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1 INTRODUCTION

Gravitational radiation is today one of the most exciting
areas of classical general relativity in which to work. After the
early decades of doubt over its physical reality, relativists came
in the late 1950's and early 1960's to a general consensus about its
reality and its broad physical effects. But the delicacy of some
of the approximations needed to simplify Einstein's equations enough
to study the waves has since led occasionally to passionate contro-
versies over certain details of the broad picture. We are very far
from having a complete understanding of this subject, and the prospect
that observations of radiation may be made in the next decade makes
the study even more interesting.

The first three sections of the review presented here try to give an
idea of the breadth of modern research on the subject. This is clearly
not possible in any depth in a short paper, and I have not been able to
refer to as much of the interesting work now going on as I would have
liked. I have also only described in any detail those subjects which

I need for subsequent development, particularly in the final section.
This is devoted to my own most immediate interest in the field, the
description of radiation in the Newtonian limit.

The plan of the paper is as follows. Section 2 studies small-amplitude
waves in vacuum, both in linearized theory and in perturbations of
nonlinear solutions, as well as in asymptotically flat spacetimes

(near null infinity). Section 3 reviews work on large-amplitude waves.
Section 4 discusses the interaction of waves with matter, including the
quadrupole formulas of linearized theory and a short review of current
gravitational-wave detectors. Section 5 describes how to formulate

the Newtonian limit and extend the quadrupole formulas to self-gravita-
ting weak-field systems. My conventions follow those of Misner et al

(1973) .

2 SMALL AMPLITUDE WAVES IN VACUUM

2.1 Linearized Theory
The simplest approximation in which to study gravitational

radiation is linearized theory, by which we mean first-order perturba-
tions of flat spacetime. If we let the metric components be
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guv nuv huv (1)
where Ny is the Minkowski metric and Ihuvl << 1, then we can pretend

huv is a tensor on Minkowski spacetime, defining for example

[UAV: uo, VR
h = .
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Then because gu is inverse to g, we have
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It is convenient to define
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where § denotes the first-order perturbation operator and

aB
h = h ..

n aB
The metric components depend upon the coordinates, of course, and two
types of coordinate transformations are permissible which preserve the
condition lhuvl << 1. The first is a 'background Lorentz transforma-

tion'

where Au v is the constant matrix of a Lorentz transformation. The
second is a small coordinate transformation

no Vet
X = xu + &£ (x7).

This is called a gauge transformation, and to first order in Eu the
components of a tensor T change by the amount EET’ where Eg is the
Lie derivative. For the metric this means that

=n + h + Ern

=N . .+h . .
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or the metric perturbation changes to

h"~=h +¢ =h + + ; 3
AV, A gnuv YAV gu,v gv,u (3)

As long as iEu,V‘ << 1 the gauge transformation keeps us within
linearized theory.

The field equations of linearized theory are derived in most serious
textbooks, such as Misner et al (1973) or Schutz (1984a). If we
adopt the gauge condition (Lorentz or de Donder gauge)

=V
nH =0 (4)

then the vacuum field equations become
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The metric components depend upon the coordinates, of course, and two

types of coordinate transformations are permissible which preserve the

condition [huv[ << 1. The first is a 'background Lorentz transforma-

tion'

where Au v is the constant matrix of a Lorentz transformation. The
second is a small coordinate transformation

T a

X = xLl + Eu(x ).

This is called a gauge transformation, and to first order in Eu the
components of a tensor T change by the amount EgT, where EE is the
Lie derivative. For the metric this means that
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or the metric perturbation changes to
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As long as ]Eu,vl << 1 the gauge transformation keeps us within
linearized theory.
The field equations of linearized theory are derived in most serious
textbooks, such as Misner et al (1973) or Schutz (1984a). If we
adopt the gauge condition (Lorentz or de Donder gauge)
_LL\)
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then the vacuum field equations become
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=\
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= 0, (5)
where O denotes the flat-space wave operator VZ—GE. A solution of (5)
of the form

=V AV} o
Yy = A" expla kaxo‘), k k=0,

V
is called a plane gravitational wave. The constants Au are not all
independent. First, the gauge condition (4) reguires

A kv = 0.
Second, we have additional gauge freedom in that any vector
Eu = b, exp(i kqx®) preserves condition (4) and transforms AHV into
AHV + ibMkV + ibVkH - ib®k, nHV. It is conventional to choose bH
such that AH, = 0 and aHVu,) = 0 for some timelike vector UM. Such
a gauge is called transverse-traceless (TT), and in it AHV has only
two independent components, which correspond to the two polarizations.

Naturally, any physical observables must be gauge-invariant. 1In
particular, the Riemann tensor, which to first order is

3 ( + h

R = h - - h
uval wi,vo Vo, 1B hvB,uu ua,ve)'

is invariant because its value for flat space is zero: the analogue
of Eq.(3) would give Rjyg8 = RyvaR + ££(0). The Riemann tensor is
the fundamental physical quantity of linearized theorxry: all the
observable effects of the theory may be expressed in terms of it.
Nevertheless, physicists are accustomed to dealing with other
quantities, such as enerqgy, which have great heuristic value even

if they are not strictly necessary in the formulation of the theory.
Since hy, behaves like a free field on flat spacetime, it is natural
to try to construct its stress-energy tensor and to ask what physical
meaning can be attached to it.

One way of doing this is to construct the Lagrangian of linearized
theory,
3 1 Bu, o au, B

(=h) R = ——(2n"H*7%, _ MRy ~2n n%B

L
64T QU-IB U,U-,B QA 18

_ 1

T o1em

+h h'%+div + 0m?),
Ped

where 'div' stands for a total divergence we have extracted. A formal
stress-energy tensor may be defined from this by

™V = aL/Bnuv
(p v)a,B
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According to very general theorems (Schutz & Sorkin 1977), when the
field equations are satisfied, this THV will differ from any other
'canonical' THV derived from the same Lagrangian only by terms of the
form'aaM“[Va], which can change the localization of energy density but
not its total integral over a spacelike hypersurface. This is charac-
teristic of field theories and occurs in electromagnetism as well.

Where electromagnetism and linearized theory differ is that the electro-
magnetic analogy of Eg. (6),

Ty 1 uoL_ v 1wy aB
T = — PR —
EM 4T (FF 2 N FaBF i
is electromagnetic-gauge-invariant whereas Eg. (6) is not invariant
under the gauge transformations of Eg. (3). 1In fact we find
PIUAY) AV}
A L G BaNuva (7)

Vo . .
where NLL is a function of EB and hy4 but is not antisymmetric on
V and 0. This means that a gauge transformation not only changes the
localization of energy but also its total value:

S T9° Ax = f °° a*x + S Nooo

,o @’x. (8)
Energy in linearized theory is still conserved, but it has no unique
zero~point.

Under certain circumstances both the localization and the gauge
ambiguities may be reduced. If h;yy is periodic in time then we may
average TO° over one period. Since the extra term in Eg. (8) averages
to zero for all gauge changes which preserve the periodicity of hyy,
the mean value [<T®©>d’x is gauge-invariant in this restricted sense.
More generally, if huv is primarily composed of spatial and temporal
frequencies larger than some k then the average of THV over a space-
time region of dimension L will be invariant under gauge and locali-
zation changes to order THV/KL (Misner, et al 1973). This average is
called the Brill-Hartle average <T“V>BH, and Isaacson (1968a,b) has
shown that at the next order of perturbation theory this is the
effective stress—-energy tensor that generates the second-order, long
length-scale metric perturbation. All pseuuotensor methods of
generating alternative expressions for THV are Brill-Hartle equivalent
to Eg. (6). The expression for THVY in the TT gauge is therefore of
general interest in this sense:

[V 1 aB x [TV
™" = —— A""A* k"k .
327 aR

Finally, we should mention that one can define not just a conserved
energy and momentum from THY but also an angular momentum density

Q o (6]

goB _ o Bu XBT M (9)

a | .
where x~ is the coordinate of our nearly-~Lorentz system. Brill-Hartle
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averaging of J over some region removes its ambiguities only if the
intrinsic (spin) angular momentum of the waves in the region is small
compared to their orbital angular momentum about the origin of coordi-
nates, so that xa may be regarded as constant in Eg. (9). This is not

a very interesting case, since it does not allow us to study the angular
momentum carried away by waves from a radiating source. We can do
better by restricting the gauge. It can be shown that if we are in
Lorentz gauge, Egq. (4), and we make a gauge transformation that stays

in such a gauge, then the quantity NHVY in Eq. (7) is itself a diver-

gence, NHVO, = MMVOR g It then follows that
14

~0Bu _ JoBR Bv(XaNBuv_xBNauv+Maqu_MBuuv).

J
130 . .
Thus, the total angular momentum, J Jlj d*x, will be Brill-Hartle
invariant within Lorentz gauge. We will find this result useful in
our later discussion of gravitational radiation in the Newtonian
limit.

2.2 Waves on curved backgrounds
Much of linearized theory can be generalized to the case
of small perturbations of a curved spacetime, where

g =gB+h

0y [TV T
and the 'background' (or unperturbed) metric gﬁv dominates the
perturbation hy,,. Then we can treat hy, as a tensor field on the
manifold whose metric is g NG Equations (2)-(4) generalize with
Ny geplaced by gB and w1th derlvatlves made covariant with respect
to g;y- If guv 1s a vacuum metric (Ruv = 0) then the wave equation

becomes, in Lorentz gauge,

= B =0B

v B, + 2Ry B o= 0. (10)
Moreover, if we consider waves with wavelengths much shorter than the
background radius of curvature, so that |VQVB huvl >> IR auBy hxol
then Eg. (10) admits a 'geometrical optics' approximation, in which
gravitational waves propagate on null geodesics, parallel-transporting
their polarization tensors (Misner, et al 1973). Within this short-
wavelength approximation the Brill-Hartle averaging technique again
produces approximately gauge-invariant stress-energy tensors for the
waves. Isaacson (1968a,b) has shown that this serves as an effective
stress-energy tensor which curves the background, so that to second
order

B
G = 81<T >
A} uyv BH

2.3 Waves in asymptotically flat regions
None of the above technigues is suitable for strong waves

in highly curved regions. One of the most important advances in our
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understanding of such waves was the realization by Bondi, Penrose, and
collaborators that if such regions were parts of asymptotically flat
spacetimes, then sufficiently far from such regions the waves would be
weak and it would be possible to make gauge-invariant global definitions
of energy and momentum and their fluxes. Although the subject is too
large to give a detailed review of here (see Walker 1983, Geroch 1976
and references therein), there are a few aspects of it which need to

be made clear for our subsequent discussion of radiation in the
Newtonian limit.

In order to go 'sufficiently far' from strong-field regions and still
stay with the radiation, we must move out along radial null geodesics.
In the Schwarzschild metric these are lines of constant

u=t-r =t-r-2M In(r/2M-1), (11)
and in other spacetimes we can expect this to be correct to some order.
If we let each geodesic have an affine parameter v, then we want to
describe the radiation as v *> ® for fixed u. The basic idea is to
make a (singular) coordinate transformation that maps the whole
manifold onto a finite region in a way that preserves the individuality
of the outgoing radial null geodesics. The method devised by Penrose
is to define a manifold M whose metric aaB is

—_ 2
9a8 = 9
where §{ is a non-zero, Coo function which approaches zero as v > ®.
This means that the limit v > ® in M is a limit to a finite distance.
If the limiting boundary of M which we approach in this manner has
topology R x §° (for the coordinates u,6,¢), then we call the boundary
j*, future null infinity. With any sphere u = const of f+ it is
possible to associate a mass and linear momentum of the metric, and
from the shear of the light cones u = const as v > ® one can define
an energy-momentum flux on §*¥. These are called the Bondi mass,
momentum and flux. The energy flux is non-negative and it has
recently been shown that the Bondi mass is positive-definite
(Horowitz & Perry 1982, Ludvigsen & Vickers 1982, Walker 1983). The
Bondi mass of a stationary metric equals its gravitational mass as
measured by distant orbits. The Penrose definition of asymptotic
flatness seems not to be overly restrictive: Friedrich (1983) has
recently given an existence theorem for the construction of general
spacetimes from data in and near F*.

The existence of a mass and momentum on 9+ may be traced to its
symmetry group. The set of coordinate transformations which preserve
the induced metric on $t is called the Bondi-Metzner-Sachs (BMS) group.
It resembles the Poincare group, which is the semi-direct product of
the Lorentz group and the 4-dimensional translation group. But the
BMS group involves instead an infinite-dimensional (abelian) transla-
tion group, called the supertranslations. Fortunately, the BMS group
contains a unique 4~dimensional normal subgroup, and the associated
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elements of the BMS Lie algebra generate the Bondi energy and momentum.
But the rest of the supertranslations make a unique definition of
angular momentum impossible, although we have yet to hear the last

word on this. The problems linearized theory has with angular mcmentum
carry over to §*t!

3 LARGE AMPLITUDE WAVES
Although detectable gravitational radiation will have very
small amplitude, it may originate in regions of very strong fields and
large wave amplitudes. These can be studied by means of exact solu-
tions or numerically.

There are many vacuum solutions which behave like large-amplitude
waves, travelling at the speed of light and exhibiting polarization
properties. The majority are catalogued in Kramer et al (1981).

There has been interesting recent work on soliton-like waves in what
are basically inhomogeneous cosmologies (Carr & Verdaguer 1983).
Unfortunately, there are no known asymptotically flat examples. This
is understandable, because a time-dependent asymptotically flat metric
can admit at most one Killing vector, that of axial symmetry, and exact
solutions are easier to find in situations of greater symmetry. But
the absence of such exact solutions means that we cannot yet study
except by approximation methods three fundamental problems: (a) the
strength of a wave in relation to its source, (b) the evolution of

a strong near-field wave into a weak far-zone wave, and (c) the
attachment of §% to the manifold in a radiation situation.

It is natural to look to numerical calculations for answers to
questions about (a) and (b) above, but the large demands that general
relativity with its ten metric potentials makes on computer storage
and speed (Piran 1983) put a number of interesting problems out of
reach at the moment. Nevertheless, many interesting problems are
being studied, and there has been considerable work on technical
questions such as suitable gauge conditions (e.g. Bardeen 1983).
These have been reviewed recently by Piran (1983).

The first successful large-scale numerical study involving gravita-
tional radiation was the calculation by Eppley and Smarr of the
collision of two black holes (Smarr 1979). Starting from rest at
moderate separation, the equal-mass holes fell together and merged
behind a single horizon, converting about 0.07% of their mass into
radiation. Perhaps the most remarkable result of the calculation
was that the radiation generated by the collision was equal to that
which would have been predicted by (i) using linear perturbation
theory to calculate the radiation from a small mass m falling into
a black hole of mass M, and then (ii) setting M equal to the sum of
the black-hole masses and m to the reduced mass (Smarr 1979,
Detweiler 1979). The nonlinearities in the collision of the holes
seem not to have made much difference to the emitted radiation.
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Interest has now shifted to the gravitational collapse of fluid bodies,
as models of supernovae. Nakamura (1981, 1983) has shown that axially
symmetric collapse does indeed produce a black hole, provided the
initial angular-momentum distribution permits the collapse to proceed
far enough. Besides those I have already mentioned, a number of other
workers are pursuing numerical calculations, including Centrella,
Miller, Mann, Stewart, and Wilson. This field will undoubtedly be

one of the most important areas of our subject in the future, as
hardware improvements make more interesting calculations possible and
as gravitational wave observations begin to call for quantitatively
reliable collapse calculations.

4 INTERACTION OF WAVES WITH MATTER
4.1 Generation of waves
In linearized theory, if we keep the lowest-order source

term T v e obtain the generalization of Eg. (5):

-V
o™’ = 167 ™. (12)

The gauge condition Eg. (4) implies the conservation /law

™ =0, (13)
Y

which means that the source behaves as it would in special relativity,
free from the effects of gravitational fields. This is because
Eq. (12) implies that the field and source are of the same order, so
any coupling between them would be of second order. Seen another way,
the first-order conservation law must be Eg. (13) because the energy-
momentum of the gravitational field is second-order, Eg. (6).
Linearized theory is therefore consistent only for sources with
negligible self-gravity.

The retarded solution of Eg. (12) is

V0 = a4 7 TV e ey D) [y [T @y, (14)

~

and it is easy to show that in the slow-motion limit and in the TT
gauge far away the non-zero metric perturbations are

TT 2 1 il 1
= — - = T t-r, 3 -,
hjk(t'f) r(éijékl 3 éjkéil) S (t-r Z) 'y + O(rz)
where r = ]x] (e.g. Schutz 1984a). The conservation law Eq. (13)

implies that

. ) .
Frtte,y) @y =3 é%; S0,y vyt @y
& il
= % d_tz Il (t) P (15)

where Ill is the guadrupole tensor of the source. Defining the
reduced or trace-free gquadrupole tensor by
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{11 _ Ill _ % 611 Ik

kl

we have
TT 1 - 1
hjk(t’f) == Ejk(t—r) + O(rz)

and a corresponding luminosity from the integral of Eg. (6) over a
sphere

..{.Jk vee

16
;jk (16)

1
L ==
5
This is known as the Landau-Lifshitz formula or the far-field gquadru-
pole formula. Our earlier discussion shows that, when averaged over a
typical timescale of the source's motion, this luminosity is gauge and
localization invariant.

It is possible, of course, to go beyond first order in linearized
theory, to what are called post-linear approximations. At the next
order the equation of motion of the matter will clearly be
TAY u oV v Lo
T = -T - 17
,V OL\)T 1—’O(.\)T ( )
where ruav is computed from the first-order perturbation, Eg. (14).
Again in the slow-motion limit it turns out (see e.g. Schutz 1980)
that the part of the right-hand side of Eq. (17) that expresses the
reaction to the emitted radiation is
. (5) .
J 2 jk _oo
F = - = I 8
react 5 *x T (18)
which causes [/ TOO d’x to decrease in time at a rate -L when averaged
over a suitable timescale. This is known as the near-zone quadrupole

formula.

Although this energy balance is satisfying, the gauge problems
surrounding energy in relativity suggest that one should remind one-
self occasionally that energy is a secondary concept: all the
physical predictions of the theory may be obtained from Egs. (14)
and (17) without any mention of energy.

The major shortcoming of linearized theory is the absence of self-
gravitation at lowest order. This may be remedied either by beginning
with the Newtonian approximation at first order or by perturbing not
flat space but an existing curved metric. I will discuss the
Newtonian alternative in section 5 below, but a few words on linear
perturbation theory are appropriate here.

With a source Egq. (10) generalizes to

v f  + 2 RrP E“B = —16T STuv, (19)

o pv oppv

where 6Tuv is the first-order change in TuV at a given coordinate
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position (Eulerian change). At first order the equations of motion
of the matter are
ol
voer®® o pf gt ghe B (20)
a uB e

Thus, the metric perturbation generated in Eg. (19) acts back on its
source 8TOB via the perturbed Christoffel symbols in Eg. (20). Self-
gravitational effects of 8TOB can couple to 8T®B at first order because
708 is non-zero at zero-order. While no general study of radiation-
reaction seems yet to have been made in this context, there have been
calculations in specific cases, particularly of the normal modes of
pulsating relativistic stars, which have been reviewed by Detweiler
(1979). In the limit of a weakly relativistic star, these results
should be comparable with ones arrived at by the Newtonian approxima-
tion scheme. Such a comparison was made by Balbinski & Schutz (1982)
with puzzlingly large discrepancies. More recent results (Lindblom &
Detweiler 1983, Balbinski et al 1984) show closer agreement and
suggest that the numerical errors in the earlier calculations reviewed
by Detweiler (1979) were unexpectedly large.

The main limitation of perturbation theory is its restriction to small
amplitudes, which excludes systems like binary stars and highly non-
spherical collapses. The Newtonian alternative to be discussed later
has no amplitude restrictions, but has a compensating restriction to
weak internal gravity and slow motion.

4.2 Detectors of waves
This review would not be complete without at least a mention

of the intense activity now being directed toward the construction of
laboratory detectors of gravitational radiation from astrophysical
sources. Such detectors have negligible self-gravitation, so Eq. (17)
fully describes their motion when F“ugjjscalculated from the incoming
wave field. The book edited by Deruelle & Piran (1983) contains a
number of articles reviewing the current status of the major detectors.

It is not hard to derive estimates from Eg. (14) for the likely ampli-
tude of waves incident on the Earth (see, e.g. Thorne 1983 or Schutz
1984b). A supernova probably converts no more than about 0.1M_ into
gravitational waves, and so a supernova in our own Galaxy migh
generate waves of amplitude h < 10‘18, while one in the Virgo cluster
would give h ¢ 10'21, where h stands for the typical amplitude of

hgg. The spectrum should be broadband, peaking around 10° Hz.

Current detectors, which are regarded as prototypes, are approaching
the 10-18 level, and coincidence experiments between some are planned.
The goal of 10-%! is some years away, but the amount of money being
spent on such projects has been accelerating rapidly of late,
particularly in the USA and Germany.

There are two main laboratory detectors, bars in the style pioneered
in the 1960's by Weber (1960), and laser interferometers. Bars rely
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generally on exciting their fundamental longitudinal mode of oscilla-
tion in resonance with the incident wave. Groups that are building
bar detectors of special high-Q material and/or cryogenically cooled
include Stanford/Louisiana, Rome/Frascati, Maryland, Rochester, Tokyo,
Perth, Mbscow, and elsewhere. See Blair (1983) for a review of their
technical features. Properties of materials limit the length one can
make a bar with a 10° Hz fundamental mode, and this is the most serious
limitation on such detectors, since the strength of tidal gravitational
forces is proportional to the size of the apparatus. The result is
that a wave of h ~ 10721 will typically deposit only a few percent of
the energy of one phonon of oscillation. This means the detector (but
not the wave) must be treated quantum-mechanically, and its state of
vibration must be measured with the minimum of disturbance. The theory
of how to do this has been studied by Caves et al (1980) and

Braginsky (1983), but its practical implementation may be some years
away.

If bar detectors cannot overcome this 'quantum limit' problem then
laser interferometers may reach the magic 10721 first. Groups
operating prototypes include Glasgow/Caltech, Munich, and MIT, and
others are planned. Drever (1983) reviews their problems and principles.
These measure by interferometry relative changes in the distances bet-
ween a central mass and two others some distance away in perpendicular
directions. The masses are freely suspended and act as free particles
in the incident wave. Sensitivity may be increased by increasing the
lengths of the arms and using multiple reflections along them. Current
prototypes are of the order of 10m in size, but detectors of 10-2!
sensitivity having dimensions » 1 km may be funded in the coming year,
at least in the USA. Moreover, improvements in such things as mirror
reflectivities and the maximum power of continuous-wave lasers could
push sensitivities even deeper before these detectors encounter their
'quantum limit'. Ways of getting around this limit have been discussed
by Caves (1981). They may be important, because it is not clear
whether supernovae will in fact be as powerful emitters of waves as

we have assumed.

Besides laboratory detectors, space-based detectors are at present
being designed for the next generation of detectors. One such
'detector' system is already in operation: the signals transmitted
between Earth and various inter-planetary spacecraft. By searching
for anomalous time-delays in the round-trip transponder signal one
can monitor the gravitational-wave background. Such detectors are
optimum for wavelengths of about 1 AU, or frequencies in the milli-
Herz region, such as might come from the formation of supermassive
black holes in galactic centers. These results have been reviewed
by Hellings (1983).

5 RADIATION IN THE NEWTONIAN LIMIT
5.1 The near-zone quadrupole formula
Although Newton's equations are a weak-field limit of
Einstein's equations, they differ from linearized theory in that they
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do not admit radiation. This means that the twin problems of determi-
ning how much radiation leaves a nearly-Newtonian system (far-field
radiation problem) and of assessing the reaction effects on the system
itself (near-zone or radiation-reaction problem) are mathematically
delicate. These questions are important observationally, because
reaction effects seem to be important in the binary pulsar system
(Taylor & Weisberg 1982, Boriakoff et al 1982), in cataclysmic
variables (Paczynski & Sienkiewicz 1983), and in limiting the rotation
rates of neutron stars (Friedman 1983); and also because we want to
make inferences from observed gravitational waves (or observational
upper limits in their amplitudes) about the behaviour of their sources.
These questions are also important theoretically, since nearly-Newtonian
systems are the only self-gravitating asymptotically flat systems in
which we can study radiation analytically.

In linearized theory in the slow-motion limit, the far-zone wave
luminosity, Eg. (16), and the near-zone reaction effects, Eq. (18),
depend only on the quadrupole tensor, Isx (defined in Eg. 15). This

in turn depends only on the mass-density, p. Since the Newtonian

limit is a slow-motion limit in which all other energies are small
compared to the rest-mass p, one might guess that these formulae

would apply in the Newtonian limit as well. This is in fact now
widely accepted as true, but the difficulty of proving it generated

a lively debate on the subject in the past decade. The initial
demonstrations of the validity of Egs. (16) and (18) in the Newtonian
limit were given by Landau & Lifshitz (1962), Chandrasekhar & Esposito
(1970), and Burke (1971). These and other derivations were critically
examined by Ehlers et al (1976) and Walker & Will (1980a). The approach
I will describe below is based on Futamase & Schutz (1983, 1984) and
Futamase (1983), which contain references to other recent work.

In linearized theory our solution for the field, Eq. (14), employed
retarded potentials as a way of excluding extraneous incoming
radiation. In nonlinear general relativity, such potentials do not
exist, and it is tempting to replace them with the boundary condition
that there be no radiation on.f‘, the past endpoints of incoming null
geodesics (Ehlers et al 1976). Unfortunately, this transforms the
radiation problem into a global one, for which rigorous calculations
are difficult. There has been progress in this direction recently
(Walker 1984), but our approach will be based on the initial-value
problem on a spacelike hypersurface, and will consequently be more
local. (An initial-value approach based on characteristic surfaces
is given by Winicour 1983.)

Most textbooks (e.g. Misner et al 1973, Schutz 1984a) extract the
Newtonian limit of general relativity in a physically reasonable but
nonrigorous manner. Consider a system of mass M, typical size R,
velocity v, density p, and pressure p. One wants a low-redshift

limit, so we want a limit in which M/R approaches zero. If we

keep the size of the system fixed, then we need M -~ 0, and consequently
P > 0. But self-gravity must still be important, so by the virial
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theorem we must have p/p and v?® of the same order as M/R. Thus we want
v >0, p=0(v*), p = O(v*). These in turn imply the inequalities

]TOOI >> |TOi‘ >> ]Tij{. From the weak-field equations (12) we see
that B?O dominates and satisfies

V2 h°° = -16mp, (21)

. O . .
from which we deduce that h = = ~-4¢N, where ¢y is the Newtonian poten-
tial. But now a closer examination of the conservation law VyT10 = 0
shows that self-gravity is important. For a perfect fluid it becomes

ovt o+ pvjvjvl + Vo + oV (-R/) =0 (22)

which is the Newton-Euler equation. What such a derivation lacks,
however, is precision: is p = 0(v?) everywhere in spacetime; is
h%° dominant over hl® everywhere in spacetime; in going from @ in
Eq. (12) to V? in Eg. (21), which of the many solutions of Eq. (12)
(retarded, advanced, or a mixture) is hO© of Eg. (21) taken to be
the limit?

We can increase our precision if we understand why this particular
limiting procedure gives a self-consistent set of equations in general
relativity. Fundamentally, it is because the Newtonian equations,
Egs. (21) and (22) and the continuity equation (consequence of
vV 10 = 0),
o

. i

p+ V. (ov) =0, (23)

are invariant under the following scaling of their solutions:
i i
o(x",t) > & p(x ,Et)

p(Xl,t) > g p(xl,Et)

vj(xi,t) > € vj( i,et) (24)

EOO(Xl,t) 5 g2 Eoo

(x",et) .

The factors of € in front are those we deduced above from virial-
theorem arguments. The scaling of t is equally important, since as
vli >0 (e > 0) it takes longer for everything to happen. Given any
solution {p,p,vi, ho0}, Egs. (24) define a sequence of solutions in
which, as € > 0, the field gets weaker, and the velocities lower,

but the size remains the same. For a binary star system, for example,
the masses would decrease, the orbits would remain the same, but the
orbital period would increase.

The Newtonian limit is thus a limit of solutions of general relativity
in which the scalings in Eqs. (24) are preserved as far as possible,
getting better as € > 0. The following definition therefore seems
natural (Futamase & Schutz 1983): a regular, asymptotically Newtonian
sequence of solutions of Einstein's equations is one defined by the
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following sequence of initial data:

o(t=0,xl,€) = € a(x')
p(t=0,x",e) = €* b(x)
(25)
v (£=0,x",e) =€ < (x*)
R (e=0,x",6) = h? (t=0,x,6) = o,

14

where a, b, and ct are functions of compact support. The first three
assert that the initial data scale exactly in the Newtonian manner.
The fourth equation sets the free data for the gravitational field to
zero. Initial values of h°°, EOi, and their time derivatives are
determined by the constraint equations. This is not the only choice
of initial data which will give a Newtonian limit, but it is probably
the simplest. Setting the free-field data to zero does in fact lead
to a retarded-type solution in the source after about one light-
crossing time (see Schutz 1980), but it can nevertheless be relaxed
considerably: Futamase (1983) shows that random initial data for hiJ
of order €% do not affect our conclusions when the randomness is
averaged over. Schutz (1980) has argued that such averaging provides
a physically consistent statistical derivation of the irreversible
effects of radiation reaction.

Of course, the nonlinearities of general relativity will break the
exact scalings of Egs. (25)for t > 0, but the existence of the limit
suggests that only higher-order terms in € will appear. We expect
an asymptotic expansion in € of the form

3

p(t,x",6) = € £(t,x") + €% g(t,x>) + ... .

We have so far not incorporated the scaling of time from Eq. (24),
since we have discussed only initial data. If we define the Newtonian

dynamical time

T = €t (26)

then we expect our relativistic solutions for € near zero to be in a
similar physical configuration (e.g. orbital phase) at events of
constant x1 and T. We therefore define the post-Newtonian approxi-
mation to our regular, asymptotically Newtonian sequence to be the
asymptotic expansion of the sequence of solutions in ¢ at fixed

x1 and T. This is illustrated in Fig. (1).
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Figure 1. For each € we have drawn only the t-dimension of each
solution vertically. Since the £€=0 manifold is Minkowski spacetime
(see Eg. 25), t is a proper-time coordinate for small €. Lines of
constant T are hyperbolae which connect points with similar physical
configuration in different manifolds. As €~ 0 these hyperbolae go
to t = ®©, because weak-field solutions take longer times to evolve.

T = const//7////

R

This approximation takes the form, e.g. for P (in an obvious notation)

p(T,xl,€) = ¢? Q(T,xl) + g? Q(T,xl) + ... (27)

2 3

The first few terms ascend in powers of €, but beyond the order at
which radiation reaction occurs one finds logarithmic terms 1n €.

The method used by Schutz and Futamase (1983) and Futamase (1983) may
be briefly described as follows. Eg. (2) generalizes to

b VA% uv

h =N —(-g)%guv

(28)
and with the same gauge condition (4) (now regarded as a full coordinate
condition) the full field equations can be written in a form similar to

Eq. (12),

a "’ = Z1en AMY (29)

ARy (-g)(T“v+tgz)+(16n)'1(E““BvB—E“VEQB) (30)

,0B
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AY) . .
where tu is the Landau-Lifshitz pseudotensor (Landau & Lifshitz
1962) and where O 1is the flat-space wave operator in these coordinates.
Equation (29) has the implicit solution given by Kirchoff's formula

Ly . . -1
hu (TIXJIE) =4 )( i Au\)(T-Sr,YJIE)r d3y
c(tyx?,€)
T { =~V j
- c}b ~h (1=0,7v7,€) 49
S(t,x3,€) ! Y
1 2 = '
+ o {1 f . BYr=0,y7,0) a0} (31)
S(T,xj,e) b
where r = ‘y]—xji. This gives EHV at any ‘E,x:J as an integral over the

past coordinate-cone C(T,xJ,g) of the_ event (T,xJ) plus initial-data
integrals from the intersection S(T,xj,e) of C with the t=0 hypersur-
face (see Fig. (2)).

Figure 2. The past coordinate-cone of P1; is C and intersects 1=0 at
the sphere S. At early times (P2) the retarded integral does not
cover the whole region where p#0 (dashed lines), but at later times
(P1) it is essentially the usual retarded integral. As € ~ 0, a
point of fixed (t,x1) moves upwards and the intersection S moves
outwards.

s
s<r,xi)\

When Eqg. (31) is differentiated with respect to £ at fixed T and xl
(after converting all t-indices on tensors to T indices), the various
post-Newtonian approximations come out as successively higher deriva-
tives. Although Eq. (31) is implicit in E“V, the right-hand side is

so constructed that its nth derivative with respect to € at €=0 depends
only on lower-order derivatives of hH*V. The successive derivatives
may therefore be obtained explicitly and recursively. Using this
method, Futamase (1983) showed that the post-Newtonian hierarchy of
approximations (i) is genuinely asymptotic; (ii) is essentially
identical to that of Chandrasekhar and colleagues up to and including
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radiation-reaction order, with the modifications introduced by Anderson
& Decanio (1975) and Kerlick (1980a,b), which removed some formally
divergent terms; and (iii) apparently has no divergent terms in the
approximation at any order in €. These resultsvindicate the use of

the near-zone quadrupole formula, Eg. (18), in astrophysical situa-
tions.

5.2 The far-zone quadrupole formula

. The above discussion is a near-zone discussion since we
took x* fixed as € -~ 0. The wavelength of the waves emitted by the
system will be proportional to the dynamical period of the system,
which will scale as €~*. Thus any fixed point x1 eventually becomes
closer to the system than one wavelength as € > 0. The key to a far-
zone limit is to remain a fixed number of wavelengths from the system

as € > 0. We therefore introduce a far-zone spatial coordinate

nt = ext (32)

(capital-letter indices denoting the scaled coordinates), and construct
the far-zone asymptotic approximation to, say, hoB as an expansion in

€ at fixed 1l and T. This approach is described in Futamase & Schutz
(1984) .
The same formal solution, Eg. (31), may be used again but the inteara-

tion over C is delicate: C must be divided into a near-zone region
and a far-zone region, the boundary being a sphere of fixed nt]. The
result is that to leading order we have

=TT J K ]
Bt =4 e’ M/ n v, M= S Lo(T,y)) @y (33)
-TI J I, K I Jy )
hoo(t,n) =4 e’ 2/n [+, 2= 2p(T,yj)1vl(T,yj>d3y
(34)
=13 J 7 L1 K, = =%
h(t,n) =2 ¢ 2I’TT(u)/In I+ 0 =T !ﬂ [
1J j, 17
I =S 2Q(T,yj)y yl &y. (35)

Notice that the coefficients M, 3PI, and 2IIJ are all near-zane inte-
grals over the Newtonian approximations to our variables. In fact,

to order €’ in all components these are identical to the solution

of Eq. (14) in linearized theory for THV obeying the relative
Newtonian ordering of Eg. (25). The energy and angular momentum

of these waves is therefore as well defined in the Newtonian limit

as in linearized theory. (One can show that gauge transformations
that preserve Eq. (4) and the near-zone Newtonian limit act in the

far zone as linearized theory transformations of order £7.) Moreover,
our discussion of the linearized far-field quadrupole formula carries
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over to this directly, verifying that the Landau-Lifshitz formula does
indeed hold for self-gravitating systems. .

5.3 The geometry of the near- and far-zone limits

It is helpful to regard our sequence of solutions M(g) of
general relativity as a five-dimensional fiber bundle, with base space
R’ (parametrized by €) and fibers diffeomorphic to R* (the spacetime
manifolds). (See Schutz 1984c for a more complete description.) Then
there are three interesting congruences of curves through the bundle,
each parametrized by £: constant (t,xi), constant (T,xi), and
constant (7,nI). These four—-dimensional congruences each define
different boundaries of the fiber bundle at €=0. As Fig. (1) shows,
the curves of constant (t,xi) limit to the €=0 fiber, which is
Minkowski spacetime. The near-zone limit is taken at fixed (T,xl),
and is called NM (Fig. (3)).

Figure 3. We draw the same sequence as in Fig. (1), but now use
T as the vertical time coordinate.

Near zone limit Spaces

M(g) )
/ Tﬂ
T=const
P i
] - Newtonian
t =const ~ Spacetime NM
~N
~ N N
M~ h ~
~ N
~ ~ AN
~ < ~ I~
M~ RN . .
\\t\ RN /Mmkow'skl
— s A/_l Spacetime OM
£

. TT 00 o
It has a degenerate metric (g = ¢glqg - 0) and a nonvanishing

connection, which is the Cartan connection of the geometrical
formulation of Newtonian gravity (Misner et al 1973). The far-
zone limiting manifold FM is the €=0 limit at fixed (t,n)y. 1In
these coordinates it has the metric

B oo PPl 5hAB o, (36)
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where 5hAB may be deduced from Egs. (33)-(35). By removing an
overall factor of € by a coordinate transformation we see that
the manifold is flat to order €® and the cutgoing waves are an
> perturbation, whose energy flux is of order €1%. The rela-
tion between FM and NM is illustrated in Fig. (4).

Figure 4. As seen from FM, the near-zone manifold NM is squeezed to
the origin nl = 0 for all T. The Minkowski manifold OM is squeezed
to the point nI T = 0.

Location of NM in FM

—__>qi

It is important to understand that FM is not the same as J+, which is
a three-dimensional boundary of a single spacetime. The four-dimen-
sional boundary FM seems naturally adapted to the radiation problem
in the Newtonian limit, where we go not only to ’xil = ® but also

to the mass M = 0. It is precisely the fact that M > O which makes
the globally posed Newtoniar limit, with boundary conditions on $-~
(whose relation to the manifold depends on M), so difficult to solve.
When one takes the two limits together, one obtains a regular and
easily interpretable asymptotic expansion to the waves seen by an
observer at a fixed number of wavelengths from the source.

5.4 Secular changes in nearly-Newtonian systems

If we regard the near-zone approximation as an asymptotic
approximation to the motions in a particular fiber of Fig. (1), say
for € = 1, then this can be a uniform approximation only for a finite
time, since ultimately the relativistic system can change drastically,
for example by binary stars spiralling together. One therefore makes
different approximations to the € = 1 system, each valid for successive
finite periods of T. This is exactly what the observers of, say, the
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binary pulsar system do when they report that its period is changing
(Taylor & Weisberg 1982; Boriakoff et al 1982): they fit Newtonian
or first-post-Newtonian orbits to a several-month sequence of data,
obtain a best-fit period, and then repeat the process for later periods
of data. Mathematically, it seems best to idealize this in terms of an
.osculating Newtonian orbit (Walker & Will 1980b), which is defined at
any time as that orbit which the system would have if it evolved

from its configuration at time t by the Newtonian equations. This
defines a continuously changing Newtonian approximation, and in
particular a continuously changing period. Again, a careful formula-
tion of the problem shows that the observable, secular change in the
period is obtained by using the reaction force, Eg. (18), in (22) as a
supplement in the Newtonian equations of motion (Futamase 1983;

Schutz 1984c¢,d).

5.5 Astrophysical results

The quadrupole formulas can be used to gain some feeling
for the likely magnitude and effects of gravitational radiation in a
number of situations. Besides its explanation of secular effects in
the binary pulsar system and in cataclysmic binaries (Paczynski &
Sienkiewicz 1983), radiation has been shown to trigger certain insta-
bilities in rapidly rotating stars (Chandrasekhar 1970; Friedman &
Schutz 1978; Friedman 1983) and to counteract other destabilizing
effects of viscosity in rapidly rotating stars (Lindblom & Detweilex
1977) . By making severe simplifications of the hydrodynamics, it is
possible to use the far-zone guadrupcle formula tc calculate the
radiation that might be emitted in a supernova collapse (Saenz &
Shapiro 1978, 1979, 1981 and Detweiler & Lindblom 1981). This and
other interesting work is reviewed by Eardley (1983).
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