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Abstract
Worldline instantons provide a particularly elegant way to derive Schwinger’s
well-known formula for the pair creation rate due to a constant electric field in
quantum electrodynamics. In this communication, we show how to extend this
method to the corresponding problem of open string pair creation.

PACS numbers: 11.25.Db, 11.25.Uv, 11.15.Bt, 11.15.Kc

1. Introduction: Schwinger’s formula and its open string generalization

It was realized in the early days of quantum electrodynamics that this theory implies the
possibility of electron–positron pair production from the vacuum in a strong external electric
field [1–3]. As shown by Schwinger [3], the existence of this process and the pair creation
probability can be derived from the imaginary part of the effective Lagrangian. For the case of
a constant electric field of magnitude E, he obtained the well-known formula (at the one-loop
level)

ImLspin(E) = (eE)2

8π3

∞∑
k=1

1

k2
exp

[
−πkm2

eE

]
, (1.1)

with m being the electron mass. Schwinger also gave the corresponding formula for scalar
quantum electrodynamics:

ImLscal(E) = (eE)2

16π3

∞∑
k=1

(−1)k+1 1

k2
exp

[
−πkm2

eE

]
. (1.2)

Expressions (1.1) and (1.2) are clearly nonperturbative in the field.
The corresponding problem for an open string moving in a constant electromagnetic

background field was first considered by Burgess [4] who calculated the pair creation rate in
a weak field limit. The full analogue of Schwinger’s formulas was obtained, for both bosonic
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and supersymmetric open strings, by Bachas and Porrati [5]. For the bosonic open string, their
result reads

ImLstring(E) = 1

4(2π)D−1

∑
states S

β1 + β2

πε

∞∑
k=1

(−)k+1

( |ε|
k

)D/2

exp

(
−πk

|ε|
(
M2

S + ε2
))

. (1.3)

Here the first sum is over the physical states of the bosonic string, with MS being the mass of
the state. D = 26 is the spacetime dimension. The parameters β1,2 are defined as

β1,2 = πq1,2E, (1.4)

where q1,2 are the U(1) charges at the string endpoints, and

ε = 1

π
(arctanh β1 + arctanh β2). (1.5)

Formula (1.3) reproduces in the weak-field limit Schwinger’s formula for spin zero (1.2), as
well as its generalizations to arbitrary integer spin J. For stronger fields it deviates from the
field theory case, even qualitatively, since due to the rapid growth of the density of string states,
the total rate for the pair production derived from (1.3) diverges at a critical field strength [5]

Ecr = 1

π |max qi | . (1.6)

Heuristically, a field of this strength would break the string apart. However, overcritical fields
probably do make sense physically as a mechanism for the D-brane decay [6–8].

Nowadays, there are many methods available to obtain Schwinger’s formulas (1.1), (1.2).
Perhaps the most elegant one is the worldline instanton method, which was proposed by
Affleck et al for the scalar QED case [9] and generalized to spinor QED in [10, 11]. It allows
one to determine the kth Schwinger exponent through the calculation of a single periodic
stationary trajectory. In the following, we will show how to extend this method to the bosonic
string case.

2. The worldline instanton method

For easy reference, let us begin with sketching the worldline instanton calculation [9] of the
spin zero Schwinger formula (1.2).

The (euclidean) one-loop effective action for scalar QED can be written in the following
way [12]:

�scal[A] =
∫ ∞

0

dT

T
e−m2T

∫
x(T )=x(0)

Dx e−S[x(τ)]

S[x(τ)] =
∫ T

0
dτ

(
ẋ2

4
+ ieA · ẋ

)
.

(2.1)

Here m is the mass of the scalar particle, and the functional integral
∫
Dx is over all closed

spacetime paths xμ(τ) which are periodic in the proper-time parameter τ , with the period T.
Rescaling τ = T u, the effective action may be expressed as

�scal[A] =
∫ ∞

0

dT

T
e−m2T

∫
x(1)=x(0)

Dx exp

[
−

(
1

4T

∫ 1

0
du ẋ2 + ie

∫ 1

0
duA · ẋ

)]
, (2.2)

where the functional integral
∫
Dx is now over all closed spacetime paths xμ(u) with

period 1. After this rescaling we can perform the proper-time integral using the method
of steepest descent. The T integral has a stationary point at

T0 = 1

2m

√∫ 1

0
duẋ2 (2.3)
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leading to

Im �scal = 1

m

√
π

T0
Im

∫
Dx e−(m

√∫
ẋ2+ie

∫ 1
0 duA·ẋ). (2.4)

Here we have implicitly used the large mass approximation

m

√∫ 1

0
du ẋ2 � 1. (2.5)

The functional integral remaining in the effective action expression (2.4) may be
approximated by a further, functional, stationary phase approximation. The new, nonlocal,
worldline ‘action’

Seff = m

√∫ 1

0
du ẋ2 + ie

∫ 1

0
duA · ẋ (2.6)

is stationary if the path xα(u) satisfies

m
ẍμ√∫ 1

0 du ẋ2
= ieFμνẋν . (2.7)

A periodic solution xμ(u) to (2.7) is called a ‘worldline instanton’. Further, contracting (2.7)
with ẋμ shows that for such an instanton

ẋ2 = constant ≡ a2. (2.8)

Generally, the existence of a worldline instanton for a background A leads to an imaginary
part in the effective action �scal[A], and the leading behavior is

Im �scal[A] ∼ e−S0 , (2.9)

where S0 is the worldline action (2.6) evaluated on the worldline instanton.
For a constant electric background of magnitude E, pointing in the z direction, the

Euclidean gauge field is A3(x4) = −iEx4. The instanton equation (2.7) for this case can be
easily solved, and the solutions are simply circles in the z–t plane of radius m

eE
[9]:

x3
k (u) = m

eE
cos(2kπu), x4

k (u) = m

eE
sin(2kπu) (2.10)

(with x1,2 kept constant). The integer k ∈ Z+ counts the number of times the closed path is
traversed, and the instanton action (2.6) becomes

S0 := Seff
[
x

μ

k

] = 2k
m2π

eE
− k

m2π

eE
= k

m2π

eE
. (2.11)

Thus in the large mass approximation (2.5) the contribution of the instanton with a winding
number k reproduces the exponent of the kth term of Schwinger’s formula (1.2).

3. Generalization to the open string

The one-loop effective action for an open string in an electromagnetic background field Aμ

with the constant field strength tensor Fμν has, in conformal gauge, the following path integral
representation [4, 5, 13, 14]:

�[A] = 1

2

∫ ∞

0

dT

T
(4π2T )−

D
2 Z(T )

∫
Dx e−SE [x,A]. (3.1)
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Here T denotes the Teichmüller parameter of the annulus, and the path integral is over all the
embeddings of the annulus at fixed T into D = 26 dimensional flat spacetime. The worldsheet
action is

SE = 1

4πα′

∫
dσdτ∂ax

μ∂axμ − i
q1

2

∫
dτxμ∂τ x

νFμν

∣∣∣
σ=0

− i
q2

2

∫
dτxμ∂τ x

νFμν

∣∣∣
σ= 1

2

.

(3.2)

Here α′ is the Regge slope, which will be set equal to 1
2 in the following. The worldsheet

is parameterized as a rectangle σ ∈ [0, 1
2 ] and τ ∈ [0, T ], where τ = T is identified with

τ = 0. We use euclidean conventions where σ 0 = −iσ 2 = −iτ , x0 = −ixD and AD = −iA0.
q1,2 are the charges associated with the two boundaries. We will assume that q1 	= q2, which
eliminates the Möbius strip contribution to this amplitude. Z(T ) is the partition function of
oriented open-string states, which in terms of the masses MS of these states is given by

Z(T ) =
∑

oriented states

e−πT M2
S . (3.3)

The equations of motion derived from (3.2) are(
∂2
σ + ∂2

τ

)
xμ = 0

∂σ xμ = iπq2Fμν∂τ x
ν

(
σ = 1

2

)
∂σ xμ = −iπq1Fμν∂τ x

ν (σ = 0).

(3.4)

Let us now consider the constant electric field case, FD,D−1 = −FD−1,D = iE. We use (3.3)
to rewrite

�[F ] = 1

2

∑
oriented states

∫ ∞

0

dT

T
(4π2T )−

D
2 e−πT M2

S

∫
Dx e−SE [x,F ]. (3.5)

We rescale τ = T u and do the T-integral by the method of steepest descent. The stationary
point is

T0 =
√

Iu

Iσ + 2π2M2
S

(3.6)

where we have abbreviated

Iσ :=
∫ 1

0
du

∫ 1
2

0
dσ∂σ xμ∂σ xμ

Iu :=
∫ 1

0
du

∫ 1
2

0
dσ∂ux

μ∂uxμ.

(3.7)

The new worldsheet action is

Seff = 1

π

√
Iu

√
Iσ + 2π2M2

S − i
q1

2

∫
dτxμ∂τ x

νFμν

∣∣∣
σ=0

− i
q2

2

∫
dτxμ∂τ x

νFμν

∣∣∣
σ= 1

2

. (3.8)

It leads to the equations of motion (compare (3.4))[
Iu∂

2
σ +

(
Iσ + 2π2M2

S

)
∂2
u

]
xμ = 0 (3.9)

T0∂σ xμ = iπq2Fμν∂ux
ν

(
σ = 1

2

)
(3.10)

T0∂σ xμ = −iπq1Fμν∂ux
ν (σ = 0). (3.11)

The kth worldsheet instanton solving these equations is obtained by the following ansatz:

xD−1
k = N cos(2πku) cosh(b − aσ)

xD
k = N sin(2πku) cosh(b − aσ)

(3.12)
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with the remaining coordinate constants. We take equal signs for k and a. Then (3.9) and
(3.6) imply that

T0 = 2πk

a
(3.13)

and equations (3.10) and (3.11) give

sinh b = πq1E cosh b

sinh
(
b − a

2

)
= −πq2E cosh

(
b − a

2

)
.

(3.14)

Equations (3.14) determine the parameters a, b as

b = arctanh β1 (3.15)

a = 2(arctanhβ1 + arctanh β2). (3.16)

Calculating Iu, Iσ we find

Iu = N2 (2πk)2

2a

[a

2
+ β1 cosh2 b + β2 cosh2(b − a/2)

]

Iσ = a2

(2πk)2
Iu − 1

2
N2a2.

(3.17)

Finally, the combination of (3.17) with (3.6) and (3.13) fixes the normalization of the instanton:

N = 2πMS

|a| . (3.18)

We can then evaluate the stationary action

S0 = Seff
[
x

μ

k

] = 2π2M2
S

k

a
. (3.19)

Noting that a = 2πε this correctly reproduces the exponent in (1.3) in the large MS limit.

4. Discussion

Although our calculation does not provide new information on the string pair creation problem,
we consider it worth presenting nonetheless. This is because, in the QED case, the worldline
instanton approach has turned out to offer a relatively easy route to obtain pair creation rates
for certain classes of non-constant fields [10, 11, 15]. Moreover, the form of the critical
trajectories may also provide new physical insights. It would be interesting to extend this
calculation to the prefactor determinant, as well as to the superstring case. Our approach may
possibly also generalize to the problem of D-brane decay into open strings (in this context
methods similar to the one proposed here have already been used in [16]).
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