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We present gravitational waveforms for the last orbits and merger of black-hole-binary systems along
two branches of the black-hole-binary parameter space: equal-mass binaries with equal nonprecessing
spins, and nonspinning unequal-mass binaries. The waveforms are calculated from numerical solutions of
Einstein’s equations for black-hole binaries that complete between six and ten orbits before merger. Along
the equal-mass spinning branch, the spin parameter of each black hole is y; = S;/M? € [—0.85,0.85],
and along the unequal-mass branch the mass ratio is ¢ = M,/M; € [1, 4]. We discuss the construction of
low-eccentricity puncture initial data for these cases, the properties of the final merged black hole, and
compare the last 8—10 gravitational-wave cycles up to Mw = 0.1 with the phase and amplitude predicted
by standard post-Newtonian (PN) approximants. As in previous studies, we find that the phase from the
3.5PN TaylorT4 approximant is most accurate for nonspinning binaries. For equal-mass spinning binaries
the 3.5PN TaylorT1 approximant (including spin terms up to only 2.5PN order) gives the most robust
performance, but it is possible to treat TaylorT4 in such a way that it gives the best accuracy for spins
x:; > —0.75. When high-order amplitude corrections are included, the PN amplitude of the (€ = 2,

m = *2) modes is larger than the numerical relativity amplitude by between 2-4%.
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L. INTRODUCTION

One of the most urgent goals of numerical relativity
(NR) is to produce simulations that will aid the detection
of gravitational waves (GWs) from black-hole-binary
mergers. The current first generation of ground-based in-
terferometric GW detectors is about to be upgraded, and
the second-generation Advanced LIGO and Virgo detec-
tors are expected to come online around 2014 [1-4]. Once
operational, current event-rate calculations predict that
they may observe multiple GW signals in one month of
design-sensitivity operation [1]. Some of these signals will
be from the inspiral and merger of two black holes, and to
find them in the detector data GW astronomers will use
matched filtering techniques, for which they require large
collections of accurate theoretical waveforms (templates)
of the physical signal.

The GW signal from the last orbits and merger of black-
hole-binary systems can only be calculated in full general
relativity using numerical solutions of FEinstein’s equa-
tions. Since such simulations became possible in 2005
[5-7], they have been used to explore larger regions of
the black-hole-binary parameter space (which is parame-
trized by the mass ratio of the binary, the spin vector
of each black hole, and the binary’s eccentricity), with
increasing levels of accuracy and covering increasing
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numbers of GW cycles before merger [8,9]. In addition
to use in producing analytic waveform models for the
construction of GW search template banks, which we
will discuss further in this paper, NR waveforms have
also been useful in GW detection efforts as part of the
NINJA project to test a battery of current GW search
pipelines [10,11].

In this paper we present simulations that cover between
six and ten binary orbits before merger of configurations in
two important subfamilies of the binary parameter space:
unequal-mass binaries in which the black holes are not
spinning, and equal-mass binaries where the black holes
have equal spins either aligned or anti-aligned with the
binary’s orbital angular momentum.

Following a brief summary of numerical methods in
Sec. II, in Sec. III we extend the method we developed in
[12] to produce low-eccentricity parameters for spinning
binaries. This method is based on integrating the post-
Newtonian (PN) equations of motion from a separation
where quasicircular (QC) parameters are sufficiently accu-
rate, up to the binary separation where we wish to begin a
full numerical simulation, and then using the momenta at
that separation from the PN integration as the initial mo-
menta of the full numerical simulation. We now incorpo-
rate the highest-order known spin contributions, but find
that these are still not accurate enough, and develop a
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method to further refine the PN predictions. This allows us
to produce simulations of unequal-mass nonspinning
and equal-mass spinning binaries with eccentricities of
e = 0.004.

In the Samurai study [13] it was shown that current
numerical simulations for the equal-mass nonspinning
case are well within the accuracy requirements for detec-
tion with ground-based experiments. That study also
showed that the agreement of numerical results between
different codes was consistent with the error estimates of
each code—and so a complete error analysis of a set of
numerical simulations can confidently be considered as
providing the uncertainty in those waveforms with respect
to the true physical waveforms. In Sec. V we study the
errors in our unequal-mass and equal-mass-spinning wave-
forms, and conclude that these waveforms are also well
within the accuracy requirements for GW detection.

We also estimate the phase accuracy of our simulations,
using a number of different methods. The phase error
accumulates quickly during the inspiral and even faster
during the merger, and small errors at a given separation or
frequency are amplified during the further evolution.
On the other hand, the absolute value of the GW phase is
not directly observable, and phases from different simula-
tions can be aligned in different ways, e.g., between two
suitably chosen fixed frequencies during the evolution.
Correspondingly, the estimated phase errors show a dra-
matic dependence on such alignment effects, and it is
therefore useful to phrase error estimates in a number of
different ways. An example relevant to a comparison with
PN results would be the time-domain phase error over a
given set of GW cycles, while for GW detection we might
be more interested in the mismatch error in the waveform
at a given binary mass with respect to a given detector.

Having described the production of our numerical wave-
forms, and established their accuracy, we summarize in
Sec. VI the physical properties of the configurations we
have studied: the mass and spin of the final merged black
hole, the recoil (in the unequal-mass cases), and the radi-
ated energy and its distribution among the dominant and
subdominant harmonics.

One of the motivations for producing black-hole-binary
simulations is to use the resulting waveforms for the con-
struction of analytic waveform models. All such models
are based in some way on the expectation that PN approx-
imations will be sufficiently accurate up until a few orbits
before merger, and so PN (or effective-one-body) results
can be used to model the early inspiral, and numerical
results can be used to calibrate a model for the merger.
Such a procedure first requires a measurement of the
accuracy of PN results as the binary approaches merger.
We do this in Sec. VII, where we compare the phase and
amplitude of our NR results with the corresponding PN
predictions over the 8—10 cycles prior to the point where
the GW frequency reaches Mw = 0.1, about 1.5 orbits
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before merger. This extends our previous studies of the
equal-mass nonspinning binary [14,15] and equal-mass
binaries in the orbital-hang-up configuration [16].

II. NUMERICAL METHODS

We performed numerical simulations with the BAM code
[17,18]. The code starts with black-hole-binary puncture
initial data [19,20] generated using a pseudospectral ellip-
tic solver [21], and evolves them with the y variant of the
moving-puncture [6,7] version of the Baumgarte-Shapiro-
Shibata-Nakamura [22,23] formulation of the 3 + 1
Einstein evolution equations. Spatial finite-difference
derivatives are sixth-order accurate in the bulk [18],
Kreiss-Oliger dissipation terms converge at fifth order,
and a fourth-order Runge-Kutta algorithm is used for
time evolution. The gravitational waves emitted by the
binary are calculated from the Newman-Penrose scalar
W,, and the details of our implementation of this procedure
are given in [17].

In each simulation, the black-hole punctures are initially
a coordinate distance D apart, and are placed on the y axis
at y, = —¢gD/(1 + g) and y, = D/(1 + gq), where g =
M, /M, is the ratio of the black-hole masses in the binary,
and we always choose M; < M,. The masses M,; are
estimated from the Arnowitt-Deser-Misner (ADM) mass
at each puncture, according to the method described in
[19]; we discuss this estimate of the black-hole masses and
its subtleties for spinning black holes in more detail in the
Appendix. The Bowen-York punctures are given momenta
px = *Fp, tangential to their separation vector, and p, =
* p, towards each other. The latter momentum component
accounts for the (initially small) radial motion of the black
holes as they spiral together. One essential question in
setting up our simulations is the determination of the
parameters (p,, p,) that lead to noneccentric quasicircular
inspiral. We will discuss our procedure to generate low-
eccentricity parameters in Sec. II1.

The grid setup is similar to what we have used in [17],
and using the notation introduced there, the simulations
discussed in this paper all use a configuration of the form
Xmn=ally X N:l, X 2N:6]. This indicates that the simula-
tion used the y variant of the moving-puncture method, /;
nested mesh-refinement boxes with a base value of N3
points surround each black hole, and /, nested boxes with
(2N)? points surround the entire system, and there are
six mesh-refinement buffer points. The = parameter
in the Baumgarte-Shapiro-Shibata-Nakamura system is
Mmn = 2. The choices of N, /i, [, and the resolutions are
given in Table I. The resolution around the puncture is
denoted by M, / h,,;,, which is the resolution with respect to
the smallest black hole, M. The puncture of the second
black hole will have the same numerical resolution, but if
the black hole is bigger, M, > M, then it will effectively
be better resolved.
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TABLE I. Summary of grid setup for numerical simulations. The grid parameters follow the notation introduced in [17]; see text.
M, /hyin denotes the resolution on the finest level with respect to the smallest black hole, while h,,,/M is the resolution on the
coarsest level with respect to the fotal mass, M = M| + M,. The outer boundary of the computational domain is at x; .,/M, where
x; = {x, v, z}. In general [, indicates the number of moving refinement levels around each puncture, and I, the number of large
refinement levels that encompass both punctures. The one exception is the second g = 4 series, which uses three refinement levels
around the puncture of the large black hole, and five around the other.

Configuration N (L, 1) M,/ hin Ronax/ M Ximax/M
Equal-mass simulations

xi = —0.385 72, 80, 88 (6,5) 48, 53.3, 58.67 10.67, 9.6, 8.73 774
xi = —0.75 80, 88, 96 (6.5) 53.3, 58.67, 64 9.6, 8.73, 8.0 774
xi = —0.50 64, 72, 80 (6,5) 42.67, 48, 53.3 12.0, 10.67, 9.6 774
xi = —025 64, 72, 80 (6,5) 42.67, 48, 53.3 12.0, 10.67, 9.6 774
xi=0 64, 72, 80 (5,5) 21.3, 24, 26.7 12.0, 10.67, 9.6 774
xi = 0.25 80, 88, 96 (5.5) 26.7, 29.33, 32 9.6, 8.73, 8.0 774
xi: = 0.50 80, 88, 96 (5.5) 26.7, 29.33, 32 9.6, 8.73, 8.0 774
xi =0.75 64, 72, 80 (6.5) 42.67, 48, 53.3 12.0, 10.67, 9.6 774
xi = 0.85 64, 72, 80 (6,5) 42.67, 48, 53.3 12.0, 10.67, 9.6 774
Unequal-mass simulations

qg=2 70, 80, 88 5.7 23.3, 26.67, 29.33 29.26, 25.6, 23.27 2063
q=3 70, 80, 88 5.7 23.3, 26.67, 29.33 21.94, 19.2, 17.45 1547
q = 4(a) 70, 80, 88 5.7 23.3, 26.67, 29.33 17.55, 15.36, 13.96 1237
q = 4(b) 80, 88, 96 (3/5,7) 26.67, 29.33, 32.0 15.36, 13.96, 12.8 1237

The one exception to this setup is a second convergence
series for mass ratio ¢ = 4 (see the last row in Table I).
These simulations use a grid configuration in which the
effective finest resolution is the same for both black holes.
This is achieved by putting different numbers of refinement
boxes around each puncture. As M| is 4 times smaller than
M,, we use two more boxes (the resolution doubles from
box to box) around the smaller black hole than we do for
the larger one.

Far from the sources, the meaningful length scale is the
total mass of the binary, M = M, + M,, and so the reso-
lution on the coarsest level is given by A, /M.

In our previous study of y; > 0 cases [16] we found that
extra resolution was required around the punctures when
the black holes have high spin, | x;| = 0.75. In the newer
Xi <0 simulations we use high resolution around the
puncture in all cases. Note also that in only two cases (¢ =
2, 3), is the outer boundary causally disconnected from the
physical system for the entire length of the simulation. This
can be seen by comparing the time when the GW signal
reaches its peak amplitude in Table IV (to be discussed in
Sec. VI), and the location of the outer boundary in Table I.

III. SPECIFICATION OF LOW-ECCENTRICITY
INITIAL PARAMETERS

Puncture initial data typically consist of the analytic
Bowen-York solution to the momentum constraint [20]
(which allows for the construction of multiple boosted,
spinning black holes), and a numerical solution of the
Hamiltonian constraint in puncture form [19]. To produce
the data for the simulations that we discuss in this paper we

used the single-domain spectral elliptic solver described in
[21]. In this approach the black holes’ angular and linear
momenta may be directly specified, while their masses
are specified indirectly. Some subtle issues related to the
estimation of black-hole masses are discussed in the
Appendix.

We wish to simulate black holes following noneccentric
inspiral. Eccentricity cannot be so easily defined in full
general relativity as in Newtonian theory, since radiation
reaction precludes the existence of circular orbits, and
gauge effects mean that any definition based on the coor-
dinate motion of the black holes (or the punctures) will not
be unique. Having said that, all definitions of eccentricity
based on the gauge-invariant gravitational-wave signal (see
[24] for a thorough discussion of the choices available)
should agree on zero-eccentricity inspiral, and we have
found in previous work [12] that definitions based on the
coordinate motion are acceptable at the level of accuracy
that we are interested in, which is eccentricities on the
order of e ~ 1073, For this work we estimate the eccen-
tricity from the orbital frequency of the puncture motion
by the maximum of ¢, = (w(f) — w(1))/2w(¢)), where
w (1) is an estimate of the noneccentric frequency based on
a curve fit through the numerical data [12].

To produce low-eccentricity inspiral we need to know
the appropriate initial momenta to give the black holes.
In puncture simulations the most effective way to do this
seems to be to estimate the momenta using PN theory. The
simplest approach is to consider only a conservative PN
model (i.e., without radiation reaction, and therefore with-
out inspiral), and to calculate the momenta consistent with
circular orbits at a given coordinate separation. We will
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refer to these as quasicircular parameters. We have used
QC parameters in the past [17,25,26] for binaries no more
than three orbits away from merger, at which point small
eccentricities are hard to detect. For binaries that undergo
five or more orbits before merger, it becomes clear that the
QC momenta result in noticeable eccentricities.

One way to improve the parameters is to use a PN
approach that includes the effects of radiation reaction. A
straightforward method to do this is by time integration of
the PN equations of motion. One begins with QC parame-
ters for a binary with a large separation (D = 30M), and
integrates the PN equations of motion for two point parti-
cles until they have reached the separation at which we
wish to start a full numerical simulation. At that point we
read off the parameters from the PN calculation and use
those in our black-hole evolution code. We will refer to
such parameters as PN inspiral (PN) parameters. In [12]
we demonstrated that, in the equal-mass nonspinning case,
PN inspiral parameters using a 3PN accurate Hamiltonian
[27-29] (see also [30-32]) and 3.5PN accurate radiation
flux [33-35] lead to inspirals with eccentricities e ~ 0.002.
Similar results were also obtained for unequal-mass non-
spinning binaries up to mass ratio ¢ = M,/M; = 4; these
were first used in [36], and are discussed in more detail
here. PN inspiral parameters were also used successfully to
produce low-eccentricity simulations of one precessing-
spin configuration in [37].

When we extended our studies to spinning binaries in
[16] we found that the same procedure did not work so
well. At that time the PN equations included only leading-
order (LO) contributions to the spin-orbit and spin-spin
Hamiltonians [38—43], and spin-induced radiation flux
terms as described in [44], see also [41,43]. Note that there
can be ambiguities in the literature assigning PN orders to
the spin-terms in the Hamiltonian. Following [45] we
assign 1.5PN order to the LO spin-orbit term in the
Hamiltonian and 2PN order to the leading-order spin-
spin term.

We find that the corresponding LLO PN inspiral parame-
ters lead to inspirals with eccentricities e ~ 0.009 for spins
parallel to the orbital angular momentum (and y; =
S;/M? = 0.5), and e ~ 0.03 for the corresponding case
with spins antiparallel to the orbital angular momentum.
In fact, in many cases much lower eccentricities were
achieved with the supposedly cruder QC parameters, and
these were used for the final results in [16]; in spinning
cases the QC parameters include only leading-order spin
effects [26,41], and we have not examined the effects of
using NLO QC parameters. For the antiparallel-spin cases,
both the QC and LO PN inspiral parameters lead to eccen-
tricities that were too high to be seriously considered as
““quasicircular inspiral.”

For this work we have incorporated recent results
[45-47], and include next-to-leading order (NLO) spin
terms in the PN equations of motion. We have also
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included the flux contribution due to the energy flowing
in to the black holes, which appears at the relative 2.5PN
order, as derived in Ref. [48].

The improvement when using NLO PN inspiral parame-
ters is dramatic, as shown in Table. II. We see that in the
Xi = —0.5 case, the QC parameters lead to an eccentricity
of ¢ = 0.015. The LO PN inspiral parameters give even
higher eccentricity, e = 0.03. When NLO spin terms are
included, however, the eccentricity drops to e = 0.004,
i.e., a reduction by almost an order of magnitude.

However, this eccentricity is still twice what we can
achieve in the nonspinning case. One approach to reduce
further the eccentricity would be to employ an iterative
procedure like that used for excision data in [49]. We do
not attempt this procedure, for the following reasons. The
excision data considered in [49] are adapted to the gauge
that will be used for their subsequent evolution, and, in
particular, already possess the coordinate motion consis-
tent with their motion along a quasicircular inspiral.
Puncture initial data, by contrast, start out with no coor-
dinate motion. After the simulation begins, the puncture
wormholes evolve into puncture trumpets [50-52], and
acquire some coordinate motion which, after roughly one
orbit, corresponds to the motion consistent with quasicir-
cular inspiral [12]. Measuring the orbital eccentricity in
order to apply an iteration procedure therefore requires
performing puncture simulations well beyond one orbit,
and even then the reduction in eccentricity typically con-
verges very slowly. In addition, it is only really practical to
estimate the eccentricity using the puncture coordinate
motion, which, as should be clear from the preceding
discussion, is purely a gauge effect and so may not be
able to be used to reduce the physical eccentricity to an
arbitrarily low level. It turns out that a similar effect occurs
with excision data, as recently reported in [24]. Note,
however, that the results in [24] arise from a different
gauge condition to that used in moving-puncture simula-
tions, and any conclusions they draw about the correspon-
dence (or lack thereof) between the coordinate and
physical motions of the black holes may not apply to

TABLE II. Choices of the initial momenta and resulting
eccentricity for the equal-mass y; = —0.5 case. We find that
the QC parameters yield an eccentricity an order of magnitude
larger than we desire, while the LO PN inspiral parameters are
twice as bad. Incorporating NLO spin effects dramatically
reduces the eccentricity to e ~ 0.004, and a further iteration
based on PN predictions reduces it by a further 25%.

Parameters Dy py(X107%) e
QC 0.084 69 0 0.015
PN (LO) 0.086 12 —5.824 0.03
PN (NLO) 0.08500 —5.250 0.004
PN, 0.08512 —5.258 0.003
PN_ 0.084 87 —5.242 0.008
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moving-puncture results. We will consider this further in
future work [53].

For these reasons, we have attempted an alternative
approach, based on extracting further information from
PN theory. We will illustrate our approach using the
same case that we have discussed above. Here the black-
hole spins are |y;| = 0.5 and directed antiparallel to the
binary’s orbital angular momentum. The initial coordinate
separation of the punctures is D = 12.5M. A first simula-
tion is performed using NLO PN inspiral parameters. For
reference, these are, as given in Table II, p,/M = 0.0850
for the tangential momenta, and p,/M = —5.250 X 10~4
for the radial momenta.

We then calculate the eccentricity of the first orbits in
this simulation. As we stated above, we find e = 0.004. To
reduce the eccentricity further, we now return to PN theory.
If we solve the PN equations of motion starting at
D = 12.5M, using (p,, p,)/M = (0.085, —5.25 X 107%),
we will of course recover the same noneccentric PN
inspiral as when we first calculated these parameters. We
now ask the question, ““How much would these parameters
have to vary, in order to produce the eccentricity we saw in
our NR simulation?”” We assume that a variation in (p,, p,)
that produces an eccentricity of e = 0.004 in the PN
integration, starting at the same separation as the NR
simulation, will give us approximately the correct magni-
tude of momenta variation to remove the eccentricity in the
NR simulation. Common simplifying characteristics of the
situations we have in mind are that the variation in sepa-
ration due to eccentricity, during half an orbit, say, is
smaller than the variation due to the inspiral; and that the
tangential momentum is much larger than the radial
momentum.

What we do now is simply adjust both the radial and
tangential momenta by some factor k until the PN evolu-
tion produces an eccentricity of e = 0.004. For this case
we find that £k = 1.0015, i.e., by 0.15%. We then assume
that this is close to the error in the parameters that we have
used in our NR simulation, and modify those also by
0.15%. We perform two additional simulations, one in
which the momenta are increased by 0.15%, and one in
which the momenta are reduced by 0.15%. The two
enhanced PN-parameter choices are denoted by “PN.”
in Table II.

We find, in this case, that the eccentricity is reduced
when the momenta were reduced, and we achieve e =
0.003. This is very close to the eccentricity we achieved
in the equal-mass nonspinning case, and we consider that
acceptable. We also experimented with repeating this
iteration procedure, but it did not noticeably reduce the
eccentricity; at this level it may be possible to more clev-
erly modify separately the radial and tangential momenta,
but it may also turn out that further refinement in the
puncture-motion eccentricity will not improve the true
physical eccentricity, as indicated by the GW signal. At
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some level of accuracy it will also be necessary to adjust
the radial and tangential momenta by different factors.
Another shortcoming of the method we have used here is
that we do not explicitly use phasing information when
adjusting the eccentricity of the orbit, e.g., to determine
whether momenta should be increased or decreased with-
out having to perform two further simulations. One reason
why this is difficult, is because in the initial gauge of the
simulation the punctures are stationary on the numerical
grid, and it takes ~ one orbit for their motion to asymptote
to a trajectory consistent with the physical motion of the
black holes. We have found the results to be acceptable
for all cases we have considered here. Further work on
improving this procedure is underway, and preliminary
results on an improved method that also uses phasing
information have been presented recently [54].

The procedure we have described here was performed on
all of the anti-hang-up cases, and the final parameters are
given in Table IV. For these cases we also indicate the
eccentricities that were achieved from the raw PN-inspiral
parameters. Also shown are the parameters for the non-
spinning case presented in [14], the hang-up cases de-
scribed in [16], and a set of nonspinning unequal-mass
simulations. In the unequal-mass simulations, the eccen-
tricity was found to be sufficiently low with the raw PN
inspiral parameters, and no further modifications were
made. This also suggests that while we expect the PN
approximation to deteriorate for larger mass ratios, this
deterioration is not large at g = 4.

However, a second series of ¢ = 4 simulations was also
performed, using effective-one-body (EOB) parameters as
described in [55]. Whereas PN inspiral parameters lead to
an eccentricity of e = 0.0038, the EOB parameters lead to
a lower eccentricity of only e = 0.003. This appears to be
consistent with the expectation that EOB methods retain
their accuracy at higher mass ratios better than PN meth-
ods, although we note that the uncertainty in the eccen-
tricity calculation is 5 X 1074, and so the two values agree
within uncertainty. Results from much higher-mass-ratio
simulations are necessary to definitively compare the per-
formance of EOB and PN parameters.

IV. SUMMARY OF NUMERICAL SIMULATIONS

In this section we summarize the two sets of configura-
tions that we studied.

The first comprised equal-mass (¢ = 1) binaries, with
equal spins directed either parallel (y; > 0) or antiparallel
(x; <0) to the orbital angular momentum of the binary.
The spins considered were | y;| = {0, 0.25, 0.5, 0.75, 0.85}.
When the spins are (anti-)parallel to the orbital angular
momentum, they will not precess, making such cases a
relatively simple subfamily of the total black-hole-binary
parameter space. And when g = 1, the system possesses
enough symmetry that the simulation can be performed on
only a quarter of the full physical domain, z > 0, y > 0; this
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symmetry is also reflected in the fact that in these configu-
rations the center of mass of the system does not move, and
the final black hole does not experience any recoil.

In addition, the choice of equal spins also yields an
important subfamily of configurations: we found in [56]
that it is possible to rather accurately model any nonpre-
cessing binaries with unequal spins using essentially only a
mass-weighted sum of the spins of the binary, motivated by
numerical evidence from [26,57,58], and PN theory [59].
Therefore for the purposes of producing waveform models
for GW detection with current ground-based detectors, it is
sufficient to simulate only binaries where the black holes
have equal spins. Recall also that the use of Bowen-York-
puncture data limits us to black holes with spins |y;| =
0.92 [60-63], and that since errors due to the presence of
junk radiation increase with higher spins, the maximum
spin that we treat in these simulations is | y;| = 0.85.

The second set of configurations we consider is non-
spinning binaries with unequal masses, ¢ = {2, 3, 4}. Now
the symmetry of the system is reduced, and the simulations
require half of the physical domain, z > 0. The center of
mass of the system can move, and does due to the nature of
the asymmetry of the GW emission from these systems,
and the final black hole “recoils” (or is ‘“kicked’’) relative
to the original center of mass of the binary. We will discuss
further the recoil in our unequal-mass simulations in
Sec. VID.

Of the simulations discussed in this paper, a small subset
were first presented elsewhere. The equal-mass nonspin-
ning simulations were described in detail in [14], and the
|xi] >0 cases in [16]. The remaining simulations have
not yet been published, although they have all be used as
part of other studies. The ¢ = 2 simulations were used
to study parameter-estimation accuracy for the Laser
Interferometric Space Antenna [64]. In addition, all of these
simulations have been used to build phenomenological
waveform families. Some of the nonspinning-binary data
were used in [36,65] to produce nonspinning phenomeno-
logical waveforms, and in [66] to calibrate an EOB model.
It should be noted, however, that in those works less-
accurate simulations of the higher-mass-ratio cases were
used, and, in particular, the accuracy of the ¢ = 4 data used
in [66] were not sufficiently accurate to conclusively test
the physical fidelity of the EOB model. Also, all of the
waveforms presented here were used to produce the first
non-precessing-spin phenomenological model presented in
[56], and the follow-up study in [67]. In fact, extra simula-
tions for unequal-mass spinning binaries were also neces-
sary for that work, but we will not consider those here.

The methods we used to estimate the initial momenta for
quasicircular inspiral were described in Sec. III, and fall
into three classes: quasicircular, PN inspiral (including
NLO spin terms when necessary), and enhanced PN.
inspiral, as described in Sec. III. For an extra ¢ = 4 series,
we also used parameters based on an EOB model.
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QC parameters were used to produce the older orbital
hang-up y; >0 simulations, which were originally
presented in [16]; for these cases the eccentricity is the
highest, around e ~ 0.006. PN inspiral parameters were
used for the unequal-mass simulations, where they were
found to yield acceptably low eccentricities of ¢ << 0.004.
Finally, PN . -inspiral parameters were used for the anti-
hang-up cases y; <0, and for all cases the eccentricity is
e < 0.003. The EOB parameters that were used for the
second g = 4 series lead to an eccentricity of e = 0.003.

V. ACCURACY OF NUMERICAL SIMULATIONS

In this section we will estimate the errors in our numeri-
cal results. These will give us some indication of both the
physical accuracy of our waveforms, and the applications
for which they can confidently be used.

The waveform can be decomposed into phase and am-
plitude functions, ¢,,(7) and A, (¢) respectively, for each
spherical harmonic mode (€, m). The individual harmonics
of the Newman-Penrose scalar W, can now be written as

Rex Wy (1) = Ag ()e™ 000, (1)

where R, is the coordinate radius of the wave-extraction
sphere. The frequency of the signal is given by wy, =
dey,,/dt. The results in this paper use GW signals ex-
tracted at R., = 90M, unless otherwise stated.

We will focus on the (€ = 2, m = 2) mode. The numeri-
cal error in the functions A,,(#) and ¢,,(?) is estimated by
means of a convergence test: we perform simulations at
three (or more) numerical resolutions, and verify that
differences between successive resolutions decrease at a
rate consistent with the expected convergence properties of
the numerical code. Throughout the remainder of this
paper, the functions A(7), ¢(¢) and w(r) will refer to the
(€ = 2,m = 2) quantities unless otherwise stated. If a
clear convergence rate is observed, then it is also possible
to use Richardson extrapolation to remove the error term at
the next order, and produce a yet more accurate estimate of
the true result, and to also calculate an uncertainty esti-
mate. This procedure was carried out for our equal-mass
nonspinning data in [14].

As described in Sec. II, we have based our grid configu-
rations on that used in our work on equal-mass nonspin-
ning binaries [14]. For that configuration, the defining
number of points in the three convergence series simula-
tions (see Table I) was N = {64, 72, 80}. This was suffi-
cient to achieve reasonably clean sixth-order convergence,
which had been identified in [18] as the dominant order of
finite-difference error in our code. For configurations with
higher mass ratios and nonzero spins, greater numerical
resolution is required. In many of the new simulations the
number of grid-points has therefore been increased. In
some cases the extra resolution was sufficient to again
achieve sixth-order convergence, but in others it was not.
For these latter cases, although we can be confident that

124008-6



SIMULATIONS OF BLACK-HOLE BINARIES WITH ...

the simulations are converging towards the continuum
solution, we are unable to use Richardson extrapolation
to estimate the uncertainties, and must provide much more
conservative error estimates. Although we could perform
more simulations at yet higher resolution, we find that even
these conservative error estimates are within the error
bounds required for this work and many GW-astronomy
applications.

We will illustrate these points with two representative
cases: one that shows clean sixth-order convergence, and
one that does not. We focus first on the GW phase, because
it is the phase error that dominates the mismatch calcula-
tions that are at the heart of the matched-filtering technique
used in GW searches, and because the error in the ampli-
tude is dominated not by numerical resolution but by the
radius R, of the GW extraction; we will discuss this
further in Sec. V C.

A. GW phase

In studying the GW phase, we have two aims: (1) to show
that our results are converging to the continuum solution as
a function of numerical resolution, and to provide error
bounds on the GW phase, and (2) to illustrate the ambigu-
ities inherent in estimating the phase error. The ambiguity
in estimating phase errors is already well known, but we
discuss it further here to make the point that although the
accuracy of the GW phase is important, any one method of
estimating the “phase error” may tell us little about the
waveform’s accuracy for a given application.

We consider three measures of the phase error. The first
is the total accumulated phase error over the length of the
simulation. This is the most natural quantity to study in
a convergence test. The second is the accumulated
phase error over the ten cycles up to a GW frequency of
Mo = 0.1. We will need this error estimate to justify the
comparison with PN results in Sec. VII, but we will also
see that this quantity is problematic when used for a con-
vergence test, as is any realignment of the GW phase. None
of these estimates have a natural interpretation for appli-
cations in GW searches. There the mismatch error is the
appropriate measure of the waveform’s accuracy, and we
will consider this in Sec. V C.

For our convergence analysis we consider in detail two
cases, (g = 1, y; = 0.5) and the second (g = 4, y; = 0)
convergence series. These are indicative of the general
features of all of the cases we have studied.

Standard convergence plots of the GW phase are shown
in Fig. 1. The initial phases agree at ¢t = 0, and the plot
shows the subsequent evolution of the phase disagreement
between simulations at different resolutions. In the y; =
0.5 case (left panel), which uses relatively high resolution
for a moderate spin value, we see reasonably clean sixth-
order convergence. The ¢ = 4 case, however, even though
the numerical resolutions are the same, is not yet in the
sixth-order convergence regime, and for these choices of
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grid resolutions, appears to be second-order convergent. We
emphasize that this is not a demonstration that the simula-
tions have entered a second-order convergence regime;
while it is expected that at sufficiently high resolutions
the second-order accurate components of the code will
dominate, we have not yet performed any simulations of
any configuration with high enough resolution to see clean
asymptotic second-order convergence. All the second panel
of Fig. 1 tells us is that we are not yet in the fully convergent
regime, but since the results are converging, in the sense that
the errors reduce between simulations, we can still make a
conservative estimate of the accumulated phase error.

In the y; = 0.5 case, we can use Richardson extrapola-
tion based on sixth-order convergence, to estimate
the uncertainty in the accumulated phase as 0.6 rad. In
the ¢ = 4 case, however, we do not yet see sixth-order
convergence. If we were to optimistically assume that the
medium- and high-resolution simulations are in the con-
vergent regime, and it is only the low-resolution simulation
that is not, then we would estimate an accumulated phase
uncertainty of 1.9 rad based on Richardson extrapolation. If
we instead produce a much more conservative error esti-
mate based on second-order Richardson extrapolation, we
find 6.7 rad. Note that this is an order of magnitude higher
than we found in the cleaner y; = 0.5 case, and corre-
sponds to a full GW cycle.

How are we to interpret these accumulated phase errors?
They are certainly useful in comparing simulations—for
example, the second g = 4 convergence series is less
accurate than the y; = 0.5 series. But this measure of the
phase accuracy is of little additional value. In a GW appli-
cation we will use only the waveform after the passage of
the pulse of junk radiation. It is then difficult to estimate the
phase error of the resulting waveform because to do so we
must first align the waveform at some point after the
beginning of the simulation. This introduces ambiguities
(due to numerical noise in the GW phase and frequency)
that may be larger than the error we ultimately want to
measure; this point is illustrated well in Sec. V.E.2 of [68].

When we compare with PN approximants in Sec. VII,
we will be interested in the phase error over the §—10 GW
cycles up to GW frequency Mw,, = 0.1. If we look at
Fig. 1, we find that the accumulated phase difference at
that frequency, between the medium- and high-resolution
simulations, is 0.1 rad and 0.12 rad, respectively, for the
Xi; = 0.5 and g = 4 cases. However, if we instead line up
the waveforms in each convergence series at Mw,, = 0.1,
and measure the accumulated phase disagreement as we go
back 10 cycles, we instead find about 0.01 rad for both
configurations. This is an order of magnitude lower than
what we observe when the waveforms are aligned at
the beginning. This is an artifact of both the removal of
the junk-radiation portion of the waveform, and simply the
properties of the waveform frequency functions; similar
effects are seen with different choices of alignment of PN
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Convergence of the phase as a function of time for the y; = 0.5 (left) and ¢ = 4 (second convergence series)

cases. The early-time behavior is shown in the upper plots, and the late-time behavior in the lower plots. Scaling with respect to
different convergence orders is shown, to illustrate how cleanly the data exhibit a particular convergence behavior. In these plots ¢t = 0
indicates the beginning of the simulation, and A¢ (s = 0) = 0 in all simulations. The y; = 0.5 case shows reasonably clean sixth-order
convergence, and the accumulated phase difference is A¢ = 0.43 rad between the medium- and high-resolution simulations. The
g = 4 case is not yet in the sixth-order convergent regime, and appears (erroneously) to exhibit second-order convergence. The
accumulated phase difference between the medium- and high-resolution simulations is 1.5 rad.

waveforms, for which no junk radiation or significant
numerical noise exist.

These results demonstrate that we must be careful to
choose our assessment of the phase error consistently with
the application we are interested in. For the PN phase
comparison in Sec. VII, we compare PN and NR wave-
forms aligned at Mw,, = 0.1, and so the only meaningful
numerical phase error estimate that makes sense is that
based on the same form of phase alignment.

Noise in the numerical frequency introduces an ambi-
guity into the matching time for any phase re-alignment
procedure, which makes it impossible to use the realigned
phase as the basis of a convergence test. However, we can
vary the matching time within its error bounds, measure the
maximum accumulated phase disagreement that arises
from this process, and then use fourth-order Richardson
extrapolation to provide a conservative error estimate in
the phase. The results of this process are shown in Table III,
and will be relevant to the analysis in Sec. VII. The same
procedure and alignment are used to give estimates of the

phase uncertainty accumulated during merger and ring-
down. The table also shows an estimate of the total accu-
mulated phase error, based on a convergence analysis like
that shown in Fig. 1; we repeat that this estimate has no
direct relation to any physical application, and is only
useful as a means to compare the relative accuracy of
different simulations. Note that this number is not simply
the sum of the inspiral and merger phase uncertainty
estimates, and this is a clear artifact of the alignment
ambiguity in assessing phase accuracy. As such, in most
physical applications, where some realignment is implic-
itly performed, the effective total phase error may drop by
an order of magnitude over the numbers shown in the
table. It is also clear that the total accumulated phase
error estimates depend dramatically on whether we see
clean convergence (the one truly clean case shown in the
table is y; = 0.5; other lower spin cases are also cleanly
convergent). Nonetheless, we will see in Sec. V C that this
level of accuracy is still well within the requirements for
GW detection.
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TABLE III. Estimates of uncertainty in phase and amplitude. The phase uncertainty accumulated during the inspiral is based on an
alignment of the GW phase at Mw = 0.1, and includes only the ten GW cycles up to that frequency, for consistency with the analysis
in Sec. VII. The same alignment is used for the phase uncertainty of the merger and ringdown regime. The complete phase uncertainty
is a conservative estimate of the total accumulated phase error over the entire waveform, and is only relevant for relative comparisons
of different simulations; see text in Sec. VA. The amplitude uncertainties are described in Sec. V B, and the mismatch errors in
Sec. VC.

Case Phase uncertainty (radians) Amplitude uncertainty (percentage) Mismatch ( X 107%)
Inspiral Merger Complete Inspiral Merger
qg=1
xi = +0.85 0.1 2.10 10 0.25 5.0 2.8
xi = +0.50 0.05 0.75 1.0 0.5 1.0 1.0
xi = —0.50 0.1 0.80 10 0.5 4.0 0.8
xi = —0.85 0.1 0.75 15 0.5 2.0 0.7
q= 0.05 0.2 5.0 0.2 1.0 0.3
q= 0.05 0.3 10 0.4 2.0 2.7
q = 4(a) 0.1 1.5 15 0.25 4.0 32
q = 4(b) 0.05 0.8 7.0 0.25 2.0
B. GW amplitude and late parts of the simulation; it is certainly not the

We now consider the GW amplitude. This plays a less §mooth monotor.lically increasing functior} that we expect
important role in detection, but errors in the amplitude (as it to be on physical grounds. We can partially circumvent
well as higher harmonics) will affect estimates of the  this difficulty by producing a smooth analytic fit of
source parameters, since all parameter errors scale with ~ the frequency function, and considering the GW phase
inverse signal-to-noise ratio. and amplitude as parametrized by that function. The

If we perform a time-domain convergence analysis of the smoothing process may itself introduce numerical artifacts,
GW amplitude, our conclusions are biased because the and either mask or exaggerate the convergence properties
apparent amplitude error is in fact a combination of both of the numerical results. But in general it is sufficient to
the amplitude and phase errors—if the amplitude were allow us to calculate uncertainty estimates for our
measured with no error by the code, but two waveforms  Waveforms.
are out of phase, they will appear to have a nonzero ampli- Our method for modeling the GW frequency is as fol-
tude error when compared in the time domain. We discussed ~ lows, based on an earlier version that was used (for equal-
this point in some detail in [14], and used a parametrization ~ mass, nonspinning waveforms) in the work for the Samurai
of the amplitude in terms of GW phase to reduce the effects ~ project [13]. For the inspiral, we start with the analytic
of dephasing on the amplitude analysis. This works well if =~ TaylorT3 approximant for the frequency, as given in [69].
the phase error as a function of GW frequency is small, but ~ We neglect the highest-order (3.5PN) nonspinning term
this will not always be true. We expect (from the PN and  and replace it by a free parameter that will be fit to our
perturbation theories) that the GW amplitude is a function of ~ data. In addition, following [69], we do not specify the
the GW frequency, and so the ideal method to measure the ~ value of the spin, but also treat it as a free parameter—
amplitude accuracy would be to reparametrize the amplitude ~ remember that our goal is to produce a clean analytic fit to
as a function of GW frequency. the frequency, and we are not interested in whether all of

This procedure also presents problems: the GW fre-  the parameters have their usual physical interpretation. The
quency is a numerically noisy function during the early = modified TaylorT3 frequency function is then

2688 32
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Analytic fit to the GW frequency for the y; = 0.5 case. The right panel shows the fractional difference

between the fit and numerical data. For this configuration, the error in the fit is dominated by the residual eccentricity in the simulation.
The dashed line indicates the point at which the amplitude reaches its maximum.

where v = m;m,/M? is the symmetric mass ratio,
§=S8,+S8, is the total spin parallel to the orbital
angular momentum, % = M(S,/m, — S;/m;), and M =
m; — m,. (Note that in the Samurai paper, the PN fre-
quency formula Eq. (7) is missing an overall factor of 2.)
In the cases we consider here, the spins are nonzero only in
the equal-mass case, and the spins are always equal to each
other, so the (§M2.) terms do not contribute. The function
7 is usually given by 7 = v(t, — 1)/(5M), and ¢, is inter-
preted as the “time of coalescence” in standard PN theory,
although a more appropriate term would be ‘‘time of
divergence” .

In order to produce a formula that can be fit through our
data, we redefine 7 as

, VAt —1)?
25M?

where both 7. and d are free parameters that are fit to the
data. This modification of 7 prevents Qpy from diverging
at t = t... In the form that we have written it, Qpy is now
symmetric about ¢ = ¢, which is certainly not physically
realistic, but beyond this point we will make a smooth
transition to a different function, which models the
ringdown.

To model the ringdown phase, we modify the ansatz
suggested in [70], and write the full frequency as

Q1) = Qpn(7) + [Qf — Qpn(7)]

1 + tanh[In\/k — (t — t;)/b]\*
X( 2 ) - O

+ &2, 2)

The constants {z., t,, S, , a, b, Qf} are parameters that are
determined to produce the best fit to the numerical data.
The constant (), corresponds to a fit of the ringdown
frequency, but the other parameters have no clear physical
interpretation. (Even the ‘“spin” parameter S really

amounts to no more than a modification of the 1.5PN and
2.5PN terms in the description of the inspiral frequency.)

Figure 2 shows a typical frequency fit, in this case for
xi = 0.5. We see that the dominant error in the fit is due to
the residual eccentricity in this simulation; recall that the
aligned-spin cases are based on QC parameters and have
the highest eccentricity of all the cases we studied. The
procedure does not work quite so well in cases with high
spin; the frequency evolution is not captured so well during
the early inspiral, or in the 200M before the peak GW
amplitude. The fitting formula (2) could be modified to
address this, and indeed the model of the transition to
ringdown (3) has since been improved by the authors of
[70,71]. These issues, and the masking of eccentricity
effects, mean that this frequency fit is far from ideal, and
cannot be used for a convergence study of the amplitude.
However, it is adequate for the purpose of providing a
rough estimate of the amplitude uncertainty in our
simulations.

Figure 3 shows the differences in A(w) with respect to
resolution for the y; = 0.5 configuration. The figure sug-
gests that the error in the GW amplitude due to numerical
resolution is on the order of 1%. At late times the relative
error grows higher, but this is beyond the frequency at
which the amplitude reaches a maximum (indicated by
the dashed line), and is well into the ringdown of the signal.
Note that if we perform an error analysis based on the time-
domain amplitude, then the maximum error between the
medium- and high-resolution simulations is around 6%,
which suggests that it is indeed dominated by the phase
error.

Estimates for the amplitude uncertainty (using the
amplitude parametrized by GW frequency) are given in
Table III. In all cases the GW signal was extracted at R, =
90M;, we will discuss the errors due to the use of a finite
extraction radius in the next section.
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FIG. 3 (color online). The amplitude error as a function of GW
frequency for the y; = 0.5 case. The deficiencies of the fre-
quency fitting procedure preclude the use of A(w) for a con-
vergence test, and the differences between the low-, medium-,
and high-resolution simulations are not scaled in any way.

C. Mismatch with respect to numerical frequency
and GW extraction radii

Ultimately we are interested in the accuracy of our
waveforms with respect to GW detection. The most mean-
ingful way to do this is to calculate the faithfulness be-
tween waveforms from different numerical resolutions and
different extraction radii.

A calculation of the faithfulness is based on the overlap
between two waveforms. The overlap is usually calculated
in the frequency domain. For two GW signals (in this
analysis all quantities are with respect to the (€ = 2, m =
2) mode of the signal) /2,(f) and A, (f), we define an inner
product weighted by the power spectral density of the
detector noise, S,,(f), as [72],

(hylhy) == 4Re[ ff’ %{?;f)df], )

Our data represent W,(¢), not the wave strain h(z), but the
two are related by W, = i, — ihy. Making two time
integrations is trivial when transforming to the frequency
domain, and although this does not automatically remove
the irritation of having to choose constants of integration
(see [73] for a recent discussion of this problem) we have
found that our ignorance of these constants does not affect
mismatch calculations [13].

Given the definition of the inner product (h,|h,), we
normalize it and maximize over phase and time offsets in
the data. If the waveforms were equal, then this quantity
would be unity. This is the faithfulness of the waveform: it
is a measure of how “‘far”” a theoretical waveform is from a
supposedly true waveform with the same physical parame-
ters. We define the faithfulness mismatch as the deviation
from unity:

PHYSICAL REVIEW D 82, 124008 (2010)
Chylhy)

Ideally the integrations over frequency are in the range
[0, c0]. When we have a finite data set like our numerical
waveforms, we also need to optimize with respect to the
window of our data that we sample. This is discussed in
further detail in [13]; the optimization with respect to
phase and time offset is trivial in the frequency domain
when using only one the (¢ = 2, m = 2) mode. In general
more sophisticated maximization procedures are required,
for example, the techniques described in [74] for the
quadrupole harmonic, and in [75] for signals that include
higher harmonics.

The faithfulness mismatch is calculated without any
optimization over the intrinsic parameters of the binary.
In a true GW search using a bank of theoretical templates,
one optimizes not only over time and phase shifts, but over
all physical parameters included in the template bank.
Optimization over the physical (intrinsic) parameters gives
the effectualness mismatch, i.e., how well a waveform
family will be able to detect GW signals irrespective of
whether the physical parameters are measured correctly.
We have access to waveforms representing only one choice
of intrinsic parameters of the binary, and so cannot perform
this optimization (although we could easily optimize over
the total mass of the binary). The physical-parameter-
optimized effectualness mismatch will always be better
than (or equal to) the faithfulness mismatch and so we
can use the faithfulness to set an upper bound on the error
of the waveforms.

The faithfulness mismatch between the simulations of
different resolutions is negligible—it is below 10~ for all
relevant masses (down to about 100M ) with respect to the
Advanced LIGO noise curve [76] (we use the approximate
analytical formula displayed in [36]), where we choose a
low-frequency cutoff of 20 Hz.

We also use the faithfulness to estimate the error due to
the finite extraction radii. The GW signal is extracted on
spheres of radii R., = {50, 60, 70, 80, 90}M, and we expect
the error relative to the true signal as R,, — oo to fall off as
1/R.. This error is typically larger than that due to finite-
difference errors, i.e., the finite extraction radius is the
dominant source of error in the simulation. We estimate
the mismatch error by extrapolating to R, — oo the mis-
matches between our finite-extraction-radii data. We find
that the maximum mismatch (which is always at the lowest
mass we consider, 100M) is 2.8 X 10~*. This is much
larger than the mismatch due to the numerical resolution
errors, as we expect. The maximum mismatch in each case
is given in Table III.

Such levels of accuracy are well within the requirements
set out in [77], and also within the suggested accuracy for
waveform modeling within the NR-AR project [78]. This is
also comparable or better than the level of mismatch
between the different equal-mass nonspinning waveforms

M=1- (5)
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(taken from independent codes) that were studied in the
Samurai project [13], suggesting that these waveforms
are also of sufficient accuracy for GW detection purposes
with current ground-based detectors. The accuracy
requirements for parameter estimation, and for applica-
tions with future detectors, such as the space-based Laser
Interferometric Space Antenna [79] and third-generation
ground-based Einstein Telescope [80], may be much
higher, but have not yet been quantified for NR waveforms.

VI. PHYSICAL PROPERTIES OF THE
BINARY CONFIGURATIONS

Now that we have established the accuracy of our simu-
lations, we can calculate some of their physical properties.
The most accurate are quantities calculated from the phase
and amplitude of the leading harmonic, like the mass and
spin of the final black hole. Less accurate are integrated
quantities based on the leading subdominant harmonics,
like the radiated energy in each mode. The gravitational
recoil, which is not only based on the higher harmonics, but
on overlaps between some of the weaker harmonics, is the
least accurate. We will consider first the general physical
properties of the binary configurations.

A. General properties

In Table IV we indicate the initial coordinate separation
of the binary D/M, and the number of GW cycles before
merger, Ngw. The latter quantity is defined as AD/(27),
where A® is the accumulated GW phase from ¢ = 200M
(i.e., after the early burst of junk radiation) until the time
when the wave’s amplitude reaches its maximum value.

The configurations we simulated for this work clearly
demonstrate the orbital hang-up and ‘‘anti-hang-up”

PHYSICAL REVIEW D 82, 124008 (2010)

effects for spins parallel or antiparallel to the orbital angu-
lar momentum. The orbital hang-up case was first studied
in [81], and for a larger range of cases in [16]; the largest
spin considered was y; = 0.92 in [60]. One case of anti-
parallel spins with y; = —0.438 was considered in [82].

When the black holes are nonspinning, a binary with an
initial coordinate separation of D = 12M produces around
19 GW cycles before merger. When the black holes have
spins y; = 0.25, the merger is delayed in comparison with
the nonspinning case, and a binary with the same initial
separation produces 21.5 GW cycles before merger.
Conversely, when the spins are y; = —0.25, the merger
is accelerated, and the binary produces only 185 GW
cycles before merger. These trends continue as the spins
are increased, and in order to produce comparable numbers
of GW cycles in each simulation, the initial coordinate
separation is increased for increasing antiparallel spins
Xi <0, and decreased for increasing parallel spins y; >
0. For the highest-spin cases, | y;| = 0.85, an initial sepa-
ration of D = 13M is required to produce 16 GW cycles in
the antiparallel case, and an initial separation of only D =
10M produces 20 GW cycles in the parallel case.

In the unequal-mass nonspinning cases, we see that the
number of cycles before merger also varies with the mass
ratio ¢. The general effect is best understood by consider-
ing the two extreme cases, ¢ = 1 and the extreme-mass-
ratio case g — 0. In the extreme-mass-ratio case, i.e., a
point particle orbiting a Schwarzschild black hole, the slow
inspiral terminates abruptly at the innermost stable circular
orbit (ISCO), and the small black hole plunges into the
large black hole. Prior to the ISCO, the small black hole
follows a slow adiabatic inspiral, so that there are very
many orbits at separations just above the ISCO, but as soon
as the small black hole passes the ISCO, there are no more

TABLE IV. Summary of the configurations simulated. The table indicates the initial coordinate separation D/M of the punctures,
their tangential and radial momenta (p,, p,), and the eccentricity e of the resulting coordinate motion. For the y; < 0 cases, where
enhanced PN parameters were used to achieve low-eccentricity inspiral, the eccentricity from raw PN-inspiral parameters is also
shown in brackets. The initial GW frequency is Mw;, and the ringdown frequency of the final merged black hole is M wgrp. The
simulation includes Ngy cycles before the peak of the GW amplitude, which occurs at 7,,. The final black hole has mass M, and spin

ay, and receives a recoil of vyiey.

q S;/M; D/M  p/M  —p,/M(X107%) e Mw; Ngw tpe/M Mogp Mi/M a;/M; vy (km/s)
1 =085 13.0 0.084542 5.247 0.0025 (0.009) 0.040 16 1868 0457 0969 0412 0

1 =075 13.0 0.084057 5.060 0.0016 (0.008) 0.0395 17 2036 0466 0968 0.446 0

1 =050 125 0.085124 5.258 0.0029 (0.0045) 0.042 18 2065 0490 0965 0.531 0

1 =025 120 0.086312 5.623 0.0025 (0.004) 0.044 185 1955 0519 0.959 0.609 0

1 0 12.0 0.085035 5.373 0.0018 0.044 19 1939 0.553 0951 0.686 0

1 0.25 12.0 0.083813 0 0.0061 0.043 215 2129 0.595 0942 0.760 0

1 0.50 11.0 0.087415 0 0.0061 0.049 20 1739 0.650 0936 0.832 0

1 0.75 10.0 0.091435 0 0.0060 0.055 19 1432 0.728 0921 0.898 0

1 0.85 10.0 0.090857 0 0.0050 0.055 20 1492 0.770 0.895 00915 0

2 0 10.0  0.085599 7.948 0.0023 0.058 12.5 1069 0.522 0962 0.623 140 =5
3 0 10.0 0.072408 5.802 0.0016 0.058 14.5 1240 0.489 0972 0.540 155 £ 15
4 0 10.0 0.061914 4.333 0.0038 0.056 17 1461 0467 0978 0471 145 £ 10
4 0 10.0 0.061883 4211 0.0026 0.057 16 1396 0467 0978 0471 145 = 10
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PHYSICAL REVIEW D 82, 124008 (2010)

: () 3
- \\ &),

-5 0 5
x/M

Puncture motion for the nonspinning binary configurations ¢ = 1 (left) and ¢ = 4 (right). The figure shows

about seven orbits before merger for each system. In the ¢ = 4 case, the black line indicates the small black hole, while the red line
indicates the large black hole. Note that the transition from inspiral to plunge and merger is more gradual in the ¢ = 1 case. As the
mass ratio increases, the plunge begins to resemble the ISCO effect that is present for extreme mass ratios.

orbits, only the fast plunge. By contrast, in the equal-
mass nonspinning case, the transition from “inspiral” to
”plunge” is very smooth, and there is no ISCO; the rate of
inspiral simply increases. As the mass ratio is increased,
the rate of the “plunge” increases, and the rate of inspiral
prior to merger decreases—in other words, the dynamics
approach the extreme-mass-ratio situation, and the system
gets closer to exhibiting an ISCO. This behavior is illus-
trated in Fig. 4.

B. Final mass and spin

The final mass of the merged black hole can be esti-
mated from the energy lost through gravitational radiation.
Given the total (ADM) energy in the initial data, Espyp, and
the radiated energy E,,q, we know that the final spacetime
must contain the energy M; = Expy — Epqg. Since the
final spacetime contains only a single stationary (i.e., non-
radiating) Kerr black hole, M + must be the mass of that
black hole.

We calculate the radiated energy E.q on each of the
five extraction spheres R., = {50, 60, 70, 80, 90}M, and
extrapolate the result to R., — 00 assuming that the error
falls of as 1/R.,. This assumption is most consistent with
the data at the largest extraction radii, and so we use only
R., = {70, 80,90}M for the fit, and include also R., =
60M to assess the robustness of the result. Once E, 4 has
been estimated for each resolution, we find that the results
converge at roughly fourth order, although since the con-
vergence is not extremely clean, we use second-, fourth-,

and sixth-order Richardson-extrapolated values to estimate
the uncertainty in the value from the highest-resolution
simulation. In all cases we consider the uncertainty in the
radiated energy to be about 2%. The values of the mass of
the final black hole are given in Table IV.

To estimate the spin of the final black hole, we make use
of analytic results that give the quasinormal ringdown
frequency M wgrp in terms of the black-hole spin,
ap/M; [83]. In the ringdown regime, the GW signal be-
haves as ~ exp(—iwgpt), Where wgp consists of a real part
(which is the frequency of the ringdown waveform), and an
imaginary part, which describes the rate of exponential
falloff. Given the final mass M, and the ringdown wave-
form, we can estimate the final spin using either the ex-
ponential decay-rate of the wave’s amplitude, or the wave’s
frequency M w in the ringdown stage. We find that match-
ing to the ringdown frequency gives the most accurate
results, in the sense that both methods agree within un-
certainties, but the uncertainty estimates are smaller when
we match to the ringdown frequency. In general our final
spin estimates have an uncertainty of 1%, although it is a
little smaller in the y; = 0.85 case, which we now consider
in more detail.

In the y; = 0.85 case, we find that the ringdown fre-
quency is Mwgp = 0.769 £ 0.001; see Fig. 5. The final
mass 1s Mf/M = 0.895 £ 0.015, and the final spin is
af/ My = 0.915 = 0.007. Note that the final mass is lower
than quoted in [16], where all of the analysis was per-
formed on the highest-resolution waveform calculated on
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FIG. 5 (color online). The numerical GW frequency at a time
(t = tpea)/ M after the peak of [rW, |, shown for simulations at
three resolutions. The frequency oscillates around a value that
we take to be the ringdown frequency. The amplitude of the
oscillations decreases as the numerical resolution is improved,
suggesting that these are only a numerical artifact. The upper and
lower bounds of our estimate of the ringdown frequency are
indicated by the two horizontal lines in the plot. The bounds
were obtained by considering the results from all three numerical
resolutions, and varying the portion of the data used for the fit;
the final quoted values were calculated using the range (1 —
theak)/M € {50, 100}. Despite the high amplitude of the noise in
the data, the average value shows very little variation, and can be
estimated with an uncertainty of only Aw = 0.001/M.

the largest radiation extraction sphere. Here we extrapolate
the results with respect to extraction radius (assuming a
1/R., falloff in the error), and with respect to numerical
resolution, where the results show between second- and
sixth-order convergence. The radiated energy increases
with extraction radius, and so our estimate of the final
mass decreases; this is why our extrapolated value
(0.895) is lower than the R, = 90M value of 0.911 quoted
in [16]. In addition, we estimate the ringdown frequency
using a 50M-long sample of the waveform starting S0M
after the peak amplitude of the (£ =2, m = 2) mode,
while our earlier results were based on a portion of the
waveform starting only a few M after the peak amplitude,
which distorts the final estimate of the ringdown frequency.

For comparison, Dain et al. [60] study the y; = 0.92
case. The initial black-hole spins are larger than studied
here (and were set up to approach the highest spin possible
for Bowen-York data), and therefore the final black holes
should have a larger ringdown frequency than in our
xi = 0.85 case, and a higher final spin, and this is indeed
the case. Note that they use the ADM mass Mspy as
the defining length scale in their simulations, while we
use the total black-hole mass. In terms of the ADM
mass, the ringdown frequency for the y; = 0.85 case is
M spmwrp = 0.761, while the frequency found in [60] for
the y; = 0.92 case is M ppywrp = 0.766. In addition, they
give a measure of the final spin between 0.910 and 0.916,
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where 0.915 is the value obtained using the same
quasinormal-mode method that we have applied here.
Their final spin result is consistent with ours’ within our
error bounds.

A number of aligned-spin cases were studied in [84]. For
the cases where direct comparison is available, our results
show agreement within 1% for spins up to 0.5, and within
2% for higher spins. Assuming that their uncertainties are
comparable to ours, then the results agree. The first hang-
up and anti-hang-up cases were studied in [81], each with
spin values of |y;| = 0.757. They estimate final spins of
0.443 and 0.890 for the anti-hang-up and hang-up cases,
respectively, and these are also consistent with our results.
Two of the unequal-mass cases were also studied in [70],
g = 2,4, and the final mass and spin results are in excellent
agreement.

We have also compared our results with fits for the final
spin available in the literature. We find excellent agreement
to about 1% or better with [85], as well as with [86] as long
as the spins are not anti-aligned with the orbital angular
momentum. For the latter paper we find disagreements of
~ 10% for the cases y; = —0.75, —0.85.

C. Energy spectrum in spherical harmonic modes

The (€ =2, m = 2) mode dominates the GW signal
from a black-hole-binary coalescence, and indeed most
current searches in detector data employ templates that
include only this harmonic [87,88] (see also the NINJA
project searches in simulated data with injected numerical
relativity waveforms [10,11]). However, knowledge of
the subdominant modes may aid detection, and are impor-
tant for accurate estimation of the source parameters
[64,89-92].

We assess the relative importance of the subdominant
modes by calculating the energy radiated in each mode.
The radiated energy in each mode is given by [93]

/ \P4 €mdt

In practice the limits of the integration are taken as the time
in the simulation just after the junk radiation has passed,
and a time after the signal has rung down to the level of
numerical noise. The results are summarized in Table V,
including only those modes that contribute above 1% of the
total energy. We see that in the equal-mass cases, the (2, 2)
mode dominates—around 98% of the energy is radiated
in the dominant mode in all cases, with only a negligible
variation due to spin, and no other modes contribute
above 1%.

In the unequal-mass cases, the energy contribution from
the higher harmonics grows rapidly with mass ratio, par-
ticularly in the € = *m modes. We defer the reader to the
detailed discussion in [94], but note that, even at g = 4,
most of the energy is radiated in a very small number of
harmonics.

(6)
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TABLE V. Ratio of total energy radiated in each mode. Only
contributions above 1% are included.

Case (2,+2) (2,+1) (3, +3) (4 =4) (5 *5)
Xxi=—0.85 0988 0 0 0
xi: = —0.50 0.989 0 0 0
Xi=0 0.990 0 0 0
Xi = 0.50 0.988 0 0 0
Xi =085 0.988 0 0 0
q= 0.947 0.038
q = 0.897 0.076 0.013
q = 0.868 0.013 0.095 0.017

D. Recoil

Because of the asymmetry of the radiation emission in
the unequal-mass cases, linear momentum is radiated from
the system, and the center of mass of the binary moves as
the black holes inspiral. The direction of the center of mass
recoil rotates with the binary, so that the average movement
is small. However, the rate of momentum loss grows as the
black holes get closer, and, as with the total GW signal,
peaks at merger. This final burst of GW emission causes an
overall recoil, or “kick.”

Since the bulk of the recoil arises during the merger,
short simulations are sufficient to accurately measure the
effect, and these were used in [25,95,96] to make the first
accurate fully general-relativistic predictions of gravita-
tional recoil, and found that the maximum kick for non-
spinning binaries is v, = 175 = 11 km/s for a mass
ratio of ¢ = 2.8 [25]. An analytical fitting formula for
the recoil from nonspinning binaries was presented in
[25], for recent papers containing such fitting formulas
see [97] (which uses the same ansatz as [25] and finds
slightly different but consistent fitting parameters) and [86]
(which quotes the fit from [25] for nonspinning binaries).

Table IV shows the results for the current simulations,
which agree with those from the shorter simulations pre-
sented in [25]. It has also been shown that much larger
recoils are possible from spinning or highly elliptical bi-
naries [26,60,98—105], but not for any of the configurations
that we have studied in this work.

Our newer simulations improve over those produced in
[25] in two ways: they include many more cycles before
merger, and the wave extraction is performed at larger
radii. On the other hand, the numerical resolution at the
wave extraction radii is lower, which reduces the accuracy.
As such, the values we quote in Table IV have large error
bars.

The flux of angular momentum radiation is given by

dP; . 72 1 |2
i im| — 4 ¥ QO
dr L‘E[mw [ﬂ€l|[—oo 4dt| d ] ™

where €; = (sinf cosg, sinf sing, cosf) [106]. The total
recoil is calculated by integrating Eq. (7) over the duration
of the simulation.
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The additional length of the new simulations allows us to
remove one source of error in shorter simulations: the
choice of starting time in the integration of dP;/dt to
calculate the total radiated linear momentum. This function
oscillates with time, and during the inspiral the average
radiated linear momentum is much smaller than the am-
plitude of the oscillations—so a poor choice of starting
time in the integration of dP;/dt could potentially corrupt
the final result. In [25] the uncertainty due to this effect was
estimated at about 3%. In [95,98] attempts were made to
both account for this effect and for the linear momentum
loss that will have accumulated over the earlier inspiral of
the binary. In our cases, where we possess the waveform
for many more cycles before merger, we are able to simply
calculate the total recoil for a range of integration starting
times 7, and then to take the average of these values. We
find that the uncertainty in this process is only a fraction of
a percent of the final result.

Figure 6 illustrates this effect with the ¢ = 4 case. The
lower limit of the integration, f,, was varied between 7, =
125M (just after the burst of junk radiation has passed
through the signal, and 7, = 1200M, which is about 300M
before dP;/dt has fallen to negligible values, and also
roughly corresponds to the value of £, that was used for
the much shorter waveforms studied in [25]. Note that the
kick calculated for different choices of #, varies by about
4 km/s, or 3% of the result. A linear curve fit through the
results (shown in the figure) indicates that the average
result of the integrated linear momentum radiation rises
very slowly during the inspiral, and varies by only
0.7 km/s, or 0.5%. In our results, we determine the final
kick to be the average over this range of choices #,, which
introduces only a negligible error in our result.
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FIG. 6 (color online). Variation in the estimate of the total
radiated linear momentum (recoil), as a function of the starting
time £, of the integration of dP;/dt for the ¢ = 4 case. The value
oscillates around a slowly growing average, which is indicated
by a straight line. Note that the latest integration time used, 7, =
1200M, is approximately 300M before the end of the ringdown,
which is the point at which the integration was started in the
older calculations in [25].
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A second error source that could not be quantified in [25]
was that due to extraction of the GW signal at finite
extraction radius. In that work an extraction radius of
only R., = 30M was feasible. We now extract GW signals
at up to R., = 90M, although we find that the numerical
resolution at the wave extraction spheres allows an accu-
rate calculation of the recoil only for R., = {50, 60}M.
However, these two radii are sufficient for us to extrapolate
the recoil to R., — oo, assuming a 1/R., falloff in the
error. This gives the values listed in Table IV. This fit
also of course predicts the value of the recoil at R, =
30M, which agrees well with the values in [25]. However,
due to the poorer numerical resolution on the extraction
spheres, we assign large error bars to our values.

VII. LATE INSPIRAL COMPARISON OF
NR AND PN WAVEFORMS

One of the most important applications of our wave-
forms is as input in the construction of analytic waveform
models that can in turn be used to construct template banks
for GW searches. In particular, these waveforms have al-
ready been used to produce the phenomenological models
presented in [36,56,65,67], in which the NR waveforms
for the late inspiral and merger are connected to long PN
inspiral waveforms, to produce ‘“‘complete” waveforms for
the full inspiral-merger-ringdown, and it is these complete
waveforms that are then used in the construction of a
phenomenological model that is essentially an analytic
fit across the relevant section of the black-hole-binary
parameter space.

In performing this procedure, we need to quantify the
level of agreement between the PN and NR waveforms in
some region where they are both considered to be valid. In
other words: the approximate PN waveforms are expected
to be accurate during much of the long inspiral, but are they
still accurate enough at the point where we want to connect
them to fully general relativistic results?

This question was first addressed for equal-mass non-
spinning waveforms in [69,107], and later with increasing
levels of precision in [14,15,68]. The conclusion of these
works was that the phase disagreement between NR wave-
forms and typical PN approximants was less than 1 rad
over the last 10 cycles up to Mw = 0.1, and the error in the
quadrupole PN amplitude was about 8%; however, the
phase could be tracked with surprising accuracy by one
PN approximant, TaylorT4, and the PN amplitude was
accurate to within 2% when evaluated at 3PN order
[68,108].

Similar comparisons were performed with the equal-mass
X:i > 0 cases that we consider here, where it was found that
the phase disagreements were comparable for all spin values
for the TaylorT1 approximant (i.e., approximately 1 rad over
the 10 cycles up to Mw = 0.1), but that the TaylorT4
approximant, which performed so well in the nonspinning
case, did no better than TaylorT1 (and often worse) when the
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black holes were spinning. It should be noted, however,
that the Taylor approximants did not include spin terms up
to the same PN order as in nonspinning terms (2.5PN versus
3.5PN), which is a point we will return to later. In addition,
it was found that the quadrupole amplitude error grew to
as much as 12% in high spin cases [16]. Equal-mass non-
spinning eccentric binaries were considered in [109], and
one unequal-mass precessing-spin configuration was studied
in [37].

In this section we will perform a PN-NR comparison for
all of our waveforms, which now include ¢ # 1 and y; <0
cases.

A. PN approximants

The PN approximants considered here are derived from
the energy £ and GW flux F of a black-hole binary on
quasicircular orbits. Both quantities are given in the PN
framework as expansions in v/c, up to (v/c)’ (3.5PN
order), where v is the relative velocity and ¢ the speed of
light. Following the standard convention, we regard £ and
F as functions of the dimensionless variable x = (v/c)?
that is related to the orbital phase ¢y, via

d¢orb - w
dt orb*

The energy-balance law d€/dt = — F can be transformed
to an evolution equation for x,

dx F

dr dfjdx’

which in turn leads to the €m mode of the gravitational
wave strain

X = (Mworb)2/3’ (8)

(©))

h(fm(t) — H(fm(t)efimqﬁorb(t)' (10)

The amplitudes H®" are given as expansions in x to 3PN
order in the nonspinning case [110] and up to 2PN order in
spinning contributions [59].

A direct (numerical) integration of (9) and (8) is referred
to as the TaylorTI approximant. If instead the right-hand
side of Eq. (9) is re-expanded as a Taylor series in x before
integrating, the resulting approximant is called TaylorT4.
This re-expansion is truncated at the same order as the
energy and flux (i.e., 3.5PN); all higher powers in x are
incomplete and therefore neglected.

If we apply the same strategy to the spin contributions
that enter at 1.5PN (leading-order spin-orbit coupling),
2PN (spin-spin) and 2.5PN order (next-to-leading-order
spin orbit), we should neglect all spin-dependent terms in
the re-expansion of (9) that appear at 3PN and 3.5PN order.
We denote the resulting approximant that was used for
instance in [16] as TaylorT4 (truncated). If we instead
disregard the distinction of spinning and nonspinning
terms and use the “full” re-expansion up to 3.5 PN order,
thereby keeping incomplete spin contributions at 3 and
3.5PN order, we denote the resulting approximant simply
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as TaylorT4. For a detailed discussion and explicit expres-
sions for the approximants see [67] and references therein.
Further small corrections to the spin contributions to the
PN phase and amplitude, due to typographical or other
errors in the original literature, were found during a pro-
gram of PN-approximant verification within the Ninja
collaboration [78]; these will be described in more detail
in an upcoming amendment to the data format specification
document [111], and are discussed further in Sec. VIIC
below.

B. Phase comparison

We now compare the PN and NR phase. Our procedure,
as in previous studies [14,16], is to consider the phase for
the N GW cycles up to the matching frequency Mw,, =
0.1. We line up the PN and NR phase functions so that they
agree when w = w,,, and relabel this event as r = 0. We
then calculate the phase disagreement as it accumulates
over N cycles back in time. Note that although our com-
parison is over a fixed number of GW cycles, it is not over a
fixed frequency range, due to the different frequency evo-
lution in each configuration. In the same way, the compari-
son is also over different lengths of time between different
configurations. However, we have found that the qualita-
tive behavior of the comparison results does not depend on
whether we compare over a fixed range of cycles, fre-
quency, or time.

In previous studies we simply calculated the phase
difference A (t) = Ppn(r) — dnr(2), and quoted A @ (zy)
as the accumulated phase difference, where ¢y is the time
N cycles prior to the point where @ = w,,. This procedure
gives consistent results, but we may worry in general that
A (1) is not a monotonic function, and so a more robust
procedure is to consider instead

Rlty) = J_#_W[ ] " (rrl0) - d)pN(t»Zdr]” L an

This gives us a measure of the average rate of increase of
the phase disagreement. A similar procedure was also used
in [112], although in that study the alignment of the wave-
forms was adjusted to minimize A¢. An elegant alterna-
tive measure of the accumulated phase disagreement is
given in Eq. (3.15) of [113]. We instead wish to evaluate
how well the PN phase evolution agrees with the fully
general relativistic NR results. For comparison with pre-
vious results in the literature, we will also show the results
of a direct calculation of ¢px(f) — dnr(2).

Figure 7 shows the disagreement between the PN and NR
phase for the equal-mass configurations with nonprecess-
ing spins over N = 10 GW cycles. Three PN approximants
are used: TaylorT1, TaylorT4, and TaylorT4-truncated, as
described in the previous section.

We see that in both calculations of the accumulated
phase disagreement, TaylorT1 is the most robust. It per-
forms best in the nonspinning case (which is to be
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FIG. 7 (color online). Phase disagreement between NR and PN
results for three choices of PN approximant, for configurations
that consist of equal-mass binaries with equal spins oriented
parallel or antiparallel to the orbital angular momentum. The
first panel shows the accumulated phase disagreement for the ten
GW cycles up to Mw,, = 0.1. The second panel shows the
integrated square of the phase disagreement, Eq. (11).

expected, since the nonspinning contributions are known
to higher PN order than the spinning contributions), and for
all spinning cases the accumulated phase disagreement is
between 1.0 and 2.0 rad, while the square-averaged phase
disagreement is between 0.5 and 1.0 rad. We see also that
TaylorT4-truncated performs worse as the spin is in-
creased, and for large anti-aligned spins performs very
poorly. The full TaylorT4 approximant performs better
for most spin values, although it is again poor for large
anti-aligned spins. It is in light of comparisons using only
TaylorT1 and TaylorT4-truncated that we chose to use the
TaylorT1 approximant in the construction of hybrid wave-
forms for the phenomenological model in [56].

Figure 8 shows a similar plot, but this time for the
unequal-mass nonspinning configurations. The g =2
simulations consist of less than ten cycles before Mw =
0.1, so we consider only N = 8 cycles in the phase com-
parison. In this case we see that TaylorT4 continues to
perform well for unequal-mass configurations. We expect
that at higher mass ratios the performance of all PN
approximants will deteriorate, but up to g =4 this
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FIG. 8 (color online). Phase disagreement between NR and PN
results for two choices of PN approximant, for configurations
that consist of nonspinning black holes of unequal mass, with
mass ratio ¢ = M,/M,.

deterioration cannot be clearly measured; the performance
of TaylorT1 and TaylorT4 shows some variation with mass
ratio, but this is not monotonic.

From our phase comparison analysis, we conclude that
the TaylorT1 approximant is most robust over the entire
subset of the black-hole-binary parameter space that we
have studied. The TaylorT4 approximant performs well for
all nonspinning cases. The performance of TaylorT4 for
spinning cases varies greatly between our two choices of
treatment of the higher-order spin contributions, but for
both choices shows poor agreement for large anti-aligned
spins. We caution, however, that the performance of the
approximants over a relatively small number of numerical
cycles does not tell us how well they perform before at
lower frequencies, and we will return to this point in the
Discussion.

C. Amplitude comparison

We now compare the PN prediction for the inspiral wave
amplitude with numerical results, for the (£ = 2, m = 2)
mode. We found in [14] that in the equal-mass nonspinning
case the quadrupole PN amplitude was larger than the full
GR amplitude during inspiral by about 7%. It was later
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shown in [68] that the amplitude agreement could be
improved to within 2% if corrections up to 3PN order
were used. For equal-mass binaries with aligned spins,
we found in [16] that the quadrupole PN amplitude dis-
agreement rose to about 12% in highly spinning cases.

In this section we extend our previous analysis of the
quadrupole amplitude to anti-aligned and unequal-mass
cases. We also compare with the PN amplitude that results
from using all currently known amplitude corrections (up
to 3PN order nonspinning [108,110] and up to 2PN order
spinning contributions [59,114]). We have taken care when
combining results for amplitude functions from different
sources in the literature, in particular, regarding different
conventions for the choice of relative phase factors. In our
implementation we now follow the convention of [59],
which differs from that of [110], from which we originally
took our nonspinning amplitude contributions. We have
checked for consistency with the amplitude of the [ =
|m| = 2 modes as given in [115], and we have compared
with an independent code as part of the Ninja project
[78,116]. In addition, we have also checked that inconsis-
tent choices of the relative phase factors (e.g., caused by
misprints in the literature) significantly increase the devia-
tion of the NR and PN amplitudes; the correct choices
lead to the best agreement with results from full general
relativity.

We find that the GW amplitude shows variations with
numerical extraction radius that are comparable to the level
of disagreement with the PN predictions. However, the
error in the amplitude seems to fall off as 1/R2, (see [14]
for a discussion of this effect), and allows us to perform an
accurate extrapolation to R,, — co. Having obtained the
accurate amplitude of R, W,, we then express the ampli-
tude as a function of frequency, using the methods we
introduced in Sec. V B, which then allows us to easily
compare with the PN amplitude, which is always expressed
as a function of frequency. Note that for this comparison
we perform a frequency fit to our data during only the
inspiral, which allows us to much more accurately capture
the amplitude evolution; it is now much more necessary
than in Sec. V B to have a reliable physical fit.

Figure 9 shows the average disagreement between the
PN and NR amplitudes over the 10 cyclesupto Mw = 0.1,
for the equal-mass spinning cases. The results using both
the quadrupole and 3PN order amplitudes are shown. As
seen in [16] the quadrupole amplitude disagreement rises
to just over 12% for the highly spinning cases. The increase
in disagreement is approximately linear with respect to the
spin, and we predict that the maximum disagreement for
extreme-spin black holes would be around 14%. For large
antiparallel spins, the quadrupole amplitude performs
much better, and drops to around 3% for y; = —0.85.

When PN amplitude contributions up to 3PN (nonspin-
ning)/2PN (spinning) order are used, the agreement with
NR results is much better. In the nonspinning case it is 3%,
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FIG. 9 (color online). Average amplitude disagreement be-
tween PN and NR results, over the last ten cycles up to Mw =
0.1. The quadrupole PN amplitude error is only about 3% for
large anti-aligned spins, but rises to around 13% for large aligned
spins. When the amplitude corrections are included up to 3PN
order, the PN amplitude error is only 3-4% for all spin values.

consistent with the results in [68]. (Note that the uncer-
tainty in the extrapolated NR amplitude is around 1%.) The
variation with spin is small, rising to only 4% in the high-
spin hang-up cases, and falling to 2.5% in the high-spin
anti-hang-up cases. We find similar results for the unequal-
mass cases, where the average disagreement is around 3%.

VIII. DISCUSSION

We have presented the results of two sets of numerical
simulations of black-hole binaries, equal-mass binaries
with equal, nonprecessing spins with y; = S;/M? €
[—0.85,0.85], and nonspinning unequal-mass binaries
with ¢ = M,/M, € [1,4]. These simulations cover be-
tween six and 10 orbits before merger. The most accurate
simulations have a numerical phase uncertainty during
inspiral of 0.05 rad, and a total accumulated phase error
of about 1.0 rad. The phase uncertainties in the least
accurate case are 0.1 rad during inspiral, and a total accu-
mulated phase error of up to 15 rad. We have shown,
however, that the uncertainty estimates depend strongly
on the alignment of the waveforms, and whether the results
are represented as functions of time or of GW frequency.
The accuracy of the amplitude of the (£ = 2, m = 2) mode
of W, is in general better than 1% during inspiral, and
between 2% and 5% during merger.

For purposes of GW detection, the important quantity to
consider is the mismatch error in the waveform. This is
dominated by the errors due to the extraction of the GW
signal at a finite radius from the source. However, in all
cases the mismatch error (minimized over only time and
phase) is below 1073, meaning that the numerical wave-
forms are well within the accuracy requirements for detec-
tion with current and planned ground-based detectors.
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These statements of waveform accuracy for detection
apply only to the dominant mode and, more importantly,
are only relevant when we consider binary masses such that
the entire numerical waveform is within the sensitivity
band of the detector, M = 120M. For lower masses,
longer waveforms are required, and in general can be
produced by connecting PN and NR waveforms
[36,65,67,117,118]. The accuracy estimates given in this
paper tell us nothing about the accuracy of such longer
“hybrid” waveforms, because we cannot properly quantify
the accuracy of the PN approximants. We defer the dis-
cussion of the accuracy of hybrid waveforms, and the
implications for the necessary length of numerical wave-
forms, to separate work [119].

For now we consider the fidelity of PN results to full
general relativity only in the regime where we also have
NR results, i.e., in the last orbits before merger. We com-
pare the PN and NR phase disagreement over the last
8—10 GW cycles before Mw = 0.1 for two classes of PN
approximant, TaylorT1 and TaylorT4. For nonspinning
cases we find that the performance of both approximants
does not change drastically as the mass ratio is increased to
g = 4, and this means that the TaylorT4 approximant
continues to provide the best agreement, with an accumu-
lated phase disagreement in the ¢ = 4 case of 0.2 rad, or
0.1 rad if we consider the root-mean-square average of the
phase disagreement; see Fig. 8. For spinning binaries, the
two approximants include spin terms up to only 2.5PN
order. The TaylorT1 approximant nonetheless is fairly
robust, while TaylorT4-truncated performs poorly for large
spins, in particular, large spins anti-aligned with the bina-
ry’s orbital angular momentum. The full TaylorT4 approx-
imant performs well for all spins larger than y; = —0.75.

Finally, we study the accuracy of the PN wave ampli-
tude, and find that when the highest-order amplitude cor-
rections are included (3PN for nonspinning binaries, and
2PN for spinning cases), the amplitude error is no more
than 4%. This is in contrast to the quadrupole amplitude,
which can overestimate the true physical amplitude by up
to 13% at black hole dimensionless spins of y; = +0.85
corresponding to an increase of 44% in detection rates.
Note that precisely the cases with the largest signal-to-
noise ratio (spins aligned with the angular momentum) are
also those with the largest PN amplitude errors.
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APPENDIX: APPARENT-HORIZON
AND PUNCTURE ESTIMATES OF THE
BLACK-HOLE MASSES

There are two methods that are commonly used to
estimate the masses of black holes in puncture data, in
addition to analyzing apparent horizons. The first, which is
generally applicable to all black-hole data, is to make use
of the area of the apparent horizon, A. The black hole’s
“irreducible mass” M, is given by M, = 4/A/167r, and
the total mass can be estimated by [120]

2 2 S2
M = M+

rr

(AD)

A second method is to make use of the asymptotic
properties of the wormhole puncture data. Each puncture
represents an extra asymptotically flat end of the slice, and
the ADM mass calculated at each “extra” end can be
considered as a measure of the mass of that black
hole. In the puncture-data construction, the momentum
constraint is solved analytically by the Bowen-York con-
formal extrinsic curvature, and the Hamiltonian con-
straint is solved numerically to give the function u in the
ansatz [19],

m m
p=1+—"+_"+y,

A2
27'1 ry ( )

where m; parametrizes the mass of the ith black hole, and
r; is the coordinate distance to the ith black hole. The
resulting data represent two black holes on a three-sheeted
topology. One sheet contains two black holes, and repre-
sents the physical space that we want to describe. Each
black hole has an extra sheet associated with it, which
extends to an extra asymptotically flat end, and in the
puncture construction those ends are compactified to
points, or “punctures.”

To calculate this mass, we require only the value of the
function u at the puncture. The mass is then given by

m:
Mi = ml<1 + u; + 71), (A3)

2D
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TABLE VI. The uncertainty in the apparent-horizon mass is
about 0.01%, and so the horizon and puncture masses agree
within uncertainty for the S;/M? = {0, 0.25} cases. For higher
masses, however, the discrepancy between the horizon and
puncture masses is clear.

St/Mzz MAH Mpuncture Error (%)
0 0.50001 0.50000 0.002
0.25 0.499 98 0.50000 0.004
0.5 0.49977 0.50000 0.046
0.75 0.498 15 0.500 00 0.370
0.85 0.49577 0.500 00 0.846

where D is the coordinate distance between the two
punctures. A derivation of this expression is given in
[19]. The two measures of the mass that we have discussed
are shown to agree within numerical uncertainty in the
case of nonspinning black holes in [121]. Since the ADM
mass at the puncture can be easily calculated directly from
the initial data with high precision, it has become a stan-
dard tool in assessing the mass of black holes in puncture
data.

However, as discussed in [62], this is only a reasonable
measure of the black-hole mass for nonspinning black
holes. A heuristic explanation for this effect is that the
falloff of the extrinsic curvature for a boosted Bowen-York
black hole is far faster towards the extra asymptotically flat
ends as it is towards the “physical” end, and so the extra
sheets of the topology contain far less junk radiation than
the physical sheet, and the ADM mass of each of those
sheets is not contaminated by very much junk radiation.
In the spinning case, however, the falloff on the second
sheet is the same as on the physical sheet, and so the extra
sheets each contain roughly the same junk radiation
as the physical space, and only for low spins will the
ADM mass at the puncture be a good measure of the
black-hole mass.

As an illustration of this effect, the values of the black-
hole mass as given by the two methods are shown in
Table VI.

For the simulations presented in this paper, the results
were first produced using the puncture-mass estimates.
They were then rescaled according to the results in
Table VI. A rescaling of mass will have an overall effect
on the time-scale of the simulations, but we found that even
in the highest spin case the effect was negligible. This is
most important in the comparison with PN approximants
in Sec. VII, where the PN and NR results are compared
assuming the same mass scale. But we find that the phase
disagreement between the NR and PN results is much
larger than the error due to using the incorrect black-hole
mass, and does not noticeably alter the results in, for
example, Fig. 7.
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