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Abstract

Suitable gauge conditions are fundamental for stable and accurate numerical-
relativity simulations of inspiralling compact binaries. A number of well-
studied conditions have been developed over the last decade for both the lapse
and the shift and these have been successfully used both in vacuum and non-
vacuum spacetimes when simulating binaries with comparable masses. At the
same time, recent evidence has emerged that the standard ‘Gamma-driver’ shift
condition requires a careful and non-trivial tuning of its parameters to ensure
long-term stable evolutions of unequal-mass binaries. We present a novel
gauge condition in which the damping constant is promoted to be a dynamical
variable and the solution of an evolution equation. We show that this choice
removes the need for special tuning and provides a shift damping term which is
free of instabilities in our simulations and dynamically adapts to the individual
positions and masses of the binary black-hole system. Our gauge condition
also reduces the variations in the coordinate size of the apparent horizon of the
larger black hole and could therefore be useful when simulating binaries with
very small mass ratios.

PACS numbers: 04.40.—b, 04.40.Dg, 95.35.+d

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Five years after the first demonstrations [1-3] that the numerical solution of the inspiral and
merger of binary black holes (BBHs) was within the technical and computational capabilities
of many numerical-relativity groups, our understanding of this process has expanded beyond
the most optimistic predictions. Numerical-relativity simulations of black-hole binaries have
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been performed in a large region of the possible space of parameters (see [4, 5] for two recent
reviews). In addition, the results of these simulations have been exploited on several fronts. In
gravitational-wave data analysis, they have been used to produce template banks that increase
the distance reach of detectors [6—8] and to aid the calibration of search pipelines [9-11]. In
astrophysics they have been used to determine the properties of the final black hole (BH) of a
BBH inspiral and merger (see [12—14] and references therein for some recent work) and hence
assess the role that the merger of supermassive BHs plays in the formation of galactic structures
[15, 16]. In cosmology they have been used to study the electromagnetic counterparts to the
merger of supermassive BH binaries and hence deduce their redshift [17-20].

Despite this extensive and rapid progress, there are portions of the space of the parameters
that still pose challenges for numerical simulations, in particular those involving binaries with
BHs that are maximally spinning (but see [21] for some progress in this direction) or with
small mass ratios ¢ = M,/M, < 1. This latter problem is potentially a rather serious one
since the computational costs scale in general quadratically with the inverse of the mass ratio
of the system. The inspiral timescale is inversely proportional to g (the smaller BH spends
more orbits per frequency interval during its inspiral onto the larger BH) and the time step limit
in explicit numerical schemes also decreases linearly with the BH size and hence inversely
proportionally with g.

While some progress has been made recently when simulating binaries with mass ratios
as small as ¢ = 1/10 [22, 23], it is clear that some significant technical changes are needed
in order to tackle mass ratios which are much smaller. One of these changes may consist
in adopting implicit numerical schemes in which the time step limitation is set uniquely by
the truncation error and not by the smallest spacing of the spatial numerical grid. Another
improvement could come from the use of better spatial gauge conditions that, by better adapting
the coordinates to the different curvatures of the spatial slice, may reduce the numerical error
and hence the computational cost. Recent numerical simulations have revealed that the
standard ‘Gamma-driver’ shift condition [24] requires a careful tuning of its parameters to
ensure long-term stable BBH evolutions when considering unequal-mass binaries. Work to
alleviate some of these problems has been recently started [25-27] and has so far concentrated
on adapting the damping term 7 in the shift condition (see section 2 for a detailed discussion
of the gauge and of the damping term) to better suit the uneven distribution of local curvature
on the spatial hypersurface as the binary evolves. In practice, while a constant value of n
has worked well for comparable-mass binaries, the investigations reported in [25-27] have
suggested the use of damping factors that have a spatial dependence adapted to the location
of the BHs. The first non-constant prescription for n [25] used an expression which adapts
to the mass of each BH via the conformal factor, but it was found to lead to large errors at
mesh refinement boundaries [26] and so was replaced by a simpler analytical form containing
constant parameters which need to be tuned to the masses of the BHs. At present it is not clear
whether the tuning made with mass ratios ¢ 2 0.25 will be effective also for much smaller
mass ratios.

In this paper we propose a different approach to the problem of a dynamical damping
term for symmetry-seeking shift conditions and promote 7 to be a fully dynamical variable,
as has proven very effective for the shift vector and for the I' variables. The resulting gauge
condition dynamically adapts to the individual positions and masses of the BBH system
without the need for special tuning and remains well behaved (i.e. smooth and bounded) at all
times. Considering three different options for the source term in the evolution equation for
n, we show that an expression which is very simple to implement leads to numerical errors
which are comparable to or smaller than the constant 7 case. Furthermore, this choice reduces
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the dynamics in the coordinate size of the apparent horizon (AH) of the smaller BH and could
therefore be useful when simulating binaries with very small mass ratios.

The structure of the paper is as follows. In section 2 we summarize the numerical
infrastructure and the mathematical setup used in our simulations, while section 3 is dedicated
to a review of the slicing and spatial gauge conditions and to the discussion of our novel
approach. Sections 4 and 5 are dedicated to the discussion of the results of applying the new
gauge to simulations of single nonspinning BHs (section 4) and to systems with BHs having
either equal or unequal masses (section 5). Finally, the conclusions and the prospects for
future work are detailed in section 6. We use a space-like signature (—, +, +, +) and a system
of units in whichc = G = 1.

2. Numerical setup

The numerical setup used in the simulations presented here is the same as the one discussed
in [28] and more recently applied to the L1ama code described in [29]. The latter makes use
of higher-order finite-difference algorithms (up to eighth order in space) and a multi-block
structure for the outer computational domain, which allows one to move the outer boundary
to a radius where it is causally disconnected from the binary. We refer the reader to the papers
above for details and here simply note that we solve the Einstein equations in vacuum with a
conformal and traceless formulation of the equations, in which the conformal factor has been
redefined as W = [(det(y,;)]~ "/, or in terms of the metric 7, = W2y,. The corresponding
evolution equation is therefore

(W — B oW = LWakK — 1Wo, B, (1)

where K is the trace of the extrinsic curvature (see [28] and [29] for details on our specific
implementation).

The computational infrastructure of the L1ama code is based on the Cactus framework
[30, 31] and the Carpet [32, 33] mesh-refinement driver, and implements a system of multiple
grid patches with data exchanged via interpolation [29]. We use a central cubical Cartesian
patch containing multiple levels of adaptive mesh refinement, with higher resolution boxes
tracking the location of each BH, i.e. ‘moving boxes’. This is surrounded by six additional
patches with the grid points arranged in a spherical-type geometry, with constant angular
resolution to best match the resolution requirements of radially outgoing waves. This allows
us to evolve out to very large radii at a tiny fraction of the computational cost which would
be necessary to achieve the same resolution with a purely Cartesian code. We use one patch
for each of the £x, £y and £z axes, which leads to an inner spherical interpatch boundary
and to a spherical outer boundary. The latter can be placed at very large distances and we
choose it to be causally disconnected from the surfaces on which we compute the waveforms
for the duration of the simulation. Figure 1 shows a schematic diagram of a typical L1lama
grid setup in the (x, y) plane. Note the inner Cartesian grid with moving boxes which is
joined to a six-patch multi-block structure (only four of these patches are shown in the (x, y)
plane). The detailed grid structure used in each run is listed in table 1, and for the purpose
of comparison, the resolution of each simulation is indicated by the grid spacing ho/M of
the coarsest Cartesian grid. The unit M is chosen such that each BH has mass 0.5M in both
the single and binary BH cases. In all cases the coarsest resolution is also equal to the radial
spacing in the angular patches.
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Figure 1. Schematic diagram of a typical L1ama grid setup in the (x, y) plane. Note the inner
Cartesian grid with box-in-box AMR which is joined to a six-patch multi-block structure (only
four of these patches are shown in the (x, y) plane).

Table 1. Numerical grid parameters of each BH configuration studied. kg is the grid spacing on the
coarsest Cartesian grid, which is equal in all cases to the radial grid spacing in the angular patches.
Nang. is the number of cells in the angular directions in the angular patches. Ri, and Roy are the
inner and outer radii of the angular patches. Njy. is the number of refinement levels (including the
coarsest) on the Cartesian grid, and r indicates that a cubical refinement box of side 2r; is centred
on the BH on level ‘I’, with level O being the coarsest. The unit M is chosen such that each BH has
mass 0.5M in both the single and binary BH cases.

Configuration  ho/M Nang, Rin/M  Row/M  Nev.  n/M

Single BH 0.96 21 39.36 400.00 6 (12,6, 3,1.5,0.6)

BBH, g =1 0.96 21 39.36 1980.48 6 (12,6, 3,1.5,0.6)

BBH,q =1/4 (0.8,0.96,1.12) (23,27,33) 49.92 254592 (6,8) (12,6,3,1.5,0.8,
0.4,0.2)

3. Gauge conditions and dynamical damping term

As mentioned in the introduction, for the formulation of the Einstein equations we adopt, the
use of suitable gauge conditions was the last obstacle to overcome in order to obtain long-term
stable simulations of BBHs [2, 3]. In what is now the standard moving-puncture recipe, the
lapse « is evolved using a singularity-avoiding slicing condition from the 1 + log family [34]

do — poa =—2aK, (2)
while the shift vector 8’ is evolved using the hyperbolic Gamma-driver condition [24]

0B — B'Oip* = 3B, 3)

8,B* — B'9;B* = 3,[* — B'9;T"* — nB“. 4)
We recall that the Gamma-driver shift condition is similar to the Gamma-freezing condition
9,I'* = 0 which, in turn, is closely related to the minimal distortion shift condition [35]. The
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differences between these two conditions involve the Christoffel symbols and are basically
due to the fact that the minimal distortion condition is covariant, while the Gamma-freezing
condition is not (see the discussion in [36]).

The coefficient n of the last term in (4) is usually referred to as the damping term and
plays a fundamental role in our investigation. It was originally introduced to avoid strong
oscillations in the shift and experience has shown that by tuning its value, it is possible to
essentially ‘freeze’ the evolution of the system at late times [37]. In simulations of inspiralling
compact binaries this damping term is typically set to be constant in space and time and equal
to 2/M for BBHs and equal to 1/M for binaries of neutron stars, where M is the sum of the
masses of the BHs or neutron stars [38, 39]. Similar values have also been shown to yield
stable evolutions in the case of mixed binaries with mass ratios ¢ ~ 1/6 [40]. While this
choice works well for binaries with comparable masses, a simple dimensional argument shows
that it will cease to be a good one for binaries with unequal masses. Since the dimension of
n is inverse mass, and the relevant mass is the mass of each individual BH, as the BH mass
decreases a larger value of n will be needed to maintain a similar damping effect. For an
unequal-mass system, this is impossible with a constant 7.

3.0.1. Position-dependent damping term. To overcome the limitations imposed by a constant-
in-space damping term, various recipes have been proposed recently in the literature. A first
suggestion was presented in [25], where the damping term was specified by the function

J7TWa, W

(1—W)?

where 7'/ is the inverse of the conformal 3-metric and R, is a dimensionless constant chosen in
such a way that RyMpy corresponds to the Schwarzschild radial coordinate for the stationary
state, i.e. Ryp >~ 1.31241 [41]. However, as discussed subsequently by the same authors [26],
expression (5) leads to sharp features (spikes) which can produce coordinate drifts and affect
the stability of the simulations. To remove these drawbacks, alternative forms were suggested
that read respectively [26]

nvs(r) = Ry , (5)

G Cy
e = A + L+ wn (7)) + T+ w72 (6)
and
nMes = A + Cp e ™ D" 4 0y ) o

where w; and w, are positive parameters chosen to change the width of the functions based on
the masses of the two BHs. The power 7 is a positive integer which determines the fall-off rate,
while the constants A, Cy, and C; are chosen to provide the desired values of 7 at the punctures
and at infinity. Finally, the dimensionless radii #; and 7, are defined as #; = |F; — F|/|F1 — 7al,
where i is either 1 or 2, and 7#; is the position of the ith BH. In addition to the new prescriptions
(6) and (7), which provide appropriate values both near the individual punctures and far away
from them with a smooth transition in between, there is evidence that they also lead to a smaller
truncation error. In particular, when examined for w; = w, = 12, n = 1, the waveforms
produced when using equation (6) showed less deviation with increasing resolution than using
a constant 1. Similar results were found when using equation (7), leading the authors to the
conclusion that the preferred definition for the damping term is equation (6) because it is
computationally less expensive.

It was shown recently [27] for the Gamma-driver shift condition that there is a stability
limit on the time step size which depends on 1. This limitation comes from the time integrator

5



Class. Quantum Grav. 27 (2010) 245023 D Alic et al

only and is not dependent on spatial resolution. One of the proposed solutions to this problem
is to taper n with a functional dependence of the type
R2

ns(r) =m0 T R )
where 7 is the coordinate distance from the centre of the BH and R is the radius at which one
makes the transition between an inner region where ns is approximately equal to 1y and an
outer region where ng gradually decreases to zero. We find that this form does indeed help in
removing potential instabilities and, as we will discuss in the following section, can be used
also for a fully dynamical definition for the damping term.

3.0.2. Evolved damping term. While the analytic prescriptions discussed in the previous
section have been shown to be effective when suitably tuned, it is not clear whether they will
be equally effective for different mass ratios, nor how to choose the parameters without case-
by-case tuning. In view of this and in order to derive an expression which adapts dynamically
in space and time to the local variations of the shift vector, we have promoted the damping
term to be an evolved variable with the simple equation

; 1
o — Boim = 77 TS0 (€))

The function S(r) is a position-dependent source term which can be chosen freely. The first
term on the right-hand side is introduced to induce an exponential decay of the damping term
towards S(r) such that in the steady state, n — S(r). The advective derivative term B9;n
ensures that the motion of the punctures, which are locally advected by 8, is taken into account
in the driving of n — S(r) (we want to drive 7 to a specific behaviour in the neighbourhood
of the punctures). To better interpret our suggestion for the dynamical gauge (9), it is useful
to compare it with a simpler ordinary differential equation
dn s 10

i (). (10)
Setting now n, = n(t = 0), S, = S(t = 0), and assuming that 7(dS/d¢) <« 1 so that it can be
neglected at first order, equation (10) would have the solution

n~S+@,—S)e"", (11)

and thus n — S ast — oo. Although in the case of our gauge-evolution equation (9), the
source term is time dependent and sometimes the time derivative can be rather large, especially
near the punctures, equation (10) is useful to recognize that the damping term is itself damped
and driven to the solution given by the source function S.

The arbitrariness in the form of S(r) is removed in part by the works discussed in the
previous sections and hence a first possible form is inspired by (5) and thus given by

V7w W

—_— (12)
(1—w)?

As we will discuss in the next sections, this choice works very well for single BHs, leading to

smoother profiles for n and consequently more stable evolutions. Similarly, another convenient
choice for the source is a combination of expressions (5) and (8):

V7w W R?

. (13)
(1—W)? r2+ R?

This choice ensures that 7 is dynamically adapting in the inner region due to the nyp factor,

while in the outer region the ng factor ensures minimal dynamics and implements the suggestion
of [27] that n — O at large radius to avoid the instability there.

S1(r) =nue(r) = Ry

S$(r) = nqme(r)ns(r) = (Ro

6
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The generalization of the source term (13) to the case of a binary system is

straightforwardly given by
NOZENER Y R?
14 J ) ( ) ’ (14)

(1—-Ww)2 ri+ri+R?

where 7}, 7, are the distances from 7 to the individual BHs’ centres.

The following sections will be dedicated to the results of simulations performed with the
evolution equation for the damping term (9) to study nonspinning single BHs via the source
terms (12) and (13) and to evolve BBHs via the source term (14). As a final remark we note
that although our dynamical gauge requires the numerical solution of an additional equation
(i.e. equation (9)), the associated computational costs are minimal, given that we are evolving
a scalar quantity and that the evolution equation is very similar to those already implemented
within the Gamma-driver condition. More specifically, the added computational costs range
from 1% to 2% depending on the complexity and length of the simulation (the longer the
simulation, the larger the impact of frequent restarts and thus the smaller the impact of the
additional evolution equation).

S3(r) = <R0

4. Application of the new gauge: single black holes

We next examine the properties of the new dynamical gauge (9) for the damping factor and
present its advantages when compared with the other position- and mass-dependent suggestions
presented in the previous section. Specifically, we will study the nyg (r) and ns(r) prescribed
forms for 1, and compare them with both the S;(r) and S;3(r) variants of the evolved gauge
condition (9). We will start by considering the simple case of a single nonspinning puncture.

Figure 2 shows a comparison between an evolution using the prescription nyg () provided
by equation (5) (red dashed lines) and the new gauge using as source S;(r) from equation
(12) (blue solid lines). In both cases, the value of the damping factor at the puncture adapts
automatically to the mass of the BH, due to its dependence on the conformal factor. However,
when the damping term is given the form nyg(7), large spikes develop at the origin at late
times and noise travels outwards as the gauge settles (see the left panel of figure 2). These
large noise pulses leave sharp features in n which might lead to coordinate drifts and eventually
affect the stability when simulating BBHs. On the other hand, when evolving the damping
factor and using nvp(7) as a source, it is possible to avoid any forcing of the damping term,
which is instead always the solution of the dynamical driver. This, in turn, reduces the noise
and ensures long-term stability of the simulation as shown by the right panel of figure 2.

We can further improve the stability properties of the damping factor in the outer wave
region by matching it with a function which drives it smoothly to zero. Figure 3 shows a
comparison between a BH evolution using the prescription nyg (r)ns(r) given by equations
(5) and (8) (red dashed lines), and the evolved 1 using as source equation (13) (blue solid
lines). Note that in the case of the prescribed nvp (r)ns(r), the outgoing gauge pulses still
produce sharp features near the BH at z ~ 3 M, which are neither propagated away nor
damped in-place. Moreover, sharp features far from the BH continue to be produced as the
initial spikes pass through the interpatch boundaries.

Smoother profiles can instead be obtained by evolving the damping factor, using
nve (r)ns(r) as a source. This is especially true near the BH, while large variations but of
small amplitude are still produced as the gauge pulses pass through the interpatch boundaries.
Finally we note that in contrast to all the other evolution variables in our code, no artificial
dissipation is imposed on the damping term so that the features of its evolution equation can
be better appreciated.
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Figure 2. Profiles along the z-axis of the damping term 7 for an isolated Schwarzschild BH.
Different lines refer to the case when 7 is prescribed using equation (5) (red dashed line) or when
evolved in time using equation (9) with source given by (12) (blue solid line). The left panel refers
to an earlier time and focuses on the central region of the grid. The right panel refers to a later time
and shows a larger portion of the grid, highlighting that in contrast to the dynamical », the evolved
one leads to smooth profiles at the patch boundary (see inset). Note that the outer boundary is at
400 M and cannot be responsible for the appearance of the spikes via reflection.
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Figure 3. The same as in figure 2, but the prescribed damping term in equation (5) is tapered
with a function in equation (8), while the source term for the evolution equation is given by (13).
Note that in this case the damping term falls off as expected but that in the case of the prescribed
nmMB (r)ns(r), the outgoing gauge pulses still produce sharp features near the BH at z ~ 3 M,
which do not propagate away. Moreover, sharp features are produced as the initial spikes pass
through the interpatch boundaries located at z ~ 40 M. Smoother profiles can instead be obtained
by evolving the damping factor.

5. Application of the new gauge: black-hole binaries

As shown in the previous section, our evolved damping factor leads to smoother profiles and
consequently to stable BH evolutions, free of coordinate drifts. In this subsection, we study
the effect of using different functional forms for the sources in the evolution equation (9).

8
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Figure 4. Profiles along the z-axis of the damping term 7 for an equal-mass BBH system. The
different lines refer to the cases when 7 is evolved with sources given respectively by (12) (red
dashed line) or by (13) (blue solid line). The left and right panel refers to two different times and
highlight the importance of the fall-off term to avoid reflections at mesh boundaries. Note that
the outer boundary is at 2~ 2000 M and cannot be responsible for the appearance of the spikes via
reflection.

Table 2. Initial data parameters for the configurations studied. Expressed in units of the total mass
M are: the initial irreducible masses of the BHs (obtained by iterating over bare mass parameters)
m;, the coordinates of the BHs on the x-axis x;, the momentum of BH 1 Pf (the momentum of BH
2 is equal and opposite, P, = —Pli). The unit M is chosen such that each BH has mass 0.5M in
both the single and binary BH cases.

Configuration m;/M my/M x;/M  x;/M P /M P'/M

Single BH 0.5 - 0.0 - 0.00000000  0.000 00000
BBH,¢g=1 0.5 0.5 3.5 —-3.5 —0.00335831 0.123693 80
BBH,g=1/4 0.8 0.2 1.6 —6.4 —0.00104474 0.07293950

5.1. Equal-mass binaries

We first consider the evolution of an equal-mass nonspinning BH binary, whose properties
can be found in table 2. For simplicity we have considered a system with small separation
D = 7 M, so that overall the binary performs only about three orbits before merging and
settles to an isolated spinning BH after about 200 M.

Figure 4 shows a comparison of the profile of the damping term on the z-axis when using
the evolution equation (9) and the source term given either by S; (equation (12); red dashed
line), or by S5 (equation (14); blue solid line); in both cases we have set R = 20 M.

It is clear that when using either expression for the source function, the value of n at the
location of the punctures adapts in time through the coupling with the conformal factor W,
which tracks the position and the masses of the two BHs. It is also worth noting that near
the two punctures, the two evolution equations yield very similar solutions for the damping
factor as one would expect since Ry > D. However, when using the source (12) (red dashed
line), the evolution of the damping term produces large gauge pulses which travel outwards
and are amplified by the mesh refinement and the interpatch boundaries. This is particularly

9
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evident in the right panel of figure 4 which refers to a later time when the BHs have already
merged. These undesirable features are very effectively removed by adopting the source term
(13) (blue solid line), which provides a natural fall-off for the damping term as this propagates
towards the outer boundary.

5.2. Unequal-mass binaries

We next consider the evolution of an unequal-mass nonspinning BH binary with mass ratio
q = 1/4, initial separation D = 8 M and which performs about four orbits before merging
and settling to an isolated spinning BH after about 600 M. A complete list of the binary’s
properties can be found in table 2. We find that an evolution equation for 7 is a very convenient
choice also for unequal-mass binary simulations.

5.2.1. Spatial dependence. Figure 5 shows the spatial dependence of the damping term at
some representative times. The two top panels refer to when the punctures are close to the
x-axis for the cases where 7 is kept constant in space and time (red dashed line) and where it is
evolved in time with a source given by (14) (blue solid line). Clearly, also in the unequal-mass
case the new gauge drives the damping term to follow the BHs and to be smooth elsewhere.
The bottom left and right panels show the damping term on the (x, y) plane at two times which
are similar to those shown in the top panels and show the non-trivial but smooth distribution of
the damping term which adapts to the motion of the punctures (the latter are near the maxima
of n). The value of 5 is ~ 1.5/ M near the large BH and ~ 4.5/M near the small BH, leading
to a value for m; n ~ 1 for both BHs, where m; = 0.8 M and m, = 0.2 M are the irreducible
masses of each BH. This demonstrates that the gauge condition is adapting the value of 7, to
the mass of the BH. As an aside, we note that there is a region between the BHs where 1 drops
nearly to 0, and a ‘wake’ of low n which follows behind the motion of the smaller BH.

5.2.2. Waveforms and errors. One of the most useful quantities calculated from a BBH
simulation is the gravitational waveform. The physical waveform is that measured at future
null infinity, and is independent of the gauge condition used for the evolution. In practice,
waveforms are often computed at finite radii and extrapolated to future null infinity, and the
gauge condition can have an effect on the extrapolation error. More importantly, different
gauges can lead to different truncation errors in the evolution of the BH motion depending on
how well we can reproduce a given field variable at the chosen resolution, and these errors will
be reflected in the waveform errors. As a result, different gauges can in practice lead to small
differences also in the calculation of the waveforms, and it is important to study the impact of
the different gauges on the waveforms and their truncation errors.

In figure 6 we show the real part of the £ = 2, m = 2 mode of the gravitational waveform
U, as extracted at r = 100 M. Different lines (dotted, dashed, solid) refer to the different
resolutions reported in table 1, while the two panels refer to the cases where 7 is kept
constant in space and time (upper panel) and where it is evolved with a source given by S5 (see
equation (14)) (lower panel). As expected, the differences in the waveforms due to the different
truncation errors for the two gauges are very small and confirm that a different prescription
for the gauges does not influence the gravitational-radiation signal. Figure 7 offers a different
view of the gravitational-wave signal by showing the phase difference inthe £ = 2,m = 2
mode, Ag¢,y, of the waveforms as computed between the low and medium resolutions (red
dashed line) and between the medium and high resolutions (blue solid line). The latter has
been scaled to compensate for an eighth-order convergence which is indeed obtained as shown
by the very good overlap between the dashed and solid curves during all of the inspiral, being
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Figure 5. Spatial dependence of the damping term 7 for an unequal-mass BBH system with
g = 1/4. Different lines refer to the case when 7 is kept constant in space and time (red dashed
line) or when it is evolved in time using equation (9) with source given by (14) (blue solid line).
The top left and right panels refer to two different times when the punctures are close to the
x-axis and show that the new gauge drives the damping term to follow the BHs and be smooth
elsewhere. The bottom left and right panels, instead, show the damping term on the (x, y) plane
at two representative times and show the non-trivial but smooth distribution of the damping term
which adapts to the motion of the punctures (the latter are near the maxima of the ).

slightly worse during the merger, when the convergence order drops. The left panel refers
to the case when 7 is kept constant in space and time, while the right one refers to when
it is evolved with a source given by (14) and R = 20 M. Once again the phase errors are
comparable between the two gauge conditions.

We see that adopting an evolution equation for the damping term allows one to reproduce
with a comparable accuracy the numerical results obtained with the more standard prescription
of a constant value for 7. At the same time, however, it also shows that in this way no special
tuning is required and the prescription that works well for equal-mass binaries is also very
effective for an unequal-mass case with ¢ = 1/4. We expect this to be true also for much
smaller mass ratios, whose investigation goes beyond the scope of this paper but will be
pursued in our future work.
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Figure 6. Real part of the £ = 2, m = 2 mode of the gravitational waveform W, for the unequal-
mass black-hole binary. Different lines refer to different resolutions (see the text for details) and
the two panels refer to the case when 7 is kept constant in space and time (upper panel) or when it
is evolved with source given by (14) (lower panel).
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Figure 7. Phase difference in the £ = 2, m = 2 mode of the gravitational waveforms as computed
between the low and medium resolutions (red dashed line) and between the medium and high
resolutions (blue solid line). The latter has been scaled to compensate for an eighth-order
convergence which is indeed obtained as shown by the good overlap between the curves. The
left panel refers to the case when 7 is kept constant in space and time, while the right one to when
it is evolved with source given by (14).

5.2.3. Impact on the apparent horizon size. Some final consideration will now be given to
the effect that the new gauge condition has on the AH coordinate size as it varies during the
simulation. We recall that numerical simulations of moving punctures have routinely reported
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Figure 8. Left panel: evolution of the average radius of the AHs on the (x, y) plane before and
after the merger. Shown with red long-dashed (large BH), dot-dashed (small BH) and dashed lines
(merged BH) are the radii obtained for the case in which 7 is kept constant in space and time.
Shown instead with blue solid (large BH), dotted (small BH) and short-dashed lines (merged BH)
are the radii obtained for the case in which 7 is evolved with source given by (14). Right panel:
evolution of the ratio of the AHs’ proper circumferences on the (x, z) and (x, y) planes, Cyy, Cx;
as computed for the three BHs. The first two panels from the top refer to the AHs of the binary,
while the bottom one to refers to the merged AH and thus covers a different range in time.

a certain dynamics in the coordinate size of the AH. This dynamics takes place during the early
stages of the evolution, as the gauges evolve rapidly from their initial conditions and reach the
values they are brought to by the time-dependent drivers. Although these changes are of purely
gauge nature and do not influence the subsequent evolution of gauge-invariant quantities,
they represent nevertheless a computational nuisance as they require a high-resolution mesh-
refinement box (i.e. the one containing the BH) to be sufficiently large so as to accommodate
the AH as it grows. Clearly, this requirement becomes particularly important for binaries with
very small ratios, as in this case it is desirable to have the least dynamics and thus reduce the
computational costs.

To report the ability of the new gauge to reduce the variations in the AH size, we show
in the left panel of figure 8 the time evolution of the average radii of the unequal-mass binary
on the (x, y) plane before and after the merger. We recall that during the inspiral and merger
we follow three different AHs, two corresponding to the initial BHs (i.e. AH; and AH;,) and a
third one, which is produced at the merger and contains the first two (i.e. AH3). We also note
that the two initial AHs can still be followed for a certain amount of time after a single AH is
found containing the two. Shown in the left panel of figure 8 with red long-dashed (large BH),
dot-dashed (small BH) and dashed lines (merged BH) are the radii obtained for the case in
which 7 is kept constant in space and time. The radii obtained when 7 is evolved with source
given by (14) are shown with blue solid (large BH), dotted (small BH) and short-dashed lines
(merged BH).

In each case, the individual AHs first grow in radius as they initially adapt to the chosen
gauge, i.e. for t < 20 M. After this initial stage, however, the two gauges show a different
behaviour and in the new gauge the AHs tend to maintain their coordinate size more closely
than in the constant-n case (blue solid and red long-dashed lines). This ability to conserve
the original size is also evident after the formation of the common AH at r >~ 520 M, where
the new gauge shows an average radius for AH; which is essentially constant for r ~ 200 M,
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while it grows by about 10% over the same timescale when using a constant n gauge. These
effects provide benefits for the mesh-refinement treatment in our BBH simulations. Namely,
they allow us to reduce the extent of the finest mesh-refinement levels containing the AHs and
reduce therefore the computational cost of the simulations while keeping a given resolution.

Besides the changes in the overall coordinate size of the AHs discussed above, it is
interesting to consider how much their shape changes with time in the two gauges and this
is summarized in the right panel of figure 8, where we show the evolution of the ratio of the
AHSs’ proper circumferences on the (x, z) and (x, y) planes, Cy,/C,., as computed for the three
BHs (the first two panels from the top refer to the AHs of the binary, while the third one to
the merged AH and thus a different time range). Overall, in both gauges the merging BHs
remain spherical to a few parts per thousand. We have also verified that the masses of the BHs
as computed from the AHs are consistent between the two gauges within numerical errors.
Interestingly, the new gauge leads to smaller oscillations in the ratio for the smallest of the
BHs. This is a very small improvement, which however minimizes spurious gauge-dynamics
and helps when making AH-based measurements.

6. Conclusions

Even with a complete computational infrastructure, numerical-relativity simulations of
inspiralling compact binaries would not be possible without suitable gauge conditions. A
large bulk of work developed over the last decade has provided gauge conditions for the lapse
and the shift which have been used with success both in vacuum and non-vacuum spacetimes
when simulating binaries with comparable masses. However, as the need to investigate
black-hole binaries with small mass ratios increases, evidence has emerged that the standard
‘Gamma-driver’ shift condition requires a careful and non-trivial tuning of its parameters to
ensure long-term stable evolutions of such binaries.

As a result, a few different suggestions have been made recently in the literature to
improve the Gamma-driver condition for the shift and these have focused, in particular, on
the specification of a spatially dependent damping term 5. This approach has been shown to
work well under some conditions but not always and prescriptions which are effective in some
cases can lead to instabilities in others. In addition, the prescriptions require the specification
of coefficients whose tuning may be dependent on the mass ratio in a way which is not trivial.

Following a different approach, we have presented a novel gauge condition in which the
damping constant is promoted to be a dynamical variable and the solution of an evolution
equation. We show that this choice removes the need for special tuning and provides a shift
damping term which is free of instabilities for all of the spacetimes considered. Although
rather trivial, our gauge condition has a number of advantages: (i) it is very simple to
implement numerically as it has the same structure as of the other gauge conditions; (ii)
it adapts dynamically to the individual positions and masses of the BBH system and could
therefore be used also for binaries with very small mass ratios; (iii) it reduces the variations in
the coordinate size of the AH of the larger black hole thus limiting the computational costs;
(iv) all of the complexity in the new gauge is contained in the source function which can be
easily improved further. This last point will be part of our future research in this direction.
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