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Abstract
An axisymmetric collapse of non-rotating gravitational waves is numerically
investigated in the subcritical regime where no black holes form but where
curvature attains a maximum and decreases, following the dispersion of the
initial wave packet. We focus on a curvature invariant with dimensions of
length, and find that near the threshold for black hole formation it reaches
a maximum along concentric rings of finite radius around the axis. In this
regime the maximal value of the invariant exhibits a power-law scaling with
the approximate exponent 0.38, as a function of a parametric distance from
the threshold. In addition, the variation of the curvature in the critical limit is
accompanied by increasing amount of echos, with nearly equal temporal and
spatial periods. The scaling and the echoing patterns, and the corresponding
constants, are independent of the initial data and coordinate choices.

PACS numbers: 04.25.D−, 04.25.dc, 04.20.−q

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Universality, scaling and self-similarity found in critical gravitational collapse are the most
fascinating phenomena associated with gravitational interactions. First discovered numerically
by Choptuik [1] in spherically symmetric collapse of a massless scalar field, this distinctive
behaviour was later observed in other systems, including those with various matter contents
and equations of state, diverse spacetime dimensions etc. However, while a great deal of
literature has emerged on critical phenomena in spherical symmetry, only a limited number of
non-perturbative studies exist in less symmetric settings, see [2] for a review.

Perhaps the simplest non-spherical system is a pure axisymmetric gravitational wave,
collapsing under its own gravity. Abrahams and Evans [3] found that the masses of black
holes, forming in the evolution of sufficiently strong initial waves, exhibit scaling of the form
Mbh ∝ (a −a∗)β in the limit when the strength parameter a tends to a∗, the threshold for black

0264-9381/11/025011+14$33.00 © 2011 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/0264-9381/28/2/025011
mailto:Evgeny.Sorkin@aei.mpg.de
http://stacks.iop.org/CQG/28/025011


Class. Quantum Grav. 28 (2011) 025011 E Sorkin

hole formation, and determined the exponent of the power law to be β � 0.35–0.38. They
have also given less conclusive evidence of periodic echoing of the near-critical solutions.
Surprisingly, these results proved difficult to reproduce; in fact, no other successful simulation
of the axisymmetric vacuum collapse has been reported to date (see e.g. [4] for a failed
attempt). However, in this paper we present new results obtained with the aid of our recent
harmonic code [5].

We focus on subcritical collapse of axisymmetric non-rotating Brill waves during which
black holes do not form, but where curvature grows to reach a maximum and subsequently
diminishes, following the dispersion of the initial wave. Perturbative studies of the critical
solutions [2, 6] suggest that the power-law scaling of characteristic quantities near the critical
point should occur on both sides of the black hole formation threshold, regardless of the
appearance of horizons. While this was confirmed in numerical experiments in spherical
symmetry, see e.g. [7, 8], it is an open question whether the same is true in other situations as
well. Here, we demonstrate that in the axisymmetric subcritical collapse, a curvature invariant
with dimensions of length follows a power law with the exponent, β = 0.385 ± 0.015,
similar to that found by Abrahams and Evans in the supercritical case. Additionally, we
find that the solutions develop increasingly large numbers of echos as the critical limit is
approached. Our current resolution allows observation of up to three echos around the time
instant where curvature is maximal. We measure that, for example, the Riemann curvature
invariant oscillates in time with the (logarithmic) period of �τ � 1.1, and that the logarithm
of the invariant changes on each echo by nearly the same amount �r ∼ �τ � 1.1.

We verify that the scaling and echoing constants are essentially independent of initial data
and specific coordinate conditions used to calculate the solutions. In contrast to spherically
symmetric collapse, where the greatest curvature is always at the origin, the evolution of
the axisymmetric waves is more complicated and the spacetime location of the maximum
depends strongly on the geometry of the initial data. We evolved series of subcritical initial
data where curvature attained a maximum along equatorial rings of various radii centred at
the axis. Besides, we found that in supercritical evolutions of the same data an apparent
horizon forms, engulfing the ring-shaped locus of the maximal curvature. This indicates that
the critical solutions found in the Brill-wave evolutions are different from ones calculated
by Abrahams and Evans, in whose case the maximal curvature has always occurred at the
origin, and the black holes tend to be arbitrary small in the critical limit. Strikingly, despite
these differences, the near-critical scaling and echoing patterns are similar, and the scaling
exponents are comparable.

In the following section, we briefly describe the initial value problem for constructing the
axisymmetric vacuum asymptotically flat spacetimes without angular momentum; the details
of the equations, gauge conditions and our numerical code are found in [5]. Section 3 is
devoted to the results and numerical tests. We summarize our findings, discuss limitations of
the current method and outline perspectives in the concluding section 4.

2. The equations and a method of their solution

We are interested in solving the vacuum Einstein equations

Rμν = 0, (1)

where Rμν is the Ricci tensor. We consider axisymmetric asymptotically flat spacetimes
without angular momentum and assume that they can be foliated by a family of space-like
hypersurfaces, starting with the initial surface at t = 0, where the spatial metric and its normal
derivatives are chosen to satisfy the constraints (Gauss–Codazzi equations).
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The most general metric adapted to the symmetries of the problem can be written using
the cylindrical coordinates

ds2 = gab dxa dxb + r2e2 S dφ2, (2)

where the seven metric functions—gab, a, b = 0, 1, 2 and S—depend only on t, r and z.1 In
order to solve the field equations (1), we employ the generalized harmonic (GH) formalism
[9–11], adopted to the axial symmetry in [5]. To this end, we define the GH constraint,

Ca ≡ −� xa + Ha = −�a
αβgαβ + Ha = 0, (3)

where �a
αβ are the Christoffel symbols, and the ‘source functions’ Ha = Ha(x, g) depend on

coordinates and the metric (but not on the metrics’s derivatives) and are arbitrary otherwise.
We then modify the Einstein equations:

Rμν − C(μ;ν) = 0, (4)

which now become a set of quasi-linear wave equations for the metric components of the form
gαβgμν,αβ + · · · = 0, where ellipses designate terms that may contain the metric, the source
functions and their derivatives.

Fixing the coordinate freedom in the GH language amounts to specifying the source
functions, and we choose those by requiring that the spatial coordinates satisfy damped wave
equations, while the time coordinate remains well behaved when the lapse satisfies a damped
wave equation [5, 12]. A particular example of these conditions [12], that we use here, can be
written in terms of the kinematic ADM variables as

H DW
a = 2μ1 log

(
γ 1/2

α

)
na − 2μ2α

−1γaiβ
i, (5)

where nμ = (−g00)−1/2∂μ t is the unit normal to the spatial hypersurfaces of constant time, α

is the lapse, βi is the shift, γab = gab + nanb is the spatial metric, γ = (
g11 g22 − g2

12

)
exp(S),

and μ1 and μ2 are the parameters.
The initial data are given at t = 0, where we choose the initial spatial metric to be in the

form of the Brill wave [13]

ds2
3 = ψ4(r, z)[e2 r B(r,z)(dr2 + dz2) + r2 dφ2], (6)

with

B(r, z) ≡ ar exp

(
− r2

σ 2
r

− z2

σ 2
z

)
, (7)

where σr, σz and a are the parameters.
We further assume time symmetry, in which case the momentum constraint identically

vanishes at t = 0, while the Hamiltonian constraint becomes the elliptic equation for ψ :(
∂2
r +

1

r
∂r + ∂2

z

)
ψ = −1

4
ψr

(
∂2
r +

2

r
∂r + ∂2

z

)
B, (8)

which is solved subject to regularity conditions on the axis, equatorial reflection symmetry
and asymptotic flatness boundary conditions:

∂zψ(r, 0) = 0, ∂rψ(0, z) = 0, ψ(r,∞) = ψ(∞, z) = 1. (9)

We assume initially harmonic coordinates, Ha = 0, and choose the initial lapse α(t =
0, r, z) ≡ g

1/2
00 (t = 0, r, z) = 1.

Having specified the initial data, we integrate equations (4) forward in time, imposing
asymptotic flatness and regularity on the axis, r = 0. For simplicity, we restrict attention to the

1 While Greek indices range over t, r, z, φ = 0, 1, 2, 3, Latin indices range over 0, 1, 2.
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spacetimes having equatorial reflection symmetry. The highlights of our finite-differencing
approximation (FDA) numerical code [5] that we employ to solve the equations include the
following.

• The introduction of a new variable that facilitates axis regularization. While elementary
flatness at the axis implies that each metric component has either to vanish or to have
vanishing normal derivative on that axis, requiring the absence of a conical singularity
at r = 0 results in the additional condition: g11(t, 0, z) = exp[2 S(t, 0, z)]. Therefore,
at r = 0, we essentially have three conditions on the two fields S and g11. While
in the continuum, and given regular initial data, the evolution equations will preserve
regularity, in a FDA numerical code this will be true only up to discretization errors. Our
experience shows that the number of boundary conditions should be equal to the number
of evolved variables in order to avoid regularity problems and divergences of a numerical
implementation. We deal with this regularity issue by defining a new variable

λ ≡ g11 − e2S

r
, (10)

which behaves as λ ∼ O(r) on the axis, and use it in the evolution equations instead of S.
This eliminates the overconstraining and completely regularizes the equations. Crucially,
the hyperbolicity of the GH system is not affected by the change of variables.

• Constraint damping: the constraint2 equations, Cμ = 0, are not solved in the free
evolution schemes like ours, except at the initial hypersurface. While one can show
that in the continuum the constraints are satisfied at all times, in FDA codes small initial
violations tend to grow and destroy convergence. A method that we use to damp constraint
violations consists of adding to equations (4) the term of the form [15, 16]

Zμν ≡ κ
(
n(μCν) − 1

2gμνn
βCβ

)
, (11)

where κ is a parameter. We note that Zμν contains only first derivatives of the metric and
hence does not affect the principal (hyperbolic) part of the equations.

• A spatial compactification is introduced in both spatial directions by transforming to the
new coordinates x̄ = x/(1 + x), x̄ ∈ [0, 1], x ∈ [0,∞), where x stands for either r or z.
The advantage of this scheme is that asymptotic flatness conditions gμν = ηMink

μν at the
spatial infinity are exact.

• We use Kreiss–Oliger-type dissipation in order to remove high frequency discretization
noise3. An additional role of the dissipation is to effectively attenuate the unphysical
back reflections from the outer boundaries, resulting from the loss of numerical resolution
there. This allows using compactification meaningfully [11, 17].

In order to characterize the spacetimes that we construct, we use the Brill mass [13],
computed at the initial time slice,

M =
∫

[(∂r log ψ)2 + (∂z log ψ)2]r dr dz, (12)

which—we verify—coincides with the ADM mass. For the purpose of quantifying the strength
of the gravitational field, we calculate the Riemann curvature invariant having dimension of
inverse length,

I ≡ (RαβμνR
αβμν)1/4 (13)

2 It can be shown that the standard Hamiltonian and momentum constraints are equivalent to the GH constraints [14].
3 That is, noise with the frequency of the order of the inverse of the mesh spacing.
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at various locations, and in certain experiments we follow its evolution in the proper time at
that location (r, z),

τ(t, r, z) ≡
∫ t

0
α(t ′, r, z) dt ′. (14)

We also use the circumferential radius

ρ ≡ r eS. (15)

3. Results

The initial data (6,7) are characterized by the amplitude a and the ‘shape’ parameters σr and
σz, which define the mass of the data and their ‘strength’, namely the tendency to collapse and
form a black hole. For a given amplitude and fixed σr + σz = const, the data with larger σz/σr

are stronger (see also [18, 19]). In addition, by varying the shape parameters at fixed gauge,
we can control the spacetime locations where curvature evolves to a maximum or where an
apparent horizon first forms. In our experiments, we use several sets of σr and σz, and adjust
the strength of the initial wave by tuning its amplitude.

The initial data are numerically evolved forward in time. We use grids with similar mesh
sizes in both spatial dimensions hr = hz = h, and time steps of ht = 0.04 h and ht = 0.05 h.
Usually, our fixed grids consist of 200, 250, 300 or 400 points, uniformly covering the
compactified spatial directions. We also experiment with adaptive mesh refinement (AMR),
provided by the PAMR/AMRD software [20]. In this case, we use two or four refinement
levels, and the base mesh with the resolution of h = 1/128. The Kreiss–Oliger dissipation
parameter is typically εKO = 0.5–0.85, with larger values used on finer grids and stronger
initial data; and the constraint damping parameter in (11) is κ = 1.4–1.7. The gauge fixing
parameters (5) in the ranges μ1 � 0.1–0.3 and μ2 � 0.9–1.2, usually gave stable, sufficiently
long evolutions.

The system is weakly gravitating for small amplitudes, in which cases the initial wave
packet ultimately disperses to infinity. However, for amplitudes above certain threshold,
a∗, the wave collapses to form a black hole, signalled by an apparent horizon. In subcritical
spacetimes, we can define the ‘accumulation locus’ where curvature attains a global maximum
before decaying. In our coordinates (5), and for our initial data (where the ratio of σ ’s never
exceeds 5), the position of the maxima (t∗, r∗, z∗) is always along the equator z∗ = 0.

The threshold amplitude for black hole formation, a∗, depends on the initial data,
controlled by σr, σz, and gauge parameters μ1, μ2, and the resolution, h. Table 1 records
critical amplitudes, a∗, masses, M∗ and the spacetime positions, ρ∗, τ∗, of the accumulation
locus in the strongest, a � a∗, initial data evolutions, for a few sets which we have calculated.
In contrast to spherically symmetric collapse, where the accumulation locus is solely at the
origin, in axial symmetry this is not always the case. For instance, the critical amplitude for
the initial data with σr = σz = 1, determined in the unigrid simulations with h = 1/300
is a∗ = 6.20021. The spacetime position of the accumulation depends on the amplitude
such that for a � 0.99a∗, the accumulation loci are at the origin, and for larger amplitudes
they shift to be along the rings of radii ρ∗ � 0.2. The time of occurrence of the maxima
converges to τ∗ � 1.46 M∗ from above in the limit a → a∗. While qualitatively similar
behaviour is observed for most of the initial data families listed in table 1, the initial data
defined by σr = 0.7, σz = 1.5 have the accumulation loci at the origin all the way to the
strongest subcritical amplitude of a = 8.20. However, since in this case we have succeeded to
compute a∗ only with a modest accuracy of one part in 820, a possibility remains that closer

5



Class. Quantum Grav. 28 (2011) 025011 E Sorkin

Table 1. The parameters of the initial data σr and σz, as well as grid spacing h and gauge parameters
μ1 and μ2 determine the threshold amplitude a∗ whose upper margin corresponds to formation
of a black hole, and whose lower margin corresponds to a regular spacetime. Given this set of
initial parameters, this further determines the total mass M∗ and the ‘accumulation locus’, whose
position and time of occurrence is given by the radial position ρ∗ and proper time τ∗. The radial
position ρ∗ is measured in terms of the circumferential radius (15), and the proper time τ∗ at that
location is measured in units of the total mass. The parameters 2l and 4l indicate that two and four
AMR levels were used, respectively. All other simulations are unigrid.

σr, σz μ1, μ2 h ht/h a∗ M∗ ρ∗ τ∗

1.0, 1.0 0.1, 1.1 1/200 0.05 5.985 ± 0.005 0.969 0.2 1.5
1.0, 1.0 0.12, 1.17 1/300 0.05 6.20021 ± 0.00001 1.04 0.15 1.46
1.0, 1.0 0.2, 1.0 1/400 0.04 6.273 ± 0.001 1.06 0.2 1.45
0.9, 1.3 0.3, 0.9 1/300 0.04 7.307 9082 ± 0.000 0002 1.12 0.23 1.59
0.9, 1.3 0.3, 0.9 1/128, 2 l 0.05 7.246 067 ± 0.000 002 1.1 0.23 1.64
0.9, 1.3 0.3, 0.9 1/128, 4 l 0.05 6.9401 ± 0.0002 1.0 0 1.51
0.8, 1.3 0.2, 1.1 1/300 0.05 6.786 ± 0.004 0.607 0.1 3
0.7, 1.5 0.2, 1.1 1/300 0.04 8.21 ± 0.01 0.593 0.0 3.2

to the threshold the accumulation loci will become ring-shaped. For this set the time of the
accumulations converges to τ∗ � 3.2 M∗ in the limit a → a∗, and the mass of the near-critical
solutions, M∗ � 0.593, is about one-half of that found in the σr = 0.9, σz = 1.3 cases.

As described next, there is a power-law scaling of the maximal curvature in the limit
a/a∗ → 1 for all families of the initial data listed in table 1. In most cases, the scaling shows
up at relatively large values of a∗/a − 1 ∼ 10−3, for all resolutions better than h = 1/200.4

However, it turns out that the data calculated in fixed-mesh simulations with h � 1/250 are
too noisy and dependent on the details of numerics to provide a reliable estimate of the scaling
exponent.

The scaling can be envisaged by plotting the maximal value of the Riemann curvature
invariant (13) as a function of the parametric distance from the critical amplitude, a∗ − a; this
is shown in figure 1. Each point here represents the global maximum |Imax| computed
during evolutions defined by σr = 0.9 and σz = 1.3, and the numerical parameters:
h = 1/300, ht/h = 0.04, μ1 = 0.3, μ2 = 0.9, κ = 1.7 and ε = 0.6. The solid line
represents the least-squares linear fit to the data. The slope of the line, β � −0.37, is in
agreement with the exponent of the black holes’ mass scaling5, found in supercritical collapse
by Abrahams and Evans [3]. The data depicted in figure 2 were obtained with a differently
shaped initial wave, σr = σz = 1, and the parameters h = 1/300, ht/h = 0.05, μ1 =
0.12, μ2 = 1.17, κ = 1.7 and ε = 0.8. The threshold amplitude in this case is found with
somewhat lesser accuracy, a∗ = 6.200 21 ± 0.000 01. However, the data are still fitted well
with a straight line whose slope, β � −0.4, coincides with the exponent in figure 1 to
within 8%.

It is remarkable that despite the fact that the evolutions of the initial waves shown in
figures 1 and 2 are dramatically different, the maximal curvatures in both cases follow a power
law with similar exponents. We verify that the same scaling appears again in simulations with
other shape parameters and in all cases those resulting exponent is consistently in the range
β � 0.37–0.4. In addition, the scaling exponent within these bounds when we use coordinate

4 For comparison, in scalar-field collapse the signatures of near-critical scaling do not appear before a∗/a−1 � 10−8.
5 Note that our exponent is negative since the dimensions of I are inverse length, while black hole mass computed in
[3] has dimensions of length.
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Figure 1. A logarithm of the maximal Riemann invariant (13) as a function of the distance from
the critical amplitude, a∗ − a, in the simulations with σr = 0.9, σz = 1.3 and the fixed resolution
h = 1/300. The critical amplitude in this case is a∗ = 7.307 9082, and the maximal curvature
is |Imax| ∼ 105 in the units of the total mass. The linear fit to the data (solid line) has the slope
β � −0.37. Note the (quasi-) periodic ‘wiggle’ of the data points about the straight line, which
we interpret to signal periodic self-similarity of the critical solution.
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Figure 2. A plot similar to figure 1, but obtained with different parameters: σr = σz = 1 and
the resolution h = 1/300. In this case, the critical amplitude is a∗ = 6.200 21. Remarkably, the
slopes of the linear fits in both figures agree to within 8%.

conditions with different choices of μ’s in (5) (see e.g. figures 1 and 2). While this does
not test the rigidity of β with respect to all possible coordinate conditions, this demonstrates
relative consistency of the exponent within the large family of the gauges (5). We conclude
that in the critical limit, the maximal curvature predominantly scales as |Imax| ∝ (a∗ − a)−β ,
with β = 0.385 ± 0.015, where the error bars represent the deviation from the average value
computed over all initial data sets that we have evolved6.

6 The slope obtained for each initial data set carries individual fitting errors. However, these are typically smaller
than the fluctuations around the average β computed over all data sets.
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Figure 3. The dynamics of the logarithm of the Riemann invariant, I, as a function of the
proper time τ(r∗) for several values of a/a∗, obtained in the evolution of initial data defined
by σr = 0.9, σz = 1.3, and the fixed resolution h = 1/300. The variation of I toward the
accumulation, τ∗, and away from it is accompanied by oscillations, whose number grows in the
limit a → a∗. The double dip in top right panel at about τ � 1.51 and in bottom panels near
τ � 1.48 is a result of the interference between the main and a secondary reflection off the axis.

The distribution of data points in figures 1 and 2 has a striking property, namely the data
‘wiggle’ about the linear fit. We note that a similar wiggle was also observed in near-critical
collapse of the scalar field. In that case, it was attributed [22] to the periodic self-similarity
found in that system, where the critical solution, Z∗, repeats on itself after a discrete period
�: Z∗(τ, r) = Z∗(τ e�, r e�). Besides, [22] found that the period of the wiggle is �/(2 β),
and thus may, in principle, allow calculating the self-similarity scale � by measuring the
slope and the period of the wiggle in a plot like our figures 1 and 2. We believe that the
quasi-periodic fluctuations of the points about the linear fit in these figures do signal discrete
self-similarity; however, our current data are insufficiently accurate and have too short a span
to provide a more quantitative estimate of the wiggle period, beyond a very rough value of
anything between 2 and 4.

Independent and more direct signatures of discrete self-similarity are obtained by
examining the behaviour of the curvature when a → a∗. It turns out that in this limit,
in addition to I attaining increasingly larger maxima, the temporal variation of I is also
accompanied by an increasing amount of oscillations. This is illustrated in figure 3, which
shows the variation of I as a function of the proper time, calculated at the accumulation loci,
for a sequence of a’s. The figure shows that the amount of fluctuations—indicated by the
peaks or inflection points—grows from 1 to 3 in the limit a/a∗ → 1 on both sides of the
accumulation locus. Such an oscillatory behaviour is again reminiscent of the ‘echoing’ in
critical spherical collapse of the scalar field (see e.g. figure 5 in [8] and figure 7 in [21]), and
we interpret it as evidence of periodic self-similarity in our system as well.

Like the power-law scaling of the maximal curvature, the echoing of our solutions in
the near-critical limit is independent of specific gauges or particular initial data sets. This is
demonstrated in figure 4, which depicts temporal evolutions of the Riemann invariant and the
lapse function found in simulations of the initial data characterized by σr = 0.9, σz = 1.3,
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Figure 4. The echoing pattern obtained in the evolution of the initial data sets with σr = 0.9, σz =
1.3 and a = 6.940. Left panels show the low resolution runs that use two levels of AMR, with
the base h = 1/128, other panels were obtained using four AMR levels with the same base; the
rightmost panels is the zooming of the late time behaviour shown in middle panels. While the
lower resolution runs diverge around τ � 1.47, the higher resolution runs extend beyond that,
allowing one to calculate additional echos. Note that I has sharper and easier to identify features
than α.

the gauge constants μ1 = 0.3 and μ2 = 0.9, and the amplitude a = 6.940. The functions in
the left panels were computed using two levels of AMR, and the other panels were generated
using four levels of AMR; in both cases the base-level resolution is h = 1/128. The figure
shows that the dynamics in this case involves more scatterings and interferences of the initial
and secondary waves than e.g. in σr = σz runs, depicted in figure 3.

In most cases higher resolution simulations run longer and allow computation of more
oscillations. Note that the shapes of the curves in the left and middle panels in figure 4
are essentially identical until τ ∼ 1.47. However, while the lower resolution runs diverge
around that time due to formation of a singularity, the higher resolution evolutions continue
beyond that, and develop additional echos that accumulate near τ∗ � 1.477 M∗, just before
the numerics fail. The critical amplitude determined in the four-level AMR simulations is
a∗ = 6.9401, and the accumulation loci occur at the origins. While we were unable to
stabilize the four-level evolutions for amplitudes beyond about a � 7, in lower resolution, for
two-level runs we find a different critical solution with the amplitude, a∗ = 7.246 067, where
the accumulation locus lies at ρ∗ � 0.23; see table 1. The total masses of the near-critical
spacetimes, the accumulation loci and such details of evolutions as the amount of secondary
scatterings and interferences, reflected in the strong variability of the curvature profile, and
the total amount of gravitational radiation, are different in near-critical evolutions in the two-
and four-level AMR simulations. Nevertheless, the scaling and echoing constants appear to
be nearly identical.

In order to estimate the period of the echos, we plot in figure 5 the temporal variation of
I computed in the evolution of the initial data set having σr = σz = 1 and a = 6.2002. By
measuring the distances between the peaks or inflection points—marked by arrows in figure 5—
we find that the curvature fluctuates in time with the logarithmic period �τ = 0.95 ± 0.15
and that on each echo the logarithm of I varies by approximately �r � 1.1 ± 0.1. The error
bars here represent the maximal deviation from the average values of �τ and �r , measured
in this figure. We note that both periods agree within the error bars. A similar figure 6
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Figure 5. The typical temporal variation of the curvature invariant I near the accumulation
locus is oscillatory in time. Shown is the evolution of the initial data with σr = σz = 1 and
a/a∗ = 0.999 998. On each oscillation log |I | varies by �r � 1.1 ± 0.1, which is close to the
time period �τ � 0.95 ± 0.15 of the four oscillations around τ∗.

shows the dynamics of I against τ∗ − τ , which was obtained in simulations with four levels
of AMR, σr = 0.9, σz = 1.3 and a = 6.940, shown in the right panels in figure 4.7 Although
the resulting dynamics is quite complicated, featuring multiple scatterings and interferences,
there are three prominent peaks—marked by the arrows in figure 6—that can be identified as
echos. Their temporal period is �τ = 1.10 ± 0.04, and on each echo the logarithm of |I |
grows by a comparable amount �r = 1.12 ± 0.06. We note that these values match within
the error bars and are in good agreement with the periods computed in figure 5.

The echoing is not specific to the curvature invariant I, other metric functions oscillate
as well. However, while the echoes of I are signalled by the sharp peaks, the fluctuations
of metric components are typically milder, showing up as inflection points (see the bottom
panels in figure 4). This makes I a superior quantity for the purpose of measuring the echoing
periods. Although we mainly discussed variations of I at the location of its global maximum,
we verified that curvature develops echoes in other locations as well; however, the amount
of echos and their amplitude is generally smaller than around the accumulation locus. Since
away from the accumulation locus the curvature remains bounded in the critical limit, we
expect only a finite number of such oscillations.

We conclude this section by briefly discussing the accuracy of our code. While it was
not possible to perform a direct convergence test of e.g. the critical amplitude or the scaling
exponent, since changes of the resolution usually required readjustments of the dissipation,
εKO, and the constraint damping, κ and the gauge parameters μ1 and μ2, which alter the
‘conditions of the convergence study’, and require all parameters except h to stay fixed.

7 The evolution of this initial data diverges soon after the accumulation at about τ � 1.477 M∗, due to imperfections
in our AMR numerics, and sensitivity to the choices of μ1 and μ2. Hence, only the collapse stage of the evolution is
shown in this figure.
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1.3, and a/a∗ � 0.999 97. The variation of log |I | on each oscillation (marked by arrows) is nearly
equal to the temporal period of the echos, �r � �τ � 1.1.
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Figure 7. The logarithm of |Imax| obtained in simulations with two distinct sets of the damping and
dissipation constants: κ = 1.4, εKO = 0.75 (right panel), and κ = 1.5, εKO = 0.85 (left panel).
We use the same resolution of h = 1/300, and all other equal parameters. The difference in β’s in
this case is less than 3%, indicating the quality of our numerics.

Nevertheless, as indicated in table 1 the critical amplitude seems to converge as a function of
the resolution, at least in the equal-σ case. In addition, formal numerical convergence tests in
individual, fixed amplitude simulations along with the demonstration that the Hamiltonian and
the momentum constraints are satisfied during the evolutions were carried out in [5], indicating
nearly second-order convergence, and exponential decay of the l2-norms of the constraints at
late times.

The consistency of the scaling exponents obtained in simulations with a whole different
set of parameters (see e.g. figures 1 and 2) indicates robustness of β; however, the overall
accuracy of our code can be estimated by changing only the numerical parameters. To this end
we performed simulations with different damping and the Kreiss–Oliger dissipation constants
κ and εKO, and otherwise similar parameters. Figure 7 shows that β’s computed in two sets of
simulations defined by κ = 1.4, εKO = 0.75 and κ = 1.5, εKO = 0.85 differ by less than 3%.
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4. Discussion

The ring-shaped accumulation loci that we observe in most evolutions of the time-symmetric
Brill-wave initial data indicate that the critical solutions in these cases are genuinely different
from those found by Abrahams and Evans [3] for the ingoing l = 2 quasi-linear wave data,
where the maximal curvature occurs at the origin. The black hole radii and their masses found
in slightly super-critical evolutions in [3] tend to zero in the critical limit, signalling so-called
type 2 critical phenomenon, characterized by smooth transition between dispersion and black
hole formation, see [2]. In our case, however, the radii of the accumulation loci are finite, as
are the apparent horizons that form in supercritical collapse, engulfing the accumulation loci.
Although at present neither our numerics is capable of finding apparent horizons very close to
the threshold, a∗ � a � 1.2 a∗, nor allows us to trace the evolution of the horizons to their end
state, it indicates that our critical solutions include quasi-stationary ring-shaped formations of
finite size and mass.

The situation with the four- and two-level AMR simulations is somewhat puzzling. While
the two-level simulations are clearly divergent near a = 6.9401, which is determined as the
critical amplitude in the four-level runs, comparable in resolution unigrid runs do not encounter
any particular difficulties at this amplitude. We believe that such a behaviour may signal
another, different critical solution, which is not resolved by the lower dimensional unigrid
simulations, and which destabilizes the less accurate two-level runs. However, whether this is
indeed the case requires further investigation.

In all cases, we found strong evidence that in subcritical non-rotating axisymmetric
vacuum collapse, curvature exhibits a power-law scaling as a function of parametric distance
from the threshold for black hole formation. We numerically evolved several sets of initial
Brill waves defined by fixed σr and σz, and by a tuneable amplitude, a, and checked that in
the limit a → a∗, |Imax| ∝ (a∗ − a)−β with roughly the same exponent as that computed
in the supercritical regime by Abrahams and Evans [3]; see figures 1 and 2. This demonstrates
that quantities with the same length dimensions—such as the black hole mass in [3] and
the inverse curvature invariant I−1

max here—scale identically. We verified that the exponent is
relatively insensitive to coordinate conditions. Since we find that the scaling occurs around
a ring-shaped accumulation locus, which is different from the point-like one of [3], there is
no a priori reason to expect the exponents in both cases to match. However, the exponents
agree, and this, apparently, indicates that β � 0.35–0.4 is truly universal and independent of
the initial data, regardless of what critical solution these data may lead to8.

There is evidence that the near-critical solutions are periodically self-similar. Specifically,
we observe that in the limit a → a∗, the curvature invariant I undergoes increasingly a large
number of oscillations, whose period in the proper time is approximately equal to the rate of
variation of the curvature on each echo �τ � �r � 1.1; see figures 3, 5 and 6. We note that
the echoing periods reported in [3], � ∼ 0.6, differ from ours, which are roughly twice as
large in magnitude. However, this is probably not too surprising since our critical solutions
are different from theirs, and besides, the period of any specific quantity will typically depend
on the particular combinations of the metric and derivatives that comprise it (for instance,
the quantity ∂2�/∂τ 2 is twice more variable than �). An independent, if circumstantial,
signature of discrete self-similarity is the distinctive ‘wiggle’ of the data points about the
leading power-law scaling of |Imax| (see figures 1 and 2) since exactly this kind of behaviour
is expected in the periodically self-similar systems [22].

8 In this regard, it is interesting to observe that the critical exponent, originally found by Choptuik in scalar-field
collapse, βSF � 0.374, is again comparable to what we find here. While this may be just a coincidence, it may,
alternatively, point to the genuine role of gravity, rather than matter, in critical behaviour in scalar-field collapse.
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An obvious limitation of the current simulations is their maximal resolution. Even though
a relatively moderate numerical resolutions of h � 1/250–1/1000 have already provided
fruitful insights into the critical behaviour, higher resolutions are needed in order to compute
the scaling and echoing constants more accurately. We expect that much closer approach
to threshold will be required. This should create a longer span of data, enabling a greater
accuracy of linear fits in the plots such as figures 1 and 2, which, in turn, will allow unambiguous
computation of β and of the wiggle period. A closer approach a → a∗ should also multiply
the number of the echoes, allowing a better estimate on their periods. Clearly, using numerical
meshes of fixed size is not practical for probing the limit a → a∗, rather the AMR approach
should be used. While we have already experimented with that, our runs often develop
premature instabilities since in the near-critical limit the system tends to be extremely sensitive
to numerical and gauge parameters; for instance, in the four-level simulations a slight variation
of κ by a mere 1% ruins convergence. We are currently improving our code in order to locate
the optimal parameter settings, which will enable us to edge the critical limit; the results of
that study will be reported elsewhere.
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