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1 Introduction

As Parke and Taylor have shown for MHV amplitudes [1], it is sometimes possible to

obtain simple expressions for seemingly complicated Yang-Mills amplitudes in four space-

time dimensions. Using the pure spinor formalism [2] and its pure spinor superspace [3]

(see also [4]) it will be proved that the tree-level color-ordered five-point super-Yang-Mills

amplitude in ten dimensions can be written simply as

A5(1, 2, 3, 4, 5) =
〈L45L12V

3〉

s45s12
+ cyclic(12345), (1.1)

where V j is the unintegrated massless vertex operator and Lij is related to the OPE of a

unintegrated and an integrated vertex operator in a way to be defined below.

It will also be suggested that higher-point amplitudes might have simple forms like

the above, as there seems to be a direct correspondence between superspace expressions

and Feynman diagrams which use only cubic vertices as in the arguments of [5]. Using the

empirical method described in subsection 3.1, it will be argued that the super-Yang-Mills

6- and 7-point color-ordered amplitudes are proportional to

A6(1, 2, 3, 4, 5, 6) =
〈L12L34L56〉

3s1s3s5
(1.2)

+
1

2

〈T123

s1t1

(V 4L56

s5
+

L45V
6)〉

s4
−

1

2

〈T126

s1t3

(V 3L45

s4
+

L34V
5)〉

s3
+cyclic(1. . .6)
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and

A7(1, 2, 3, 4, 5, 6, 7) =
〈T231L45L67〉

s2t1s4s6
+

〈T123T564V7〉

s1t1s5t4
+

〈T127T345V6〉

s1t7s3t3
(1.3)

−
〈T123T456V7〉

s1t1s4t4
−

〈T127T453V6〉

s1t7s4t3
−

〈T123L45L67〉

s1t1s4s6
+ cyclic(1. . .7)

where Tijk is related to the OPE of one unintegrated and two integrated vertices in a way

to be defined below and s1, . . ., s6 and t1, . . ., t3 (s1, . . ., s7 and t1, . . ., t7) are the 6-point

(7-point) generalized Mandelstam variables of [6, 7]. Using a computer program [8], the 6-

and 7-gluon expansions of (1.2) and (1.3) are computed in appendix B.1

Furthermore, given that the tree-level SYM 4-point amplitude can be written as [12]

A4(1, 2, 3, 4) =
1

s12
〈L12V

3V 4〉 +
1

s41
〈L41V

2V 3〉, (1.4)

it is pointed out that the four-point Jacobi-like Bern-Carrasco-Johansson kinematic iden-

tity [5] becomes

〈L{12V3}V4〉 = 0, (1.5)

where {ijk} means a sum over cyclic permutations of (ijk). Its vanishing is explained by

noting that it is BRST trivial. For the five-point amplitude (1.1), the generalized BCJ

identities of [13, 14] hold in the form of

−
L45

s45
L{12V3} +

L42

s24
L{13V5} −

L12

s12
L{34V5} +

L51

s51
L{23V4} = 0, (1.6)

etc. It is well-known that there are powerful four-dimensional methods to compute scat-

tering amplitudes recursively (see [15] and references therein). The hints of a simplified

ten-dimensional parametrization of field theory tree-level amplitudes using pure spinors2

seem to suggest that there might be similar methods in a ten-dimensional pure spinor su-

perspace setup — which is desirable since there is no need to differentiate between MHV

and NMHV contributions as in the four-dimensional methods.

This paper is organized as follows. In section 2 an ansatz will be given for the tree-

level five-point SYM amplitude by analogy with the structure of the known four-point

amplitude. In section 3 the five-point ansatz will be derived from the field theory limit of a

BRST-equivalent expression of the superstring amplitude computed in [12]. In subsection

3.1 an empirical method to write down similar Ansätze for higher-point amplitudes is

presented, and expressions for the 6- and 7-point super-Yang-Mills amplitudes in ten-

dimensional space-time are conjectured. In appendix A the BCJ kinematic relations and

1In the amplitude computations of [6, 7] the results were written in the 4D helicity formalism language,

so a 10D comparison of results is not straightforward. However a comparison to the result [9] should

be made [10]. After the first version of this paper came out, the 6-gluon amplitude has been successfully

matched against the results of Zvi Bern, which he kindly provided [11]. The 7-gluon amplitude still remains

to be checked.
2It was suggested a long time ago that pure spinors simplify the description of super-Yang-Mills and

supergravity theories [16, 17]. The superspace results obtained with the pure spinor formalism seem to

realize those expectations.
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its generalization [13, 14] are written down using the pure spinor representations of the

previous sections. Finally, in appendix B the first few terms of the (rather long) 5-, 6- and

7-gluon expansions from (1.1), (1.2) and (1.3) are written down (the full expansions can

be easily generated with a computer using [8] or other methods).

2 Tree-level amplitudes with the pure spinor formalism

The prescription to compute n-point tree-level open string amplitudes with the pure spinor

formalism is given by [2]3

An = 〈V 1(0)V (n−1)(1)V n(∞)

∫

dz2U
2(z2). . .

∫

dz(n−2)U
(n−2)(z(n−2)〉, (2.1)

where V i(z) = λαAi
α and U i(z) = ∂θαAi

α+ΠmAi
m+dαW α

i + 1
2F

i
mnNmn are the unintegrated

and integrated vertices with conformal weight zero and one, respectively, and i is the label

denoting the different strings being scattered. The massless sector of the open superstring

is described by the ten-dimensionl super-Yang-Mills superfields [Aα, Am,W α,Fmn] which

satisfy the equations of motion [4, 19, 20],

QFmn = 2k[m(λγn]W ), QW α =
1

4
(λγmn)αFmn, QAm = (λγmW ) + km(λA), QV = 0,

(2.2)

where λα(z) is a pure spinor satisfying λαγm
αβλβ = 0, Q = λαDα is the pure spinor BRST

operator and Dα = ∂α + 1
2km(γmθ)α is the supersymmetric derivative.4 They have the

following θ-expansions, [21–24]

Aα(x, θ) =
1

2
am(γmθ)α −

1

3
(ξγmθ)(γmθ)α −

1

32
Fmn(γpθ)α(θγmnpθ) + . . .

Am(x, θ) = am − (ξγmθ) −
1

8
(θγmγpqθ)Fpq +

1

12
(θγmγpqθ)(∂pξγqθ) + . . .

W α(x, θ) = ξα −
1

4
(γmnθ)αFmn +

1

4
(γmnθ)α(∂mξγnθ) +

1

48
(γmnθ)α(θγnγpqθ)∂mFpq + . . .

Fmn(x, θ) = Fmn − 2(∂[mξγn]θ) +
1

4
(θγ[mγpqθ)∂n]Fpq + . . ., (2.3)

where am(x) = emeik·x, ξα(x) = χαeik·x are the bosonic and fermionic polarizations and

Fmn = 2∂[man] is the field-strength.

After using the OPE’s to eliminate the conformal weight-one variables from (2.1), the

integration of the zero-modes of λα and θα is carried out by taking only the terms which

contain three λ’s and five θ’s in the correlator which are proportional to the pure spinor

measure

〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)〉 = 1, (2.4)

3For background material in the pure spinor formalism, see [18, 19]. The conventions for the OPE’s

however follow the appendix A of [12].
4In what follows spinor index contractions are denoted by parenthesis, e.g. λ

α
Dα = (λD) and the

worldsheet positions are mostly omitted.
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where the normalization can be chosen arbitrarily.5 The normalization condition (2.4)

defines the action of the pure spinor angle-brackets 〈 〉. Arbitrary pure spinor superspace

expressions are written down as

〈λαλβλγfαβγ(θ)〉, (2.5)

where fαβγ(θ) is given in terms of super-Yang-Mills superfields, e.g. fαβγ(θ) =

Ai
α(θ)Aj

β(θ)Ak
γ(θ). The measure (2.4) is in the cohomology of the pure spinor BRST oper-

ator and can not be written as the supersymmetry variation of a BRST-closed object, so

amplitudes computed from (2.1) are supersymmetric [2].

As an illustration of the above steps, the supersymmetric tree-level 3-point amplitude

following from (2.1) is given by6

A3 = 〈(λA1)(λA2)(λA3)〉. (2.6)

Evaluating the explicit component expansion for e.g. the 3-gluon amplitude, is a matter of

plugging in the expansions (2.3) and selecting the components with five θ’s which contain

the gluon fields. Doing that one obtains,

A3 = −
1

64

(

k3
me1

re
2
se

3
n − k2

me1
re

2
ne3

s + k1
me1

ne2
re

3
s

)

〈(λγrθ)(λγsθ)(λγpθ)(θγpmnθ)〉. (2.7)

As mentioned in the appendix of [26], symmetry arguments and the normalization condi-

tion (2.4) fix all pure spinor correlators. Among the list of [26] one finds

〈(λγrθ)(λγsθ)(λγpθ)(θγpmnθ)〉 =
1

120
δrsp
pmn =

1

45
δrs
mn,

so the 3-gluon amplitude (2.7) is given by

A3 = −
1

2880

(

(e1 · e2)(k2 · e3) + (e1 · e3)(k1 · e2) + (e2 · e3)(k3 · e1)
)

. (2.8)

Given the systematic nature of the above procedure, an implementation using FORM [27,

28] has been written which performs these expansions automatically [8]. So although

component expansions can have many thousand terms as in the 7-gluon amplitude discussed

in appendix B, they come from much simpler superspace expressions which can be analysed

by hand.

3 The 5-pt field theory amplitude ansatz

When the amplitude involves more than three strings, the prescription (2.1) requires the

computation of the OPE’s with integrated vertices. In this section we will be concerned

with the field theory limit (FT) of the string scattering. The 5-point FT amplitude will

5See however the tree-level, one-loop and two-loop calculations of [25] to check how the choice has to be

taken into account at higher-loops.
6One also has to evaluate the functional integration of the exponentials

Q

: eiki
·X(zi) :, but they will

not appear explicitly in this paper.
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be given an Ansatz motivated by the superspace form of the FT 4-point amplitude, which

will later be obtained from a BRST equivalent expression of the first principles superstring

5-point amplitude evaluated in [12].

In superspace, the OPE between the unintegrated and integrated vertex operators is

given by V i(z)U j(w) →
L̃ij

z−w
, with [29]

L̃ij(θ) = Ai
m(λγmW j) + (λAi)(ki · Aj). (3.1)

Using the equations of motion (2.2) it follows that

QL̃ij = −sij(λAi)(λAj), Q(Ai · Aj) = L̃ij + L̃ji ≡ 2L̃(ij) (3.2)

where7 sij = (ki · kj). Using (3.2) and defining Lij = 1/2(L̃ij − L̃ji) the superfield L̃ij can

be written as8

L̃ij = Lij +
1

2
Q(Ai · Aj). (3.3)

The massless 4-point super-Yang-Mills amplitude obtained from the field theory limit

of the open string amplitude is given by [12]

A(1, 2, 3, 4) =
1

s12
〈L̃12V

3V 4〉 +
1

s41
〈L̃41V

2V 3〉 =
1

s12
〈L12V

3V 4〉 +
1

s41
〈L41V

2V 3〉 (3.4)

where we used that 〈Q(Ai ·Aj)V kV l〉 = 0, which follows from integrating the BRST charge

by parts. The other sub-amplitudes are obtained from (3.4) by relabeling,

A(1, 3, 4, 2) = −
1

s13
〈L13V

2V 4〉 −
1

s12
〈L12V

3V 4〉

A(1, 4, 2, 3) = −
1

s14
〈L41V

2V 3〉 +
1

s13
〈L13V

2V 4〉. (3.5)

It is easy to check that the amplitudes in (3.5) are BRST-closed.

As emphasized in [5], a color-ordered 5-point tree-level amplitude consists of five dia-

grams with purely cubic vertices specifying the poles,

A(1, 2, 3, 4, 5) =
n1

s45s12
+

n2

s51s23
+

n3

s12s34
+

n4

s23s45
+

n5

s34s51
. (3.6)

As the BRST variation of Lij is proportional to sij, the idea now is to construct a pure

spinor superspace expression using Lij and Lkl in the numerators of the terms containing

poles in sij and skl, in such a way as to obtain a BRST-closed expression. It is straight-

7Note that the usual definition for massless particles is sij = 2(ki
· k

j).
8I thank Dimitrios Tsimpis for suggesting the separation of the BRST-trivial part of L̃ij .
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forward to see that the amplitudes

A(1, 2, 3, 4, 5) =
〈L45L12V

3〉

s45s12
+

〈L51L23V
4〉

s51s23
+

〈L12L34V
5〉

s12s34
+

〈L23L45V
1〉

s23s45
+

〈L34L51V
2〉

s34s51

A(1, 3, 2, 4, 5) =
〈L45L13V

2〉

s45s13
−

〈L51L23V
4〉

s51s23
−

〈L13L42V
5〉

s13s24
−

〈L23L45V
1〉

s23s45
−

〈L42L51V
3〉

s24s51

A(1, 4, 3, 2, 5) =
〈L25L14V

3〉

s25s14
+

〈L34L51V
2〉

s51s43
+

〈L23L14V
5〉

s14s32
+

〈L25L34V
1〉

s43s25
+

〈L51L23V
4〉

s32s51

A(1, 3, 4, 2, 5) =
〈L25L13V

4〉

s25s13
−

〈L34L51V
2〉

s51s34
+

〈L13L42V
5〉

s13s42
−

〈L25L34V
1〉

s34s25
+

〈L42L51V
3〉

s42s51

A(1, 2, 4, 3, 5) =
〈L35L12V

4〉

s35s12
+

〈L42L51V
3〉

s51s43
−

〈L12L34V
5〉

s12s43
+

〈L35L42V
1〉

s42s35
−

〈L34L51V
2〉

s43s51

A(1, 4, 2, 3, 5) =
〈L35L14V

2〉

s35s14
−

〈L42L51V
3〉

s51s24
−

〈L23L14V
5〉

s14s23
−

〈L35L42V
1〉

s24s35
−

〈L51L23V
4〉

s23s51

(3.7)

are BRST-closed. One can also check that all sub-amplitudes in (3.7) are related to

A(1, 2, 3, 4, 5) by index relabeling, taking into account the antisymmetry of Lij and its

fermionic nature. The signs in (3.7) precisely match the ones presented in equation (4.5)

of [5], so one can identify

n1 = 〈L45L12V
3〉, n2 = 〈L51L23V

4〉, n3 = 〈L12L34V
5〉, n4 = 〈L23L45V

1〉

n5 = 〈L34L51V
2〉, n6 = 〈L25L14V

3〉, n7 = 〈L23L14V
5〉, n8 = 〈L25L34V

1〉

n9 = 〈L25L13V
4〉, n10 = 〈L13L42V

5〉, n11 = 〈L42L51V
3〉, n12 = 〈L35L12V

4〉

n13 = 〈L35L42V
1〉, n14 = 〈L35L14V

2〉, n15 = 〈L45L13V
2〉. (3.8)

As will be mentioned in the appendix, the above “solution” for the ni’s of [5] do not satisfy

the strict Bern-Carrasco-Johansson (BCJ) kinematic identities, but they do satisfy the

generalized BCJ’s of [13, 14]. As explained in [13, 14], a general parametrization of the

sub-amplitudes in terms of poles does not necessarily satisfy the BCJ Jacobi-like identities

of [5]. They must however satisfy “generalized BCJ identities”, for which the original BCJ

relations are just one out of many possible solutions.

The amplitudes in (3.7) will now be obtained from the field theory limit of a BRST-

equivalent expression of the pure spinor superstring amplitude computed in [12].

4 First principles derivation of the 5-pt ansatz (3.7)

The massless 5-point open superstring amplitude is given by [12]9

A5(1, 2, 3, 4, 5) = 〈L2131V
4V 5〉K1 − 〈L2134V

5〉K2 − 〈L2434V
1V 5〉K ′

1 + 〈L2431V
5〉K3

− 〈L2331V
4V 5〉K5 − 〈L2334V

1V 5〉K ′
4 + 〈D23V

1V 4V 5〉(1 + s23)K6, (4.1)

9The notation here slightly differs from [12], but should not lead to confusion.
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where Kj and K ′
j denote integrals which satisfy [30, 31]

s34K2 = s13K1 + s23K4, s24K3 = s12K1 − s23K5, K1 = K4 − K5

s12K2 = s24K
′
1 + s23K

′
4, s13K3 = s34K

′
1 − s23K

′
5, K ′

1 = K ′
4 − K ′

5

(1 + s23)K6 = s34K
′
4 − s13K5 = s12K4 − s24K

′
5. (4.2)

The various Lijkl kinematic building blocks have the following expressions10

L2131 = +L̃12((k
1 + k2) · A3) + (λγmW 3)

[

A1
m(k1 · A2) + A1 nF2

mn − (W 1γmW 2)
]

(4.3)

L2134 = L̃12L̃43, D23 = −(A2 · A3). (4.4)

Relabeling 1 ↔ 4 determines L2434 from (4.3) and L2431 from (4.4). Finally, the OPE

identities of [12] (which are related to the BCJ dualities of [5]) imply that

L2331 = L3121 − L2131, L2334 = L3424 − L2434, (4.5)

which are used to obtain the remaining kinematic factors appearing in (4.1) from the

expression for (4.3) and relabelings thereof.

Using the integral relation for K6 and the expression for D23,

〈D23V
1V 4V 5〉K6 = −(1+ s23)K6〈(A

2 ·A3)V 1V 4V 5〉 = (s13K5 − s34K
′
4)〈(A

2 ·A3)V 1V 4V 5〉

the amplitude (4.1) becomes

A5(1, 2, 3, 4, 5) = 〈L2131V
4V 5〉K1 − 〈L2134V

5〉K2 − 〈L2434V
1V 5〉K ′

1 + 〈L2431V
5〉K3

− 〈(L2331−s13(A
2 · A3)V 1)V 4V 5〉K5−〈(L2334−s34(A

2 ·A3)V 4)V 1V 5〉K ′
4.

(4.6)

A key point is to note from (4.3) is that it obeys the identity

QL2131 = s12

(

L̃23V1 − L̃13V1 + L̃12V3

)

− (s12 + s13 + s23)L̃12V3, (4.7)

and by defining11

Tijk ≡ Ljiki−Sjiki, Sjiki =
1

2
sij((A

j ·Ak)V i−(Ai ·Ak)V j)−
1

2
(sik+sjk)(A

i ·Aj)V k, (4.8)

the BRST-trivial parts from Ljiki are removed and one obtains a BRST variation written

in terms of Lij instead of L̃ij ,

QTijk = sijL{ijVk} − (sjk + ski + sij)LijVk. (4.9)

10In the computations of [12] there were terms with factors of (Ai
W

j)V k in the expressions for Ljiki.

But it was shown that using the relations (4.2) those terms drop out from the amplitude, so they are not

written in this paper for brevity.
11I thank Dimitrios Tsimpis for suggesting the relevance of using this definition in the context of an

ansatz for the 6-pt amplitude. It turns out to clean up the 5-pt formulæ too.
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Furthermore, using (4.9) it is easy to show that Q(Tjik − Tjki − Tkij) = 0. In fact this

combination is BRST-trivial,

Tjik − Tjki − Tkij = Q
(

(Ai · Aj)(ki · Ak) − (Ai · Ak)(ki · Aj) − (Aj · Ak)(kk · Ai)
)

. (4.10)

Using the definitions (3.3), (4.8), the relations (4.2) obeyed by the integrals and the

identity (4.10) the superstring five point amplitude (4.6) becomes

A5(1, 2, 3, 4, 5) = 〈L12L34V5〉K2 + 〈L13L24V5〉K3 (4.11)

+ 〈T123V4V5〉K1 − 〈T432V1V5〉K
′
1 + 〈T321V4V5〉K5 − 〈T234V1V5〉K

′
5.

As discussed in [30, 31], under the twist 2 ↔ 3 and 1 ↔ 4 of the vertex operators on the

disc, the integrals behave as

K1 ↔ K ′
1, K4 ↔ K ′

4, K5 ↔ K ′
5, K2 ↔ K2, K3 ↔ K3, (4.12)

from which one can easily check that the 5-pt superstring amplitude (4.11) is anti-

symmetric, as it should on general grounds.

Writing the five point integrals in the two dimensional basis (T,K3) of [30, 31] where

T = s12s34K2 + (s12s51 − s12s34 + s34s45)K3 (4.13)

as follows [12]

K1 =
T

s12s45
−

(

s34

s12
+

s23

s45

)

K3, K ′
1 =

T

s34s51
−

(

s12

s34
+

s23

s51

)

K3 (4.14)

K5 =
T

s23s45
−

(

s12

s45
+

s51

s23
− 1

)

K3, K ′
5 =

T

s23s51
−

(

s34

s51
+

s45

s23
− 1

)

K3 (4.15)

the amplitude (4.11) becomes

A5(1, 2, 3, 4, 5) = T AYM(θ) + K3 AF 4(θ), (4.16)

where,

AYM(θ) =
〈T123V

4V 5〉

s12s45
−

〈T234V
1V 5〉

s23s51
+

〈L12L34V
5〉

s12s34
+

〈T321V
4V 5〉

s23s45
−

〈T432V
1V 5〉

s34s51
(4.17)

and

AF 4(θ) = 〈L12L34V
5〉 + 〈L13L24V

5〉 − 〈T234V
1V 5〉 + 〈T321V

4V 5〉 (4.18)

− 〈L12L34V
5〉

(

s45

s12
+

s51

s34

)

−〈T123V
4V 5〉

(

s34

s12
+

s23

s45

)

+〈T234V
1V 5〉

(

s45

s23
+

s34

s51

)

− 〈T321V
4V 5〉

(

s51

s23
+

s12

s45

)

+〈T432V
1V 5〉

(

s23

s51
+

s12

s34

)

.

One can also find a BRST-equivalent form for the amplitude by using the fact that

Q(Lmn/smn) = −V mV n to rewrite 〈TijkV
mV n〉 as −〈TijkQ(Lmn/smn)〉, which upon inte-

gration of the BRST charge by parts using (4.9) implies that

〈TijkVmVm〉 = −〈
Lmn

smn
(sijL{ijVk} − sijkLijVk)〉. (4.19)
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A somewhat tedious but straightforward use of (4.19) in the expressions (4.17) and (4.18)

allows them to be rewritten as

AYM(θ) =
〈L45L12V

3〉

s45s12
+

〈L51L23V
4〉

s51s23
+

〈L12L34V
5〉

s12s34
+

〈L23L45V
1〉

s23s45
+

〈L34L51V
2〉

s34s51
(4.20)

and

AF 4(θ) = − 〈L45L12V
3〉

(

s23

s45
+

s34

s12

)

−〈L51L23V
4〉

(

s34

s15
+

s45

s23

)

(4.21)

− 〈L12L34V
5〉

(

s45

s12
+

s51

s34

)

−〈L23L45V
1〉

(

s51

s23
+

s12

s45

)

−〈L34L51V
2〉

(

s12

s34
+

s23

s51

)

+ 〈L12L34V
5+L51L23V

4−L13L42V
5+L23L45V

1〉

+
s13

s51
〈L51L{23V4}〉−

s24

s45
〈L45L{12V3}〉.

In the field theory limit T → 1 and K3 → 0 [30, 31], so the first principles derivation

of (3.7) is completed. The 5-gluon component expansion were already computed in [12],

and shown to agree with earlier RNS results [30, 31].

4.1 Higher-point amplitudes

It is worth checking whether the simple mappings between the cubic Feynman diagrams and

pure spinor building blocks persist at higher-points. The discussion in section 2 suggests a

way to write down n-point field theory amplitudes. For each one of the 2n−2(2n−5)!!/(n−1)!

color-ordered diagrams specifying the kinematic poles [5], a ghost-number-three numerator

whose BRST transformation is proportional to those poles should be written down. One

then tries to find a combination with the correct dimension of a n-point amplitude such

that the sum of all diagrams is BRST-closed.

To help finding candidates for superfield building blocks, the first principles tree-level

superstring amplitude prescription [2, 32] can be used as guide. For example, the superfield

L̃ij appears in the OPE of V i(z)U j(w) in the 4-pt string amplitude [29], and its BRST

transformation QL̃ij = −sijV
iV j has precisely the Mandelstam variable to cancel poles

in the 5-pt amplitude. Similarly, the superfield Ljiki comes from the numerator of the

1/zijzik pole in the OPE V i(zi)U
j(zj)U

k(zk) appearing in the 5-pt computation [12], and

its BRST transformation has the required Mandelstam variables to cancel poles in the 6-pt

amplitude,

QLjiki = sij(L̃jkV
i − L̃ikV

j + L̃ijV
k) − (sjk + ski + sij)L̃ijV

k. (4.22)

As the expressions must be in the cohomology of the pure spinor BRST operator, one

also removes the BRST-trivial parts of the building blocks L̃ij and Ljiki, using Lij and

Tijk instead.

Following the above procedure for the 14 color-ordered diagrams of the 6-point am-

plitude which are generated from the cyclic permutations of the diagrams in figures 1, 2
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1

2

3 4

5

6

Figure 1. The diagram associated with 〈L12

s1

L34

s3

L56

s5
〉.

1

2 3 4

6

5

+

1

2 3 4

56

Figure 2. The diagrams associated with 〈T123

s1t1

(

V4L56

s5

+ L45V6

s4

)

〉.

1

2

6

3

5

4

+

1

2

6

3

45

Figure 3. The diagrams associated with 〈T126

s1t3

(

V3L45

s4

+ L34V5

s3

)

〉.

and 3, a BRST-closed expression with the correct pole structure looks like12

A6(1, 2, 3, 4, 5, 6) =
〈L12L34L56〉

3s1s3s5
(4.23)

+
1

2

〈T123

s1t1

(V 4L56

s5
+

L45V
6)〉

s4
−

1

2

〈T126

s1t3

(V 3L45

s4
+

L34V
5)〉

s3
+cyclic(1. . .6)

where s1 = s12, s2 = s23, . . ., s6 = s61, t1 = (s12 + s23 + s13), t2 = (s23 + s34 + s24) and

t3 = (s34 + s45 + s35) are the 6-point Mandelstam variables of [6]. The full component

expansion for the 6-gluon amplitude obtained from (4.23) contains 6706 terms [8] and it

was checked to be gauge invariant.13 The first few terms of this expansion are given in

appendix B.

For the 7-point amplitude there are 6 diagrams which generate the 42 color-ordered

cubic diagrams upon cyclic symmetrization. The corresponding BRST-closed expression

with the correct pole structure is given by

A7(1, 2, 3, 4, 5, 6, 7) = +
〈T231L45L67〉

s2t1s4s6
+

〈T123T564V7〉

s1t1s5t4
+

〈T127T345V6〉

s1t7s3t3
(4.24)

−
〈T123T456V7〉

s1t1s4t4
−

〈T127T453V6〉

s1t7s4t3
−

〈T123L45L67〉

s1t1s4s6
+ cyclic(1. . .7)

12I thank Oliver Schlotterer and Dimitrios Tsimpis for many valuable discussions.
13After the first version of this paper appeared, Zvi Bern kindly provided his Mathematica file with the

field theory 6-gluon amplitude written in terms of polarization and momenta. A perfect match was obtained.
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where s1, . . ., s7 and t1, . . ., t7 are the 7-point Mandelstam variables of [7]. The ten-

dimensional 7-gluon expansion of (4.24) contains more than 130 thousand terms [8] and a

few are written in appendix B. As the results of [7] are written in the four-dimensional

helicity formalism, a direct comparison with the results quoted there is not possible.
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A The Bern-Carrasco-Johansson kinematic identities

The 4-pt BCJ kinematic relation nu = ns − nt is mapped to the superspace expression

〈L13V
2V 4〉 = 〈L12V

3V 4〉 − 〈L41V
2V 3〉. Using 〈L41V

2V 3〉 = −〈L23V
1V 4〉 it can be rewrit-

ten as

〈L{12V3}V
4〉 = 0, (A.1)

where {ijk} means to sum over the cyclic permutation of the labels. Note that (A.1) can

be explained from the fact that BRST-trivial quantities vanish. Explicitly,

0 = 〈Q(T123V4)〉 = s〈L{12V3}V
4〉 − (s + t + u)〈L12V3V4〉, (A.2)

which implies (A.1) because s + t + u = 0.

The 5-pt extended BCJ relations of [13, 14] are given by

n4 − n1 + n15

s45
−

n10 − n11 + n13

s24
−

n3 − n1 + n12

s12
−

n5 − n2 + n11

s51
= 0 (A.3)

n7 − n6 + n14

s14
−

n10 − n11 + n13

s24
−

n8 − n6 + n9

s25
−

n5 − n2 + n11

s51
= 0 (A.4)

n10 − n9 + n15

s13
+

n5 − n2 + n11

s51
−

n4 − n2 + n7

s23
+

n8 − n6 + n9

s25
= 0 (A.5)

n4 − n1 + n15

s45
−

n10 − n9 + n15

s13
−

n5 − n2 + n11

s51
−

n3 − n5 + n8

s34
= 0. (A.6)

Using the mappings of (3.8) they become

−
L45

s45
L{12V3} +

L42

s24
L{13V5} −

L12

s12
L{34V5} +

L51

s51
L{23V4} = 0, (A.7)

−
L14

s14
L{23V5} +

L42

s24
L{13V5} −

L25

s25
L{13V4} +

L51

s51
L{23V4} = 0, (A.8)

+
L13

s13
L{25V4} −

L51

s51
L{23V4} −

L23

s23
L{14V5} +

L25

s25
L{13V4} = 0, (A.9)

−
L45

s45
L{12V3} −

L13

s13
L{25V4} +

L51

s51
L{23V4} +

L34

s34
L{12V5} = 0, (A.10)
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which one can check to hold true when expanding in components. Using the momentum

conservation relations

s13 = s45 − s12 − s23, s14 = s23 − s51 − s45, s24 = s51 − s23 − s34

s25 = s34 − s12 − s51, s35 = s12 − s45 − s34, (A.11)

one finds that the l.h.s. of (A.7)–(A.10) are BRST-closed.

B The 5-, 6- and 7-gluon amplitudes

The 5-gluon amplitude is easily obtained by using [8], and one can check that the first few

terms are

2880A5(1, 2, 3, 4, 5) = (B.1)

− (k1 ·e2)(k1 ·e3)(k1 ·e4)(e1 ·e5)s−1
1 s−1

4 +(k1 ·e2)(k1 ·e3)(k1 ·e5)(e1 ·e4)s−1
1 s−1

4

− (k1 ·e2)(k1 ·e3)(k2 ·e4)(e1 ·e5)s−1
1 s−1

4 +(k1 ·e2)(k1 ·e3)(k2 ·e5)(e1 ·e4)s−1
1 s−1

4

− (k1 ·e2)(k1 ·e3)(k3 ·e4)(e1 ·e5)s−1
1 s−1

3 +. . .

The 6-gluon component expansion from the ansatz (4.23) generates 6706 terms of

which the first few are [8]

2880A6(1, 2, 3, 4, 5, 6) = (B.2)
[

(k1 ·e2)(k1 ·e3)(k1 ·e4)(k1 ·e6)(e1 ·e5)−(k1 ·e2)(k1 ·e3)(k1 ·e4)(k1 ·e5)(e1 ·e6)

− (k1 ·e2)(k1 ·e3)(k1 ·e4)(k2 ·e5)(e1 ·e6)+(k1 ·e2)(k1 ·e3)(k1 ·e4)(k2 ·e6)(e1 ·e5)

− (k1 ·e2)(k1 ·e3)(k1 ·e4)(k3 ·e5)(e1 ·e6)+(k1 ·e2)(k1 ·e3)(k1 ·e4)(k3 ·e6)(e1 ·e5)
]

s−1
1 s−1

5 t−1
1

−(k1 ·e2)(k1 ·e3)(k1 ·e4)(k4 ·e5)(e1 ·e6)s−1
1 s−1

4 t−1
1 +. . .

Similarly, the 7-gluon component expansion of (4.24) has 134460 terms14 and the first ones

are

2880A7(1, 2, 3, 4, 5, 6, 7) = (B.3)
[

+(k1 ·e2)(k1 ·e3)(k1 ·e4)(k1 ·e5)(k1 ·e6)(e1 ·e7)−(k1 ·e2)(k1 ·e3)(k1 ·e4)(k1 ·e5)(k1 ·e7)(e1 ·e6)

+(k1 ·e2)(k1 ·e3)(k1 ·e4)(k1 ·e5)(k2 ·e6)(e1 ·e7)−(k1 ·e2)(k1 ·e3)(k1 ·e4)(k1 ·e5)(k2 ·e7)(e1 ·e6)

+(k1 ·e2)(k1 ·e3)(k1 ·e4)(k1 ·e5)(k3 ·e6)(e1 ·e7)
]

s−1
1 s−1

6 t−1
1 t−1

5 + . . .

It is curious to note that the coefficient of ±1/2880 is the same for all the terms in the 5-,

6- and 7-gluon amplitudes alike. This is the same coefficient which was observed in [32] to

be the conversion factor required to match the RNS amplitudes at tree-level.

14Some of those terms contain ǫ10 tensors and are expected to vanish once rules for the vanishing of

things like ǫ
[m1...m10

10 δ
m11]
n are implemented in [8].
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C Shortcut to compute QL

There is a shortcut to compute QL’s for n-points using only the L’s appearing at (n− 1)-

points. The definitions of L̃ij and Ljiki are [12],

V i(zi)U
j(zj) →

L̃ij

zij
, L̃ij(zi)U

k(zk) →
Ljiki

zik

, (C.1)

so that QL̃ij = limzj→zi
zijQ(V i(zi)U

j(zj)) and QLjiki = limzk→zi
zikQ(L̃ij(zi)U

k(zk))

leads to

QL̃ij = lim
zj→zi

zij∂V j(zj)V
i(zi) = −sijV

iV j ,

QLjiki = − lim
zk→zi

zik(sijV
i(zi)V

j(zi)U
k(zk) + L̃ij(zi)∂V k(zk))

= −sij(L̃ik(zi)V
j(zi) + V i(zi)L̃jk(zi)) + (sik + sjk)V

k(zi)L̃ij(zi), (C.2)

which agree with (3.2) and (4.22), respectively. In the above we used QU i(z) = ∂V i(z) =

Πm(z)ki
mV i(z) + ∂θαDαV i(z) + ∂λαAi

α, which together with the OPE’s of the conformal

weight-one variables [18, 33] implies that

lim
zi→zj

Q(U i(zi)V
j(zj)) = lim

zi→zj

∂V i(zi)V
j(zj) → −sij

V i(zi)V
j(zi)

zij

. (C.3)
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