PUBLISHED FOR SISSA BY €) SPRINGER

RECEIVED: January 10, 2011
ACCEPTED: February 4, 2011
PUBLISHED: February 28, 2011

D = 7/D = 6 heterotic supergravity with gauged
R-symmetry

T.G. Pugh,” E. Sezgin® and K.S. Stelle®*

@The Blackett Laboratory, Imperial College,
Prince Consort Road, London SW7 2BZ, U.K.

b George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,
Texas AEM University, College Station, TX 77843, USA

CAFEI, Max Planck Institut fiir Gravitationsphysik,
Am Mihlenberg 1, D-14476 Potsdam, Germany
E-mail: thomas.pugh08@imperial.ac.uk, sezgin@physics.tamu.eduy,
k.stelle@imperial.ac.uk

ABSTRACT: We construct a family of chiral anomaly-free supergravity theories in D = 6
starting from D = 7 supergravity with a gauged noncompact R-symmetry, employing a
Horava-Witten bulk-plus-boundary construction. The gauged noncompact R-symmetry
yields a positive (de Sitter sign) D = 6 scalar field potential. Classical anomaly inflow
which is needed to cancel boundary-field loop anomalies requires careful consideration of
the gravitational, gauge, mixed and local supersymmetry anomalies. Coupling of boundary
hypermultiplets requires care with the Sp(1) gauge connection required to obtain quater-
nionic Kéhler target manifolds in D = 6. This class of gauged R-symmetry models may
be of use as starting points for further compactifications to D = 4 that take advantage of
the positive scalar potential, such as those proposed in the scenario of supersymmetry in
large extra dimensions.

KEYWORDS: p-branes, Supergravity Models, Anomalies in Field and String Theories,
dS vacua in string theory

ARX1v EPRINT: 1008.0726

© SISSA 2011 doi:10.1007/JHEP02(2011)115


mailto:thomas.pugh08@imperial.ac.uk
mailto:sezgin@physics.tamu.edu
mailto:k.stelle@imperial.ac.uk
http://arxiv.org/abs/1008.0726
http://dx.doi.org/10.1007/JHEP02(2011)115

Contents

1 Introduction 1
2 D =7 3-form supergravity 3
3 The model on an S'/Zs orbifold 6
4 Dimensional reduction and the diagonalised basis for fields 8

5 Introduction of boundary Yang-Mills fields and the modified boundary

conditions 11

6 The boundary Yang-Mills action and classical anomalies 14

7 Coupling boundary localised hypermultiplets 16

8 Extensions of the model and further classical anomalies 20

8.1 The topological mass term 20
8.2 Additional bulk Chern-Simons terms, boundary conditions and classical

anomalies 22

8.3 Boundary tensor multiplets and further classical anomalies 24

9 Quantum anomalies and anomaly cancellation 26

10 Conclusions 29

A The coincident boundary limit 32

B D = 7 2-form supergravity 35

1 Introduction

Anomaly-free chiral N = (1,0) gauged supergravities in D = 6 [1-7] have intriguing possi-
ble phenomenological applications, in particular for scenarios involving supersymmetry in
large extra dimensions [8, 9]. A key challenge with such supergravity models has been to
embed them in string or M-theory while also ensuring the absence of quantum gravitational
or gauge anomalies. One way to generate anomaly-free chiral models is the Hotava-Witten
mechanism [10, 11], which involves compactification on a line interval while at the same
time supposing that matter fields appear on the end-walls of the interval in such a com-
bination as to cancel the quantum anomalies. The basic Hofava-Witten scenario involves
a stage of Kaluza-Klein reduction on S'/Zy followed by a search for anomaly-cancelling



matter combinations with which to populate the bounding walls. In order to obtain an
N = (1,0),D = 6 theory with gauged U(1) R-symmetry in this way, one would need to
begin this stage of reduction with an appropriate D = 7 theory. For this purpose, we
shall use the construction of ref. [12] which achieved D = 6 R-symmetry starting from
N = 1,D = 10 supergravity and reducing on the noncompact space H(2,2), which is
endowed with a Euclidean signature metric of cohomogeneity one. This produces a the-
ory containing minimal D = 7 supergravity coupled to Super Yang-Mills with an SO(2,2)
noncompact gauge group. The noncompact nature of this D = 7 gauge group is essential
for allowing subsequent truncation to a chiral D = 6 theory that retains an R-symmetry
gauging of the sort found in ref. [13].

Reduction on a noncompact space obviously raises a number of important issues which
would need to be addressed before such a construction could be considered physically
reasonable. We will comment on this problem, but this issue will not be our main focus
here. Rather, we will focus on another major problem arising with chiral D = 6 gauged
supergravity models: ensuring the absence of mixed gravitational, supersymmetry and
gauge anomalies. The anomaly analysis of ref. [10, 11] for the reduction of D = 11 M-
theory on S!/Zs yielded Eg Super-Yang-Mills matter multiplets on each of the two D = 10
bounding walls. A similar analysis involving the reduction of the D = 7 theory obtained
in [12] on S'/Zs down to D = 6 will be our main focus in the present paper. SU(2) gauged
half-maximal D = 7 supergravity, and its coupling to vector multiplets have been studied
on a manifold with boundaries in refs. [14, 15]. There are important differences in the
models considered in these papers and the ones we study in this paper, the most important
one being that, unlike in [14, 15], we here maintain R-symmetry gauging on the boundary.
As mentioned above, starting from a noncompact gauge theory in D = 7 is essential for
this to work. Furthermore, we will study the couplings of the scalar fields surviving the Zg
projection on the boundary, and will determine the complete set of boundary conditions
needed for closure under supersymmetry.

In section 2 we will review the N = 1, D = 7 gauged supergravity which will describe
our bulk theory [16]. This can be obtained starting from N = 1,D = 10 supergravity
reduced on H(2,2) as in [12]. Then, in section 3 we will go on to consider this theory on
an S'/Zs orbifold and we will demonstrate the necessity of appropriate Gibbons-Hawking-
York terms. After this, we will continue on in section 4 to consider a dimensional reduction
of the D = 7 bulk theory to D = 6 by taking a limit of vanishing orbifold width. This will
be necessary to prepare the appropriate variables for subsequent bulk-boundary coupling.

The coupling of D = 6 supersymmetric boundary-localised matter to the D = 7
bulk theory involves some delicate steps. In sections 5 and 6, we will concentrate on the
coupling of boundary D = 6 vector multiplets to the D = 7 bulk fields. This involves,
firstly, a careful consideration of how the boundary conditions for the bulk fields need to
be modified in the presence of the boundary fields, as discussed in section 5.

Since the raison d’étre of the boundary fields is to provoke a “classical” anomalous
gauge variation which can be used to compensate for quantum anomalies occurring via
quantum loops on the D = 6 boundaries, one expects the bulk-plus-boundary field con-
struction to produce a non-vanishing variation under gauge symmetries. However, since



the closure of the supersymmetry algebra generates gauge transformations, one finds that
the classical gauge anomalies are accompanied by classical supersymmetry anomalies as
well. Accordingly, one cannot carry out the construction of the bulk-plus-boundary sys-
tem while requiring exact supersymmetry invariance. Instead, one must be guided by the
necessity of ensuring that the total variation of the bulk-plus-boundary system satisfies
the Wess-Zumino consistency conditions, in order to have the structure necessary to cancel
anomalies that will arise from boundary-field quantum loops. This is discussed in section 6.

In section 7, we will consider the coupling of boundary-localised hypermultiplets. This
proceeds in a similar way to the coupling of the boundary vector multiplets. However,
as there is no bosonic anomaly associated to the hypermultiplets, there will be no corre-
sponding supersymmetry anomaly. The coupling of hypermultiplets is complicated by the
fact that the scalars of the bulk and boundary sectors are required to combine to form a
quaternionic Kéhler manifold (QKM). We will demonstrate that this imposes a constraint
on the Sp(1) connection of the boundary sector which sets it equal to the Sp(1) connection
of the bulk.

The models we construct in sections 5 and 6 will be Wess-Zumino consistent, but will
not yet provide the full set of classical anomalies that are needed to cancel all the quantum
anomalies. In section 8, we will consider extensions of the present model that can give
rise to the remaining cancellations. We will consider the supersymmetric extension of the
the bulk model Chern-Simons terms, focusing particularly on a topological mass term. As
well as examining alternative boundary conditions, we finally will look at the coupling of
boundary-localised tensor multiplets.

In section 9, we will consider an explicit example of an anomaly-cancelling system. To
do this, we will calculate the anomaly polynomial produced by one-loop quantum effects.
We will then show how the Wess-Zumino consistent classical anomalies constructed so far
can be arranged so as to cancel these quantum anomalies.

In appendix A, we examine the limit of coincident boundaries when the boundaries
are populated with vector multiplets and will show the emergence of gauged supergravity
in D = 6. In appendix B, we will provide the bulk-plus-boundary construction with a
supersymmetric set of boundary conditions in an equivalent formulation in which the bulk
3-form potential is dualised to a 2-form potential.

2 D = 7 3-form supergravity

Seven dimensional N = 1 supergravity in the absence of boundaries has been well studied,
and the action of the supergravity multiplet coupled to n vector multiplets is known [16].
The fields in this action form a reducible multiplet with field content,

N g L Al TA A SF
(eMaAMNR,O-aA{MaQSaﬂbJA\Ad’XA’)‘TA) ) (21)
where M = 0,...,5,7 is the world index, which is raised and lowered with the metric gysn
and N = 0,...,5,7 is the tangent-space lorentz index, which is raised and lowered with

the metric nyy = diag(— + -+ +).



The scalars ¢, with a =1,2,...,3n parametrise a coset,

SO(n, 3) 7 (2.2)
SO(n) x SO(3)

for which we can form the representative elements L? and L?, where I = 1,... ,n+ 3 is
an SO(n,3) index, which is raised and lowered with the SO(n,3) invariant metric n;; =
diag(— ——+...4). i = 1,...,3 is an SO(3) index and 7 = 1,...,n is an SO(n) index;
these are raised and lowered with the Kronecker deltas d;; and ;3 respectively. The coset
representatives satisfy the relations

—LYLY + LELY = nj5, (2.3)

L.L; = =6}, LiLf=6;, LYLi=0. (2.4)

The spinors are symplectic Majorana and carry an Sp(1) doublet index A = 1,2 which is
raised and lowered with the metric e4p.! The Sp(1) indices will often be suppressed, as in
)Zaie = )ZAUiABeB.

The action for these fields, up to terms quadratic in fermions, is given by
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YOur conventions are: 7,/1 ABQ/)B ha = wBeBA and e4pePC = 759\.



where Fyinrs = 48[MANRS] is the field strength, invariant under tensor gauge transfor-

mations Ay Ng = 36[M)\NR} 12457 — 1. Furthermore,

Fyy = FJ\I/INL?, iy = FiynLE, (2.6)
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and R is the curvature defined with respect to the torsion-free Levi-Civita connection. The
vectors flﬁ gauge a group K C SO(n,3) with n + 3 generators. Possible gauge groups are
discussed in [17]. Of special interest are certain non-compact gauge groups which allow an
R-Symmetry gauging upon dimensional reduction to D = 6 followed by chiral truncation.
We shall make restrictions to such gaugings in section 3, but for now we will leave the
construction general.

The action is invariant under the following local supersymmetry transformations,
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3 The model on an S*/Z, orbifold

The action has a Z, parity symmetry under which 27 — —z7, and the following fields have
even parity:
(6" 677, Az, 6, Al AL @7 4 br X AL AT (3.1)

whilst the odd-parity fields are
(é,u 9 é7ya A,ul/p, A{p A% ’ gbrlia 1&#7’ 72)7+’ )A(+, A:—a 5‘7"—l) 9 (32)

where the scalars (¢, qﬁ”) parametrize the coset (2.2). The supersymmetry transforma-
tion rules are consistent with these parity assignments provided that e, has even parity
and e_ has odd parity. In the definitions (3.1) and (3.2), we have split up the index M
into the 7 direction and the directions normal to it, which are labelled by © =0,...,5. We
have also defined a chiral projection operator Py = ; (1 + 77), which projects onto chiral
spinors in the standard way, i.e. x4 = P+x. The 7 and I indices have also been split as

I={1,1, I=1,....,p+3, I'=p+4,....,n+3

7= {r,r'}, r=1,...,p, r=p+1,....n (3.3)
where 0 < p < n. Next, we observe that the requirement that the Yang-Mills field
strength (2.6) have a definite parity imposes the conditions

f1% = fro® =0, (3.4)

The possible groups K which posses this property and which reduce to give a gauged
supergravity in 6 dimensions are SO(3,1), SO(2,1) and SO(2,2) [17]. Since the action is
invariant under a Zo symmetry, we can formulate the action integral on a manifold M x I,
where M is an arbitrary D = 6 spacetime and I = S7/Zy is an interval with boundaries
(OM) at 7 = 0 and 27 = L. This will result in multiplication of the action by a factor of 2
since the interval I is half the size of the circle S; . Assuming that all fields are continuous
and smooth, the parity assignments then imply the following boundary conditions:

A~ T A N i I/ 1y A~ ~ N ~ ~
(6“ ,67V,A“VP,AM,A ,¢r Z,T,Z),ufaw7+ax+,)‘:—a)‘i){aM =0,

| (3.5)
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The boundary conditions on ¢-scalars imply that the even-parity coset representatives
(L%, L) parametrize the coset SO(p,3)/SO(p) x SO(3), and Ly, = &%, whilst the odd-
parity coset representatives (L', L}, L?) vanish on the boundaries.

The fields whose 97 derivatives vanish at the boundaries are the parity even ones. In a
diagonalised basis which will be spelled out in the next section (see eq. (4.6)), they arrange
themselves into D = 6 supergravity plus a single tensor multiplet, (n — p) vector multiplets
and (p + 1) hypermultiplets.

We also note that our parity assignments differ from those used in [14, 15] in two
respects. Firstly, while the coupling constant g is declared to be parity odd in [14, 15], we



take it here to be parity even. Secondly, while all the vector fields are taken to be parity
odd in [14, 15], here we split them into two sets, and we assign even parity to one of these
sets. Both of these differences crucially depend on our working with a noncompact gauged
supergravity in D = 7.

In order that the Euler-Lagrange variational principle be consistent with these bound-
ary conditions, the action has to be supplemented by suitable additional terms defined on
the boundary, known as Gibbons-Hawking-York terms. Then the total action takes the
form

S :/ d7xﬁgg—|—/ d6$EGHy. (3.6)
M oM

In the rest of this section, we will determine L y. We will consider explicitly the boundary
at 27 = 0. The boundary located at 27 = L can be treated similarly.

To begin with, let us consider a general variation of the Einstein-Hilbert term. It
contains a normal derivative of the metric variation, which must be avoided in order that
the boundary conditions implied by the variational principle are not over constrained. To
achieve this, as is well known, one adds an extrinsic curvature term so that the total action

becomes?

1 1 A
S+ Sy = / d"zéR + / d%\/—hK, 3.7

EH GHY 242 v 2 o ( )
where K is the extrinsic curvature, which is defined as follows. Let ny denote the unit
vector normal to the boundary pointing out of M. We construct the induced metric han
as

guN = han + R WMhyn =0. (3.8)

Consequently, contraction with iLMN projects onto components of vectors in directions
tangent to the boundary. The extrinsic curvature is defined as

K=0M""Eyy, Kynx=hhh{Vpig. (3.9)

Then the general variations of (3.7) yields, modulo the Einstein field equation,

1 ~ N A a
(6Skm + 85%my) lbor = -, / da® \/ —h (KM < KRMNY dgyy . (3.10)
K= Jom

This vanishes, however, upon imposing the boundary conditions (3.5), which in particular
imply
Kuwlom =0. (3.11)

Turning to the general variation of the fermionic kinetic terms, they all involve fermion
variations of both chiralities. In order that the boundary conditions implied by the vari-
ational principle are not over constrained, we add suitable Gibbons-Hawking terms such

2We could alternatively have defined R with respect to the spin connection which would then contain
fermi squared terms. However that definition contributes a total derivative which is subsequently eliminated
by adding appropriate Gibbons-Hawking-York terms, with no further effect in the bulk plus boundary theory
that we will construct [18].
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As a result, we obtain the total variation, modulo the fermion equations of motion,
1 . 2 .
(5SF + 5Séva) lrom = ) / dﬁx\/—h{ — iAoy
K™ Jom
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g g

which is set to zero when the parity-odd fields vanish on the boundary.

One can check that there is no need for any further Gibbons-Hawking terms, and we
conclude that the total action with a well-defined variational principle yielding the bulk
equations of motion and the boundary conditions (3.5) is given by Ssg + S%HY + S%;Hy.

4 Dimensional reduction and the diagonalised basis for fields

In describing the coupling of matter fields to supergravity on the boundary, which we
shall do in the next section, it is convenient to express the parity-even bulk fields in a
diagonal basis upon restriction to the boundary. In particular, the gravitino and dilaton
field equations will be put into a canonical form in this basis. To achieve this, we shall
consider the dimensional reduction of Sgs on a circle and then will chirally truncate the
theory such that we retain only the even-parity fields. This amounts to taking a limit in
which the boundaries are empty and coincident, which results in a D = 6, N = (1,0)
supergravity.
We begin by making a Kaluza-Klein ansatz for the the metric,

20 26¢ _ 2B
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4.1
—e2P A, (266 (4.1)

We chose values for @ and 3 so as to obtain the standard Einstein-Hilbert gravitational
action in D = 6,

B 1

T 2v10]

We will chose our notation such that hatted fields have their indices raised and lowered

8 =—4a. (4.2)

with gpsv, while unhatted fields have their indices raised and lowered with g,,,,. We work
with the corresponding vielbein basis,

éﬁj = ead’eﬁ , el = e*‘mel;,

e =—e"A,, e =e"A,,

e =0, =0,

é; = P el = e P?. (4.3)



We note here that in order for the gauge choice (4.3) to be invariant under the supersym-
metry transformations (2.8), we must make a compensating Lorentz transformation with
parameter \,;; = —i€1v,Y7+. As the veilbein is the only boson that transforms under
Lorentz symmetry, the effect of this additional transformation on all other fields can be
ignored, since it is higher order in fermions.

Working in a frame in which ny; = (0,0,0,0,0,0,—1) implies that ny = —é?\/l. Sub-
stituting this into (3.8) we see that,

. Iy + €299 Ay Ay by — €290 A
GuN = /;L AR I (4.4)
w7t — € ‘AM hw +e
Comparing (4.1) and (4.4), we can read off the components of h as
B;w = 62a¢gﬂy, B;ﬁ = 377 =0; (4.5)

this will be useful when determining the surface variations later on.
We can now diagonalise all kinetic terms by making the following redefinitions [17]
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With these definitions, the D = 6 supergravity action becomes

oL [ o (1 1 S T o
Ssa(6) = 2 /d xe{4R— 89260F;VF“ T — 12° TG pGHP — 4(%0(9“0

— iaﬂwaﬂgp — ip;jpﬂ" — iPﬁP‘” — ipﬁpf“’
1 L,y Ly ’
_ 892670 <Czr oL + 924" gir > + 2492 6“VPJATGHVPWS.)\T(AT )

T T _ ) / i - 7 -
- 27/);1’7“ leﬂ;Z)p - QXWMDMX - 242 A" 'YMD;L)‘T’ - 2¢7MDM;Z) - 2¢T’VMDM;Z)T

Lo v ; 1 v ; 7 - »
= IV YP = o LR = T Y P

T, i i B )
= XV U000 = YO0 = o € Gl (ﬂ)mkw“ Py,

B _ _ 1. /
— 2P\ Y — XYHPX + PP PP — r AT AHPNT >



1 ./(- . , 1 - . P .
- 47’,3 <¢[p0’7”7“fwﬂ + Xo'Yx + E ATt AT = laty YT — waww)
o iPﬁ@Vﬂqﬁr - 4;2 e F;Cz// <1Zp7ﬂy7p)\rl + )ZVWAT/>

O o .o ’ =t o=
_620’”’7’ )\7’ Jl¢r+7/625rr AT‘ ,IIZ)T'_BQS’”’ AT‘ O-Z’IIZ)

1 o / . - " 1 o ! : " -
+ e 2\ gl <Czr _\/QSZT)+ e 2\ gt (Czr _\/2527’)}’
2v/2 7 2v/2 X
(4.7)
where eMPAT — gPoNT and we have used the following definitions:
Guvp = 30, B,y Fo =20, AT + for"™ A5 AL
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the elements of the Maurer-Cartan forms are defined as
Pir = 1 (60 — frr A7) L.
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the axion field strengths are defined as
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and the covariant derivative is defined as
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Truncating the supersymmetry transformations (2.8) and writing the result in terms of the
redefined fields gives the transformations under which the action (4.7) is invariant:
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The fields appearing here can be written in terms of N = (1,0) multiplets in D = 6. These
consist of the supergravity multiplet (eﬁ,¢u,B:V), a single tensor multiplet (B, x, ),
vector multiplets (ALI, )\”l) and hypermultiplets (L7, L%, ®1, ¢, 1, 4"). By making suitable
redefinitions, it is possible to demonstrate that the scalars of the hypermultiplets form the
enlarged coset

SO(p+1,4)

SO(p+ 1) x SO(4) (4.14)

which is a quaternionic Kéahler manifold [17]. However we will not make these redefinitions
here.

These redefined fields and transformations represent the induced supergravity which
is present on the boundary and it is to this supergravity that we will couple boundary-
localised matter in the following sections. When the boundaries are populated by this
localised matter, the transformations (4.13) will be modified corresponding to non-zero
odd x odd terms appearing in the variation of these even-parity fields. However these
transformations will be of higher order in the boundary couplings and so will be ignored
in this paper.

5 Introduction of boundary Yang-Mills fields and the modified boundary
conditions

We will now consider turning on a boundary action describing vector multiplets
(X n*), (5.1)
where 7 is an Sp(1) pseudo-Majorana spinor with a doublet index A as before and X

labels the adjoint representation of some gauge group K’. The supersymmetry transfor-
mations of these boundary fields must be given by their known flat-space forms modified
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by appropriate bulk dressings. We therefore make the ansatz,

X _ . a0 _ X
0C,, =te” 2 eyn”,
1 ao

o = —4Ct VWHﬁje,

(5.2)

where ij, = OHCIS( — (9ny + fXYZCB:CVZ and a is a constant which is to be determined.
From our analysis in section 4, we recognise that the scalar ¢ forms part of the D = 6
quaternionic Kéahler coset, and as such it is does not arise in the above transformation
rules.

An immediate consequence of having introduced a boundary action is the modification
of the boundary condition (3.11) such that K, —g,, K will now be proportional to the stress
tensor of the boundary action. This condition is known as the Israel junction condition [19].
On the other hand, since the supersymmetry transformation of the odd-parity gravitino
1, contains the extrinsic curvature K,
condition too. Supersymmetry will then require that we modify other boundary conditions

it follows that we must modify its boundary

as well. To determine these modifications, we begin by recording the supersymmetry
transformation rules of the parity-odd fields®

1 v _
Wy = =, K" e = | o€ Foone (0?77 + 5977 e -
5.3
1 . 1 _ »
ox+ = _466a¢8’?06 - 1206 7 ;wpU'YM P,

where we have used the bulk supersymmetry transformations (2.8) and have made the
following redefinitions

K;u/ _ e4a¢R’MV , K = KMVgMV 7
1 9a¢ - 1 11as
_ = e 2 —, = e 2 X1, 5.4
Yy /2 Yy X+ V2 X+ (5.4)
1 .
Fuupo’ \/2 Hvpo
We have also used the identity
P (f) ) D, (P_)é U ke (5.5)
a €)=—  )é=— e €. .
I I 9y/2 puvY

Examining these transformations, it follows that we need also to specify the modified
boundary conditions for F},,,,, 076 and x4 in a manner consistent with (5.3). Carrying

3For clarity, these have been truncated to include only parity-odd fields that receive nontrivial boundary
conditions in the following analysis.
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out this process yields the modified boundary conditions

7 a 3 a .
¢“*|8M = _20be(c+2)UH;§/}/y"7X + be(c+2)oHpJX7upo"7X + (ferm1)3,

40
1 a
X+|8M = 20b6(6+2)UH£/y“”nX + (fermi)g,
1
660@(976{8]\/[ = — 10be(c+a)UH£,H§V + (fermi)?, (5.6)
3
Fuvpo| gy = 2be(1+c+a><’H§jVHm] x + (fermi)?

1 ag 3 o .
K|y = 2be(c+a) HYH — 0 pelc+a) HX HY g, + (formi)?,

where b and ¢ are further constants, which will be determined in the next section by
considering the cancellation of certain terms in the supersymmetry variation. Furthermore,
the bulk Bianchi identity 8[HFVPUT} = 0 implies that 1+a+c¢ = 0. The boundary conditions
on all other parity-odd bulk fields vanish at lowest order in fermions.

We can rephrase the boundary condition on Fj,,, in terms of a condition on A,,,,.
However, in order to do this we must first modify the bulk supersymmetry transformation
of A MNR to

~ 3Z 52 A > . 62a ~ r
SAMNR = V2 " At — V2T EMNRX + O f g - (5.7)

Here, f }V r is an arbitrary function, linear in €. This does not effect the bulk supersymmetry
as Ayng always appears through Frings or multiplies a total derivative in (2.5). Mak-

ing an ansatz for the boundary condition on A,,, and then enforcing that its variations
under (5.2) and (5.7) match, we find that

1 -
Applons = V2 Awplons
3 by g
= 4bw;0u/p(c) + 8be anY}l/Vana (58)
and . \
1 — £l _ X
fMV{aM - \/2fl“/‘aM - 2b5eCM Cl/X . (59)

Consistency with the boundary Yang-Mills gauge transformations then requires that we
impose the following boundary condition on the tensor gauge transformation parameter

1

— 3\ 1 X
Aav|gps = \/QA“”‘BM = bOLC Ax - (5.10)

w~v]

As we shall see later, the boundary conditions (5.9) and (5.10) will play a crucial role in
the identifications of the supersymmetry and gauge anomalies, respectively. Note also that
in determining (5.9), we needed to include the term bilinear in fermions. While we did not
need to specify the bilinear fermion terms in (5.6) to the order to which we are working in

determining the boundary action, there is a need to do so in the case of Aﬁ in studying the
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coincident-boundary limit of the bulk-plus-boundary system, as we shall see in appendix A.
In that case, the appropriate boundary condition can be seen to be

2
Ot
Next, we shall construct the boundary Yang-Mills action, and we shall see that certain

Aﬁ oM e il otytnx L 4 (fermi)? . (5.11)
cancellations between the boundary action and the surface terms will fix the coefficients
a, b, c, which are already subject to the condition a + ¢ + 1 = 0, as we have seen above.

6 The boundary Yang-Mills action and classical anomalies

The general variation of the bulk action supplemented by the Gibbons-Hawking-York terms
defined in (3.7) and (3.12) is given by

1 (1. .
8S5G+65% 1y +0Sk 1y = / dwedLin+ / dﬁx\/—h{— <KMN—KhMN) G
1
—m/)u Y by — Bi 0K — + 87050—9 U5AILZ T

1 —26 fuvpT s A AUV PO
o TET0 A, — \/29 PN B ET\ G A } (6.1)

where all parity-odd fields other than those occurring in the modified boundary condi-
tions (5.6) have been set to zero. It is important to note that we have performed an
integration by parts in such a way that L7 contains no derivatives of the variations.
However, in considering the variation of the bulk action under supersymmetry, which we
shall do next, there will be extra surface terms due to the fact that further integrations
by parts will be needed in order to leave the supersymmetry parameter undifferentiated.
These are due to derivatives of € present in the variation of the gravitino and the 3-from.
Collecting the resulting surface terms, we find

5 A
/ d'z6 Leny / d®x \/ hnM{ — QZEVMNRDNwR — "My Nedno
M oM 2
7 _
T 96y/2° 7Pty (467[ ArsruA N + 86 rsTUY x)
1 6 ~pa; N L
+ 8% PRSI <4€02 M3 gy Iy — 4€0WRSWM>A<> (6.2)
L 254 71 pMNRS L rsTUVWM 71 g’
+ 6€ 200N fhs  oayag’ FrsFruFow ¢ -
Substituting this into (6.1) and imposing the boundary conditions gives, after some algebra,
1 .
0Ssa + 0:Say = 2 /E)M dﬁxeb{ 8¢ e~ (IF3 )OG’YW’Y“U 0" HpoxP,, (6.3)
(. oT (. o~ oT
T 48 2076y Ty X Hyy x G — 96° CH2)7e 7T X Hox G
i i
+ 16€_UE'YMVpOT¢TH£/HpoX 4 16 MVPUXHX Han
1 /
o 892 5“”0‘7}‘7 SVP(C)F;)\(SEATT’ + 169 5!“/,)0)\7—5 CXCI/XFT F)\’T}?
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where Sgry = S2yy + Shpy as defined in (3.7) and (3.12). Next we construct the
boundary action such that, together with the bulk action and subject to the modified
boundary conditions (5.6), the total action is invariant under supersymmetry except for
the last two terms in (6.3), which will be interpreted as supersymmetry anomalies and will
be discussed in more detail below.

After some algebra we find that the boundary action is given by

7

1 1, v _
Sym = 32 /6M d6xe{ ~ g® Hﬁ,Hg( 277X7“Dﬂ77x

. ) (6.4)
¢ —ZHX — WA PO ¢ —ZHX — iz
- 46 pUT/X’Y i wu - 46 WWX’Y X (>
where we have determined that
(2
a=—1 and b= 20 (6.5)

as required to ensure certain cancellations between the variations of the boundary action
and the surface term.

One might have expected a term of the form G WpﬁX ~Y#Pyx to appear in the boundary
action, as such a term is present in the D = 6 actions of [1, 2] and was claimed to be present
in [14]. However the Noether procedure does not require such a term and thus it is absent
in the boundary action that we have derived. In appendix A we will demonstrate that this
term emerges in the coincident-boundaries limit by considering the boundary condition

FMNES wil] then give

AWP{@M ~ BX%wpUX- In this limit the 4-form kinetic term Fy;nNRs
rise to the required term in the reduced action (A.8). A similar process is also described
in [18].

With the parameters a,b fixed as in (6.5) the completely determined boundary condi-
tions take the form:

7/62 _ o X v 3/{2 o po X 3
TIZ)H*‘(?M = _20)\26 2H,ul/ry nx + 40)\26 2 H YupoT1X + (ferml) s
2
K _ o v .
X+‘8M = 90x2°€ QH,ifﬁ“ nx + (fermi)?
2
200755 = = 13)\2 e Hpp, HY + (fermi)?,
3K2 0 iK2 X . (66)
Al“/p‘aM = 4)\2 wuup(c) + 8)\2 6077 r}//,u/p'r]X + (ferml) s
2
K . .
Aulor = T A2 e o'y nx L' + (fermi)*
KQ —ogX P 3K2 —o 17X 17p0 N2
K'U‘V‘aM - 2)\26 HﬂpHu X = 40)\26 Hpo"HX Guv + (ferml) .

The boundary conditions on all other parity-odd fields in (3.2)are set to zero at lowest
order in fermions. The vanishing boundary conditions on Lé,, L%, and L?l imply that the
parity-odd C-functions C' , €, C'"s and C"'¢" are also set to zero on the boundary. We
also note that in ref. [14], only the boundary condition on A,,,, was considered, while our
boundary conditions correspond to the completion of this to a full orbit.
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At this point, it is important to check that these boundary conditions are also consistent
with the variational principle following from the bulk + boundary action S = Ssg+Sany +
Sy . For example, the variation of the gravitino gives the boundary contribution

29 - v { -9 — v _ po
/aM d%@{ = 2V = 0 2 Hopit 7' 7" }5%, (6.7)

which is set to zero by imposing the boundary condition on ¢, given above. Similarly,
we have checked that the surface terms that arise in the variations of all the other fields
cancel upon use of the stated boundary conditions and boundary field equations.

Next, we turn to the nonvanishing last two terms in (6.3), which we now identify as the
residual supersymmetry anomaly. We note that there is also an anomaly in the boundary
Yang-Mills transformation, and, together with the supersymmetry anomalies, they must
together satisfy the Wess-Zumino consistency conditions. To see this in more detail, it is
convenient to add the local counterterm

Sy = 32;292 /E)M d%es"”p”)”wgl,p(C)wg)\T(A). (6.8)
This also produces a gauge anomaly in the bulk Yang-Mills gauge transformations and
puts the total gauge anomaly into a symmetric form known as the consistent anomaly [20].
Then the total variation of the action S’ = Sgg+ Scry + 5% ), under the Yang-Mills gauge
transformations is given by

1

I
0aS" = 32)2¢2

/8 y d%e{5“””"”H5VHPUX6AAZ'A’J + PN 05O AX} (6.9)

and the last two terms in (6.3) together with the supersymmetry variation of (6.8) yield
the corresponding supersymmetry anomaly

1

I
0c 320242

6 A X ! ! AT 0 ! !
/8 L me{s“"”" TH Hypx 8. A5 AL — 27PN (C) L6 AL

(6.10)
+ M T FT 6 O Crx — 26070, (A)HN0C, X} .

Finally, one may verify that these two anomalies indeed do satisfy the complete set of
Wess-Zumino consistency conditions

6A16AQS/_6A25A15/:6[1\1,[\2]5/7 (6.11)
5e0AS" — 0p0.8" =0, (6.12)
0e;0e,S" — 8ey0¢,8" = 5[\5/, (6.13)

where A is the gauge transformation produced by the commutator of two supersymmetry
transformations in the standard way.

7 Coupling boundary localised hypermultiplets

Next, let us consider the coupling of boundary-localised hypermultiplets. We will carry out
this coupling assuming no boundary-localised vector multiplets are present. These could be
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reintroduced later in order to gauge the hypermultiplet symmetries. The calculation will
be similar to that carried out for vector multiplets in the previous sections. First we will
find a supersymmetric set of boundary conditions, then we will construct the surface term
produced upon varying the bulk action, and finally we will construct a boundary-localised
action which varies to cancel this surface term.

We begin by considering m hypermultiplets consisting of 4m real scalar fields ¢® and
symplectic Majorana-Weyl spinors ¢?(a = 1,...,2m). By global supersymmetry, it is
known that the scalars must parametrize a hyperkéhler manifold M, which is characterised
by having a holonomy group H contained in Sp(m). The scalar target manifold M may
or may not have isometries. This will not play a role in our construction below. Let us
denote the vielbeins on M by V.24, By supersymmetry, they must be covariantly constant

OaVaa — T} 5Vaan + Waa"Vipa + war®Vaap =0, (7.1)

AB

where Flﬁ is the Levi-Civita connection, w® is an H C Sp(m) valued connection and w;;

is an Sp(1)g valued connection on M. These connections can be expressed in terms of
the vielbein as usual. The holonomy condition means that the Sp(1)g curvature associated
with the connection wy 45 vanishes. The vielbeins must furthermore obey the relations [21]

9osViaVip = eavean . VaV™ P ta o 5=y}, (7.2)
where €, and e4p are Sp(n) and Sp(1)g invariant tensors. We use the conventions
e =Cor  €G=(", e = =3¢ (7.3)

for raising and lowering indices with €4 and similar conventions for esp. It is useful to

define

Pt = 0,0°VI4. (7.4)
We can write the globally supersymmetric boundary action for the hyperscalars as
0 1 6 1 aA pi i Sl
SH:S\Q d’x —4Pﬂ PaA—2C*y D, Ca| (7.5)

where D,,(* = V,(* + 8M¢%gb§b, With~VM containing the Lorentz spin connection, and
we have introduced a coupling constant A. This action is invariant under the global super-
symmetry transformations

0 = V2V

1
W“EAP;LA . (7.6)

V2

We now consider the coupling of this boundary hypermultiplet action to our D = 7 bulk

¢ =

supergravity system. We begin the construction by modifying the field transformations as
0 = iv/2e” eV

1
5 = /o e“Prtea ot (7.7)
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As before, we consider the boundary conditions that can be imposed on bulk fields such
that these conditions form an orbit under supersymmetry. The bulk fermions on which
we will attempt to impose non-zero boundary conditions transform under the projected
supersymmetry as?

1 7 o o o
51/{}7 = —QKW'y”eA ~ 10 e*"F;UUZAB(?)'WyP - 57" y,)eR 79
1 . o .
5)(_? = —4e6°‘¢(9766A — 210 e‘pF;VJ’ABWWeB.

This means that the following set of boundary conditions form an orbit under supersym-

metry:
9
1%1— ‘8M = 104/2 be(c_a)wCaPﬁA T 10v2 be(c_“)“’yu,,gaP”aA + (fermi)?,
1 .
X loar = 10 \/Qbe(c_a)w“CaPﬁA + (fermi)?
1
%0076 oM = 1 bec‘pP;‘jAP(fA + (fermi)?, (7.9)

FﬁVJiAB‘aM = ibe(c_l)‘pPﬁLAPﬁa + (fermi)?,

1 1 .
Kolons = 2b6wPSAP”“A " 90 be? PRAPY gy + (fermi)?,

where a , b and c¢ are constants to be determined, and, as before, all other parity-odd fields
in (3.2) are set to zero at lowest order in fermions. Calculating the surface term produced
upon variation of the bulk action under (2.8) and then imposing these boundary conditions,
we find the total non-invariance of the bulk supergravity action:

b

5SsG + 6S¢my + 685Gy = 2

1
dﬁxe e(c—a)cp—OEA U POT AV P aGoor
/BM {24\/2 et 7’7#( vaATp

b oA Bt coA B
— 26&’06 VP, PuaaPy” — 26&'06 Y PuaPy

_ 1 e(c—a)SOGAO,iABCa,PZP;LB} _

V2

(7.10)
Then, by the Noether procedure, we find the following boundary action
1 6 1 2ap paA pht i S
S'sz\2 aMd vey — 4¢€ PP, — 2( Y'Dyula
(7.11)

i s . .
- \/2 ea¢<a7M7V¢SPVaA + Z\/2a6a¢<a7M¢AP,uaA} .

4As in (5.3), we have simplified the discussion by including only parity-odd fields which receive non-zero
boundary conditions in these transformations.
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Here we have set ¢ = 2a which is required for invariance. With this condition, the action

varies to give

1

1
85n = 5, /a d%e{ Jo¢" e (P = D) (¢"Pra)
_ 241\/2 ea¢_0€A7u7p077V7ﬂ<aPyaAGpgq—

(7.12)

{ _ .
+ 262a“"eA7“”p¢pBPWAPSB + meQa“"eAw“"quPwAPfB

+ 1 eagpéAO,iAB (QG,YM,YV + ’YV’YM) Carpi PyaB} )

2V/2 g

The D,(¢CP) term, with D, defined in (4.12) and (4.9), arises from the variation of the
(¢, P term. Furthermore, the D,(¢(P) term, with the covariant derivative defined with
respect to the pull-backed connection 9,¢“waap, comes from the variation of the P? term
in (7.11). The PG, PP and PP terms cancel the bulk surface term (7.10), as long as b = ’5\‘2
and a = %, while the term proportional to (D, — D, )({P) vanishes as long as the boundary

Sp(1)r connection is set equal that for the bulk at the boundary location, i.e.?

QP = 0t wi? (7.13)

where QﬁB = j;eiijﬂkafB and Qﬂk is defined in (4.9).

Owing to the order in fermions to which we have been working, this equation is valid
only to purely bosonic order. We also note that the coupling of these boundary hypermul-
tiplets does not produce any classical non-invariances such as those which arose for the
vector multiplets.

Substituting (7.13) into the field strength for QfB and then using the boundary con-
ditions Clgpr = C" | = 0, we find

PeAPE = —jleiﬂf <2P[Z"P3]T + 2;2 eiﬂclT’F;;> ok4B|, (7.14)
This implies that the Sp(1)g curvature of the boundary hypermultiplets is identified with
the Sp(1)r curvature of the bulk scalars. The fact that this is nonzero is consistent with
the fact that the full manifold parametrised by the 4p+ 4 scalars from the bulk and the 4m
scalars from the boundary hypermultiplets parametrise a QKM in the limit of coincident
boundaries.

As before, we note that a term of the form (*y***(,G uvp 18 not present in the boundary
action, although it is present in the 6D hypermultiplet coupled action as given in refs. [1, 2]
and in ref. [14]. At the purely bosonic order, as required for the coupling process considered
in this section, the boundary condition simply sets A,,, equal to zero on the boundary.
However, at higher order in fermions the boundary condition will be of the form A, ,|an ~
QT‘WWPCG. This will then give rise to the required term in the coincident boundaries limit
in an analogous way to that described in section 6 and appendix A.

® An analogous condition has been found in [14] with all the bulk scalars set to zero.
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The scalar kinetic term in the boundary action (7.11) is multiplied by an unusual
factor e¥, which also results in the unusual Noether coupling term egfayuquPw 4. This
can be understood by bearing in mind that the hyperscalar ¢ as well as the newly-coupled
boundary scalars must together form a QKM in the limit of coincident boundaries.

Note that the gauged U(1)g lies in the SO(n,3) isometry group of the bulk sigma
model. Furthermore, the boundary hyperkéhler manifold M does not necessarily have
any isometries. Consequently, the gauge field AL/ does not arise in the definition of the
covariant derivative given in (7.4). However, the local U(1)r symmetry is nonetheless
realised as a result of the the boundary condition (7.13). This condition is crucial for the
quaternionic Kahler structure on the overall scalar manifold, N, which arises under local
supersymmetry, as expected. The manifold A is a single irreducible QKM of dimension
4m + 4p + 4, with coordinates ((ba,(ﬁ”’l,fbl , ), whose holonomy group is contained in
Sp(m + p+ 1) x Sp(1). In the absence of the m boundary hypermultiplets, and in the
coincident boundaries limit, it is known that N can be described as the quaternionic Kahler
coset SO(p+1,4)/SO(p+1) x SO(4) [17]. In the presence of m boundary hypermultiplets,
however, the structure of the overall scalar manifold N arising in the coincident boundaries
limit depends on the specific properties of M. It would be interesting to determine, for
example, the conditions on M under which A/ becomes a symmetric or homogeneous QKM.

8 Extensions of the model and further classical anomalies

In order to cancel the complete set of anomalies, it is necessary to consider various mod-
ifications to the model described so far. One such modification is the addition of a bulk
topological mass term for the 3-form potential [17, 22]. Another is the inclusion of further
bulk Chern-Simons terms together with further modifications to the boundary conditions,
while a third is the coupling of boundary-localised tensor multiplets. We will consider all

three of these extensions in the following section.

8.1 The topological mass term

A topological mass term can be added to the bulk action described in section 2, thereby
arriving at a one-parameter extension. However, a mass term of the form hAs A Fy with
a constant mass parameter h violates the Zs symmetry of the boundary. In order to
respect this Zs symmetry, we need to allow the mass parameter h to undergo a jump at
the boundary location when viewed from an upstairs perspective. To accomplish this, we
dualise h to a 6-form potential Ag such that the field equation for h, now treated as a
scalar field, equates h to the dual of the Ag field strength, while the field equation for Ag
implies that h is at least piecewise constant. In this formulation, we can now assign odd
parity to h so as to render the term hAs A Fy parity-even. The resulting new terms in the
bulk action are

1 ~ N
Sp = / d7:6é{ —ih?e' + héMNRSTUVGMNRSTUV} (8.1)
M

K2
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where

4/2 3

EmnNrsTuvez’C
713 RSTUV

GuNrsTUV = 78[MANRSTUV} + 36 F [MNRSATUV} -

i e R 8i 5o . )
- 5,62 YiuANRSTUYY] + 6'62 YIMINRSTUV]X (8.2)
i s .. i gses A
o1 > XAMNRSTUVX — - e N AMNRSTUV A

and the new terms in the supersymmetry transformation rules are

~ 4 N
Sty = — _he* e,

)
16 ..
6% = — e,
5 (8.3)
A ) A Ui .. - 160 .. )
0AMNRSTU = = (o 0AuNRAsTU) + ) €7 EVMNRSTYU) = o) €7 EYMNRSTUX

oh =0.

The 6-form potential AWW A+ 18 parity even and AWW A7 is parity odd. The action is now

invariant under a modified tensor gauge transformation under which Ag must transform as

dAMNRSTU = _21A[MNR85’)\TU] - (8.4)

In the presence of the boundaries, the supersymmetry of the bulk-plus-boundary action

is unaffected by this construction and the variational principle remains consistent, provided
that we impose the boundary condition

hlon =0, Ay pst| gpy = 0 (8.5)

However, we may also consider the boundary value of h to be a constant
hl g = ho- (8.6)

This will lead to the introduction of a new boundary term and modified boundary con-
ditions that will produce further classical anomalies in the boundary Yang-Mills gauge
symimetry.

We now seek an orbit of boundary conditions which contains (8.6). As we are interested
in the effects of the topological mass term on classical anomalies, we consider boundary
conditions involving boundary vector multiplets as well as the constant hg. However,
because the hypermultiplets do not effect the classical non-invariances, we will not further
consider their simultaneous coupling here. Carrying out this process, we find an orbit of
boundary conditions given by (6.6) with the following modifications (up to quartic fermion

terms):
2
. K® o
06 |o0r = = 12 HiwHY = 204+ 7)e” P hy,
2 2
Kl = 5 e HEH P — % X HI7 g, et 2o

oM 2)\2 pe X T 4002 podlx Guv T 09uv »
30 (4 ho oo

C‘aM:_\/Q <5+7> g e, (8.7)
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where 7 is a parameter shortly to be determined. To find the total supersymmetric action
up to a supersymmetry anomaly, we need to give the total boundary action
1 i
tot. __ 6 _ —o X rpv =X _ 1
Sk —/E)Md xe{ $)2° H;, HY ox2 7 D, nx
7: _ o X - 7/ 0 X —
- AN2 e 2 HponX7“7p0¢u - A)\2 e 2 HWUXVWX

1 vpo AT, 0 0
T 32242 P W p(C)wgrr (A) (8.8)

4h Th
+ Oea+2<p + 20 cHVpoAT A

VPO
K2 K HrpaAT

])\4 € wyup(c)ﬁxr}/wjan} .

Requiring supersymmetry up to a Wess-Zumino consistent anomaly determines the value
of v:

== (8:9)

5
It is interesting that this implies the boundary condition C' ‘ o = 0- One can further check
that the above boundary conditions are consistent with the variational principle. The
variation of the action (8.8) under tensor gauge transformations subject to the boundary

conditions (6.6) gives the additional gauge anomaly contribution

holi2 v
SASE' = — g /8 y Oz e’ PN H X, Hyox O2CY Ay . (8.10)
Correspondingly, there is an additional contribution to the supersymmetry anomaly
given by
hor? 6 LVpOAT X Y 0 X
— 8)\4 ot d’x ee HW,HPJ)((;&C)\ CTY — 2wyup(C)HoAéecﬂ'X . (8.11)

As before, one may check that the inclusion of these anomalies continues to give a Wess-
Zumino consistent system.

8.2 Additional bulk Chern-Simons terms, boundary conditions and classical
anomalies

Before evaluating the gauge/Lorentz anomalies that result from the variation of the bulk
plus boundary action subject to the chosen boundary conditions, we need to discuss possible
additional extensions of the bulk model. Terms of types that may produce anomalous
variations are of the forms A3 Atr R A R, w7, w7(A), w3(A) Atr R A R where w7, and
wr(A) are the Lorentz and Yang-Mills Chern-Simons forms, respectively.® The wy; and

SWhile a term of the type wr(A) does arise in the SO(5) gauged maximal D = 7 supergravity, it does
not appear in any gauged half-maximal D = 7 supergravity. The half-maximal truncation of the maximal

theory studied in [12] might seem to indicate the presence of w7(A) but, in fact, such a term is not allowed
by supersymmetry in this system.
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Ay tr ARAR terms are known to arise in the K3 compactification of D = 11 supergravity
supplemented with the Duff-Minasian term A3y tr RA RARA R. These have been used in a
Horava-Witten formulation of ungauged pure D = 7 supergravity [14]. However, in the non-
compact D = 7 model we are considering here, derivation from higher dimensions involves
a noncompact internal space of infinite volume. Indeed, as we saw in the Introduction, a
3-manifold of this kind, known as H(2,2), is involved in the reduction from N =1, D = 10
supergravity to the SO(2,2) gauged supergravity in D = 7 [12], yielding a consistent
Kaluza-Klein truncation. The same model can also be obtained from D = 11 supergravity
by reducing on H(2,2) x Sy, again yielding a consistent Kaluza-Klein truncation. However,
in the presence of the term D =11 Ay tr RA RA RA R and even in the presence of the
Yang-Mills sector in D = 10, a consistent Kaluza-Klein ansatz is not at present known.
A preliminary investigation of the infinite volume problem? suggests that the appropriate
Weyl rescaling of fields needed to obtain finite kinetic terms in D = 7 leads to vanishing
coefficients in front of the w7(A) term and we expect this to be the case for the ws(A)tr RAR
term as well. With this in mind, we shall not consider further the inclusion of higher-
derivative terms in the bulk Lagrangian as given in section 2, but supplemented by the
topological mass term added in section 8.1. However, we shall consider modifications of
the boundary condition on A3 occasioned by the inclusion of Chern-Simons terms for the

bulk gauge fields and Lorentz connection such that
A?§§Ta|aM = caw3(A) + cpwsp, + (fermi)? (8.12)

where c4 and ¢y, are arbitrary constant coefficients. Extending the full set of supersym-
metric boundary conditions (6.6) to incorporate this modification will, in particular, alter
the boundary condition on the extrinsic curvature K, which will now must include terms
taking the form

Kl“"aM ~ e_aFﬂpr/FJ;) + e_aRupuyRup,ul/ 4+ (813)

Since K, picks up contributions for the boundary stress tensor, it follows that modifica-
tions proportional to this, in turn, imply that the full boundary action must contain terms
given by

S%Xt' -~ /aM d6xe{eUFﬁ;/F“wl + e*URMVWRMVW .. } . (8.14)

An R? term of this type has been encountered in the Hofava-Witten formulation of D = 11
supergravity compactified on S'/Zy [23]. We note that the dilaton factors in (8.14) are
equivalent to the dilaton factor multiplying the kinetic term in (6.4). In standard D = 6
calculations, higher-derivative invariants with either e” or e~ factors multiplying the R?
term are possible [24, 25]. Supersymmetrizing the e’ variant would imply the presence of

7 variant implies that

a term of the form Bs A Rs A Ro, whilst supersymmetrizing the e~
the 3-form field strength appearing in the action is Chern-Simons modified such that Gs =
dBs + wsr,. Since the boundary condition (8.12) implies that the field strength becomes
Chern-Simons modified in the coincident boundaries limit (see appendix A) we deduce that
g

the necessary factor here must be e~ multiplying the R? term present in this boundary

"We would like to acknowledge detailed discussions with Chris Pope on this point.
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action. A similar argument also applies to vector couplings, which is consistent with the
fact that Noether coupling forced us to determine the coefficient a = —1 in section 6.
To summarise, the total action we have constructed so far is the sum of (2.5), (8.1),
(8.8) and (8.14). In this action, the following terms contribute to the bosonic anomaly:
— 2\/211%292 /M d71'121(3) ANETANET 47! /@M d6$h014(6) . (8.15)
Using the modified boundary conditions (8.12), the variations of these terms give the new

total bosonic anomaly
2

2h, 2c 1 2c K
1 _ 0 A 1 L 1 1
o= [ (5= gan )+ 7 ks S b©)n

162
QCA 1 QCL I<L2
— trFAF RAR trH. AH) 8.16
(( 3 892h0)r tog oyt A (8.16)
1
32%2 4h0

where® w] is defined by dw) = édw%. If we consider the gauge group for the boundary

wi(A) AtrE A F}

vector multiplets K’ to be the tensor product of simple groups K1 ® ... ® K, s> We can
define the 4-forms G, where a = 0,...,n4 + 1, as

G =ttFAF, G'=tRAR, G =wHPAEY, ¢ =wH AHD, (8.17)

where dw}(A) = JtrF A F = éF”/ AF" and dwi(C) = strHo A Hy = LHZ A Hs. Then
the anomaly (8.16) is related to the following 8-form polynomial

ng+1
qgas _ Bl ( GO+ c G' + gz g A (8.18)
8 K2 CA L ) .

ng+1

[ ) & 396+ 2 ]

by the descent equations w§®® = dQ9 and Q9 = dQ}.

8.3 Boundary tensor multiplets and further classical anomalies

The classical non-invariance produced so far obeys the Wess-Zumino consistency conditions
and produces terms of the correct forms to cancel the quantum anomalies. However the
classical anomaly produced is still not sufficiently general to completely cancel the anoma-
lies produced by quantum effects and so to yield an overall invariant system. We therefore
consider a further extension of the model by adding np boundary—localised tensor multiplets
to the action.” These multiplets have the form (B W,x? T ¢"), where x = 2,...,np + 1,
which play a crucial role in the implementation of a generalized Green-Schwarz anomaly
cancellation mechanism introduced in [26].

®Note that we are using the Chern-Simons 3-form normalisation given in equation (2.6), as in refer-

ence [17], for both gauge and Lorentz symmetries. This gives rise to the factors of ;) in the descent relations.
9The coupling of a D = 6 Super Yang-Mills system to a tensor multiplet and analysis of its anomaly

structure has been discussed in [27].
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Tensor multiplets of this form are known to exist in rigid D = 6 supersymmetry and
accordingly a coupling process similar to that shown in sections 5 and 6 will be possible.
However this process is complicated by the fact that the 3-form field strength H§ = dB3J
is required, by closure of the supersymmetry algebra, to be self-dual: Hs = xHs3. This
has the consequence that the naive kinetic term that one would write for Bj vanishes.
This problem may be addressed by use of a non-manifestly Lorentz invariant action [28],
or by reformulating the problem at the equation-of-motion level. We shall not attempt
here a full analysis of these couplings. Although a full coupling would be necessary for
detailed analysis of the classical supersymmetry anomalies, it is not necessary for analysis
of the purely bosonic anomalies. This is due to the fact that bosonic anomaly contributions
arising from boundary tensors can only be generated by the variation of one type of term
in the boundary action. This crucial anomaly-generating term type is analogous to the
bulk Chern-Simons term 912 A3 A F5 AFY ) and is of the same form as the standard anomaly
counterterm that is seen in purely D = 6 theories [20]. In our boundary action, it appears
as

/ VB A G (8.19)
oM

1
g2
bulk action, and where summation over the index x = 2,...,np + 1 is understood. If B*

where v? is a numerical coupling matrix analogous to the  which appears in the in the

is required to transform under the bosonic symmetries of the theory according to
§B = v/ %w" (8.20)
then the variation of (8.19) will produce a non-invariance of the form
/ vﬁv;,xw%ad’. (8.21)
oM

Adding this to the classical anomaly generated so far, we can write the total anomaly as

Qgtet = / valvl;‘]nuw;a NG, (8.22)

oM
where the index x has been extended to a new index I = 0,...,nr+1. In general, the index
a=0,...,ny + 1. However, if ny, < nr, then the matrix vévb‘]nu has non-maximal rank,

which turns out to put a severe restriction on the quantum anomaly polynomial [14, 26].
This restriction is lifted for ny > ny. For simplicity, we shall assume that ny = n, from
here on. Then, we find that the vector vé is given by

o <26A\/—2h0 1 2crv/—2ho K/ —2hg K/ —2ho )
Vg = Vg = — .
a a 3[{ 492\/_2]10, 3[{ ) 2()\2)2 ) ) 2()\ng+1)2 )
vl—v/l— 1 0,0 0 ol =v?, ol =v" for I =2 ny+1
a — Ya — 4/{92\/—2h0’ A I 9 a — Ya>» a — Ya» = &y ..., 1T )
(8.23)
nry = diag(—, +,...,+) and we have assumed hg < 0 which makes the components of these

vectors real. This represents the full classical anomaly which will be cancelled against the
quantum anomalies to be described in the next section.

,25,



9 Quantum anomalies and anomaly cancellation

We shall now construct an example of an anomaly-free model in the D = 7/D = 6 Horava-
Witten setting that we have been constructing in this paper. As we wish to end up with
an R-symmetry gauged model, we need to start with a matter-coupled noncompact gauged
D = 7 theory. The possible non-compact gauge groups and the surviving even-parity bulk
fields have been listed in [17]. Here, we shall consider the SO(2,1) gauged D = 7 model
which consists of minimal supergravity coupled to one vector multiplet. The bulk scalars
parametrize the coset SO(1,3)/SO(3) and the SO(1, 2) subgroup of SO(1, 3) is gauged. The
structure constants are given by [17]

frig =€, i=1,2,4, (9.1)

where €5, are the SO(1,2) structure constants. In (3.3), we now have p = 0,n = 1, and
the resulting even-parity fields form the multiplets

(€ ¥us,Bp),  (Bh.x—.0),  (_,0,®1), (AL XL, (9.2)

with supersymmetry transformations as given in (4.13). The vector field Aﬁ gauges the
R-symmetry group U(1)g. We have denoted the D = 6 chiralities of the fermions explicitly
for convenience, and we have split the 2-form potential into parts that have self-dual and
anti-self-dual field strengths.

The chiral fermions (¢,4+,x—,A%,19_) give rise to gravitational, U(1)g and mixed
gravitational-U(1)r anomalies on the boundaries. The anomalies are encoded in an 8-
form polynomial made up of the Riemann and Yang-Mills curvature forms, via the descent
equations. The standard anomaly formulae give

5 19 5 x 43
Qy) = 24F14 - %FE trR? + £760 [245 tr R* — G R2)2] :
Qx_) = — Lo Ve . (trR?)?
- 2471 967! 5760 4 ’
QM) = Lptiy Ly RV (trR?)?
B R 5760 4 ’
5
— 4 2\2
Q) = 5760 tr R + 4 (trR%) } )
1
UByus) = (oo [—28 tr R* + 10 (tr R*)?] , (9.3)

where Fj is the U(1)p field strength, and we have suppressed the wedge symbol, so that,
for example FftrR2 =FiNFy ANtrR A R.

The total anomaly coming from the bulk fields on each boundary is half of the total
bulk anomaly. Thus on a given boundary we have

5) 19 1 55
bulk 4 2 2 4 2\2
Qgﬁav/U(l)Rle == 48F1 - 192F1 trR + 5760 122 tr R* — 9 (tI‘ R ) . (94)
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Next, we need to compute the quantum anomalies that result from the introduction of
ny gauge, ny hyper and np tensor multiplets on a given boundary. It is useful first to
compute the total gravitational anomaly. Summing up the bulk contributions given in (9.4)
and those of the boundary multiplets, the total gravitational anomaly on dM; is given by

1
ravlors = o [(nv — gy — 297 + 122)tr R*
5
+4(nv —ng + Tnp — 22) (tr Rz)z] . (9.5)

The tr R* term must necessarily vanish for anomaly freedom. As we have assumed that
there is no bulk Lorentz Chern-Simons term, the vanishing of the tr R* anomaly imposes
the constraint!”

ng —ny + 29ny = 122. (9.6)

Using this condition in (9.5), and including the contributions to the U(1)r and mixed
gravitational-U(1)z anomalies (i.e. the Fi* and F2tr R? terms in (9.4), together with similar
contributions from all the boundary matter multiplets that have been introduced), we find

1 1
Ot vglomn = o (nr —4)(tr B2+ [2(ny — nr) + 5] I

128 48
1 _ _ 2, p2
+199 [2(ny — ny) — 19] F{tr R*. (9.7)

At this point, we need to specify ny, ng and np such that the condition (9.6) is satisfied,
where the boundary Yang-Mills gauge group has total dimension ny, and such that the ng
hyperfermions form a set of representations of this group. A complete analysis of all the
possibilities is beyond the scope of the present paper. Instead, we shall give one example
to illustrate how anomaly freedom can be achieved in the bulk-plus-boundary system that
we have constructed. We shall take the gauge group on a given boundary to be

KI = E6 X E7, (98)

so that ny = 78 + 133. Furthermore, we shall introduce two tensor multiplets, and five
hypermultiplets in fundamental representations of Fg and five fundamental representations
of E7. Thus, all in all, we have

nr = 2,
ny = 78 + 133,
ng = 5x (27,1) +5 x (1,56). (9.9)

071 the standard N = 1, D = 6 anomaly cancellation, the equivalent relation is given by ng —nv +29nr =
273. The difference here is due to two factors. Firstly, our n7 counts the number of boundary-localised
tensor multiplets whilst the nr in the standard equation counts the total number of tensor multiplets. As
one tensor multiplet comes from the reduction of the bulk supergravity multiplet, our nr differs from the
standard setup by 1. Secondly, the quantum anomaly in our case is split across two boundaries and so differs
from the standard result by a factor of 2. Therefore in our case we have a different gravitational-anomaly
cancellation condition from the standard condition: ng — ny + 29nr = (273 — 29)/2 = 122.
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Using this data and employing the relations

1 1
TrHZ = 4trHZ, TrHg = o (tr H2)?, trH} = Lot H2)?,
1 X (9.10)
TrHZ = 3trH2, TrH? = 6(tr H2)?, trHI= 94 (tr H2)?
where Tr(tr) denote the trace in the adjoint (fundamental) representation, we find that the

total one-loop anomaly polynomial is encoded by

L 1 5 141 133
Ql-teor _ o4 (tr R?)” + 16 Fl + )
1

06 R? (tr Hi + 2tr H)

F?tr R?
2 2 3 2
+Fy trH6+4trH7 —
1
o [2 (e HR) — (wH2)?] (9.11)

576
Now we shall require that this quantum anomaly polynomial cancels the classic
anomaly polynomial (8.19) with ny = ny, = 2. We begin by making the following

redefinitions
1 1 1 1 12 2 1 1 - 2\ 4
A=A ~hor? A=A hor? g:g(—hom )
1 1
B —h 2 B —h 2
CA = CA < /ﬁ;20> Cr, = Cjy, < /ﬁ;20> s (912)

where all the new parameters are dimensionless. This allows us to rewrite the anomaly
polynomial (8.19) as

1 1 1 1
chas ~ GA! ~ 1 - 2 C 3
g 0= —8 (30,4 + 3cLG + 4()\1)26’ + 4(}\2)267’ A

<<1EA+ 1 )GO+1ELG1+ }2G2+ ~1)2G3>

3 897 3 4\ 4(\2
+0202GON G+ 03y GON G (9.13)
In order for the system to be anomaly free, (9.13) must cancel the quantum anomaly
polynomial
141 1 133
Ql—loop _ 2 1\2 1
8 16 (@) 64C )" T g4 cha
2, 3.3 L a2 3
+G (GP+ G ) — G (GP+2G7)
4 96
1
2(G*)? — (G*)?] . 9.14
S (oL (eu (9.14)

This requirement places 10 constraints on the 21 parameters in (9.13) which leaves an 11

dimensional space of solutions. In order to demonstrate that a solution exists in which all
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parameters are real, we give an example solution,!!

¢a = 0.0000 G =0.1443 ¢r, =0.0000  A\'=3.4641 A2 = 4.0000

v = 0.0000, v? = —3.6424  v3 =1.4106  v3 = —1.0000

v = 0.0000 v2 =—-0.0074 v =0.0000 vg = —0.0037

vg = —1.0000 v} =-0.2303 v =0.0000  v5=0.0000

v = 8.8125 v = 0.0490 vy’ = 0.0000 vy = 0.0000), (9.15)

where we have dropped the underlines in vé for notational simplicity. This demon-
strates that anomaly-free bulk-plus-boundary models can indeed be constructed as we
have described.

10 Conclusions

We may view the construction in this paper as a worked example of an anomaly-free model
with gauged R-symmetry and a positive cosmological potential. A variety of approaches
has been followed in the search for realistic reductions of string/M-theory to candidate
effective D = 4 theories. The standard compactifications and brane constructions limit to
effective supergravity theories which populate only a sub-class of the available models that
one might want to explore, however. In particular, the class of non-compact gaugings of
supergravity has been rather under-exploited to date. Such models depart from models with
compact gauged R-symmetries, such as the original D = 4 gauged N = 8 supergravity [29].
The discovery of models with gauged R-symmetries then led on to searches for models with
gauged non-compact symmetry groups [30, 31]. These were in turn obtained by reduction
from higher dimensions on non-compact manifolds [32].

The physical interest of models with non-compact gaugings is illustrated by cosmolog-
ical approaches such as the SLED program of supersymmetry in large extra dimensions [9],
which takes as a starting-point example the D = 6 Salam-Sezgin model [13]. But non-
compact gaugings have not yet figured prominently in the search for realistic string or
M-theory particle physics vacua. One reason for this has been the lack of a perceived
link to the “ur-theories” in D = 10 and D = 11. A path towards such links has now
been opened up, however, by the reduction in ref. [12], involving precisely the sort of non-
compact manifold reduction envisaged in [32]. So, it seems that a relevant chapter in the
encyclopedia of string/M-theory reductions has only just been opened.

In the present paper, we have focused primarily on a process for generating a chiral,
anomaly-free model starting from a gauged R-symmetry In order to provide a richer and
more fully worked-out scheme for D = 6 models such as those needed for the SLED pro-
gram, we began with a gauged R-symmetry model in D = 7. To generate a chiral theory
in D = 6, we used a Horava-Witten construction based on a slice of D = 7 bulk spacetime
bounded by two D = 6 spaces which can then be populated with D = 6 supermatter as

1 Finding solutions to a large number of simultaneous equations such as these is greatly simplified by

finding the Groebner basis for the equations. This is most easily done using the program Singular or the
Mathematica package STRINGVACUA.
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needed to construct an anomaly-free model. Hotava-Witten type constructions, generalis-
ing the original D = 11/D = 10 construction of the heterotic string from M-theory [10, 11],
can also be seen as domain-wall brane-solution constructions such as the D = 5/D = 4
“heterotic M-theory” construction [33, 34]. These naturally produce chiral theories in the
lower even dimension. But this then raises the issue of potential quantum anomalies in the
reduced theory. The mechanism of anomaly cancellation involves anomaly inflow from the
bulk higher-dimensional space together with a careful choice of “matter” fields to populate
the boundary brane spaces. In the D = 11/D = 10 construction, this uniquely yields
the original Eg gauge multiplet on each bounding brane [10, 11, 18, 23, 35]. As one goes
down in dimensionality, the anomaly-cancellation requirements become less stringent, so
that in a direct D = 5/D = 4 analysis [36], the only anomalies requiring cancellation are
gauge and mixed gravitational-gauge anomalies, with a wide resulting set of anomaly-free
constructions. The present D = 7/D = 6 construction presents an intermediate scenario,
with a detailed set of cancellation requirements as presented in section 9. These do not
uniquely specify the boundary gauge groups and fields, but they do impose a stringent set
of anomaly-cancellation conditions on them. In the present paper, we have not attempted
a comprehensive study of the solutions to these conditions, but it may be hoped that such
a study might reveal classes of phenomenologically interesting scenarios.

The main challenges to be met in carrying out the D = 7/D = 6 construction revolved
around the details of coupling 8-supercharge boundary matter to the 16-supercharge bulk
theory. One needs to take care to provide necessary Gibbons-Hawking-York terms so as to
ensure consistency between the bulk-plus-boundary variational equations and the chosen
boundary conditions for the bulk fields. The halving of the supersymmetry at a boundary
is a natural consequence of any Hotrava-Witten type orbifold construction. But one needs
to take great care here in handling the supersymmetric couplings, since in the absence of a
fully off-shell formalism, the classical boundary non-gauge-invariances of the bulk theory,
as needed for anomaly inflow, engender also supersymmetry anomalies.

The occurrence of supersymmetry anomalies in Hofava-Witten type constructions is
already familiar from the work of refs. [18, 35], but what is different about the constructions
made in the present paper is the order at which these occur. In [18, 35|, an iterative
construction to suppress the anomalies was carried out in powers of the boundary coupling
constant for the original D = 11/D = 10 heterotic construction. In that case, the D = 10
boundary action and the corresponding boundary conditions for D = 11 bulk fields occurred
at first order in the boundary coupling )\12

Shoundary ~ - / «Fo) AT, Coanl oy ~ o (10.1)
y A2 oM (2) (2) G lom A2 (3)
The bosonic anomaly, however, comes from substituting the boundary condition for (',
into the variation of the Chern-Simons term,

1 1 (E\°
1
AZ°
coupling can be caried out to second order in )\12 [18] without interference from anomaly

which gives an anomaly at third order in This means that supersymmetric Noether
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complications, whose discussion can be postponed until later on at third order in )\12 [35]. In
the construction of the present paper, however, the discussion of anomalies cannot similarly
be postponed. This is because the bosonic anomaly in this case comes from a variation

1 1 k‘2
0S ~ 2 /3M 5A(3) /\W(g) I<L2 22 / 5w(3) /\ w(S)(A) (10.3)

which occurs already at first order in i.e. it is of the same order as the boundary action

2 9
that we are constructing. ’

Thus, the best that one can arrange for in the present bulk-plus-boundary coupling
is agreement with the Wess-Zumino consistency conditions, as discussed in section 6. Re-
duction of the D = 7/D = 6 construction to a purely D = 6 theory by taking a coincident
boundary limit, as explained in appendix A, confirms the correctness of this construction
by yielding precisely the D = 6 Wess-Zumino consistent system that was found in ref. [20].
It is interesting to note that the construction of supersymmetric bulk-plus-boundary sys-
tems, similar to those considered here, is greatly simplified by the use of the ‘susy without
b.c.” formalism considered in [37]. This formalism, as currently constructed, requires an
off-shell supersymmetry realisation and so works only in cases with lesser degrees of super-
symmetry. However, in the future this may provide a deeper understanding of complicated
constructions such as those made in this paper.

Another challenge encountered in the present construction is the coupling of bound-
ary hypermultiplets. These are in general necessary in order to arrange for gravitational
anomaly cancellation, but they do not affect the classical gauge or supersymmetry anoma-
lies. However, the bulk-plus-boundary couplings in this sector lead to novel problems.
Eight-supercharge (N = 2, D = 4 or N = 1, D = 6 supersymmetry) hypermultiplets
coupled to supergravity require an overall quaternionic Kéhler target-space manifold [21].
Indeed, the bulk D = 7 theory dimensionally reduced to D = 6 and truncated to N = 1,
D = 6 local supersymmetry generates precisely this kind of scalar target-space mani-
fold [17]. However, when one includes additional hypermultiplets on the D = 6 boundaries
of the Horava-Witten construction, one runs into the problem that one cannot simply add
quaternionic Kéahler manifolds to produce an overall quaternionic Ké&hler manifold. The
resolution of this problem led to the connection condition (7.13).

A number of aspects of the constructions discussed in this paper call for further de-
velopment. A fuller treatment of the hypermultiplet couplings will be given in a separate
publication, and a full analysis of the solutions to the anomaly-cancellation conditions is
called for. Another open question deals with a very special class of remarkably anomaly-free
D = 6 theories with gauged U(1)p symmetries. These are:

e the F7 x Eg x U(1) g invariant model in which the hyperfermions are in the (912,1,1)
representation of the gauge group [5],

e the F; x Gy x U(1)Rg invariant model with hyperfermions in the (56, 14,1) represen-
tation of the gauge group [6], and

e the Fy x Sp(9) x U(1)g invariant model with hyperfermions in the (52,18, 1) repre-
sentation of the gauge group [7].
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We have determined that the construction of this paper cannot yield any of these models
in a coincident brane limit. Thus, finding the higher-dimensional origins of these theories,
if any, remains an outstanding open problem.

More generally, the role of noncompact gaugings and their higher-dimensional origins
through reduction on noncompact spaces needs further consideration. Noncompact re-
ductions may, as in the H(2,2) reduction considered in [12], yield classically consistent
Kaluza-Klein reductions. But at the quantum level, this classical Kaluza-Klein consistency
is surely broken. Moreover, noncompact reductions from higher-dimensional theories would
be expected to lead to a continuous Laplace eigenvalue spectrum without a mass gap be-
tween the retained lower-dimensional and the higher truncated Kaluza-Klein states. One
can imagine a number of possible responses to this situation. One would be to consider a
compactification of the reduction space, perhaps by modding out by discrete symmetries,
but this would also likely be at the cost of introducing supersymmetry breaking at some
new scale in the problem. Another might be to look for discrete Laplace eigenfunctions in
the midst of a continuous-eigenvalue spectrum. Such situations are not unusual in other
contexts, such as condensed-matter physics. It remains to be seen whether they have a
relevance in the context of noncompact gauged R-symmetries.
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A The coincident boundary limit

We now consider taking the coincident boundaries limit when the boundaries are populated
with vector multiplets as described in section 6. This gives a six-dimensional gauged
supergravity theory similar to that described in [17].

The orbit of boundary conditions in this D = 7 system involves both Neumann and
Dirichlet types, which have different effects on the reduced system. Let us first consider
the Neumann boundary conditions with the example of the form field A,,,,. This is subject
to two boundary conditions: one on the 7 = 0 boundary and the other on the z7 = L
boundary (where L is the interval length ). We can follow the work of [18, 38, 39] and use
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the fact that, in the limit of small interval length, it is sufficient to approximate the value
of A,,, in the bulk by a linear interpolation between the two boundary conditions:

:U7>
1— + A
o < I pvp

We consider the simplified case in which the boundary at 27 = 0 is populated by vector

27

A,ul/p = A,uup (Al)

z7=L L

multiplets in the way we have described and the boundary at 27 = L is empty. This means
that the bulk field A4,,, becomes

3K% ik o X z’
Ay = (4)\2 Wp(C) + a2 7T Vuwpt 1-— IE (A.2)
This causes the six-dimensional 3-form field strength to become Chern-Simons modified:

FAWP7 = 38[Mzzlyp]7 — 87121“,,[,

where we have defined ¢ 2 = 2%‘2 in order to match the conventional result. If we now

redefine G, as the appropriately normalised bosonic part in the above equation i.e.

3 o
Gvp = 30 Byy) + 24" Wuvp(C) 5 (A4)

then we find that G, , is invariant under the Yang-Mills gauge symmetry since B,,,, develops

a gauge transformation due to the boundary condition (5.10):

1
OAB,, = g 9, Coy Ax . (A.5)

V]
On the other hand, the field & receives a Dirichlet boundary condition. In the small interval
limit, we can again interpolate between its two boundary values such that

27

(A.6)

L

IE7
076 = 070 <1 — > + 076 .
z7=0 x7=L L

If we integrate this equation and impose the requirement that the average value of & is the

same as in the empty boundaries case, then we obtain
7\2
T L

Performing similar steps for all fields that receive non-trivial boundary conditions and then

(@ L\ 4 2
= . A
x7L< oL ~6) 577 5% (A1)

incorporating these into the D = 7 bulk action together with the Gibbons-Hawking-York
terms and the boundary action, and ignoring any higher-order terms in )\12 or L, we obtain
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the D = 6 action

2L 1 1 / / 1 1 1
Ssae) = /dx66{4R_ 8 GO F FHT— e_aHﬁng(y— e_nguqu“”p—48H08“0

K2 g 8¢ 12

1 1 . ; 1 1 . . 1 il i il i
— Oupdp— | PIPYT — PIpI = PP — g2 (OO 4287 )
1 VpoX "o’ 1 vpo A
+ 1692 ghvre TB;LVF;;‘O'F)T\,T + 32g2gl2 ghvr? ngyp(c)wg)\T(A)

i i i
- 2¢u7“ pDuwp - 2X7MDMX - 292 A" 'YMDM)\T’

i i - i
= UV D — T DY — 2 5" Dyunx

1- . 4 1_ . g
= GV B = o Y P, — TP

1 _ v (= v i - / v
~ XV 00 = UV = o € Gl <w[WA’W o7

— — - 1 — ! ! 1
— 2PV P — XX A Py + TPy — 2 AT AP — /- Xy 77x>
1i_ipu7' o 1_r’iur’
= 4 Pul Yo vy + Xy X+92>\ o'y

1 4 o o
o = ot ww“w)
7 o / — v / — ot 7 _ o - v — uv
- 49262F,§u <¢p7" YN+ XA N") " 42 2 Hp, (wﬂ“ Ynx — x " nx>

B ZP;T/?’Y”T/JT B eg Cirr’j\r’giwr + iegSrr’j\r’wr _ egSir’j\r’O_iw

n 1 engwUzv;%ﬂ (Cir’ _ \/QSW) i engr’O_iX <Cir’ _ \/25"/> } .
(A.8)

1
22 2v/2

Carrying out the reduction of the supersymmetry transformations and averaging over z’

gives
(565 = iey',
1
0, = Dye+ 94
1
ox = —Q'yuauae -

—a oT ¥ A
e G ooy T e — 277ﬂa €,

196 Guvp""e,

oo i o, 1
0By, = —ie? ey iy + o€ €T X + 9/25€C[);CV}X,
do = —iéyx,
5AL, = ie_géfyu)\rl )
/ 1 o ! ) o . - .
SN = —462’)/MVF;V€ _ 2\1/2926_2 (Czr _ \/QSZT‘ ) 0'26,

S = ;w“ (Pio’ — i) e,

,34,



Y = ;7“ (Pﬁrai + 273;) €,
dp = i€y,

JLy = ey L,

OL% = eo'y" LY,

60! = —Lle=%esyy — iL"e Pey’

56’5 = ie2E’yM77X )

1 _»
X — X
ot = —4€ 2" H € (A.9)
Under these supersymmetry transformations, the action varies into the supersymmetry
anomaly
2L 6 pvpo AT 17X 17X Ar/Ar/ uvpoAt, 0 r! Ar’
deS = 39x2g27 aMd xes € Hp\ H, 0 Ay AT — 2¢ Wp(C)Fg\0 AT

(A.10)

+ GMVPU)‘TF;;F;;(SECi(Ci( _ QEMVPU)‘TWSVP(A)Hg()\(SﬁC’i(} )

which is Wess-Zumino consistent with its gauge variation,

2L 1

oAS =
A 322 929/2

/8 y d%e{e““p“)‘TH;ﬁHp)f,@)\AZ/ A +etP N U FT 950X AX} . (A1)

We note that the action and variations obtained here are consistent with the general matter
coupled D = 6 supergravity described in [2, 20] for the case of a single tensor multiplet.
We note also that that if one were to consider the boundary matter coupling starting

from the boundary condition A,,, ~ CAWByp(A) as described in section 8.2, then the

reduced action would appear to contain kinetic terms of the form
1 / /
S~ /dee (—92 e’ — CA6_0> F, F*" (A.12)

which is known to exhibit interesting phase transition behaviour [40, 41]. The dilaton
dependence arises from supersymmetry considerations as described in section 6.

B D = 7 2-form supergravity

We now consider the equivalent construction for the theory in which the 3-form Anng has
been dualised into a 2-form EMN. This has the D = 7 bulk action

1 1. - 11 5.0 ~nNi s ~¢ AMNP L o5 A
Ssc =, / d7xé{2R(F) — G Fy MY OB N FMNT e Gy g GMYVE
K g

e o ALz 2 n . ~L ~ N N 1 L4 Aa
e”GuMNR <¢[LWL7MNR7T¢T]+47/)L7MNR7LX—3X7MNRX+92 )\WMNRAT>
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1 2 & 2 PN 1 G A A
_’L\/ 96—20 1/} AMNwN_i_QwM,Y X+3XX_ )\r)\r + e 2 O8N 51\

24 g9 29

(B.1)

where
. . 3 N
G =30 Bng — O Nvr(A B.2
MNR [MPNR] \/292 MNR( ) ( )

and all other definitions remain the same as before. This action has no Chern-Simons term,
so we might expect no anomaly to occur. However, as we now see, this is not the case.

The action is invariant under the following local supersymmetry transformations:

~M 2 M T
s — iy My,

R 1 CRST+ =
Oy = 2D € — 60\/26 GRST (’)’M’)’RST + 5’)/RST’YM) €
i o ri s RS eiRSa . V2 o
= 90 Frs?" (BIr¥™ = 5¥ ) € = g gem2 Cme,
1 e i 1 .. NV
60 = — CAMS se S fi iaMN, & ~MNR- ~5Ce,
X oV VMGE— | e Fyna'yTTE 15\/26 MNRY €t g€ €

A~ . 6 (24 n A ~ 1 Al A
§Byn = iV2e (57[M¢N] + 5’7MNX> - \/292 AfM‘SAN}f’

SAL, = — ge3 (éa%,z}M n é@MN@ Ly iem 23 N LI,

66 = — 2iéy,
R
SLL= &'NLE,
9
1

P T2 GNPTI
5Lf—g€0')\ Lf’

A A

I 1 s
5)\T:—262 e 6+297MP” ie

7 & _in s
e 2C"d'e,

— e’

as well as having a Zo symmetry which acts as before but now with BW assigned even

parity and BW odd parity. The action possesses a gauge symmetry under which Bun

N 24 a7
SaBuN = 52 O A A - (B.3)

transforms as

Once again, we begin our construction on a manifold with boundary by adding

Gibbons-Hawking-York terms

Sery = / e/ ~h { ww““wy—giﬁ}. (B.A)
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A~

Redefining exactly as before but now with B, = ! BH,,, Guwr = 5, Gt gives the D = 6

1

V2 V2
supergravity transformations [17]
565 = iev'

0, = Dye—

1 i
04 e? G por 7T y€ — 277;016,

1 (o
19 e’ Gy Pe,

N 1 1
0B, =ie (efy[uwy} + 26’ywx> — E A[M(SAV]T/ ,

1
ox = —27“VM06 —

do = —iéyx,
AT =i 3Ey, N,
/ 1 o / i o (i N\ i (B.5)
0N = — e2y"F e— Zem2 (C’" —\/25")0’6,
o) = 27“ (77;0Z —iVup) e,
0" = " (B’ +iPy) e,
dp = i€y,
SLy = e’y Ly,
SLY = éo'y" LY,
60! = —Lle=%eo™yp — iL!"e Py,
where now G, = 30, B, — 232 wp,p(A) and By, transforms as
1 / /
0B = O AN (B.6)

Again, we can construct a consistent set of boundary conditions and in this we case
find,?

TR _o x o, X 3k2 . poX ¥ 3
Ve = T o0a2¢ 2H, Y+ 4072 ° 2 HP7 o™ + (fermi)”,
2
K _ o .
X = 5002° 2H£,7‘“’77X + (fermi)?,
2
K
006 = — e HLHPN - (fermi)? (B.7)
2
Gt = 12)\2 €2 € pore HPPX HMX 4 (fermi)?
K2 X X 38 X pex 2
K;w = 2)\26 HM)HVP - 40)\26 HpaHp Juv + (ferml) .

Then, upon substituting this into the surface terms, obtained as before, a great deal of
cancellation occurs and we are left with

1 1 o . ;
095G + 0eSaay = 22 /8M dﬁxe{ — 86_2 e*yp”'y“alnXH;f,PL} . (B.8)

2Here we have, as in the previous case, set all the free parameters that can occur equal to values that
will be required by the variational principle, anticipating the final constructed boundary action.
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Finally, including a boundary action'3

1 1 i
Sp = \2 /BM d%{ — 86 HifjH“”X — 277X7“DM77X
— ;e‘gﬂ,ﬁﬁvaw“”wp — ;6_20 H 5y x — 2Z4e”GWpﬁX7“”an (B.10)

1
— E/JVPO')\TBMVHg( Hi(;— +

. ¢ D (s ()]

3292
gives the classical supersymmetry anomaly

1

0e5 == 32)2g2

/ dﬁxe{eﬂVPUATﬂﬁHg,aeAg/A:’ — 2PN (C)Fipb AT
oM (B.11)

+ PN FT FT 5 OXCX — 26PN (A)H 50X } :

whilst the classical gauge anomaly is

1

onS = T 3202¢2

/a y dﬁxe{gﬂ”poAfﬂﬁHgaAA: A" + a“”p"’\TFL,F;Ua,\CfAX}. (B.12)

Once again these are Wess-Zumino consistent.

It is interesting to note that these classical anomalies exist, in spite of the fact that there
is no Chern-Simons term to provide anomaly inflow, because the inherited supergravity
transformation rules have forced a Green-Schwarz type of anomaly production upon us.
This is very different mechanism from the 3-form case considered in section 6, but gives
rise to anomalies of exactly the same form.

Y3 The bulk contribution (B.8) can also be produced by adding a term of the form
1 , )
S = / dxed T A o P (B.9)
A Jom

to the boundary action and multiplying the R.H.S. of (B.7) by a corresponding factor. However, if this
were done, the action and boundary conditions would then no longer be consistent with the variational
principle.
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