravitational
waves.

Gravitational radiation is today one of the last
unopened windows into the universe. There are at least
five reasons motivating scientists to develop gravitational
wave astronomy.

e The weakness with which gravitational waves
interact with matter is a great advantage for
astronomy. It means that gravitational waves arrive
unaffected by any intervening matter they may have
encountered since being generated. There is no
significant scattering or absorption, although they
will be deflected by GRAVITATIONAL LENSING in the same
way as light. Gravitational waves carry uncorrupted
information even if they come from the most distant
parts of the universe or from its most hidden regions,
like the interiors of SUPERNOVAE.

e Gravitational waves are emitted by the bulk motions
of their sources, not by individual atoms or clectrons,
as is normally the case for electromagnetic waves.
They therefore carry a completely different kind of
information about their sources from that which is
normally available in observations of binary stars (sce
BINARY STARS: OVERVIEW), supernovae and NEUTRON STARS.

e  Gravitational waves can be emitted by black holes,
which are described in the article GRAVITATIONAI
RADIATION DETECTORS ON EARTH AND IN sPACE. Indeed,
gravitational waves provide the only way to make
direct observations of these objects. Since there is
now strong indirect evidence that giant black holes
inhabit the centers of many (or even most) galaxies
{see SUPERMASSIVE BLACK HOLES INAGN), and since smaller
ones are common in the Galaxy (see BLACK HOLE
CANDIDATES IN X-RAY BINARIES), there is great interest in
making direct observations of them.

e Gravitational waves can come from extraordinarily
early in the history of the universe. The electromag-
netic radiation from the big bang is called the cos-
MIC MICROWAVE BACKGROUND. Observations of it describe
the universe at it was about 10° yr after the big bang.
Studies of cosmological NUCLEOSYNTHESIS give infor-
mation about what the universe was like as little as
3 min after the big bang. Gravitational waves, if they
can be detected, would picture the universe when it
was only perhaps 1072 s old, just at the end of INFLA-
TION.

e Gravitational radiation is the last fundamental
prediction of Einstein’s general relativity that has
not yet been directly verified. If another theory of
gravity is correct, then differences could in principle
show up in the properties of gravitational waves,
such as their polarization. In principle, there
must be a better theory of gravity, since general
relativity is not a quantum theory, a deficiency that
theoretical physicists today are working hard to
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remedy.  The majority belief today is that there
should be a unified theory of the fundamental torces,
in which gravitation is related to the other forees.
Evidence for the nature of this relation could show up
in observations of gravitational waves, particularly
those from the big bang.

These motivations and their implications are devel-
oped in the following sections. Fach section begins with
an introduction to the physical ideas and then develops
some of the mathematical details,

The physics of gravitational radiation: weakness
and strength

The starting point for understanding gravitational radi-
ation is Newtonian gravity. The weakness of gravity is
evident. If a child picks up a book, she defeats the cumu-
lative gravitational pull of the entire planet Earth on the
book. The strength to do this comes from the chemical
forces in her muscles, which come from electromagnetic
interactions.

In fact, the electromagnetic force between the electron
and the proton in a hydrogen atom is 2 x 10™ times bigger
than the gravitational force between them. The reason that
gravity can nevertheless dominate on the cosmic scale is
that opposite electrical charges cancel each other, while the
gravitational forces of all the particles add.

Another factabout gravity that was known to Newton
is what is now called the equivalence principle. This is
the principle that all bodies accelerate in the same way
in a gravitational ficld, so that the trajectory that a freely
falling body (a body influenced only by gravity) follows
in a given gravitational field depends only on its starting
position and velocity, not on what it is made of.

Imagine now a machine made in some way to detect
gravitational waves. Whatever the method of detection,
a wave needs somehow to alter the internal state of the
detector. If the wave carries a gravitational field that
is completely uniform across the detector, then by the
equivalence principle all of the parts of the detector will
accelerate together, and its state will not change at all. To
detect a gravitational wave, the machine must measure
the non-uniformities of the gravitational field across a
detector.

These non-uniformities are called tidal forces, because
thev produce the stretching effects that raise tides on the
Earth. Gravitational waves are traveling tidal forces.

Newton’s theory of gravity had no gravitational
waves. For Newton, if a gravitational field changed
in some way, that change took place instantaneously
evervwhere in space. This is not a wave. Let us consider
what we mean by the term ‘wave’ in ordinary language.

Imagine a child’s rubber duck floating in a bath tub
half full of water. If a child presses down on the duck very
gently, until is is nearly submerged, then the level of the
water will rise everywhere in a nearly uniform way, and
this is not called a wave. If instead he drops the duck,
then the disturbance rises around the base of the duck



Gravitational Radiation

rapidly, moves away from it and eventually reaches the
walls. This is a wave. Wave motion requires a finite speed
for the propagation of disturbances. If the disturbance is
very slow, as for the floating duck, then the wavelength is
very long, and near the site of the disturbance the wave
motion is not noticeable. We say we are in the ‘near zone”.
However, when we are more than a wavelength away,
then we see waves, and this is the ‘wave zone” or ‘far
sone’. For the dropped duck, we see the waves because
their wavelengths are shorter than the size of the bath.
In general relativity, the speed of gravity is the speed of
light. Because of this finite speed, gravity must exhibit
wave effects,

Many of Newton's contemporaries were unhappy
that his theory of gravity was based on instantaneous
“action at a distance’, but Newton’s theory fitted the
If gravity had a finite speed of
propagation, there was no evidence for it in the solar
svstem. Interestingly, the brilliant 18th century French
mathematician and physicist Laplace tried out a variation
on Newton's theory in which gravity was represented
by something “flowing” out of its source with a finite
speed. He reasoned that a planet like the Earth, moving
through this fluid of gravity, would experience friction and
graduatly spiral in towards the Sun.

observational facts.

Laplace could show that the observational limits on
this in-spiral even in his day were so stringent that the
speed of gravity in his model needed to be huge compared
with thespeed of light. He did not find this result attractive
and took the theory no turther. (Laplace also explored the
notion ofwhatwe now call a black hole, which for him was
a region where gravity was strong enough to trap light.)

It is interesting that, today, observations of the two
neatron stars in the binary system PSR1913 + 16 spiraling
together as they orbit one another provide the most
convincing evidence that gravitational waves exist and are
as described in general relativity (see below). Laplace had
the right effect, but the wrong theory. This evidence is
described in the next section.

In general relativity, Einstein used the principle of
equivalence as the basis for a geometrical description of
gravity. In the four-dimensional world of space-time, the
'traiector_\' ot_‘ a particle talling freely in a gravitational field
is a certain fixed curve. Its direction at any point depends
on the velocity of the particle. The equivalence principle
implies that there is a preferred set of curves in space-time:
at any point, pick any direction, and there is a unique
curve in that direction that will be the trajectory of any
particle starting with that velocity. These traject;)ries are
thus properties of space—time itself.

Moreover, it there were no gravitational field, the
trajectories would be simple straight lines. Even’in a
gravitational field, a small freely falling particle does not
’t_ee[' any acceleration: its internal state is the same as
it there were no gravity. Therefore Einstein postulated
that a gra\'itational field made space-time curved, and
that the preferred trajectories were locally straight lines
that simply changed direction as they moved through the

1032 Excyciorepia oF Astroxoumy AND ASTROPHYSICS

curved space—time, in much the same wav as a great circle
on a sphere changes direction relative to other great circles
asone goesalong it. For weak gravitational fields of slowly
moving bodies, Einstein’s theory reduces to Newton’s in
the first approximation.

For gravitational waves, one could make a very
simple detector just by monitoring the distance between
two nearby freely falling particles. If thev are genuinely
free, then any changes in their separations would indicate
the passage of a gravitational wave. Because this measures
a tidal effect, the bigger the separation of the particles,
the bigger will be the change in their separation, at least
for particles that are separated by less than a gravitational
wavelength. Most modern gravitational wave detectors
are designed to be as big as cost and practicality allows.

Although gravitational radiation is well understood
in theoretical terms in general relativity, the complexity
and non-linearity of Einstein’s equations means that
calculations are often difficult. In the historical
development of general relativity, between 1915 and
the 1950s and 1960s, these mathematical difficulties
created confusion over the physical nature of gravitational
radiation, and in particular over whether it carried energy
away from the source. Improved mathematical techniques
finally resolved the matter in favor of the simple physical
picture presented here, but this picture would not be
complete without the strong mathematical underpinning
that now exists.

The question of energy in gravitational wavesis still a
delicate one. There is no question that waves carry energy
(and momentum) away from their sources. Nevertheless,
it is not possible in general relativity to localize the
energy in the radiation to regions smaller than about
a wavelength. Indeed the equivalence principle shows
that ‘point’ particles feel nothing, no matter how strong
the wave. The wave only acts by stretching space-time,
producing a tidal distortion in the separations between
particles (see the discussion of polarization below).

For this reason, energy is localized only in regions, not
at points. It is nevertheless real energy: the non-linearity
of general relativity allows waves to create gravitation
themselves. Recent numerical simulations have shown
that focussed gravitational waves can actually form black
holes, trapping themselves. If the waves are weak, they
enter the focussing region and re-emerge. If they are strong
enough, they enter and never leave.

Grqvitational waves in a quasi-Newtonian model

It is possible to calculate the approximate size of the
effect of a given gravitational wave by beginning with
Newtonian gravity and adding waves to it. In Newtonian

g?avity the gravitational field produced by a mass M ata
distance r is given by

¢=—-GM/r (1)

Wher.e G is Newton’s gravitational constant. The field of a
gravitational wave must be a ripple on this, which means



a small change that oscillates in space and time. A suitable
form for a change that propagates at the speed of light in
the c-direction with an angular frequency w is:

GM
5 = —e—r— sinfw(z/c — 1] (2)

where ¢ is a dimensionless number that would be expected
to be small compared with 1. Its size is the subject of the
next main section.

The field 8¢ produces an acceleration in the z-
direction that depends on its :-derivative. Both 1/r and
the sin() term depend on z. The derivative of 1/r will
be proportional to 1/r%, which is how the acceleration
falls off in Newton's theory (where ¢ is the only field).
However, the derivative of the sin() term does not change
the 1/r; rather, it essentially just multiplies 8¢ by w/c. At
sufficiently large distances from the source, this term will
dominate the 1/r* term and the acceleration produced by
the wave will be

M cos[w(z/c — 1] (3)

re

da. = —€w

Note that this term would not be present in the x- and
v-derivatives, so these components of the acceleration
are much smaller in this quasi-Newtonian model of a
gravitational wave.

Effect on a simple detector
The tidal part of this acceleration, for a detector that has
size ¢ in the z-direction, is to a first approximation

d » GM .

{—6a. = ew’t — sin[w(z/c - nJ. 4)

2 re

If a detector consists of two freely falling particles with

this relative acceleration, the equation of motion for their

separation £ will be
d%¢

—2 = ¢cw? A:l sinfw(z/c — D] (5)
dr? re?

The dimensionless coefficient eGM/rc? is typically
very small. Even if € is of order 1, the other number is,
with reasonable values for M and R,

M a0 (———r )1
r2 TR M. \20Mpc/)

The mass and distance scales here are those appropriate
to a neutron star in the nearest large cluster of galaxies,
the Virgo Cluster. (The distance unit is based on the
astronomers’ parsec, denoted pc, whichis about3x 10" m.
The unit Mpc is a megaparsec.) It is believed that several
neutron stars are formed in the Virgo Cluster each year
in supernova explosions. Ever since the beginning of
the development of gravitational wave detectors such
events have been high on the list of possible sources of
gravitational waves.

Gravitational Radiation

To solve equation (5), one takes r and = as constants
and uses the smallness of the right-hand side, which
implies that the changes in  are tiny compared with ¢
itself. On the right-hand side one can therefore replace ¢
by ¢y, the initial valuc of ¢, and then simply integrate twice
in time to obtain (for an initial value dit /dr = 0)

)y — ¢y
€

M

= —e —— sinfw(z/c - )] (6)
2

The right-hand side of equation (6) is identical to that

of equation (2). This is an important conclusion which

fits neatly with Einstein’s geometrical conception of

gravity: the size of a gravitational wave gives directly the

stretching of the distance between nearby free particles.

It is conventional to call this /1/2 and refer to i as the

gravitational wave potential:

) — ty

h:=2 = 28¢. (7)

fo
The amplitude of the oscillations of /1 is
B 2e (fM (8)
ree
It is evident from this that a detector must be able to
measure changes in its own size that are smaller than 1 part
in 10%' to have a reasonable chance of making astronomical
observations. The extraordinary smallness of this effect
also explains why ordinary objects in the universe are
transparent to gravitational waves. As the waves pass
through them, they disturb them so little (parts per 10%!
typically) that the transfer of energy to the object and any
back-reaction effects of this on the wave are negligibly
small.

Energy flux carried by waves

The energy in the waves can also be estimated from
these equations and general physical principles. Quite
generally, in classical field theories, the energy flux of a
propagating sinusoidal plane wave is proportional to the
square of the time-derivative of the fundamental field. In
electromagnetism, the Poynting flux is proportional to the
square of the time-derivative of the vector potential.

In general relativity, the flux is therefore proportional
to the square of the time-derivative of h(r).  The
proportionality constant must be built only out of ¢, G
and pure numbers. To obtain the right units, it must
be proportional to ¢*/G: to obtain the pure number, a
calculation in general relativity is required; 1/327 for a
linearly polarized wave. (Polarization is described later.)

This gives
P - ( dh '\
T3 G\ e )

3 f hoy .
=1 (L V() wm?
6>10 (IOOHZ) (10722> m ©)

for a wave with frequency f = /2. For comparison,
reflected sunlight from Jupiter has a flux on Earth of
2.3 x 1007 W m™2, almost 100 times smaller than that of
a gravitational wave with an amplitude of 1072,
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Deficiencies of He qitasi-Newtonian niodel

The calculation and equations in this section have been
framed within a modified Newtonian model of gravity
with a propagation speed of ¢, and one would expect some
differences from general relativity. The most important
difference is in the direction in which the tidal forces act. In
the simple model, wave accelerations act in the z-direction,
which was the direction of propagation of the wave. This
is called a longitudinal wave.

In general relativity, gravitational waves are trans-
verse waves: if the wave propagates in the z-direction then
the tidal forces act only in the v—v-plane. We will discuss
fater the exact form that their action in this plane takes.
Remarkably, the rest of the formulas above are good ap-
proximations even in general relativity, provided that € is
calculated correctly, as described in the next section.

The emission of gravitational waves

The previous section deseribed  the propagation of
gravitational waves, their interaction with detectors and
the energy they carry. This section deals with the strength
with which waves are emitted by astronomical bodies.

In Newtonian gravity there is a fundamental theorem,
proved by Newton, that the gravitational field outside a
spherical body is not only spherical but the same as that
of a point mass located at the origin of the body. 1t has
the form given in equation (1). In particular, the field is
independent of the size of the body, as long as we consider
only points outside it. This is true even if the star pulsates
in a spherical manner.

This theorem is essentially the same in general
relativity, and is known as Birkhoff’s theorem. Outside
a spherical body the field is the same as that of a black
hole of the same mass as the body (the Schwarzschild
metric), evenitthebody is pulsating spherically. However,
if the pulsation is non-spherical, then the outside field
will change. In general relativity the changes generally
propagate as a wave. So gravitational waves will be
emitted by non-spherical motions.

In general the calculation of the emitted waves is
extremely difficult, since the field equations of general
relativity are a system of many coupled, non-linear, partial
differential equations. However, in four circumstances the
emission mechanisms are understood in some detail:

e Small-amplitude pulsations of relativistic stars and
black holes. Normally gravitational radiation carries
away energy and damps pulsations away, but
in rotating stars the opposite may happen: the
radiated loss of angular momentum may allow
the star to spin down to an energeticalfv more
favored state, in which case the perturbaﬁon will
grow, at least until non-linear effects intervene.
Discovered by S Chandrasekhar and now called the
Chandrasekhar-Friedman-Schutz (CFS) instability,
it is thought to limit the rotation speed of young
neutron stars (see below). Black holes also emit
gravitational radiation when they are disturbed, eg.
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by something falling into them, but they are not
unstable: they always settle down into a steady state
again.

e Radiation from ‘test’ objects orbiting black holes.
If the mass of the object is small enough then
the total gravitational field may be treated as a
linear perturbation of the exactly known field of a
black hole (the Schwarzschild or, with rotation, the
Kerr solution). These studies give insight into the
general problem of gravitational radiation, and they
also predict gravitational waveforms that might be
observed by space-based observatories looking at
compact stars falling into the giant black holes in the
centers of galaxies (see below).

e Weak gravitational fields and slow motion. Such
weakly relativistic sources are studied in the post-
Newtonian approximation, which includes higher-
order corrections to Newtonian gravity from general
relativity.  This is analogous to the slow-motion
multipole approximation that is so powerful in the
study of electromagnetic radiation. Most realistic
gravitational-wave sources can be studied to some
approximation this way.

e  Collisions of black holes and neutron stars. These
events, which are expected to be observed by
gravitational wave detectors (see below), must be
modeled by solving the full set of Einstein equations
on a powerful computer. Techniques to do this
are advancing rapidly, and simulations of realistic
mergers of stars and black holes from in-spiraling
orbits can be expected to yield useful results in the
first years of the 21st century.

Quadrupole approximation

The post-Newtonian approximation has so far been the
most powerful of these methods, and it yields the most
insight into the emission mechanisms. Its fundamental
result is the quadrupole formula, which gives the first
approximation to the radiation emitted by a weakly
relativistic system.

The quadrupole formula is analogous to the dipole
formula of electromagnetism. In this language, monopole
means spherical, which emits no radiation. This s also true
in electromagnetism, where it is linked to conservation of
charge. The ‘monopole moment’ in electromagnetism is
the total charge of a system, and since that does not change,
there can be no spherical radiation.

.Again in electromagnetism, the dipole moment is
defined as the integral

d; :[px, d’x

wherg p is the charge density and x;, is a Cartesian
coordinate. If this integral is time dependent, then
the amplitude of the electromagnetic waves will be
proportional to its first time-derivative dd;/dr, and the
radiated energy will be proportional (as we remarked
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earlier) to the square of the time derivative of this
amplitude, i.e. to Y, |d>d;/dr?”.

In the post-Newtonian approximation to general
relativity, the calculation goes remarkably similarly. The
monopole moment is now the total mass-energy, which
is the dominant source of the gravitational field for non-
relativistic bodies, and which is constant as long as the
radiation is weak. (Radiation will carry away energy, but
in the post-Newtonian approximation that is a higher-
order effect.) The dipole moment is given by the same
equation as above, but with p interpreted as the density of
mass—energy.

However, here general relativity departs from
electromagnetism. The time-derivative of the dipole
moment is, since the mass—energy is conserved, just the
integral of the velocity v;:

di = /pzv, d’x. (10

However, this is the total momentum in the system, and
(to lowest order) this is constant. Therefore, there is no
energy radiated as a result of dipole effects in general
relativity. The gravitational field far from the source does
contain a dipole piece if d; is non-zero, but this is constant
because it reflects the fact that the source has non-zero total
momentum and is therefore moving through space.

To find genuine radiation in general relativity one
must go one step beyond the dipole approximation
to the quadrupole terms. These are also studied in
electromagnetism, and the analogy with relativity again
is close. The fundamental quantity is the spatial tensor
{matrix) Q ;;, the second moment of the mass (or charge)
distribution:

Qi = /px»,-xk d3x. (11)

A gravitational wave in general relativity is represented
by a matrix ki, rather than a single scalar h, and its source
(in the quadrupole approximation) is @ .

As in electromagnetism, the amplitude of the
radiation is proportional to the second time-derivative of
Qj, and it falls off inversely with the distance » from
the source. A factor of G/¢* is needed in order to obtain
a dimensionless amplitude #, and a factor of 2 to be
consistent with the definition in equation (8). The result
for hj, is

_ ZG d:Q./’\
T E A

(12)

General relativity describes waves with a matrix
because gravity is geometry, and the effects of gravity
are represented by the stretching of space-time. This
matrix contains that distortion information. Here is the
information about the transverse action of the waves that
the quasi-Newtonian model of the last section did not get
right.

Stmple estimates

If the motion inside the source is highly non-spherical, then
a typical component of d2Q i /dr? will (from equation (11))
have magnitude M1Z,, where 17 is the non-spherical part
of the squared velocity inside the source. So one way of
approximating any component of equation (12) is

ZGMvi;5

. (13)

h o~

re

Comparing this with equation (8) we see that the ratio € of
the wave to the Newtonian potential is simply

2
By the virial theorem for self-gravitating bodies, this will
not be larger than
€ < d’ml/(2 (14)

where ¢y, is the maximum value of the Newtonian
gravitational potential inside the system. This provides
a convenient bound in practice. It should not be taken to
be more accurate than that.

For a neutron star source one has ¢, ~ 0.2¢2. If
the star is in the Virgo cluster, then the upper limit on
the amplitude of the radiation from such a source is
5 x 10722, This has been the goal of detector development
for decades, to make detectors that can observe waves at
or below an amplitude of 102",

Polarization of gravitational waves

The matrix nature of the wave amplitude comes from
general relativity and has no Newtonian analog. In order
to find the effect of the waves on the separation of two free
particles (the idealized detector), one has to start with £
as given by equation (12) or by any other calculation, and
then do three things.

1. Project the matrix 4 onto a plane perpendicular
to the direction of travel of the wave. In the
simple case considered above, where the wave
was traveling in the z-direction, this means leaving
the components {h,.. h,,. h,,} alone and setting the
remaining components to zero. It is then a two-
dimensional matrix in the transverse plane.

2. Remove the two-dimensional trace of the projected
matrix. Call the resulting matrix h}f, where TT
stands for transverse—traceless. In the example this
means subtracting (h., +h,,)/2 fromboth 4., and &, ,.
Then there are only two independent components
left, \T' = 4T and 41T = —p T

3. To find the change in the separation of two particles
that have an initial separation given by the vector ¢,
let the matrix /1 act onit:

s6, =" hile. (15)
k

It is clear that any longitudinal component of the
separation ¢; between the particles is unaffected by the

ENCYCLOPEDIA OF ASTRONOMY AND ASTROPHYSICS 1035
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Figure 1. Polarization of gravitational waves. The center line
gives the wave as a function of time, with an amplitude of

h = 0.2, and the top and bottom lines show to scale the
distortions produced by two polarizations with this amplitude.

wave (in the example, this is the z-separation), and that
there are two degrees of freedom (the two independent
components of 1) to move particles in the plane
perpendicular to the propagation direction. These two
degrees of freedom are the two polarizations of the wave.

Figure | shows the conventional definition of the two
independent polarizations, from which any other can be
made by superposition. What is shown is the effect of
a wave on a ring of free particles in a plane transverse
to the wave. The first line shows a wave with /,, = 0,
conventionally called the *+” polarization. The bottom line
shows a wave with /i,, = (), the *x” polarization.

Luminosity in gravitational waves

The energy carried by the gravitational wave must be
proportional to the square of the time-derivative of the
wave amplitude, so it will depend on the sum of the
squares of the components d*Q ;; /di*. The energy flux falls
off as 1/,7, but when integrated over a sphere of radius r
to obtain the total luminosity, the dependence on r goes
away, as it should. The luminosity contains a factor G/¢°
on dimensional grounds, and a further factor of 1/5 comes
from a careful calculation in general relativity. The result
1s the gravitational wave luminosity in the quadrupole
approximation:

.- G
BT 5es

(16)

(;QJLQ,A—§Q2>

where ( is the trace of the matrix Q ;. Its squared third
derivative must be subtracted in order to ensure that
spherical motions do not radiate.

This equation will be used in the next section to
estimate the back-reaction effect on a system that emits
gravitational radiation.

Emission estimates

Until observations of gravitational waves are successfully
Mmade, one can only make intelligent guesses about most
of the sources that will be seen. There are many that
could be strong enough to be seen by the early detectors:
binary stars, supernova explosions, neutron stars, the early
Universe. The estimates in this section are accurate only
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to within factors of order 1. The estimates correctly show
how the important observables scale with the properties
of the systems.

Man-made gravitational waves

One source can be ruled out: man-made gravitational
radiation. Imagine creating a wave generator with the
following extreme properties. It consists of two masses of
10° kg each (a small car) at opposite ends of a beam 10 m
long. At its center the beam pivots about an axis. This
centrifuge rotates 10 times per second. All the velocity is
non-spherical, so v} in equation (13) is about 107 m? s~2.
The frequency of the waves will actually be 20 Hz, since the
mass distribution of the system is periodic with a period of
0.055, only half the rotation period. The wavelength of the
waves will therefore be 1.5 x 10" m, about the diameter of
the earth. In order to detect gravitational waves, not near-
zone Newtonian gravity, the detector must be at least one
wavelength from the source. Then the amplitude / can be
deduced from equation (13): # ~ 5 x 10~*. This is far too
small to contemplate detecting.

Radiation from a spinning neutron star

Some likely gravitational wave sources behave like the
centrifuge, only on a grander scale. Suppose a neutron
star of radius R spins with a frequency f and has an
irregularity, a bump of mass m on its otherwise axially
symmetric shape. Then the bump will emit gravitational
radiation (again at frequency 2 f because it spins about its
center of mass, so it actually has mass excesses on two
sides of the star), and the non-spherical velocity will be

just vys = 27 Rf. The radiation amplitude will be, from
equation (13),

fbump ~ 22 Rf /) Gm/re? (17)
and the luminosity, from equation (16) (assuming that
roughly four comparable components of Q x contribute
to the sum)

Loump ~ (G/5¢%) 27 f£)'m* R,

The .radiated energy would presumably come from the
rot.atlonal energy of the star. This would lead to a
spindown of the star on a timescale

5 ., (Gm Ty
w () ()
It is felt that neutron star crusts are not strong enough
to support asymmetries with a mass of more than about
m~107°M. , and from this one can estimate the likelihood
that the observed spindown timescales of 1t1saks are due
to gr.aVitatiOnal radiation. In most cases, it seems that
gravitational wave losses cannot be the main spindown
mechanism.

However, lower levels of radiation would still be
Observa.ble by detectors under construction, and this may
be coming from a number of stars. In particular, there

1
tspindnwn = i”’vz/l‘hump ~



is a class of neutron stars in X-RAY BINARY STARs. They are
accreting, and it is possible that accretion will create some
kind of mass asymmetry (bump) or else lead to a rotational
instability of the CFS type in the r-modes (see below). In
either case, the stars could turn out be long-lived sources
of gravitational waves.

Radiation from a binary star system
Another ‘centrifuge’ is a binary star system. Two stars
of the same mass M in a circular orbit of radius R have
3¢ = GM/4R. The gravitational-wave amplitude from
equation (13) can then be written

1GM GM

2 re2 R

hbinary ~ (18)
Compare this with the implications of putting equation
(14) into equation (8).

The gravitational-wave luminosity of such a system
is, by a calculation analogous to that for bumps on neutron

stars,
1 (GM )“
80G \ R/~

In this equation there appears the important constant
/G = 3.6x W, a number with the dimensions of
luminosity built only from fundamental constants. By
comparison, the luminosity of the Sun is only 3.8 x
10% W. Close binaries can therefore radiate more energy
in gravitational waves than in light.

The radiation of energy by the orbital motion causes
the orbit to shrink. The shrinking will make any observed
gravitational waves increase in frequency with time. This
is called a chirp. The timescale for this is

meary

206GM {GM N}
< ) (19)

5
[chirp = Mv /Lbinary ~ 3 Re2

¢

The binary pulsar system—uerifying gravitational waves
This orbital shrinking has already been observed in the
HULSE-TAYLOR PULSAR system, containing the radio pulsar
PSR1913 + 16 and an unseen neutron star in a binary
orbit. Discovered in 1974 by R Hulse and ] Taylor, it
has established that gravitational radiation is correctly
described by general relativity. For their discovery, Hulse
and Taylor received the 1993 Nobel Prize for Physics.
The key to the importance of this binary system is
that all of the important parameters of the svstem can be
measured before one takes account of the orbital shrinking.
This is because a number of post-Newtonian effects on the
arrival time of pulses at the Earth, such as the precession
of the position of the periastron and the time-dependent
gravitational redshift of the pulsar period as it approaches
and recedes from its companion, are measured in this
system. They fully determine the masses and separation of
the stars and the inclination and eccentricity of their orbit.
From these numbers, without any free parameters, it is
possible to compute the shrinking timescale predicted by

Gravitational Badiation

general relativity. The observed rate matches the predicted
rate to within the observational errors of less than 1.
The stars are in an eccentric orbit (¢ = 0.615) and
both have masses of 1.4 ..
is about 7 x 8 m.

The orbital semimajor axis
Equation (19) assumes a circular
orbit and gives a shrinking timescale of 6 x 10™ yr.
This is an overestimate, however, partly because it is
in any case a rough approximation, and partly because
the timescale is very sensitive to eccentricitv. With the
observed eccentricity, a careful calculation shows that
the expected shrinking timescale is around 4 x 10° VT,
consistent with observations.

Chirping binaries

For a circular equal-mass binary, the orbital shrinking
timescale and the frequency of the orbit determine both
M and R. If in addition a gravitational wave detector
measures the wave amplitude /iy, , then the distance »
to the binary svstem can be determined.

Remarkably, this conclusion holds even for binaries
with unequal masses. In such a case, the measurable mass
is the chirp mass of the binary, defined as .\t = ;7 7815,
where 2 is the reduced mass of the binary svstem and
My its total mass. Then the distance s is still measurable
from the chirp rate, frequency, and amplitude. In other
words, achirping binary is a standard candle in astronomy.
Post-Newtonian corrections to the orbit, if observed in the
waveform, can determine the individual masses of the
stars and even their spins.

Recognizing weak signals

For ground-based detectors, all expected signals have
amplitudes that are close to or even below the instrumental
noise level in the detector output. Such signals can
nevertheless be detected with confidence if their waveform
matches an expected waveform. The pattern recognition
technique that will be used by detector scientists is called
matched filtering.

Matched filtering works by multiplying the output of
the detector by a function of time (called the template)
that represents an expected waveform, and summing
(integrating) the result. If there is a signal matching the
waveform buried in the noise then the output of the filter
will be higher than expected for pure noise.

A simple example of such a filter is the Fourier
transform, which is a matched filter for a constant-
frequency signal. The noise power in the data stream is
spread outover the spectrum, while the power in the signal
is concentrated in a single frequency. This makes the signal
easier to recognize. The improvement of the signal-to-
noise ratio for the amplitude of the signal is proportional
to the square root of the number of cycles of the wave
contained in the data. This is well known for the Fourier
transform, and it is generally true for matched filtering.

Matched filtering can make big demands on compu-
tation, for several reasons. First, the arrival time of a short-
duration signal is generally not known, so the template has
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to be multiplied into the data stream at each distinguish-
able arrival time. This is then a correlation of the template
with the data stream. Normally this is done efficiently
using fast Fourier transform methods.

Second, the expected signal usually depends on
a number of unknown parameters. For example, the
radiation from a binary system depends on the chirp mass
M, and it might arrive with an arbitrary phase. Therefore,
many related templates must be separately applied to the
data to cover the whole family of signals.

Third, matched filtering enhances the signal only if
the template stays in phase with the signal for the whole
data set. If they go out of phase, the method begins to
reduce the signal-to-noise ratio. For long-duration signals,
such as for low-mass neutron star coalescing binaries or
continuous-wave signals from neutron stars (see below),
this requires the analysis of large data sets and often forces
the introduction of additional parameters to allow for
small effects that can make the signal drift out of phase
with the template. It also means that the method works
well only if there is a good prediction of the form of the
signal.

Because the first signals will be weak, matched
filtering will be used wherever possible. Asasimple rule of
thumb, the detectability of a signal depends on its effective
amplitude i, defined as

i = hN'2

eyeles

(20)

where N is the number of cvcles in the waveform that
are matched by the template.

For example, the effective amplitude of the radiation
from a bump on a neutron star (equation (17)) will
be Mpump(2f Ton)'?, where T, is the observation time.
In order to detect this radiation, detectors may need
to observe for long periods, say four months, during
which they accumulate billions of cycles of the waveform,
During this time, the star may spin down by a detectable
amount, and the motion of the Earth introduces large
changes in the apparent frequency of the signal, so
matched filtering needs to be done with care and precision.

Another example is a binary system followed to
coalescence, i.e. where the chirp time in equation (19) is
less than the observing time. For neutron star binaries
observed by ground-based detectors this will always be
the case (see the next section), so the effective amplitude
is roughly

: . GM (Gu\"
hchlrp ~ hbm(,fg\\'tchxrp)l T < ) (21)

ret \ Re?

where for f,,. one must use twice the orbital frequency
(GM/RY)! /4. This may seem a puzzling result, because
itsays that the effective amplitude of the signal gets smaller
as the stars become closer. However, this just means that
the signal will be more detectable if it is picked up earlier,
since equation (21) assumes that the signal is followed right
to coalescence. If one picks up the signal at earlier times,

then there are more cvcles of the waveform to ftilter for,
and this naturally gives a better signal-to-noise ratio. This
gives an advantage to detectors that can operate at lower
frequencies. This has been an important consideration in
the design of modern detectors.

In general, the sensitivity of detectors will be limited
not just by detector technology but also by the duration of
the observation, the quality of the signal predictions and
even the availability of computer processing power for the
data analysis.

Astronomical sources of gravitational waves
Estimating the frequency

The signals for which the best waveform predictions are
available have narrowly defined frequencies. In some
cases the frequency is dominated by an existing motion,
such as the spin of a pulsar. However, in most cases the
frequency will be related to the natural frequency for a
self-gravitating body, defined as

fo=(Gp/am'? (22)

where p is the mean density of mass—energy in the source.
This is of the same order as the binary orbital frequency
and the fundamental pulsation frequency of the body.

The frequency is determined by the size R and mass
M of the source, taking 5 = 3M /47 R*. For a neutron star
of mass 1.4M_ and radius 10 km, the natural frequency is
fo = 1.9 kHz. For a black hole of mass 10M: and radius
2GM/c* =30 km, itis f, = 1 kHz. Fora large black hole
of mass 2.5 x 10°M -, such as the one at the center of our
Galaxy, this goes down in inverse proportion to the mass
to fo =4 mHz.

Figure 2 shows the mass-radius diagram for likely
sources of gravitational waves. Three lines of constant
natural frequency are plotted: f, = 10* Hz, fy = 1 Hz
and f; = 107* Hz. These are interesting frequencies from
the point of view of observing techniques: gravitational
waves between 1 and 10* Hz are accessible to ground-
based detectors, while lower frequencies are observable
only from space. Also shown is the line marking the black
hole boundary. This has the equation R = 2GM/c*. There
are no objects below this line. This line cuts through
the ground—based frequency band in such a way as to
restrict ground-based instruments to looking at stellar-
mass objects. Nothing over a mass of about 10°M  can
radiate above 1 Hz.

{\ number of typical relativistic objects are placed in
the dlagram: a neutron star, a binary pair of neutron stars
that splral together as they orbit, s(wmo black holes. Two
f)ther Interesting lines are drawn. The lower (dotted) line
is the 1 yr coalescence line, where the orbital shrinking
tlm?sca!e in equation (19) is less than one year. The upper
(_SOlld) line is the 1 yr chirp line: if a binar;/ lies below this
line then its orbit will shrink enough to make its orbital
frequency increase by a measurable amount in L yr. (Ina
1 yr observation one can in principle measure changes in
frequency of 1 yr!, or 3 x 10 Hz,)
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Figure 2. Mass—radius plot for gravitational wave sources.

It is clear from the figure that any binary system
that is observed from the ground will coalesce within an
observing time of 1 yr. Since pulsar statistics suggest that
this happens less than once every 107 yr in our Galaxy,
ground-based detectors must be able to register these
events in a volume of space containing at least 10° galaxies
in order to have a hope of seeing occasional coalescences.
When detectors reach this sensitivity (sometime in the first
decade of the 21st century), then astronomers will be able
to use the observed chirping binaries as standard candles
to measure distance scales in the universe.

Radiation from neutron star normal modes

In figure 2 there is a dot for the typical neutron star. The
corresponding frequency is the fundamental vibrational
frequency of such an object. In fact, neutron stars
have a rich spectrum of non-radial normal modes, which
fall into several families: f-, g-, p-, w- and r-modes
have all been studied. If their gravitational wave
emissions can be detected, then the details of their spectra
would be a sensitive probe of their structure and of the
equation of state of neutron stars, in much the same way
that HELIOSEISMOLOGY probes the interior of the Sun (see
HIGH-FNERGY FQUATION OF STATE OF NEUTRON sTaRs). This is a
challenge to ground-based detectors, which cannot vet
make sensitive observations as high as 10 kHz.

Radiation from gravitational collapse

The event that forms a neutron star is the gravitational
collapse that produces a supernova. It is difficult to
predict the waveform or amplitude expected from this
event, because we have no observational evidence about
how non-spherical the collapse event might be in a typical
supernova: the collapse is hidden deep within the star.
S0 we can only guess. For example, a gravitational wave
burst might be broad band, centered on 1 kHz, or it might
be a few cycles of radiation at a frequency anywhere
between 100 Hz and 10 kHz, chirping up or down. The
amplitude could be large, in which a good fraction of the

energy released by the collapse is radiated in gravitational
waves, or it could be negligiblv small. 1t is indeed ironic
that, although detecting supernovae was the initial goal of
detector development when it started four decades ago,
little more is known todav about what to expect than
scientists knew then.

Radiation front r-modes

Hot neutron stars that rotate faster than about 100-200 Hz
appear to be unstable to the emission of gravitational
radiation through amplification of their r-modes by the
CFSmechanism. Instars colder than about 10° K, viscosity
may be strong enough to damp out this instability. This
instability may explain why only old, recycled, cold
pulsars are seen at higher rotation rates. It also suggests
that the formation of a rapidly rotating neutron star may
be followed by a period of steady gravitational radiation
as the star emits angular momentum and spins down to
its stability limit. If as few as 10% of all the neutron
stars formed since sTaR FORMATION began (at a redshift of
perhaps 4) went through such a spindown, then they
may have produced a detectable random background of
gravitational radiation.

Interestingly, the r-modes are disturbances primar-
ily of the fluid velocity; thev have little density perturba-
tion. Their name comes from their similarity to the Rossby
waves of oceanography. The gravitational radiation they
emitis not primarily mass quadrupole (as in equation (12)),
but rather mass-current quadrupole, the analog of mag-
netic quadrupole radiation in electromagnetism. This is
the wave counterpart of what is called gravitomagnetism,
which is responsible for the Lense-Thirring effect: an extra
precession of a spinning gyroscope as it orbits a rotating
body such as the Earth caused by the spin-spin gravita-
tional coupling of the gyroscope to the Earth.

Black holes and gravitational waves
Black holes are regions of space-time within which
everything is trapped: light cannot escape, nor can
anything else that moves slower than light. The boundary
of this region is called the event horizon. This boundary is
adynamical surface. If any mass—energy falls into the hole,
the area of the horizon increases. In addition, the horizon
will generally wobble when this happens. These wobbles
settle down quickly, emitting gravitational waves, and
leaving a smooth (and slightly larger) horizon afterwards.
Undisturbed black holes are time independent and
smooth. In fact, according to general relativity the external
gravitational field of such a black hole and the size and
shape of its horizon are fully determined by only three
numbers: the total mass, electric charge and angular
momentum of the black hole. This black hole uniqueness
theorem is remarkable, considering how much variety
there can be in the material that collapsed to form the black
hole and that may have subsequently fallen in.
Observations of the gravitational waves emitted by a
wobbling horizon or by a particle in orbit around a black
hole have the potential to test the uniqueness theorem and
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thereby to verity the predictions of general relativity about
the strongest possible gravitational fields,

Astronomers now recognize that there is an abun-
dance of black holes in the universe. Observations of vari-
ous kinds have located black holes in x-ray binary systems
in the Galaxy and in the centers of galaxies.

These two classes of black holes have very different
masses.  Stellar black holes typically have masses of
around [0M  and are thought to have been formed
by the gravitational collapse of the center of a large,
evolved kD Grant s1ak, perhaps in a supernova explosion.
Massive black holes in galactic centers seem to have masses
between 10°M - and 10'M , but their history and method
of formation are not yet understood.

Both kinds of black hole can radiate gravitational
waves. According to figure 2, stellar black hole radiation
will be inthe ground-based trequency range, while galactic
holes are detectable only from space. The radiation from
a black hole typically is strongly damped, lasting only a
tew cveles about the frequency, which fora spherical black
hole is given by equation (22) with R = 2GM )/

Moy

Stellar-nass black holes

Radiation from stellar black holes is expected mainly
from coalescing binary systems, when one or both of the
components are a black hole. Although such systems are
thought to be rarer than svstems of two neutron stars, the
larger mass of the black hole makes the system visible
trom a greater distance. By measuring the chirp mass
(as discussed above) observers will recognize that they
have a black hole system. It is very possible that the first
observations of binaries by interferometers will be of black
holes.

When a two-black-hole binary coalesces, there should
be a burst of gravitational radiation that will depend in
detail on the masses and spins of the objects. Numerical
simulations of such events will be needed to interpret this
signal and possibly even to extract it from the instrumental
noise of the detector. The research field of numerical
relativity is making rapid progress, and it can be expected
to produce informative simulations in the first few vears
of the 21st century, using the largest and fastest complxters
available at that time.

Mussive and supermassive black holes

Gravitational radiation is expected from supermassive
black holes in two ways. In one scenario, two massive
black holes spiral together in a much more powerful
\A‘ersion of the coalescence we have just discussed. The
frequency is much lower, but the amplitude is higher.
equation (21) implies that the effective signal amplitude
is almost linear in the masses of the holes, so that a
sig_nal from two 10°M - black holes will have an amplitude
107 times bigger than the signal from two 10M- holes
at the same distance. Even allowing for differences in
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technology, space-based detectors will be able to study
suchevents witha very high signal-to-noise ratio no matter
where in the universe they occur.

Observations of coalescing massive black hole
binaries will therefore provide strong tests of the validity
of general relativity in the regime of strong gravitational
fields, provided that numerical simulations can match the
accuracy of the observations by that time.

The event rate for such coalescences is not easv
to predict: it could be zero, but it may be large. It
seems that the central core of most galaxies may contain
a black hole of at least 10°M .. This is known to be
true for our Galaxy and for a number of others nearby.
Supermassive black holes (up to a few times 10"M )
are believed to power quasistellar objects and active
galaxies (see QUASISTELLAR OBJECTS: OVFRVIFYY, ACTIVE GALANIES:
OVERVIEW). There is some evidence that the mass of the
central black hole is proportional to the mass of the core of
the host galaxy.

Ifblack holes are formed with their galaxies, ina single
spherical gravitational collapse event, and if nothing
happens to them after that, then coalescences will never
be seen. However, it is believed that GALANY FORMATION
probably occurred through the merger of smaller units,
subgalaxies of masses upwards of 10°M. . If these units
had their own black holes, then the mergers would have
resulted in the coalescence of many of the holes on a
timescale shorter than the present age of the universe.
This would give an event rate of several per vear. If
the supermassive black holes were formed from smaller
holes in a hierarchical merger scenario, then the event rate
could be hundreds or thousands per year. It is likely that
only space-based observations of gravitational waves will
answer these questions.

A second scenario for the production of radiation by
massive black holes is the swallowing of a stellar-mass
black hole or a neutron star by the large hole. Massive
black holes exist in the middle of dense star clusters. The
tidal disruption of main-sequence or giant stars that stray
too close to the hole is thought to provide the gas that
powe.rs the quasar phenomenon. These clusters will also
contain a good number of neutron stars and stellar-mass
black holes. They are too compact to be disrupted by the
hole even if they fall directly into it.

. Such captures therefore emit a gravitational wave
Slgnlal that may be approximated by studying the motion
ofa pointmass’near ablack hole. It will again emitachirp
of radiation, butin this case the orbit may be very eccentric.
The details of the waveform encode information about
_the geometry of space-time near the hole. In particular,
It may be possible to measure the mass and spin of the
hole and thereby to test the uniqueness theorem for black
holes. The event rate is not very dependent on the details
Ofgaquy formation, and is probably high cnough for many
detections per year from a space-based detector.

Gravitational waves from the big bang
Gravitational waves ha

h . ve traveled aimost unimPCded
through the universe sin

ce they were gencerated at times as



early as 10"+ s after the big bang. Observing them would
provide important constraints on theories of inflation and
high-energy physics.

Inflation is an attractive scenario for the early
universe because it makes the large-scale homogeneity
of the universe easier to understand. It also provides
a mechanism for producing initial density perturbations
large enough to evolve into galaxies as the universe
expands.  These perturbations are accompanied by
gravitational-field perturbations that travel through the
universe, redshifting in the same way that photons
do. Today these perturbations should form a random
background of gravitational radiation.

The perturbations arise by parametric amplification
of quantum fluctuations in the gravitational wave
field that existed before inflation began. The huge
expansion associated with inflation puts energy into these
fluctuations, converting them into real gravitational waves
with classical amplitudes.

If inflation did not occur, then the perturbations that
led to galaxies must have arisen in some other way,
and it is possible that this alternative mechanism also
produced gravitational waves. One candidate is cosmic
defects, including cosmic strings and cosmic texture. (See
TOPOLOGICAL DEFECTS IN COSMOLOGY.) Although observations
at present seem to rule cosmic defects out as a candidate for
galaxy formation, cosmic strings may nevertheless have
produced observable gravitational waves.

If inflation did not occur, there could also be a thermal
background of gravitational waves at a temperature
similar to that of the cosmological microwave background,
but this radiation would have such a high frequency that
it would not be detectable by any known or proposed
technique.

The random background will be detectable as a noise
in the detector that competes with instrumental noise. In
a single detector, such as the first space-based detector,
this noise must be larger than the instrumental noise
to be detected, and one must have great confidence in
the detector in order to claim that the observed noise is
external. This is how the cosmic microwave background
was originally discovered in a radio telescope.

If there are two detectors, then one can multiply the
outputs of the two detectors together and sum (integrate).
In this way, the random wave field in one detector acts like
amatched filtering template, matching the random field in
the other detector. This allows the detection of noise that is
below the instrumental noise of the individual detectors.
For this to work, the two detectors must be close enough
together to experience the same random wave field. In
practice, the sensitivity of this method falls off rapidly
with separation if the detectors are more than a wavelength
apart.

Measure of the strength of random gravitational waves

When describing the strength of a random wave field, it
is not appropriate to measure the amplitude of any single
component. Rather, the rms amplitude of the field is the
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observable quantity. It is common to use an equivalent
measure, the energy density p,.( /) in the radiation field
as a function of frequency f. For a cosmological field,
what is relevant is to normalize this energy density to the
critical density p. required to close the universe. It is thus
conventional to define

d e /0

din /-~

o= (23)
This is roughly the fraction of the closure energy density
in random gravitational waves between the frequency f
and 2.718f.

Current and planned detectors may reach a sensitivity
of Qg ~ 10 ¥ at 1 mHz and 107" at 40 Hz, but there is a
possibility that backgrounds due to other sources (binary
white dwarf systems and r-mode spindown, as discussed
above) could obscure a cosmological background at these
levels.

Predicted spectrim of cosmological radiation

The simplest models of inflation suggest that the
spectrum of the gravitational wave background should
be flat, so that Q. is independent of frequency over
a very large range of frequencies. In this case,
the observed fluctuations in the cosmic microwave
background radiation set a limit on gravitational radiation
at ultra-low frequencies, and this constrains the energy
density in the observable range (0.1 mHz-10 kHz) to below
about 107" of closure. This will be too small to be seen
by the current and planned detectors on the ground or in
space.

However, there is a great deal of room in these
models for other spectra. The period before inflation
may produce initial conditions for the phase of parametric
amplification that give large amounts of radiation in the
observable frequency range. One family of models based
in superstring theory has a spectrum that rises at high
frequencies. If a cosmological background from inflation
or from cosmic defects can be observed, it will contain
important clues to the nature of the theory that unifies
gravitation with the rest of quantum physics.

Conclusions

The first few years of the 21st century should see the first
direct detections of gravitational radiation and the opening
of the field of gravitational wave astronomy. Beyond
that, over a period of a decade or more, one may expect
observations to vield important and useful information
about binary systems, stellar evolution, neutron stars,
black holes, strong gravitational fields and cosmology.

If gravitational wave astronomy follows the example
of other fields, such as xray asTRONOMY and RaDIO
ASTRONOMY, then at some level of sensitivity it will begin
to discover sources that are completely unexpected.
Many scientists think the chance of this happening
early is very good, since the processes that produce
gravitational waves are so different from those that
produce the electromagnetic radiation on which most
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present knowledge of the universeis based, and since more
than Y0% of the matter in the universe is dark and interacts
with visible matter only through gravitation.

Present and planned detectors are known not to
be ideal for some kinds of gravitational wave sources.
Sensitive measurements of a cosmological background of
radiation from the big bang may not be possible with
these instruments if the spectrum follows the predictions
of “standard’ inflation theory. Most of the normal mode
oscillations of neutron stars will be very hard to detect,
because the radiation is weak and at a high frequency, but
the science there is compelling: neutron star seismology
may be the only way to probe the interiors of neutron stars
and understand these complex and fascinating objects.
Detector technology will continually improve, and these
sources provide important long-term goals for this field.
There will clearly be much to do after the tirst observations
are successfully made.
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Bernard Schutz

Gravitational Radiation Detectors on
Earth and in Space

GRAVITATIONAL WaAVES, one of the more exotic predictions of
Einstein’s general theory of relativity, may, after 80 yr of
controversy over their existence, be detected within the
next decade.

Sources such as interacting black holes, coalescing
compact binary systems, stellar collapses and pulsars are
all possible candidates for detection; observing signals
from them will significantly boost our understanding
of the universe. New unexpected sources will almost
certainly be found and time will tell what new information
such discoveries will bring. A full review of sources of
GRAVITATIONAL RADIATION is given by Bernard Schutz.

Gravitational waves are ripples in the curvature of
spaCE-TiME and manifest themselves as fluctuating tidal
forces on pieces of mass placed a distance apart. The
first gravitational wave detectors were based on the effect
of these forces on the fundamental resonant mode of
aluminum bars at room temperature. Following the lack
of confirmed detection of signals, aluminum bar systems
operated at and below the temperature of liquid helium
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were developed and work in this area is still underwav.
However, the most promising design of gravitational wave
detector, offering the possibility of very high sensitivities
over a wide range of frequency, uses test masses a long
distance apart and freely suspended as pendulums on
Earth or in drag-free craft in space; laser interferometry
provides a means of sensing the motion of the masses
produced as they interact with gravitational waves.
Ground-based detectors will be used to observe
sources whose radiation is emitted at frequencies above
a few Hz and space-borne detectors will be developed
for implementation at lower frequencies. Already
gravitational wave detectors of long baseline are being
built in a number of places around the world: in the
USA (LIGO project led by a Caltech-MIT consortium),
in Ttaly (VIRGO project, a joint Italian-French venture),
in Germany (GEO 600 project being built bv a team of
German and British research groups) and in Japan (TAMA
300 project). A space-borne detector, LISA—proposed by
a collaboration of European and US research groups—has
been adopted by ESA as a future Cornerstone Mission.
The observation of gravitational waves will not only
provide unique information on testing aspects of general
relativity but will also open up a new field of astronomy.

Background

Some early relativists were skeptical about the existence
of gravitational waves. However, the 1993 Nobel Prize
in Physics was awarded to Hulse and Taylor for their
experimental observations and subsequent interpretations
of the evolution of the orbit of the binary puisar, PSR
1913 +16. The decay of the binary orbit is consistent with
angular momentum and energy being carried away from
this system by gravitational waves.

Gravitational waves are produced when matter is
accelerated in an asymmetrical way; however, owing to
the nature of the gravitational interaction, significant levels
of radiation are produced only when very large masses
are.accelerated in very strong gravitational fields. Such
a situation cannot be found on Earth but is found in
a variety of astrophysical systems. Gravitational wave
signals are expected over a wide range of frequencies;
from ~107"7 Hz in the case of ripples in the cosmological
background to ~10° Hz from the formation of neutron
stars in supernova explosions. The most predictable
sources are BINARY STAR systems. However, there are many
sources of much greater astrophysical interest associated
withblack hole interactions and coalescences, neutron star
coalescences, stellar collapses to neutron stars and black
holes (supernova explosions), pulsars and the physics of
the early universe. )

Why is there currently such interest worldwide in
the detection of gravitational waves?  This is partly
E?C:l}:lse (?bservatign of the velncity and polarization states

e signals will allow a direct experimental check
Qf the wave predictions of GENERAI RELATIVITY, but more
lmpqrtantly because the detection of the signals should
provide observers with new and unigue information about
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