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We examine the gravitational radiation emitted by a sequence of spacetimes whose near-zone
Newtonian limit we have previously studied. The spacetimes are defined by initial data which scale
in a Newtonian fashion: the density as €2, velocity as €, pressure as €*, where € is the sequence pa-
rameter. We asymptotically approximate the metric at an event which, as €—0, remains a fixed
number of gravitational wavelengths distant from the system and a fixed number of wave periods to
the future of the initial hypersurface. We show that the radiation behaves like that of linearized
theory in a Minkowski spacetime, since the mass of the metric vanishes as e—~0. We call this Min-
kowski far-zone limiting manifold FM; it is a boundary of the sequence of spacetimes, in which the
radiation carries an energy flux given asymptotically by the usual far-zone quadrupole formula (the
Landau-Lifshitz formula), as measured both by the Isaacson average stress-energy tensor in FM or
by the Bondi flux on .#}y. This proves that the quadrupole formula is an asymptotic approxima-
tion to general relativity. We study the relation between .#, the sequence of null infinities of the
individual manifolds, and .#3y; and we examine the gauge invariance of FM under certain gauge
transformations. We also discuss the relation of this calculation with similar ones in the framework
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of matched asymptotic expansions and others based on the characteristic initial-value problem.

I. INTRODUCTION

The most striking difference between the Newtonian
and Einsteinian theories of gravity is that Newton’s
theory does not admit gravitational waves and Einstein’s
does.! Nevertheless, Newton’s theory is a limiting case of
Einstein’s, so there are solutions of Einstein’s equations
which are quasi-Newtonian: they obey Newton’s equa-
tions to some high accuracy. As relativistic solutions,
they generally emit gravitational waves, for which there is
no description in Newtonian terms, even approximately.
The study of this radiation is therefore one of the most
delicate aspects of treating the Newtonian limit of general
relativity. In two previous papers,”® we have demonstrat-
ed that the Newtonian and post-Newtonian hierarchy*>
are in fact asymptotic approximations to a well-defined
sequence of solutions of Einstein’s field equations. This
proof included the order at which radiation-reaction ef-
fects were first seen in the system’s equations of motion,
thus demonstrating that the near-zone “quadrupole for-
mula”>® is an asymptotic approximation to general rela-
tivity. We turn in this paper to the study of the radiation
emitted by the same sequence of relativistic systems as
they approach their Newtonian limit. Instead of working
with null infinity (#*) of any spacetime in the sequence,
we define a limiting four-dimensional “far-zone mani-
fold” (FM) of the sequence, in which the outgoing radia-
tion is asymptotic to a solution of linearized theory.”? It
is then easy to deduce from this that the far-field quadru-
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pole formula for the outgoing wave energy flux is also an
asymptotic approximation to general relativity.

The far zone and its relation to the source has been
studied in a large number of other investigations, most
successfully by variants of the method of matched asymp-
totic expansions.®® All of these have found results com-
patible with ours, and in particular, supporting the quad-
rupole formula. What is new about the work we describe
here is that we (i) demonstrate that the far-zone formulas
are truly asymptotic approximations to a well-defined se-
quence of radiating relativistic solutions;. (ii) derive the
far-zone metric by the use of uniformly approximated re-
tarded integrals, rather than by matching; and (iii) give a
clear geometrical picture of the relation of the Newtonian
far zone to the sequence of manifolds, showing in particu-
lar that it is not .#* for any manifold. A novel method
of studying radiation in the Newtonian manifold has been
carried out by Winicour and collaborators,!© based on the
characteristic initial-value problem. It has much in com-
mon with our work, and we shall study the relationship
between the two later in this paper.

The sequence of relativistic solutions we study is what
we have called® a regular, asymptotically Newtonian se-
quence. It is defined by initial data having the Newtonian
scaling property: vi~e, p~€’, p~e*, where € is the
sequence’s parameter. Because the velocities approach
zero, the system’s characteristic time scales get longer as
e !, s0a map from one solution to another at fixed xt
and
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r=et (1.1)

will join events at similar stages of dynamical evolution,
at least in the limit.!! For this reason we call 7 the
dynamical time. The post-Newtonian approximations are
asymptotic to the regular, asymptotically Newtonian se-
quence as e—O0 for fixed x’ and 7.

We shall call the map given by Eq. (1.1) the near-zone
map, for reasons that will be clear in the next paragraph.
Figures 1 and 2 show two different ways of looking at it.
If we regard the one-parameter sequence of manifolds as a
(trivial) fiber bundle over the base space R ! parameterized
by €, then Fig. 2 shows two different e=0 boundaries of
this bundle: Minkowski spacetime OM (the fiber €=0,
reached by the map x’=const, t=const); and Cartan
spacetime NM (the near-zone limit at x’=const,
r=const, which has? the degenerate metric and regular
connection of Cartan’s geometrical description of
Newtonian gravity'?). The manifold NM is the near-zone
manifold, in which the Newtonian dynamics takes place.

Any gravitational radiation emitted by the system will
have a characteristic period given by some dynamical time
interval A7, which therefore scales as €~! in ¢ as e—0.
The wavelength of the radiation will therefore also go as
€~ ! in the x’ coordinates. This means that any point at
fixed x* will find itself less than one wavelength distant
from the system for sufficiently small €. That is why we
have called the map at fixed x’ the near-zone map.

In order to study gravitational radiation, we have to
stay in the far, or wave, zone. We therefore define anoth-
er scaled coordinate,

7' =ex’. (1.2)

T = const ——

=0

« t
€ €=0

FIG. 1. The sequence of four-dimensional spacetime mani-
folds forms a five-dimensional manifold, two dimensions of
which are illustrated here: the parameter € and the time coordi-
nate ¢, which as e—0 becomes proper time. The near-zone map
from one spacetime to another fixes x’ and 7=et and therefore
follows the hyperbolas. It never reaches the e=0 spacetime,
which is Minkowski spacetime. For <O the picture would be
reflected through ¢=0; but for reasons discussed in Ref. 8 we do
not consider ¢ <0.
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FIG. 2. The same sequence as in Fig. 1 is now displayed us-
ing 7 rather than ¢ as a vertical coordinate. The near-zone map
is horizontal, and its limit for €=0 is the Cartan or near-zone
manifold NM. The t=const map converges on 7=0 for e=0:
the whole e=0 spacetime OM of Fig. 1 is a single point here.
This point is in no sense a limit point of NM, since both are
four-dimensional manifolds. (In a similar way, .#7 is not a limit
point of #*, even though it may look like one, in a conformal
diagram.) (This figure is reproduced with permission from Ref.
21.)

The map between solutions at fixed %’ and 7 is called the
far-zone map, because it ensures that if the event (n*,7) is,
say, about 10 wavelengths from the source in one solution
then it will remain 10 wavelengths away as e—0. We
shall study the solutions at fixed (*,7) in order to
develop an asymptotic approximation to the field an ob-
server would see who is located a certain number of wave-
lengths from the relativistic source. (Primes on indices
will be used to denote the coordinates 7' and 7.) This
linkage of the limit #— o0 with the limit e—0, which has
been used in the matched-asymptotic-expansion work as
well,® is at the heart of our method.

The far-zone map (x’,t)—(x'/€,t/€) defines a four-
dimensional congruence through the fiber bundle of solu-
tions, and because the map is a simple scaling by ¢, it is
possible to associate with its e—0 limit a flat Minkowski
manifold FM (the far-zone manifold) in which the far-
field waves are solutions of linearized theory to the order
required for studying their wave fluxes. The manifold
FM appears to be essentially the same as the four-
dimensional manifold that Wincour and co-workers!”
have introduced in their study of the Newtonian limit of
the characteristic initial-value problem. Figures 3 and 4
illustrate the relation between FM and NM.

The plan of the paper is as follows. Section II calcu-
lates the metric in the far zone, showing in particular, that
its dominant source is the integral over the near-zone dis-
tribution of stress energy. The result is a metric essential-
ly identical to that of radiation in linearized theory. In
Sec. III we define the far-zone manifold FM as the Min-
kowskian manifold in which this linear radiation appears;
we show the relation between it and the asymptotic infini-
ties .# of the individual manifolds of the sequence; we
calculate the outgoing energy flux by both the Isaacson
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Location of NM in FM

————>ni

FIG. 3. The far-zone map at fixed 7" =ex’ and 7=et limits
to FM. The near zone shrinks in this picture as €—0, so that
NM is a line embedded at the spatial origin of FM. (This figure
is reproduced with permission from Ref. 21.)

and the Bondi methods in FM and establish the validity
of the far-zone quadrupole formula there; and we show
that FM is invariant under gauge transformations within
the Lorentz gauge that leave the near-zone Newtonian
limit unchanged. (The general problem of formulating a
coordinate-independent definition of FM is not addressed
here.) Section IV provides a discussion of these results.

Location of FM relative to NM

p#0
¢
- .
To FM TT { To FM
- ‘ B
{
¢
t=0

FIG. 4. The picture in Fig. 3 is here shown from the point of
view of the near-zone map, in which the limit to FM takes
points to spatial infinity. (This figure is reproduced with per-
mission from Ref. 21.)

2559

II. CALCULATION OF THE FAR-ZONE METRIC

A. Formulation of the problem

The notation and formulation of the equations are the
same as in paper I. We adopt the harmonic gauge,

R# =0, (2.1)
in which the field equations take the form

Oh#¥=—16mA*, 2.2)
where we have

APY=(—g) (Tt} )+ XP*B g . (2.3)

(The reader should refer to paper I for unfamiliar sym-
bols.) The formal solution of Eq. (2.2) for initial data on
the =0 hypersurface is

At xke)=4 | xJ—yJ| 1

Cc(t,xk;e)
XA (r—e|xI—yl|,yhe)dy +h Y,

(2.4)

where C(t,x%;¢€) is the past coordinate light cone of the
event (t,x¥) truncated at t=0 in the manifold given by €
(see Fig. 5), and %4 is the solution of the homogeneous
equation

Or%=0 (2.5)
which evolves from the given initial data. Equation (2.4)
gives, of course, only an implicit solution for % #*, but as
in the near-zone calculation it can be solved iteratively.
Figure 5 shows that if the field point (¢,x°) is in the far
zone, the integral over C will include contributions from
both the far and near zones. Since the approximations for
the integrands are different in these regions, we split the

" integral into two parts explicitly. We take the origin of

our coordinates to be inside the near zone, and we define
the boundary of the near and far zones to be at a fixed ra-

=0
o)
Boundary of fi

near zone, )
mi=R= Far-zone point (T.r_|)
constant

CX

FIG. 5. Data set at t=0 determine the field at a point (%", 7)
by the solution of the homogeneous equation plus an integral
over the past light-cone of (%”,7) truncated at t=0. This light
cone goes through the material system, so we use separate
asymptotic approximations to its integrand in the region inside
and outside the tube of radius =R shown here.
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dius 7" | =R in far-zone coordinates, i.e., at a radius
| x*| =R /€ in near-zone coordinates. The value of R is
arbitrary: our results will not depend upon it.!* After
transforming Eq. (2.2) to far-zone coordinates (primed in-
dices), we define the two inhomogeneous pieces of 7 #*:

R (rte0=4e2 [, | =€

XAEY (r— |9 —E" | ,€";€)dE ,

(2.6)
and
RV (rmise)=4€ [ o |7 —e!| 7!
XA (r— |7/ —ey! | ,yhe)d’y .
2.7

Then we have for the far-zone metric

REYV=RRY L REY LR (2.8)
Here we denote by NZ the region |7' | <R, i.e., the near
zone, and we define the far- and near-zone source func-
tionals by, respectively,

AEY (1,6"€) = A" (1/€,E /€;€) 2.9)
and

AR (r,yhe)=A*(1/€,p%€) . (2.10)

Explicit factors of € in Egs. (2.6)—(2.9) come from chang-
ing from unprimed to primed indicates and from the fac-
tor of | x/—y/| in Eq. (2.4).

We shall next show that REY and h4%” are negligible
compared to %Y in Eq. (2. 8) provnded we are only in-
terested in the lowest order radiation terms.

B. Neglecting ki %" and % %"

First consider % %Y. In the unscaled coordinates (z,x7),
the limit to €=0 of the components g#* of the metric is
n*¥ along any curve through the fiber bundle, since the
€=0 fiber is Minkowski spacetime. (The metric of NM is
degenerate because it is the limit of the components of g*¥
in the partly scaled coordinates 7 and x’.) Therefore in
far-zone coordinates (7,7" ) the components are asymptot-
ic to e*n**. Since h " is the perturbation in the metric,
and since we have assumed (paper I) smoothness as €—0,

it follows that % ¥ must be smaller than this:
REY =0(€?) . (2.11)

Inspection of tf7 in the far zone shows that its com-
ponents are of order |4 #" |2, so that by Eq. (2.6) we have
REY ~e 2| RV |2 or

REY =o(RHY),

i.e., that l—t“"" is smaller than & *".

(2.12)
We will see that the

dominant component of & #V is h 7 and is of order €, so

that (by the argument above) & ¥ £ does not contribute un-
til order €%, which is beyond the order we shall need for
calculating fluxes in the far zone. It is this fact which
makes the dominant far-zone radiation identical to that of
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FIG. 6. When solving the homogeneous equation for initial
data which are generated by the constraint equations using
matter data of compact support, the future of #=0 is divided
into three regions as shown. The far-zone limit studies radiation
in region II. A full discussion of the solution in these regions is
in Ref. 8.

linearized theory. We shall neglecg ,h KV from now on.

For the homogeneous field %Y one must distinguish
the spatial components Ry from the temporal ones h %
Initial data for % % are averaged in our picture (paper II)
in such a way that their mean value is Z€r0, SO the mean
7 is zero as well. The initial data for 7 %, on the other
hand, came from solving the initial value constraints. The
dominant initial data are solutions of Poisson’s equation
with sources (T™) of compact support, in which case
7% has dlfferent behavior in three different regions of
spacetlme (Fig. 6). We are interested in the outgomg ra-
diation in region II, where this piece of 7 %' is zero. The
largest contribution to % % from initial data of noncom-
pact support is of order 68 at fixed x’ and 7 (paper II), and
since this falls off as | x’| ~! it contributes a term of or-
der € to the far-zone limit of % %, and is therefore negh-
gible here. Similar consxderatlons also eliminate 2 5. We
shall therefore consider only % 4" from now on.

C. Calculating % 4~

the asymptotic approximation to Eq. (2.7) is developed
as in our prev1ous papers by dlfferentlatlng w1th respect to
€ at fixed 7', 1", and y/. Consider flrst Y Slnce A% is
of order €?, Eq (2.7) shows that % % is of order €. More-
over, since AY is of compact support at lowest order [just
e p(1,yH]1, the upper limit on | y/| is finite and fixed in
Eq. (2.7), so retardation of the integrand across the near
zone (which we may call differential retardation) may be
neglected. If we define the far-zone retarded time

u=r—n, n=[7"|, (2.13)
then we obtain
A= | Zay| —amm, (2.14)
5! | 9¢° =0
where
M= [ plu,y)d’y (2.15)

is independent of u by the near-zone continuity equation.
So the dominant piece of %7 far away is just the
Newtonian potential. Its order, €, is composed of €? from
the Newtonian mass, €* from the conversion of indices
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from ¢ to 7, and € from the replacement of radial distance -

| x¥| by n/e.

The next derivative of 7 7 still involves only A%, since
the next higher order in A% is €*. We find contributions
from differential retardation [differentiating the € in the 7
argument of A% in Eq. (2.7)] and from the Newtonian di-
pole moment:

h N=43Pin'/m+4,D;n'/n?, (2.16)
with the definitions

ni=n'/n=xi/|x7| , .17

3P = fyo(u,yj) wilu,yHd3y (2.18)

,Di(u)= f;p(u,yj)y;d3y. (2.19)

Again, the near-zone dynamical equations ensure that 3P;
is constant and ,D; is at most a linear function of u.
These terms are exactly the same as they would be in
linearized theory, since they come from ,p(7,y") alone.

We shall calculate 7% to one more order. Contribu-
tions from moments and differential retardation of ,p are
again the same as in linearized theory. But now we also
have a contribution from 4A%, which is not compact (it
includes the Newtonian field energy). By Lemma 2 (ii) of
paper I we can neglect the differential retardation of ;A%
[which is the same as ¢A”" in Eq. (4.27) of paper I].
Moreover, the upper limit of integration in Eq: (2.7) above
is | y'| =R /e; its € dependence must in principle be taken
into account, but at this order R /€ is set to «o. The result
is :

Th N=4M /4250 n'n? /)

+635F yun'ni/m?+65F yn'ni/m? (2.20)

with
M= [ Aluyhddy, (2.21)
# = [ puy*yyddy, (2.22)
=y — 58 0% . (2.23)

Clearly ,M is the post-Newtonian contribution to the
mass at infinity, and it is conserved. The other terms are
the usual Newtonian quadrupole terms.

The same calculations may be made for the other com-
ponents of 7 %% . The results up to order €’ are

i =4P/n (2.24)
A =250 I GMI ol i, (2.25)
AT =200 (2.26)

where |
MU= f 2Ly — wiyHddy (2.27)

is the (conserved) Newtonian angular momentum. Again
these are all known from linearized theory.

If we were to calculate the field 7 “# of linearized
theory in the same fashion as we have approached the
nonlinear theory, that is, by taking initial data of the same
form and expanding at fixed far-zone coordinates 7 and
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1", we would have found exactly the same as our expres-
sions (2.14)—(2.27), with the single exception that M
would have been zero. Its presence here shows us that the
post-Newtonian mass is of the same order as the radiation
terms in the far zone. But this mass term plays no role in
the dynamical part of the metric (the radiation), so we see
that the radiation is identical to that of linearized theory.
Note also that terms in, say, M2/r? that one finds in the
far-zone field of a manifold of fixed mass do not appear
here because they are simply of higher order: a factor of
€’ higher order than the ,M /7 term in Eq. (2.14), for ex-
ample. (Two factors of € come from the extra factor of
M and one from converting the extra r ! to #~!.) This
is a result of linking the e—0 and r — oo limits.

The simplicity of our expressions would disappear if we
studied the radiation approaching .#* in a single one of
our sequence of manifolds, where we would have to use
the correct curved-space null cones rather than our flat-
space retarded coordinate u, and where we would not be
able to express the asymptotic radiation field in terms of
simple integrals over the source. By linking the limit
r— o with the limit e—0, we have arrived at a picture of
radiation on the Newtonian limit which is simpler than
the one we would find in any single manifold.

III. THE FAR-FIELD QUADRUPOLE FORMULA

A. The far-zone manifold FM

We have identified a preferred four-dimensional
congruence through the five-dimensional sequence of
manifolds, defined by fixing 7’ =ex’ and r=et as € goes
to zero. The Lie-dragged components g* of the metric
along this congruence asymptotically approach e*p#", de-
generating because of the expansion of the coordinates. If
we apply a trivial' conformal transformation to this
metric, defining

grv=e"ghv 3.1
for all €, then g will asymptotically approach the Min-
kowski metric. We define the congruence with the limit
of this conformally rescaled manifold to be the far-zone
manifold FM. In it we may regard the full metric g#"v(e)
as a sequence of metrics having the asymptotic expansion
obtained from Eqgs. (2.14)—(2.27) by conformal rescaling.
If in addition we choose a Lorentz frame in which
,P'=,D"'=0, then we have

R =4 My 44 Mn 42,019 ninim !
+6F U ninm ™ +65F Uninin )+ 0(€)

(3.2)
R =20 ynin '+ (MY 4,09 nm~?]+0 (%),

(3.3)
RV =2€ 09 ,,n7 ' +0(e) . (3.4)

It is useful to think of FM as a conformally rescaled
boundary of the five-dimensional sequence of spacetimes,
much as .#* is a boundary of a single spacetime. We can
get some idea of the relation of .#} of each individual
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manifold M, of our sequence to FM by considering a
simple special case: a sequence of stationary metrics
whose masses scale as ours do, namely, as ém for a posi-
tive constant m. (This could include a sequence of exact
Schwarzschild solutions.) Since our limit takes us far
from the source region as €e—0, we can take the weak-
field form of the metric on ‘M, for sufficiently small e,
which is

ds?= —(1—2&%m /r)dt?
+(14+26®m /r)(dx*+dy*+dz?) .

(We do not assume M, is weak-field everywhere: only
that this form obtains for large ».) This is in the harmon-
ic gauge. It may be compactified at null infinity by defin-
ing

ro=r +2m In(r —2€*m) (3.5)
and introducing the coordinates

uc=tan"Xt —r,), ve=tan" 't +r,). (3.6)

Then £ is the limit v.—7/2 for u, constant. We can
similarly compactify FM by introducing

U=tan—'7—7), V=tan~(7+7).
Then we have the relations

U =tan~[etanu . +2€’m In(r —2¢*m)] ,
3.7
V =tan~'[etanv, —2€*m In(r —2€*m)] ,

where we regard r as an implicit function of u, and v,
through Eqgs. (3.5) and (3.6). Then if we fix u, and set
ve=1r/2, we see that as e—0 this point of .# ] approaches
the point V=m/2, U=0 on £y Thus, all of #} is
mapped to a single point of £ (see Fig. 7). This should
not be surprising: a finite interval of time in FM corre-
sponds to an infinite amount of time in M, as e—0, be-
cause FM uses 7 as a time coordinate.

This mismatch between proper time ¢ in the physical

NS
&—o

g

I+
T

FIG. 7. Future null infinity of FM, £y, is shown here. All
points of £} of any individual spacetime will limit to a single
cut of Sy as shown. This cut is the intersection of Sy with
the image under the far-zone map of the light cones of the ori-
gin (x'=0, t=0) of all the €40 manifolds. All the light cones
of M. for €0 map to this cone in FM because finite intervals
of t become zero intervals of 7 in the limit. (This is the same
reason that OM is a “point” in Fig. 2.) This singular embedding
can be eliminated if we apply a conformal transformation to
each M, before attaching #} to it. This spreads out .#7 and
makes the limit to .y regular. ’
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manifolds M, and the dynamical time 7 which governs
NM and FM suggests that it might be more convenient to

‘apply the conformal transformation €* to the metric of

each manifold M, and then to regard the conformally
transformed metrics as the physical ones of our sequence.
This is certainly possible, since under a constant confor-
mal transformation the new metric is also a solution of
Einstein’s equations. In this view, the coordinates 7 and
7' become Lorentzian as €—0, the bodies of the system
have physical dimensions which shrink as ¢, and their ve-
locities also shrink so that their characteristic time scales
remain constant. By the virial theorem we have the mass
M ~v?R shrinking as €. In this limit the near zone has
fixed size (but gets arbitrarily large relative to the size of
the system), and the far zone is simply the limit at fixed
physical coordinates 7 and 7". Then there is a regular map
from s} to # . This appears to be the sort of sequence
constructed by ,Winicour and co-workers!® in their
characteristic-initial-value formulation of the Newtonian
limit. It is well adapted for discussing radiation but less
convenient for the discussion of the motion of the bodies.

B. The outgoing energy flux

In order to answer any experimental question, the dis-
tant observer of the radiation needs only to know its am-
plitude %" and the gauge. Our expressions (3.2)—(3.4)
form an asymptotic approximation for any observer in the
far zone, and so suffice to describe any experiment on the
radiation. We could, therefore, stop the calculation at this
point. Nevertheless, the concept of energy has had con-
siderable power in physics, and not unnaturally much at-
tention has been focused on it in the present problem. In
the near zone, the demonstration (as in paper II) that the
near-zone quadrupole formula correctly gives the rate of
change of the Newtonian energy immediately allows one
to calculate various observables about the system, such as
the rate of change of a binary’s orbital period. It would
be possible, but more difficult, to calculate these directly
from a knowledge of the metric through radiation-
reaction order. Similarly, in the far zone, it would be
helpful to know that the energy in the waves bore some
relation to the loss of energy by the system, so that obser-
vation of the system’s near-zone energy loss would im-
mediately imply an amplitude for waves in the far zone,
independently of knowing any other details of the
system’s dynamics. Considerations of this sort must ulti-
mately provide the physical justification for definitions of
a far-zone energy flux. It follows, therefore, that it does
not really matter very much which far-zone definition one
takes for energy flux, as long as it has a clear relation to
the amplitude of the waves on the one hand, and it can be
related to (is preferably equal to) the loss of near-zone en-
ergy on the other. We shall consider two definitions here,
the Isaacson average stress-energy tensor'* and the Bondi
flux'® on .

The Isaacson flux is a measure of the waves’ mean con-
tribution to the curvature of the spacetime. When aver-
aged over a region of spacetime a few wavelengths in size
it gives the Einstein tensor that a “coarse-grained” ob-
server would measure. The terms that contribute to the
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flux contain time derivatives, so the static part of the
metric (3.2)—(3.4) will not contribute. The time-
dependent part may be put into 7T gauge!® to give

BT =2"Pyg sF ¥ 4 /m+0(€) , (3.8)
where

Pyji=PyPj—5P;iPy , (3.9)

Py =8y —n;ny . (3.10)
In this gauge the Isaacsoﬁ flux is

Fp=— 521—7—@ T R TDIR Ly (3.11)

where angle brackets { ) denote an average over a few
wavelengths in space and time. For large 17, the derivative
with respect to %' in Eq. (3.11) acts mainly on the argu-
ment u =7—n of ¥ /'¥, giving

e.10

ya'=§Pmianmk"1<2fmijzf‘m ynam=2+0(e"),

(3.12)

where dots denote derivatives with respect to u. When in-
tegrated over a sphere this gives a total far-zone luminosi-
ty of

Low=+eCF pid *)+0(eh, (3.13)

which is the far-zone quadrupole formula. It exactly bal-
ances the rate of loss of Newtonian energy (paper II).

The Bondi flux is an invariant characterization of the
energy reaching .#+. In our flat manifold FM, £y is
trivially the set of future projective end points of the out-
going null geodesics u=const. The Bondi mass is, of
course, just € ,M +¢€° ,M +0(€®). The Bondi flux is cal-
culated from the asymptotic shear tensor of the null cones
as they approach infinity. This is given by!’

Copw— tim E . (3.14
u1]=const

The invariant flux is derived from the “news tensor”

Q"i'j’zdfli’j’/du

=26"Py; sF H4+0(€) . (3.15)
The luminosity measured at .# * is
1 . ey
Low=75- [ dud'lan, (3.16)

where d{) is the element of solid angle. This will clearly
give the same answer as Eq. (3.13).

C. Gauge invariance of FM

Our construction of the limiting manifold FM is tied to
the coordinate system we have adopted; we shall not at-
tempt here to give a coordinate-invariant description of
this boundary. But we can at least examine the question
of gauge transformations within the Lorentz gauge. Since
we have not specialized the gauge to any particular
Lorentz gauge, it is clear that the construction will go
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through in any such coordinate system in which the initial
data take their assumed form. What will be the relation-
ship of the far-field description of one such coordinate
system to that of another? The answer, as we shall see,
contains no surprises: provided we choose a gauge which
does not alter the Newtonian order in the near-zone limit,
then the effect on the far-zone limit is that of a gauge
transformation of gravitational waves in linearized theory.

We consider an infinitesimal coordinate transformation
generated by a vector £*(x%e€). To lowest order in £* and
h 26 the change in the metric is given by

Sh 1 =nPEY pt-n"PEt p—nM"EP 5+ O (hE) .

If the new metric is also to be in harmonic gauge then we
have

(3.17)

O&*=0(hE) . (3.18)
This implies as well that
Qdr*Y 40 (hE) . (3.19)

The gauge transformation is determined by Eq. (3.18) pro-
vided we give initial data for £*. These data are subject to
the following asymptotic falloff restrictions in order to
ensure the unique existence of solutions to the initial value
constraints [paper II, Eq. (2.5)]:

ShU(r=0,x%e)=0(r""),

— ) (3.20)
8hY (r=0,x%€)=0(r72).
The constraints [paper I, Eq. (3.12)] then imply
8% M(r=0,xe)=0(r""). (3.21)

We choose the initial data subject to the restriction that
the Newtonian equations of motion are unchanged. This
condition requires

SAFY=0(€),
which implies

8h=0(€%), 8h"=0(e"), 8h'=0(e). (322
In order that the harmonicity condition

8hH =0 (3.23)

be preserved at all orders, this would require that
38k Y ;=0. In turn, Eq. (3.17) implies V;?£'=0, which has
no regular solutions. At the next order, the constraints
force 46h ™ to vanish if 4,6A"™ vanishes, then the same ar-
gument as above leads to ,8A ¥ vanishing. ~We conclude,
therefore that in near-zone coordinates (7,x%),

£ =0(e) . (3.24)

This means that the O(h&) terms in Egs. (3.17)—(3.19)
are of order €’ in the near zone.

In far-zone coordinates, Eq. (3.24) becomes
E=0(¢), £'=0() . (3.25)

Frpm Eq. (3.17) in the far zone, remembering that
v ~€?, we find
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ShHY=0(€") .
Removing the conformal factor gives

SEHV=0(ée), (3.26)

which is the order of the radiation terms. Thus, those
parts of the far-zone metric which depend on Newtonian
conserved quantities (mass, angular momentum) are un-
changed, while those terms involving radiation are affect-
ed in the same manner as in linearized theory. Moreover,
since the spatial component &' is one order higher than &7,
the change in the spatial metric is

(K T = — 8",
This drops out in the projection to find the 77T part of the

metric, so the Bondi flux is in fact gauge-invariant in this
sense.

(3.27)

IV. CONCLUSIONS

We have been able to study the outgoing radiation in
our regular, asymptotically Newtonian sequences, thereby
linking our earlier proof of the near-zone quadrupole for-
mula (paper II) to a proof that the far-zone quadrupole
formula is also an asymptotic approximation to the radia-
tion from our sequences. By introducing the far-zone
manifold FM as a boundary of the five-dimensional mani-
fold of our spacetime sequence, we have given a geometri-
cal characterization of radiation in the Newtonian limit.
Although our construction of FM is coordinate depen-
dent, our investigation of its gauge invariance suggests
that there is likely to be a coordinate-invariant way to de-
fine it. We will return to this point below.

Results similar to these have been obtained by other in-
vestigators. Those obtained by the method of matched
asymptotic expansions® seem particularly close in spirit to
the present calculation. Both methods divide the near
zone from the far zone, adopting appropriate coordinate
scalings in each. The matching method solves Einstein’s
differential equations locally in each zone, makes certain
assumptions about appropriate forms for these solutions,
and then matches the two at their boundary in order to
determine various constants. Our method, by contrast,
uses a single expression, Eq. (2.4), for the solution every-
where, simply developing asymptotic approximations for
it in the different zones. This makes no assumptions oth-
er than the regularity of the initial-value problem and the
form of the initial data, and therefore provides the
rigorous underpinning of the matching methods.
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Similarly, the characteristic initial-value approach!® is
even closer in spirit of our approach. Although at first
sight it may look rather different from our methods of pa-
pers I'and II, our present analysis shows it to be an ap-
proximation to a conformally related sequence of solu-
tions. One puzzling aspect of the relation between the two
approaches is not yet understood: we have complete free-
dom in our choice of wave initial data, but in the charac-
teristic problem there seems to be no freedom at all.!”
This deserves further study.

A number of questions remain for the future. Not only
would it be useful to find invariant characterizations of
NM and FM (and therefore of sequences of solutions that
have Newtonian limits), but there is also the question of
the “coverage” of the sequence by NM or FM. As we dis-
cussed in paper I and elsewhere,'® these limits can be uni-
form only for a finite interval of 7. For example, a rela-
tivistic binary will eventually destroy itself as the stars
spiral together and collide, while its Newtonian approxi-
mation will not do so. So the Newtonian approximation
can be uniform only for a limited time. Each finite time
interval thus approximated produces manifolds NM and
FM which contain systems of somewhat different total
masses. It is not yet clear whether one can identify these
manifolds in a sensible way. If one can, one might hope
to develop this picture so that one could take a limit as
the interval A7 being approximated goes to zero, giving a
continuously changing Newtonian approximation: the
“osculating” Newtonian approximation, in the terminolo-
gy of Walker and Will."’

In the following paper, one of us (T.F.) will make a dif-
ferent extension of the present method, which will allow
the inclusion of compact relativistic bodies interacting by
their Newtonian-type near-zone fields. This provides the
final step in our demonstration that the quadrupole for-
mulas may be used in the interpretation of the evolution
of the binary pulsar system.?’
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