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1 Introduction

The exploration of the phase diagram of Quantum Chromodynamics (QCD) (see, e.g., [1])

is a very active area of ongoing research in both, experimental and theoretical physics.

It is well known that the zero temperature ground state of QCD (at normal nuclear den-

sities) has two important features: chiral symmetry is broken spontaneously and the color

charges are confined to the interior of the individual hadrons (the scale is about 1fermi).

However, the studies in lattice QCD predicted that, beyond a temperature of about

150 MeV (in fact, the critical temperature is Tc ∼ 200 MeV), the hadronic matter undergoes

a transition from the confined phase to a deconfined color phase (of quarks and gluons).1

1Also, by increasing the temperature and/or density the QCD vacuum restores its chiral invariance.
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Since the transition temperature is not extremely high, it was expected that this phase

of matter can even be produced in the laboratory. Indeed, the experimental data obtained

at the Relativistic Heavy Ion Collider (RHIC) have confirmed the ‘theoretical’ expectation.

What came as a big surprise, though, is that the experimental data indicate that

the quark-gluon plasma is a new state of thermalized matter, which exhibits almost ideal

hydrodynamic behaviour. The early thermalization and a very small viscosity to entropy

density area (η/s) are characteristics of a strongly interacting system — at weak coupling

(g ≪ 1), the equilibration time and ratio η/s are proportional with the mean free path

(∼ 1/g4) and so they are parametrically large.

In other words, the experimental data are consistent with the interpretation of the

new state as a strongly interacting plasma (see, e.g., [2] and references therein). This new

phase of nuclear matter (the state of deconfinement super-hot hadronic matter) is known

as the strongly coupled quark-gluon plasma (sQGP).

Obviously, the perturbation theory is not useful to investigate the properties of sQGP.

Also, the lattice QCD study is not suitable for computing the dynamical quantities of

sQGP. Interestingly enough, valuable guidance for understanding the near perfect fluid-

ity observed at RHIC was obtained from the Anti-deSitter(AdS)/conformal field theory

(CFT) duality [3].2

It is important to emphasize that the gravity dual of QCD is not known. However, the

QCD matter of interest is in a deconfined phase for which the ‘conformal anomaly’ (due

to the running of the coupling) appears to be relatively small. Therefore, since QCD is

approximately conformal at sufficiently large energies, one expects some similarities with

some of the gauge theories that can be studied by using the AdS/CFT duality.

Indeed, a study of quantum field theories (QFT) with a gravity dual revealed the fact

that, when heated up to finite temperature, these QFTs behave hydrodynamically (see,

e.g., [5] and references therein and, also, [6]) at large distances and time scales.

The holographic hydrodynamics (the first attempt to study hydrodynamics via

AdS/CFT was [7]) is an important tool for understanding some properties of strongly

coupled quantum field theories in terms of AdS black holes physics. A notorious example

is the computation of the ratio of the shear viscosity (η) to the entropy density (s). It was

proposed in [8] that there is an universal viscosity bound,3 which is also satisfied by sQGP:

η

s
≥ ℏ

4πkB
. (1.1)

Kubo formula relates the shear viscosity to the two-point function of energy momen-

tum tensor in zero frequency limit (see appendix A for a review). From the field/operator

correspondence of AdS/CFT duality, we know that the energy momentum tensor of

boundary field theory is sourced by bulk graviton excitations. In [7], the authors have

considered graviton excitations polarized parallel to the black brane, which are moving

transverse to it. They found that the graviton absorption cross section is related to the

shear viscosity coefficient.

2A concise review of phenomenological problems that can not be solved by the standard field theoretic

approach, but for which the AdS/CFT duality may be useful, can be found in [4].
3However, there are known examples for which the bound is violated (see [9] and references therein).
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In this paper, we use holographic techniques to investigate the properties of 4-

dimensional gauge theories with finite electric charge density in the presence of a constant

magnetic field. Strong magnetic fields are created in heavy ion collisions at RHIC, and

some models were studied in [10–14].

A study of black branes solutions of Einstein-Maxwell AdS gravity with a gauge Chern-

Simons term can be found in [15–17]. We use the entropy function to carefully study the

near horizon geometry of these black branes at zero temperature and discuss different

branches with finite area horizons. This allows us to obtain an analytic expression for the

entropy density that supports the numerical analysis of [17] (though, we find a larger class

of near horizon geometries). That is, there is a critical value of the magnetic field for which

the entropy vanishes.

We also extend the work of [15, 16] by including a modulus, which is exponentially

coupled to the gauge field kinetic term in the action. This kind of coupling appears in con-

sistent truncations of type IIB supergravity on Sasaki-Einstein manifolds [20–23]. In the

extremal limit, we argue that, due to the attractor mechanism, the near horizon geometry

is stable under scalar fields fluctuations.

More importantly, unlike [15, 16], our main focus is on the hydrodynamics properties

of this system. We use the membrane paradigm approach [24] and its higher derivative

generalization [25, 26] (see, also, [27]) to compute the shear viscosity (related work for finite

chemical potential can be found in [28–37]). In particular, we study the effect of the moduli

(in the presence of a generic set of four-derivative interactions) on the viscosity bound.

Our results are given in terms of near horizon data, and not in terms of the field the-

ory parameters that would be measured at the AdS5 boundary. For a computation of the

viscosity of our system, that is enough. However, there is a non-trivial flow for other trans-

port coefficients, e.g. the conductivity. Also, it will be interesting to express the entropy

in terms of asymptotic parameters — in [17] this problem was solved analytically (for van-

ishing scalar field). We will present some of these results in the forthcoming work [18, 19].

An overview of the paper is as follows: In section 2, we present the bulk action, set-up

the conventions for our model, and provide some useful holographic data. In section 3,

we carefully study the near horizon geometry of electromagnetic black branes at zero and

finite temperature. In the extremal limit, we use the entropy function and present exact

near horizon geometry solutions. In section 4, we compute the shear viscosity to entropy

density in the presence of a generic set of four derivative interactions. Finally, we conclude

with a discussion of our results and present some future directions. The appendices contain

supporting material.

2 General set-up

The AdS/CFT duality provides a concrete relation between the regular black brane solu-

tions in AdS5 and the hydrodynamic regime of strongly coupled 4-dimensional quantum

field theories.

In this section, we fix the conventions for our model and present a brief review of

holography relevant to our work. We follow closely [15, 16], though our model is different

– 3 –
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because we also consider scalar fields. In this way, it is straightforwardly to compare some

of the results. However, one important difference is that we do not rescale the horizon

radius to one, as in [15, 16] — the physics in the presence of a scalar field is unambiguous

if we do not use this rescaling.

2.1 The model

We will focus on a 5-dimensional theory of gravity coupled to a massless scalar and an

abelian electromagnetic field whose action is4

SEM =
1

16πG5

∫

d5x
√−g

(

R + 12 − eαϕ(r)FµνFµν − ∂µϕ∂µϕ
)

+ SCS, (2.1)

SCS =
ζ
3

16πG5

∫

d5x ǫµνρσγAµFνρFσγ . (2.2)

In this paper, we consider a constant moduli potential, V (φ) = 2Λ = −12/l2, and also fix

the radius of AdS to be l = 1.

Since the equations of motion for the gauge field simplify, we choose the constant in

front of the Chern-Simons term to be ζ/3. The action (2.1) with various values for α

resembles (truncated) actions obtained in string compactifications [20–23]. The coupling ζ

captures the strength of the anomaly of the boundary current.

The equations of motion for the metric, scalar, and electromagnetic field (Fµν = ∂µAν−
∂νAµ) are

Rµν + 4gµν + eαϕ(r)

(

1

3
F 2gµν − 2FµρFνσgρσ

)

− ∂µϕ∂νϕ = 0 , (2.3)

1√−g
∂µ(

√−g∂µϕ) = −1

2
αeαϕ(r)FµνFµν , (2.4)

eαϕ(r)∂ν

(√−gF νµ
)

+
ζ

4
ǫµρσγδFρσFγδ = 0 , (2.5)

where we have varied the scalar and the electromagnetic field independently. The Bianchi

identities for the gauge field are F[µν;λ] = 0.

Since we are interested in a theory for which the Chern-Simons term has a non-trivial

contribution, we consider the following ansatz for the gauge field:5

A = E(r)dt − B

2
ydx +

B

2
xdy − P (r)dz . (2.6)

The magnetic field, B, is fixed to be constant by the Bianchi identities. Thus, the field

4We also have to add counterterms to regularize the action — for (2.1), the counterterms are given

in [38] (see, also, the nice review [39] and references therein for a more detailed discussion).
5Please note that our P ′(r) is the same as P (r) in [15, 16] and our Z(r) in the ansatz of the metric (2.8)

is their C(r).
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strength is6

F =















0 E′(r) 0 0 −P ′(r)

−E′(r) 0 0 0 0

0 0 0 B 0

0 0 −B 0 0

P ′(r) 0 0 0 0















, (2.7)

where ′ denotes derivatives with respect to r.

Our analysis is on time-independent black hole solutions and so we consider the fol-

lowing ansatz for the metric

ds2 =
dr2

U(r)
− U(r)dt2 + e2V (r)

(

dx2 + dy2
)

+ e2W (r) (dz + Z(r)dt)2 , (2.8)

which is compatible with the symmetries of the problem.

In this case, the horizon is located at (the biggest root of) U(rh) = 0 and the temper-

ature can be easily computed on the Euclidean section — we obtain

T =
U ′(rh)

4π
. (2.9)

By using the metric ansatz (2.8), we can rewrite the Maxwell equations as

[Q(r)e2V (r)+W (r)+αϕ(r)]′ − 2ζBP ′(r) = 0, (2.10)

[e2V (r)+W (r)+αϕ(r)
(

U(r)e−2W (r)P ′(r) − Q(r)Z(r)
)

]′ − 2ζBE′(r) = 0 (2.11)

where

Q(r) = E′(r) + Z(r)P ′(r). (2.12)

It is easier to work with combinations of Einstein equations rather than using di-

rectly (2.3). First, we extract the expressions of second derivatives of the functions that

characterize the metric in the following way: we obtain W ′′(r) from (rr)- , V ′′(r) from

(xx)- , and U ′′(r) from (zz)-component of Einstein equations.

Let us now consider the (tz)-component of Einstein equations in which we replace

W ′′(r), V ′′(r), and U ′′(r) — we obtain

e2W (r)
[

2V ′(r)Z ′(r) + 3W ′(r)Z ′(r) + Z ′′(r)
]

− 4Q(r)P ′(r)eαϕ(r) = 0. (2.13)

An important observation, which can be drawn by studying the system of equa-

tions (2.10)–(2.13), is that a non-zero magnetic field is not compatible with a constant

function Z(r) (and, also, P (r)).

The other (independent) combinations of Einstein equations are obtained as follows:

by replacing U ′′(r) in the (rr)-component of Einstein equations we get

2B2eαϕ(r)−4V (r) + 2Q(r)2eαϕ(r) + U(r)[2V ′(r) + W ′(r)]2

+[U(r)
(

2V ′(r) + W ′(r)
)

]′ +
1

2
e2W (r)Z ′(r)2 − 12 = 0 (2.14)

6Our convention for the coordinates is (r, t, x, y, z).
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by replacing W ′′(r) in the (zz)-component of Einstein equations

−4Q(r)2eαϕ(r) + U ′′(r) + U ′(r)[2V ′(r) − W ′(r)] − 2e2W (r)Z ′(r)2

+2U(r)[2V ′′(r) − 2V ′(r)W ′(r) + 2V ′(r)2 + ϕ′(r)2] = 0 (2.15)

and the last one is, in fact, the (xx)-component of Einstein equations

e2W (r)[−4B2eαϕ(r) − 3e4V (r)U ′(r)V ′(r) + 12e4V (r)] − 2Q(r)2e4V (r)+2W (r)+αϕ(r)

+U(r)e4V (r)[2P ′(r)2eαϕ(r) − 3e2W (r)
(

V ′′(r) + V ′(r)W ′(r) + 2V ′(r)2
)

] = 0. (2.16)

We also use the ansatz of the metric in the equation of motion for the scalar (2.4) and so

this equation becomes

[U(r)e2V (r)+W (r)ϕ′(r)]′+ αe2V (r)+W (r)+αϕ(r)[B2e−4V (r) + U(r)e−2W (r)P ′(r)2 − Q(r)2]=0.

(2.17)

Due to the non-trivial coupling between the scalar and gauge fields, the equation (2.4)

has a non-trivial right hand side. The non-vanishing electromagnetic field may also be

understood as a source for the scalar field. Thus, the scalar charge is determined by the

electric and magnetic charges and so it is not an independent parameter that characterizes

the system — this charge plays an important role when the asymptotic value of the scalar

is not fixed (see [41, 42]).

We would like to conclude this section with an observation on the Hamiltonian con-

straint. A vanishing Hamiltonian is a characteristic feature of any theory that is invariant

under arbitrary coordinate transformations — for our system, we can obtain a first or-

der differential equation by replacing W ′′(r), V ′′(r), and U ′′(r) in the (tt)-component of

Einstein equations.

The Hamiltonian constraint, which can be enforced as an initial condition, has the

following expression:

2B2eαϕ(r)−4V (r) + U(r)[−2P ′(r)2eαϕ(r)−2W (r) + 4V ′(r)W ′(r) + 2V ′(r)2 − (2.18)

−ϕ′(r)2] + 2Q(r)2eαϕ(r) + 2U ′(r)V ′(r) + U ′(r)W ′(r) +
1

2
e2W (r)Z ′(r)2 − 12 = 0 .

2.2 Holographic data

The AdS/CFT correspondence [3] is a concrete example of open/closed string duality.

Remarkably, at strong coupling N = 4 SYM is best described by classical supergravity —

in this section, we closely follow the reviews [39, 43].

The observables in the field theory side of the duality are the correlation functions of

gauge invariant operators, which are composites of the elementary fields. Any supergravity

field, Φ, corresponds to an operator, O, in the (boundary) field theory — in particular,

bulk gauge fields correspond to boundary symmetry currents.

We are interested in planar black hole solutions in AdS and so we will consider the

topology of the AdS timelike boundary to be R3 × R+ — the intrinsic coordinates of the

boundary are denoted by x and the radial coordinate by r. A concrete prescription to

do computations on the Euclidean section was given in [44, 45]. That is, the on-shell

– 6 –
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bulk partition function with the boundary conditions Φ(x, r)|∞ = Φ0(x) is the generating

functional of the boundary QFT correlation functions:

ZSUGRA[Φ0(x)] =

∫

〈

e
R

d4xΦ0(x)O(x)
〉

QFT
. (2.19)

We work in the saddle point approximation and so the generating function of QFT is de-

termined by the on-shell supergravity action, WQFT [Φ0] = −Sonshell[Φ0]. To compute the

two-point function of a particular operator in the field theory, we should first solve the

linearized equation of the corresponding supergravity field with the appropriate bound-

ary conditions, then evaluate the on-shell sugra action, and, finally, compute the second

functional derivative with respect to the source:

< O(x)O(y) >= − δ2Sonshell

δΦ0(x)δΦ0(y)

∣

∣

∣

Φ0=0
. (2.20)

We are interested in a bulk gravity theory with an electromagnetic field non-minimally

coupled to a scalar. In general there are two types of perturbations of AdS: those that

modify the bulk but preserve the AdS asymptotics (e.g., a black hole is interpreted as a

finite temperature state in dual QFT) and those that do not modify the bulk and act as

sources for operators in the dual QFT. The AdS metric (graviton) couples to the stress

tensor and the gauge field Aµ couples to the R-charged current Jµ of the field theory.

To obtain the viscosity (conductivity) we should compute the two-point functions of

the stress tensor (current). Due to the coupling of the gauge field with a scalar, there

will be a non-trivial 3-point function mixing two currents with a scalar operator — in this

work, we are not interested in this correlation function.

The bulk solution is a geometry with a horizon (at zero or finite temperature) and

to get the information about the hydrodynamics one should compute the retarded Green

functions directly on the Lorentzian section. One reason is that, on the Euclidean section,

there is a discrete set of frequencies, the Matsubara frequencies (ω = 2πinT for bosons

and ω = iπT (2n + 1)/2 for fermions). However, since we are interested in a small ω in the

hydrodynamic approximation, an analytic continuation from the Euclidean section where

there is a minimum frequency (ωm = 2πiT ) is not useful.

The general prescription for real-time retarded Green’s functions within AdS/CFT

duality can be found in [46, 47]. The existence of hydrodynamics modes is reflected by the

existence of the poles of the retarded correlators. However, to compute the viscosity bound,

we will use a different prescription, namely the membrane paradigm proposal of [24].

We would like to present now a discussion on the boundary conditions for gauge fields.

The bulk gauge field (2.7) is invariant under translations in the boundary coordinates (x).

The component tangent to the boundary of the gauge field is constant at large r, which

corresponds to a magnetic field Bz perpendicular on the (xy)-plane.

If there is an electric field, Ex, in x-direction, then the effect of a magnetic field in z

direction induces a current along y-direction. For, At(x) 6= 0 and Ai = Ay(x) 6= 0, the

conserved currents on the boundary are the charge density, q, and the current density, J

– 7 –
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— they are defined as

q =
δS

δAt

∣

∣

∣

boundary
, J i =

δS

δAi

∣

∣

∣

boundary
. (2.21)

To obtain the boundary current, we have to impose the following boundary conditions:

δAt|boundary = 0 , δAi|boundary free. (2.22)

The condition of regularity of the gauge potential at the horizon requires that At

should vanish (on the Euclidean section, the radius of the Euclidean time shrinks to zero

at the horizon). Therefore, we should add a gauge term, Υ so that At(rh) − Υ = 0. This

term, which remains constant at the boundary, plays the role of a chemical potential for

the electric charge.

Let us end up this section with a comment about the Chern-Simons term. The coupling

of the gauge Chern-Simons term is proportional to the chiral anomaly of the corresponding

current in the dual field theory. The current anomaly is given by a one-loop triangle

Feynman diagram to the 3-point function of (R-)currents. Therefore, there also exists a

chiral magnetic current which is induced parallel to the applied magnetic field, Jz ∼ ζBΥ.

3 Near horizon geometry

Shear viscosity of the boundary fluid can be computed from the knowledge of the near

horizon physics only [24] — in section 4, we will present a detailed analysis. This obser-

vation is very useful when the bulk Lagrangian is very complicated. For example, for the

model we are interested in, gravity is coupled to various matter fields in a non-trivial way

and it is technically difficult to find an analytic solution of the system.

However, it is not a very complicated problem to find the near horizon geometry, i.e.

how the metric and other fields behave in the near horizon limit. The reason is that,

in principle, we do not have to solve any differential equation to find the near horizon

geometry. A study of the extremal near horizon geometries is interesting in its own because

it provides information about the instabilities that may appear in the theory.

The algorithm is as follows: first we obtain the field equations. Then, we consider a

suitable near horizon ansatz for different fields — all fields should be regular at the horizon.

Substituting the ansätze for fields in the corresponding equations of motion, one can solve

them consistently order by order in (r − rh).

In this section, we will first find the near-horizon geometry of the non-extremal black

hole, which we will need to compute the shear viscosity to entropy density ratio in section 4.

In the extremal limit, we will see that, due to the attractor mechanism, the near horizon

geometry is universal regardless of the asymptotic values of the scalars. We present a

detailed analysis of the branches of solutions with finite horizon area.

– 8 –
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3.1 Non-extremal case

As in [15, 16], we work with a coordinate system in which the solution takes the canonical

form at the horizon. That is, the field strength FH and the metric ds2
H are

FH = q dr ∧ dt + B dx ∧ dy − p dr ∧ dz,

ds2
H = r2

H(dx2 + dy2 + dz2), (3.1)

where q and B are the charge density (of the black brane) and the magnetic field at the

horizon, respectively. In this way, the gauge freedom is removed and the initial conditions

are

U(rh) = Z(rh) = P (rh) = 0 , V (rh) = W (rh) = ln(rh). (3.2)

A similar analysis (and numerical solutions) in the presence of the Gauss-Bonnet term but

without the Chern-Simons term was presented in [48].

The generic solutions have a non-degenerate horizon. Near the event horizon, they

admit a power series expansion of the form (using the definition of the temperature (2.9)

in the expression of U):

U(r) = 4πT (r − rh) + u2(r − rh)2 + · · · ,

V (r) = ln(rh) + v1(r − rh) + v2(r − rh)2 + · · · ,

W (r) = ln(rh) + w1(r − rh) + w2(r − rh)2 + · · · ,

Z(r) = z1(r − rh) + z2(r − rh)2 + · · · ,

E(r) = q(r − rh) + q1(r − rh)2 + q2(r − rh)3 + · · · ,

P (r) = p(r − rh) + p1(r − rh)2 + · · · ,

ϕ(r) = ϕh + ϕ1(r − rh) + ϕ2(r − rh)2 + · · · (3.3)

It is important to emphasize that, what is generally called near horizon geometry for a

non-extremal black hole is just a truncation of the above series expansion. To compute the

shear viscosity, though, we need also some data at the order (r − rh)2.

Another observation is that, in principle, one can use a boost transformation in z

direction to set p = 0 (see [15, 16]). However, the boost transformation is singular at some

point outside the black hole horizon. In our analysis we keep the value of p non-zero and

determine it in terms of other horizon data. We will see in section 4 that the expressions

for the entropy, shear viscosity, and their ratio remain unchanged if we set the horizon

value of P ′(r) to be zero (in other words, they do not depend of p). This is expected due to

the fact that the physical quantities should be invariant under the boost transformations.

By substituting the ansatz (3.3) in the field equations, we get the following expressions

– 9 –
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for the coefficients at the order (r − rh):7

v1 = −2B2eαϕh + r4
h

(

q2eαϕh − 6
)

6πTr4
h

,

w1 =
4B2eαϕh − r4

h

(

4q2eαϕh + 3z2
1r2

h − 24
)

24πTr4
h

,

p =
q
(

2Bζe−αϕh + z1r
3
h

)

4πTrh
,

ϕ1 =
αeαϕh

(

q2r4
h − B2

)

4πTr4
h

,

q1 =
e−2αϕh

16πTr4
h

(

2B2[
(

α2 + 2
)

e3αϕh + 4ζ2]

−r4
he2αϕh [2q2

(

α2 − 2
)

eαϕh + z2
1r2

h + 24]

)

. (3.4)

However, in higher derivative gravity theories the only coefficient at the order (r−rh)2,

which we need for viscosity bound computation, is u2. But, for completeness, we present

the expressions of all the other coefficients that appear at order (r − rh)2, in appendix B.

A non-extremal charged scalar black hole is characterized by four independent param-

eters: the mass, electric charge, magnetic field, and also the value of the scalar at the

horizon, ϕh. In this case, the horizon radius (and so the entropy) and the horizon value

of the scalar depend of the asymptotic boundary data (ϕ∞). We will see in the next sub-

section that this is in contrast with the extremal case for which we obtain an attractor

behaviour at the horizon.

At first sight, it may seem surprising that the data (3.4), (B.1) we need to compute

the entropy and shear viscosity depend also on z1, a coefficient that we do not compute

explicitly. However, we will see in section 4 that the final values of the physical quantities

depend in fact just on four independent parameters, namely (q,B, rh, ϕh) — we ‘trade’ the

mass for the horizon radius and so the independent parameters that completely characterize

the black hole are the ones mentioned above.

3.2 Extremal limit and attractor mechanism

It is by now well known that the extremal black holes in theories of Einstein gravity with

scalar fields non-trivially coupled with abelian gauge fields have an enhanced symmetry

of the near horizon geometry [49, 50]. That is, the near horizon geometry contains an

AdS2 spacetime.

The attractor mechanism [51] is also valid for non-BPS extremal black holes [52–54]8 —

a qualitative explanation is that, due to the infinite long throat of AdS2, the near horizon

geometry has no memory of asymptotic data. Consequently, the near horizon geometry is

universal and the entropy does not depend on the asymptotic values of the scalars.

7We obtain the results as functions of the coefficients (T, q, B, ϕh, rh, and z1) — this will simplify the

computations of the shear viscosity.
8A generalization to stationary non-susy black holes was given in [55]. More details on the non-

supersymmetric attractors can be found in the nice reviews [56–60].
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In this section we present a careful analysis of the extremal near horizon geometry

by using directly the equations of motion and also the entropy function formalism. The

advantage of the latter is that we can compute the physical charges and obtain analytic ex-

pressions for the entropy density. In this way, we can confirm the numerical analysis of [17].

The (non-supersymmetric) attractor mechanism in AdS and its embedding in string

theory were studied in [61]. In the rest of this section we follow closely [48, 61], though we

should keep in mind that our goal is not to investigate just the flow of the entropy but also

the flow of some hydrodynamic transport coefficients, and we also consider a non-trivial

Chern-Simons term.

3.2.1 Attractor mechanism

In AdS spacetime, the BPS condition is different than the extremal limit. For static

black holes, the BPS limit is a naked singularity, but in the extremal limit the entropy

can remain finite.

Unlike the non-extremal case, in the extremal case the near horizon geometry is an

exact solution of the equations of motion and not a truncation in a Taylor expansion. Let

us consider the most general ansatz for the near horizon geometry:

ds2 = L

(

dr2

r2
− r2dt2

)

+ υ1

(

dx2 + dy2
)

+ υ2 (dz + z1rdt)2 ,

F = qdr ∧ dt + Bdx ∧ dy,

ϕ(r) = ϕh. (3.5)

Another important difference with the non-extremal case is that, due to the enhanced

symmetry of the near horizon geometry, p vanishes (the z component of the gauge field is

constant). As a consistency check, it can be shown that with this ansatz, in the absence

of the scalar field, we obtain the results of [15, 16].9

Let us consider now in more detail the non-trivial case when the scalar is turned on.

The first Maxwell equation can be easily integrated and we obtain

Qp =
υ2

1υ2q
2e2αϕh

L2
, (3.6)

where the integration constant is related to the physical charge.10

9We emphasize again that the authors of [15, 16] have shifted the radial coordinate, r, to set the horizon

at rh = 1.
10Qp includes the contribution from constant z component of gauge field.
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We use the following system of independent equations:11

4B2L2υ2e
2αϕh + υ2

1υ2e
αϕh

(

24L2 − 6L + 3υ2z
2
1

)

+ 8L2Q2
p = 0,

4B2L2υ2e
2αϕh − 4L2

(

Q2
p − 6υ2

1υ2e
αϕh
)

− 3υ2
1υ

2
2z

2
1eαϕh = 0,

−2B2eαϕh −
Q2

pe
−αϕh

υ2
+ 6υ2

1 = 0,

υ2

(

4B2eαϕh

υ2
1

+ 24

)

−
4Q2

pe
−αϕh

υ2
1

− 3υ2
2z

2
1

L2
= 0, (3.7)

2B2υ2e
αϕh

υ1
− υ1υ

2
2z

2
1

2L2
= 0,

Qp

(

8BLζe−αϕh

υ1
√

υ2
+ 4z1

)

= 0,

α

(

B2L2 −
L2Q2

pe
−2αϕh

υ2

)

= 0.

As we already explained above, we expect that the near horizon geometry to be com-

pletely fixed by the charges. By solving the system of equations (3.7), we obtain the

following expressions for AdS2 radius, size of transverse space, strength of fibration, and

horizon value of the scalar:

L =
1

12
, υ1 =

Bζ1/3

√
2

, υ2 =

(

Qp

Bζ2/3

)2

, z1 = − Bζ2/3

3
√

2Qp

, ϕh =
2 ln(ζ)

3α
. (3.8)

The radius of AdS2 is the same as the radius of AdS5. This is due to the fact that we work

with planar black holes — for extremal spherical black holes in AdS5, the radius of AdS2

does not match the radius of AdS5 [61].

One important observation is that the horizon value of the scalar is fixed by the Chern-

Simons coupling. We will reobtain this result by using the entropy function.

For a regular extremal solution whose entropy does not vanish, there is a large ground

state degeneracy. However, an important question is then, if the entropy is ‘stable’ against

changes of the boundary conditions for fields in the bulk. In [15, 16], the authors argue

that the near horizon geometry (AdS2 × R3) of the purely electrically charged brane is

unstable under the addition of a magnetic field.

In the rest of this section we argue that, in the presence of the scalar and electro-

magnetic field, the entropy does not change under general perturbations of the scalar. A

similar discussion for a 5-dimensional theory without the Chern-Simons term can be found

in [48, 61].12

The arguments are as follows. Due to the non-trivial coupling between the scalar and

gauge fields, there is an ‘effective potential’ for the scalar [54]. If the effective potential

11The first one is the (rr)-component of Einstein equation, the second equation is a combination of (rr)-

and (tt)-components, the third one is the (xx)-component, the fourth one is the (tz)-component, the next

one is a combination of (xx)- and (zz)-components, and the last two are the remaining non-trivial Maxwell

equation and the scalar equation, respectively.
12Recently, the authors of [62] have used the same kind of arguments to discuss charged scalar black holes

in AdS4.
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has a stable minimum at the horizon, the solution is regular and the entropy is deter-

mined completely by the charge parameters (if there are flat directions, not all moduli are

stabilized, but the entropy does not depend of the flat directions).

We can see that, without a gauge field, the theory is scaling invariant and so the scalar

field is always massless. By turning on just one gauge field (electric or magnetic) the

symmetry is broken and one expects that the solution is not regular. The reason is that,

even if an effective potential is generated, the potential has no stable minimum.

However, by turning on a second gauge field (in our case, we consider an electromag-

netic field) we expect to obtain regular solutions. The effective potential can have stable

minima and the near horizon geometry is universal.

One important observation, though, is that the ansatz of our solution is different than

the one of [54] — we have non-trivial terms (dzdt) in the metric. A concrete expression

for the effective potential in this case is not known. However, in the near horizon limit the

effective potential method should be equivalent with the entropy function method of Sen.

In what follows, we will use the attractor equations to find the near horizon geometry (and

so the entropy density) of the extremal solutions.

3.2.2 Entropy function

By using the entropy function formalism we can explicitly compute the physical charges

and obtain an analytic expression for the entropy density. Since our theory contains the

gauge Chern-Simons term, which is not gauge invariant, we have to Kaluza-Klein (KK)

reduce our action to four dimensions.

Let us consider first the case with the scalar turned off. We consider the z direction

compactified on a circle of radius β and a general KK ansatz

gαβdxαdxβ = Gabdxadxb + GAB(dyA + ĀA
a dxa)(dyB + ĀB

a dxa),

A(5) = A(5)
µ dxµ = A(4)

a dxa + CB(xa)(dyB + ĀB
a dxa), (3.9)

where a, b are 4D indices and A,B are compact indices (z in our case). With this notation

we have splitted the coordinates as xµ = (xa, yA) and so A
(5)
µ is the 5-dimensional gauge

potential, A
(4)
a is the 4-dimensional gauge potential, and ĀB

a is the KK gauge potential.

We use the following results of the dimensional reduction [40] (there is no dependence

of KK coordinates):

√−g =
√
−G
√

det(GAB) , F (5)2 = F (5)µνF (5)
µν = F (5)abF

(5)
ab + 2F (5)aBF

(5)
aB ,

R5 = R4 −
1

4
GacGbdGABF̄A

abF̄
B
cd +

1

4
∂aGAB∂aGAB − 1

4
GAB∂aGABGCD∂aGCD −

−∂a(GAB∂aGAB). (3.10)

Now, we are ready to write down the ansatz we are interested in — the metric, gauge

field, and relations between the 5-dimensional gauge potential, KK gauge potential, and
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4-dimensional gauge potential are

ds2 = L

(

− dr2

r2
+ r2dt2

)

+ υ1(dx2 + dy2) + υ2(dz + z1rdt)2,

A(5)
µ dxµ = ϑrdt − B

2
ydx +

B

2
xdy − p1(dz + z1rdt),

F
(5)
rt = q = ϑ − p1z1 , F (5)

xy = F (4)
xy = B , F

(4)
rt = ϑ , F̄ z

rt = z1. (3.11)

The on-shell action and entropy function are

S =
Axyβ

16πG5

[

L
√

υ2
1υ2

(

−2B2

υ2
1

+
2(ϑ − p1z1)

2

L2
+

υ2z
2
1 − 4L

2L2
+ 12

)

+ 8Bp1ζ
(p1z1

2
− ϑ

)

]

,

E = 2πβAxy

(

Q ϑ + Θ z1 −
S

βAxy

)

, (3.12)

where Q is the 4-dimensional physical charge, Θ is the physical charge associated to KK

gauge field, and Axy =
∫

dxdy.

The equations of motion in the near horizon limit are

− βπ
√

υ2

Lυ2
1

[

4B2L2 + υ2
1(−4L + 24L2 + 4q2 + υ2z

2
1)
]

= 0,

βπ

Lυ1
√

υ2

[

4B2L2 − υ2
1(−4L + 24L2 + 4q2 + 3υ2z

2
1)
]

= 0,

βπ
√

υ2

Lυ2
1

[

4B2L2 + υ2
1(−24L2 + 4q2 + υ2z

2
1)
]

= 0 (3.13)

2βπ

L

[

L
(

Θ − 4Bp2
1ζ
)

+ υ1
√

υ2(4p1q − υ2z1)
]

= 0,

8βπq

L
[2BLζ + υ1

√
υ2z1] = 0,

2πβ

(

8Bp1ζ − 4υ1
√

υ2q

L
+ Q

)

= 0.

First, we solve the last equation to obtain the 5-dimensional electric potential. Then,

we use this result in all the other equations, and from the forth equation we obtain the

following expression for the KK potential:13

z1 =
L(p1Q + Θ + 4Bp2

1ζ)

υ1υ
3/2
2

. (3.14)

Next, we compute p1 from the sum of the first two equations — we obtain a 4th order

equation with the following four solutions:

p1 = −Q +
√

Q2 − 16B(2Bυ2 + Θ)ζ

8Bζ
, p1 =

−Q +
√

Q2 − 16B(2Bυ2 + Θ)ζ

8Bζ

p1 =
−Q +

√

Q2 + 16B(2Bυ2 − Θ)ζ

8Bζ
, p1 = −Q +

√

Q2 + 16B(2Bυ2 − Θ)ζ

8Bζ
.

13We note that by combining the first equations we get L = 1/12.
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In the absence of the magnetic field, we expect a trivial fibration for our geometry: we can

see that the physical solutions are the second and third ones because p1 is finite in the limit

B → 0. Therefore, depending on p1 solution, we have two distinct families of solutions.

To compute the other near horizon parameters, we proceed as follows: by subtracting the

third equation from the first one we solve for υ2, and get

υ2 =
L(Q2 − 16BΘζ)

8[υ2
1 + 4B2L(−1 ± ζ)]

. (3.15)

The +/− solution corresponds to the second and third solution for p1, respectively.

The 5th equation, which is very important for understanding the solutions, and the

entropy are

B(1 ± ζ)

√

3υ2
1 − B2

36
√

2υ1

= 0 , S = βυ1π

√

Q2 − 16BΘζ

6υ2
1 + 2B2(−1 ± ζ)

. (3.16)

It is now clear that, from the equation (3.16), there are three distinct branches:14

B = 0, q = 0 (υ2
1 = B2/3), ζ = ±1. (3.17)

From (3.16), we can also read off the corresponding entropy for all three branches:

Branch 1 : B = 0

This branch corresponds to the usual Reissner-Nordström solution and its entropy is

S =
βAxyπQ√

6
. (3.18)

Branch 2 : q = 0 (B/υ1 =
√

3)

We compute all near horizon parameters in terms of physical charges. We obtain

p1 = − Q
8Bζ and also find two possible solutions for z1 and υ2:

set1 : z1 = − 2
√

2B
√

3
√

Q2

ζ − 16BΘ
, υ2 =

1

32B2

(

Q2

ζ
− 16BΘ

)

, (3.19)

or

set2 : z1 =
2
√

2B
√

3
√

16BΘ − Q2

ζ

, υ2 =
1

32B2

(

16BΘ − Q2

ζ

)

. (3.20)

The corresponding entropies are

S1 =
βAxyπ√

6

√

Q2

ζ
− 16BΘ, , S2 =

βAxyπ√
6

√

16BΘ − Q2

ζ
. (3.21)

14We rewrite q in terms of the physical parameters q =

√
3υ2

1
−B2

6
√

2υ1

to obtain the constraint between υ1

and B for q = 0.
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Branch 3 : ζ = ±1

In this case, one of the near horizon equations of motion, in fact, is used to get a fixed

value for ζ. Therefore, we can not compute all the parameters, one of them can not

be fixed. However, as expected, the entropy depends only on the physical charges:

S = βAxyπ

√

Q2 ∓ 16BΘ

6
when ζ = ±1. (3.22)

Now, we are ready to compare our analytic results with the numerical results of [17].

We just saw that with the entropy function formalism we get a similar condition as the

one of [15–17], namely qB(1 ± ζ) = 0. Therefore, we also obtain solutions for qB = 0 or

ζ = ±1. In the first case, when ζ 6= ±1, there is a regular solution (when B = 0, branch 1)

with the expected near horizon geometry (AdS2 × R3).

For the case q = 0 (branch 2), depending on the sign of ζ, we have different situations.

Let us assume that the physical KK charge is Θ > 0. When ζ > 0 (but 6= 1), the positivity

of υ2 (which is also reality of z1) implies that B has a critical value Bc = Q2

16Θζ (solution set

1). Once B crosses that critical value, the solution set 1 becomes singular and the solution

set 2 takes over. In this case, for a generic value of the magnetic field, the near-horizon

geometry is always AdS3 × R2 (see, also, [15, 16]). For ζ < 0 (and 6= −1), the solution set

1 does not exist for any positive value of the magnetic field. In this case, the only possible

solution is set 2, which is a regular (finite horizon area) solution for any positive value of B.

We would also like to point out that, when the Chern-Simons coupling vanishes, it seems

there is no finite area solution in the case q = 0 and non-zero magnetic field.

In the second case, ζ = ±1, there is a family of solutions for which 2(B/v1)
2 +(q/L)2−

6 = 0 (this constraint is obtained by solving the third and fifth equation in (3.13) and

matches the condition of [15, 16] where the horizon radius is rescaled so that v1 = 1). In

this case for ζ = 1 there exists a critical magnetic field Bc = Q2

16Θ above which the solution

becomes a naked singularity. For ζ = −1 the solution exists for any value of B.

The near horizon geometry smoothly interpolates between AdS2 ×R3 (for B = 0) and

AdS3 × R2 (for q = 0) — in between, the near horizon geometry is in fact an warped

AdS3 × R2.15

Let us know discuss the case when the modulus is turned on. The analysis is very

similar with our computations above — we present the details in appendix C. Unlike in

the previous section where we have solved the equations of motion in the near horizon

geometry, by using the entropy function we can compute the physical charges in four

dimensions. In five dimensions, due to the existence of the gauge Chern-Simons term, one

has to be careful about the definition of the physical charge — we will present a detailed

analysis of this aspect in the forthcoming work [18].

By using the attractor equations from appendix C, we obtain the same horizon value

of the modulus

ϕh =
2

3α
ln |ζ| (3.23)

15The AdS3 spacetime is a special fibration of S1 over AdS2 and the case q = 0 corresponds to this special

fibration.
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as in the previous subsection. In general, due to the attractor mechanism, in the extremal

case the horizon values of the moduli are fixed by the charges. Interestingly enough, this

is not the case here: the modulus is fixed by the Chern-Simons coupling alone. We will

present in Discussion section an argument of why this is the case.

Another observation is that the physical magnetic field is also fixed by the Chern-

Simons coupling:
B

υ1
= ±

√
2 e−αϕh/2 (3.24)

or, equivalently, the parameter v1 is fixed only by the magnetic field parameter and the

Chern-Simons coupling and does not depend on the electric field. This is due to the fact

that we can rescale x and y coordinates in our solution to make v1 = 1, and this rescaling

affects just the magnetic field — that can be easily seen from our ansatz for the metric and

gauge potential (3.11).

In appendix C, we present a detailed computation of the entropy — the result is

S = βAxyπ

√

Q2 − 16BΘζ

6|ζ|2/3
. (3.25)

It is not our goal to make a detailed analysis with the scalars turned on here (for

different α and ‘anisotropic near horizon geometries’), but we observe that, when just the

electric or magnetic field is turned on, the solution is a naked singularity. This is similar

with our discussion at the end of the previous subsection, when without the Chern-Simons

term, we have argued that the effective potential does not have a minimum and so there

is no regular solution [48, 61]. We do not know the form of the effective potential when

the Chern-Simons term is present, but that can be easily seen from the equation of motion

of the scalar (the last equation in (C.1) ). Consequently, there is just one branch of finite

area solutions when the modulus is turned on.

As in the case with the scalar turned off, there also exists a critical value of the

magnetic field for which the entropy shrinks to zero (for ζ > 0). So, the geometry is stable

against scalar fluctuations but not against the magnetic field. However, this interpretation

(and also the interpretations of [15–17]) should be taken with caution. It is expected that

the higher derivative corrections will ‘dress’ the singularity with a horizon and so a more

general analysis is important in this context.

4 Shear viscosity to entropy density ratio

For black objects with translation invariant horizon, for example black brane geometry,

one can also discuss the hydrodynamics — long wave length deviation (low frequency

fluctuation) from thermal equilibrium.

In addition to the thermodynamic quantities the black brane is also characterized by

the hydrodynamic parameters like viscosity, diffusion constant, electrical conductivity, et

cetera. The black D3-brane geometry with low energy fluctuations (i.e. with hydrodynamic

behaviour) is dual to a finite temperature gauge theory plasma living on boundary with

hydrodynamic fluctuations.
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In this section we will study the low frequency behaviour of boundary plasma dual

to the gravity model presented in section 2. To do this, we use the membrane paradigm

proposal of [24] and its generalization to higher derivative gravity theories [25, 26].

4.1 Membrane paradigm and viscosity bound

To an external observer, the black hole physics appears to be equivalent to the physics of

a dynamical fluid membrane [63, 64]. In other words, the black hole is equivalent with a

set of surface charges and currents at the stretched horizon.16

In the Lorentzian prescription of [46] for computing the Green functions, one should

impose in-falling boundary conditions for the fields at the horizon. However, when com-

puting the two-point functions, just the contribution from the boundary has to be taken.

An explanation of why the surface terms coming from the horizon must be dropped was

given in [47] (see, also, [65–67]): the boundary conditions should be defined in Kruskal

coordinates and one has to work with the full analytic extension of the black hole.

An important observation, which relates the work of [46] with the membrane

paradigm, was made in [24] (see, also, [27, 68]). That is, the response functions in

AdS/CFT are similar with the membrane response when the membrane is ‘pushed’ at the

boundary. In this way, the membrane paradigm physical quantities are in fact concrete

gauge theory observables.17

Interestingly, it was observed in [69] that only with the knowledge of the near horizon

geometry one can easily calculate the shear viscosity of boundary fluid. One does not need

to know the full analytic solutions of Einstein equations — this method is especially useful

in higher derivative AdS gravity theories.

As a warm-up exercise, let us consider first the model presented in section 2.1. We

apply the method of [24] to compute the shear viscosity coefficient of the boundary fluid

for the action (2.1).

Let us consider a metric perturbation of the form:

gxy = g(0)
xy + hxy(r, x) = g(0)

xy [1 + ǫΦ(r, x)]. (4.1)

At first sight, it seems that the dual gravitational mode (4.1) does not generally decou-

ple. Interestingly enough, the decoupling occurs when the momentum vanishes and this

is what we need for the computation of the viscosity in the hydrodynamics limit — we

provide a detailed derivation of this claim in appendix D.18

By plugging (4.1) in the action and keeping the terms at order ǫ2 (at the first order

in ǫ, we obtain the equations of motion for gravitons), we get the following effective action

16The stretched horizon is a timelike surface just outside the true horizon. We emphasize that the charges

and currents are fictitious in the sense that a falling observer through the stretched horizon does not detect

any surface sources. However, for an external observer, their presence is consistent with all external field

configurations.
17The infalling boundary conditions at the horizons are the regularity conditions in the membrane

paradigm: near the horizon the fields depend trough a non-singular combination of r and t, namely

dv = dt +
p

grr/gttdr.
18We would like to thank Alex Buchel for a discussion on this point.
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for the perturbation:19

S =
1

16πG5

∫

d4k

(2π)4
dr

2
∑

p,q=0

Ap,q(r, k)φ(p)(r,−k)φ(q)(r, k). (4.2)

Here, we use the Fourier transform to work in the momentum space k = {−ω,~k}

Φ(r, x) =

∫

d4k

(2π)4
eik.xφ(r, k) , φ(r,−k) = φ∗(r, k) (4.3)

and φ(p)(r, k) denotes the pth derivative of the field φ(r, k) with respect to r (p + q ≤ 2).

Next, we integrate by parts to obtain the bulk action for the graviton in the following

form (up to some total derivative terms):

S =
1

16πG5

∫

d4k

(2π)4
dr[A1(r, k)φ′(r, k)φ′(r,−k) + A0(r, k)φ(r, k)φ(r,−k)], (4.4)

where

A1(r, k) = −1

2
e2V (r)+W (r)U(r), A0(r, k) =

e2V (r)+W (r)ω2

2U(r)
. (4.5)

At this point, it is important to emphasize that there are many total derivatives in this

action that do not affect the equations of motion for the graviton. For the computation of

the imaginary part of the two-point function, the coefficient of the term φ′φ′ in the bulk ac-

tion is important. The other total derivatives in the bulk action and the Gibbons-Hawking

surface term contribution exactly cancel on the boundary [27]. It was also shown [27] (it

is straightforwardly to check it also in our case) that, in the case of Einstein gravity, the

ratio of viscosity and entropy density is not affected when the matter fields are minimally

coupled. The effective coupling [27, 71] is

Keff =
1

16πG5

A1(r, k)√−ggrr
= − 1

32πG5
(4.6)

and so the viscosity coefficient of the boundary fluid stress tensor is

η = e2V (rh)+W (rh)(−2Keff (rh)). (4.7)

In this case, the shear viscosity to entropy density ratio turns out to be universal,

namely

η

s
=

1

4π
. (4.8)

19The terms that contain the derivatives with respect to the spatial coordinates, ~x, combine in terms

whose coefficient is proportional with ~p2. Since we work in the hydrodynamic approximation ~p = 0, these

terms do not play any role in our analysis.
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4.2 Four derivative action

Let us now consider the action (2.1) supplemented with the most general four-derivative

interactions [28]:

SHD = SEM +
α′

16πG5

∫

d5x
√−g

[

c1RabcdR
abcd + c2RabcdF

abF cd + c3(F
2)2 (4.9)

+c4 F 4 + c5 ǫabcdeAaRbcfgRde
fg

]

.

Since in supergravity actions the gauge kinetic terms couple to various scalars, it will

be interesting to understand the role of the moduli in computing the viscosity bound.

Unlike [28], our action contains a scalar, ϕ, and the coefficients ci depend on the value of

ϕ. This resembles the four-derivative supergravity action [72, 73].

We treat the higher derivative terms perturbatively and apply the method of [25, 26]

to compute the shear viscosity coefficient of the boundary fluid. However, to obtain the

viscosity bound we also need the entropy density. We start by using the Noether charge

formalism of Wald [74] (see, also, [48, 75] for a discussion in AdS) to compute the entropy

density — we will need just the data in section 3.1 and appendix B.

When we add higher derivative corrections to the action, the entropy is no longer given

by the area law — instead, we use a general formula proposed by Wald

s = −2π

∫

H

∂L

∂Rabcd
ǫabǫcd, (4.10)

where ǫab is the binormal to the surface H.

By using (4.10), we obtain the following expression for the entropy density:

s =
r3
h

4G5
+

α′

4G5
r3
h [c1(3z

2
1r2

h − 4u2) − 2c2q
2] + O(α′2). (4.11)

We use the expression of u2 given in appendix B to rewrite this expression as

s =
r3
h

4G5
− α′ r3

h

G5

[

c1

3

(

5B2

r4
h

eαϕh + 7q2eαϕh − 6

)

+
c2

2
q2

]

+ O(α′2). (4.12)

As expected, the entropy density depends on four independent parameters, namely

(rh, q, B, ϕh). Since in Wald formula only the four derivative interactions that involve the

curvature tensor are important, the entropy only depends on c1 and c2 (c5 does not appear

because the binormal has just rt components and the contribution from this term vanishes).

To compute the four derivative corrections to the shear viscosity coefficient, we have to

find the quadratic action for the transverse graviton moving in the background spacetime.

As in previous section, we consider again the following metric perturbation

gxy = g(0)
xy + hxy(r, x) = g(0)

xy [1 + ǫΦ(r, x)], (4.13)

where ǫ is an order counting parameter.
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In the presence of a generic n derivative term in the bulk Lagrangian, the action (in

momentum space) can be written as

S =
1

16πG5

∫

d4k

(2π)4
dr

n
∑

p,q=0

Ap,q(r, k)φ(p)(r,−k)φ(q)(r, k). (4.14)

Here, φ(p)(r, k) denotes the pth derivative of the field φ(r, k) with respect to r and

p + q ≤ n. The coefficients Ap,q(r, k) depend, in general, on the coupling constant α′.

It is important to emphasize that Ap,q with p + q ≥ 3 are proportional to α′ and

vanish in α′ → 0 limit [25, 26] — these terms appear as an effect of higher derivative terms

in the action.

This action does not have the canonical form as in the two derivative case. Therefore,

it is not obvious how to generalize this approach for higher derivative case. The proof

given in [24] was based on the canonical form of gravitons action. This problem was solved

in [25, 26] and we use this method to compute the shear viscosity coefficient.

Let us now write the effective action for the transverse graviton in the canonical form

with arbitrary coefficients:

Seff =
1

16πG5

∫

dωd3~k

(2π)4
dr

[

B1(r, k)φ′(r,−k)φ′(r, k) + B0(r, k)φ(r, k)φ(r,−k)

]

. (4.15)

We demand that the equations of motion obtained from the action (4.15) and original

action (4.14) match at order α′. By comparing the equations of motion for φ(r, k) from

the two actions, we get the function B0 and B1.

Once we have the effective action for φ(r, k) in the canonical form, the effective coupling

can be easily read off:

Keff(r) =
1

16πG5

B1(r, k)√−ggrr
, (4.16)

where grr is the rr-component of the inverse perturbed metric and
√−g is the determinant

of the perturbed metric. Therefore, the shear viscosity coefficient is

η = r3
h[−2Keff (r = rh)]. (4.17)

Evaluating the effective coupling in the near horizon we obtain the shear viscosity coefficient

η =
1

16πG5

+
α′
(

c1r
4
h

(

8q2eαϕh + 3z2
1r2

h − 32πTv1 − 36πTw1 − 10u2 + 48
)

− B2 (c2 − 8c1e
αϕh)

)

8πG5r4
h

+O(α′2) (4.18)

which can be rewritten as (we use the results in appendix B)

η =
r3
h

16πG5
− α′ r3

h

2πG5

[

c1

(

q2 +
B2

r4
h

)

eαϕh +
c2

4

B2

r4
h

]

+ O(α′2). (4.19)
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The ratio of the shear viscosity and entropy density turns out to be

η

s
=

1

4π
+

α′

π

[

c1

3

((

q2 − B2

r4
h

)

eαϕh − 6

)

+
c2

2

(

q2 − B2

r4
h

)]

+ O(α′2). (4.20)

In B → 0 limit this result matches with [28].20

Let us end up this section with a discussion of the extremal limit. In the absence of

the moduli, the extremality condition is 2B2 + r4
h

(

q2 − 6
)

= 0 and so the shear viscosity

to entropy density ratio becomes

η

s
=

1

4π
+

α′

π

[

−c1
B2

r4
h

+
3c2

2

(

2 − B2

r4
h

)]

+ O(α′2). (4.21)

Therefore, there is a drastic change when the magnetic field is turned on. That is,

unlike the electrically charged solution studied in [28], the leading correction of η/s in the

extremal limit depends on both, c1 and c2. As expected, in B → 0 limit our result matches

with the one of [28].

In the presence of the scalar field, the extremal limit is more constrained. The scalar

is fixed by the Chern-Simons coupling only, and by using some of the formulas derived in

section 3, namely

2B2eαϕh + r4
h

(

q2eαϕh − 6
)

= 0

q2r4
h − B2 = 0

ϕh − 2

3α
ln |ζ| = 0. (4.22)

we obtain the following expression for the shear viscosity to entropy density ratio:

η

s
=

1

4π

(

1 − 8c1α
′
)

+ O(α′2). (4.23)

Interestingly enough, we observe that there is no dependence of the horizon value of the

modulus as in the non-extremal case. Also, the coefficient of c2 vanishes and so the depen-

dence of c2 drops out.

5 Discussion

The goal of this paper was two-fold. First, to extend the work of [15, 16] by including scalar

fields. Second, to compute the low frequency transport coefficients of a (3+1)-dimensional

field theory whose gravity dual is an electrically and magnetically charged planar black

hole in AdS5 Einstein-Maxwell theory with a gauge Chern-Simons term.

Since, in the extremal case, we have used the entropy function method to study the

near horizon geometry, we were able to find analytic expressions for the entropy density and

the near horizon parameters. In the absence of the scalar field we confirm the numerical

results of [17], in particular the existence of a critical value of the magnetic field for which

20Note that our ‘q’ is different than ‘q’ of [28]. In [28], q is the physical charge (up to some normalization).

In our case, the physical charge is ∼ r6

hq.
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the entropy density vanishes. However, we have found a larger class of solutions — we have

presented a detailed discussion in section 3 and we do not want to repeat the details here.

We would also like to point out that one of the special values of the Chern-Simons coupling,

ζ = 1, for which there exist finite horizon area solutions with both, electric and magnetic,

fields non-zero corresponds to a special embedding of the gauge field U(1) ⊂ SU(4)R [15, 16].

In [17], it was proposed that (3 + 1)-dimensional gauge theories holographically dual

to (4 + 1)-dimensional Einstein-Maxwell-Chern-Simons theory undergo a quantum phase

transition in the presence of a finite charge density and magnetic field. The authors of [17]

also argue that a non-vanishing entropy density is ‘exotic’ from the point of view of CFTs

that arise in the AdS/CFT duality. By turning on the magnetic field, instabilities can

appear and this is consistent also with our analysis.

However, we believe that this result should be taken with caution. It is well known that,

in many situations, by adding higher derivative corrections the singularities can be ‘dressed’

by horizons.21 Also, by turning on the moduli the geometries become more stable, though

there can appear other kind of instabilities, e.g. the ones associated to the AdS2 spacetime.

Since in string theory, typically, the gauge kinetic terms will couple to various

scalars [20–23], we have considered a simple extension of [15, 16] by considering an ex-

ponential scalar coupling. In the presence of the moduli some important changes occur.

First of all, in the non-extremal case, the near horizon data depend on the boundary value

of the scalar. Therefore, the hydrodynamic properties of the dual field theories with higher

derivative terms will be also controlled by the moduli.

Let us start with a discussion of the extremal case for which there is a drastic change.

That is, due to the attractor mechanism, the near horizon geometry is universal and does

not depend of the asymptotic values of the moduli. The horizon area is finite and so there

is a large ground state degeneracy. One important question is what is happening in the

presence of scalars? Is the ground state degeneracy still unstable under inclusion of a

(large enough) magnetic field? Are there finite horizon area solutions for any value of the

Chern-Simons coupling when both (magnetic and electric) fields are non-zero?

Before providing concrete answers to these questions, we would like to emphasize that

the attractor mechanism plays an important role in classifying the bulk theories where the

extremal entropy vanishes. A detailed discussion of the attractor mechanism in AdS5 and

its embedding in string theory was presented in [61].

The universality of dual theory, which means that the IR physics does not depend

upon the UV details, becomes in the holographic context the statement that the bulk

solution near the horizon does not depend upon the details of the matter at large values

of radial coordinate (boundary). Indeed, within the attractor mechanism, the black hole

horizon (IR region) does not have any memory of the ‘initial conditions’ (UV values of

the moduli) at the boundary. This is due to the existence of an infinite throat in the

extremal near horizon geometry. In the presence of one gauge field (electric or magnetic)

coupled with one scalar, the extremal limit is a naked (null) singularity. The reason is

21In [76], D’Hoker and Kraus have found a new solution with a near horizon geometry that does not

contain an AdS2. Based on the symmetries, one can argue that higher curvature corrections do not change

the near horizon form of the solution.
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that the effective potential [54] does not have a minimum at the horizon. However, when

the effective potential has a minimum at the horizon, there exist extremal solutions with

finite horizon area. In our case we are not able to define an effective potential, but we have

used, instead, the entropy function formalism. Therefore, the attractor mechanism can be

regarded as a ‘litmus test’, which all extremal black holes with finite area should pass (the

horizon values of the moduli should be finite).

In the presence of Chern-Simons term, there is no known concrete expression for the

effective potential (there is a non-trivial fibration for AdS2). Instead, we have used the

entropy function and shown that the horizon value of the scalar is fixed. What came

as a surprise was the fact that the modulus is fixed by the Chern-Simons coupling only.

A simple argument22 of why is so is that, by rescaling the metric, we can connect the

(near horizon extremal) solution in the absence of the modulus with the solution when

the modulus is turned on. The starting point is a finite area solution and so we use the

solution for ζ = ±1 in the absence of the modulus. We then obtain a finite area extremal

near horizon solution for which the modulus is fixed by the new Chern-Simons coupling.

Therefore, in the presence of the moduli, there exist finite area horizon solutions for any

value of the Chern-Simons coupling. We can also safely argue that the large ground state

degeneracy is stable against scalar field perturbations. However, as in the case when the

modulus is turned on, there also exists a critical value of the magnetic field and so we

expect similar physical interpretations as the ones in [17].

Let us now comment on the second part of our paper. We have computed the shear

viscosity to entropy density ratio in the presence of the most general bosonic four-derivative

action (with one electromagnetic field) with moduli dependent couplings.

In general, there are two types of first-order corrections due to higher derivative terms.

The entropy/area law is modified due to the additional terms in the action and/or the

modification of the area due to the change of the metric at the horizon (the extra terms

in the action change the equations of motion). Therefore, one has to use Wald formula to

compute the entropy.

To compute the shear viscosity, we have used the method of [25, 26]. Since we needed

just the near horizon data, the computations are not very complicated even in the presence

of higher derivative terms. We would like to emphasize that there is no ambiguity in

defining the overall coefficient of the effective action and the results are consistent. Another

important observation is that, in the presence of a magnetic field, there is a ‘preferential’

direction in the plasma. A priori it is not clear that the dual gravitational mode, hxy,

decouples. Indeed, that is not the case when the momentum is non-zero — however, in the

hydrodynamic limit we have the required decoupling [70] and this is what we needed for

the computation of the corresponding correlation function.

The shear viscosity to entropy density ratio is controlled by the horizon values of the

scalars and so, in the non-extremal case, an operator deformation in the QFT will produce

an interpolating non-trivial flow in which the moduli approach the (IR) black hole horizon.

In the extremal case, though, the horizon moduli values are fixed and so the shear viscosity

22We would like to thank Rob Myers for a discussion on this point.

– 24 –



J
H
E
P
0
2
(
2
0
1
1
)
0
2
1

to entropy density ratio does not depend on the asymptotic values of the scalars. Therefore,

QFTs with different UV fixed points can flow to the same IR fixed point.

In the presence of the moduli, η/s also depends only on the c1 (∼ (c − a)/c, where c

and a are the central charges in the CFT) and c2 (the coupling of the stress tensor to the

U(1) current) coefficients. The other two coefficients, c3 and c4, parametrize couplings of

the four-point function of the U(1) currents and so they should appear in the expressions

of the charge density and conductivity [28].

It can be easily checked, that, when the scalars are turned off we recover the results

of [28]. Since [28] contains a very detailed discussion on the relation with the previous

results in the literature, we do not want to repeat it here. We would like to point out

just that, in the extremal limit and in the presence of the magnetic field, we also obtain a

deconfined ‘plasma’ in the dual CFT. However, in the presence of the magnetic field, η/s de-

pends on both coefficients, c1 and c2 — when the magnetic field vanishes, η/s only depends

on c2 and we recover the result of [28]. In N = 2 supergravity, the bulk supersymmetry

constraints all four derivative couplings to be proportional to a single overall constant.

When the modulus is turned on, the extremal limit is more intriguing. The dependence

of η/s on c2 drops out and so η/s depends only on the central charges in the dual CFT.

This is somehow similar with the N = 2 supergravity case mentioned above for which all

the coefficients are fixed by the central charges.

We close with some future directions.

Due to the presence of a Chern-Simons term, there is a more interesting kind of in-

stability,23 which can appear [77, 78]. This instability is caused by a non-normalizable

mode of the AdS2 factor in the near horizon geometry.24 This instability appears for large

enough Chern-Simons couplings and a finite momentum.

It will be interesting to check [79] if this kind of instability appears also in our case. We

would like to point out that the near horizon geometry, when there are background electric

and magnetic fields, is in fact a fibered AdS2 × R3, not a direct product as in [77, 78]. In

this case an analysis of the near horizon geometry as in our paper (see, also, [80]) is more

appropriate.

Using arguments as in [81], a computation of other transport coefficients is also possi-

ble [19]. However, since the near horizon data are not enough, a more involved analysis is

needed. Another reason of why the analysis is more complicated is that the hydrodynamic

limit does not commute with the limit of small magnetic fields. Therefore, one expects

drastic changes of the transport properties of magnetized fluids. In this context, it will be

interesting to study how the attenuation and the speed of sound waves are affected by the

background magnetic field — a similar analysis for a (2 + 1)-dimensional plasma was pre-

sented in [70]. It will also be interesting to see if new dissipative transport coefficients can

appear in the effective hydrodynamic description of plasmas in external magnetic fields [82].

23We would like to thank Hirosi Ooguri for pointing out this to us.
24It was shown in [77, 78] that the near horizon analysis gives a sufficient but not necessary condition.

The reason is that, for the Reissner-Nordström case studied in [77, 78], there are unstable modes in the full

bulk geometry that do not reduce to normalizable modes in the near horizon limit.
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A Kubo formula and shear viscosity

In this appendix we present a brief review of Kubo formula in the context of relativistic

hydrodynamics. Since we are interested in computing the transport coefficients by using

the AdS/CFT duality, we follow closely the nice reviews [5] (see, also, [83] for a good

introduction in relativistic hydrodynamics).

Current understanding is that the matter produced in the heavy-ion experiments

at RHIC behaves collectively like a fluid. That is, the system rapidly thermalizes and

comes into local thermal equilibrium; then it evolves according to hydrodynamics until it

hadronizes and the temperature becomes smaller than the deconfinement temperature.

Therefore, the relativistic hydrodynamics — in short, the Navier-Stokes equations and

their relativistic generalizations — is the best method currently available for modeling the

spacetime evolution of sQGP.

Hydrodynamics can be understood as an effective theory, which describes the dynamics

at large length and time-scales. It relies only on the assumption of local equilibrium.25

In order to describe essential non-equilibrium phenomena in heavy-ion collision, a

transport theory approach seems necessary. The first important step to investigate small

perturbations of a high temperature hadronic matter is the linear response formalism.

If lmfp is the mean free path — the average distance traversed between collisions by

particles (of the liquid) — then, a perturbation of the liquid (in equilibrium) will disappear

at distances of order lmfp. However, the fluctuations associated to some conservation laws

can propagate without being damped off. For example, a perturbation of (mean) energy

can propagate to infinity if there is no internal friction (viscosity) of the fluid.

In the rest of this section we would like to explain why a measure of η/s is important

and we also briefly review the Kubo’s formula, which is useful for computing the viscosity.

Unlike in standard thermodynamics where the system is in global thermodynamic

equilibrium (the intensive parameters, e.g. the pressure (P ) and temperature (T ), are

25One does not have to make other assumptions on the classical/quantum nature of the phenomena

involved or the type of particles/fields and their interactions.
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constant throughout the volume) and at rest, we are interested in systems whose pressure

and temperature vary with space and time, and which are not at rest.

Though, we request that the system is in local thermodynamic equilibrium. That is,

the fluid is characterized only by local temperature and velocity fields that vary slowly

on the scale set by the temperature. Consequently, one can assume the thermodynamic

equilibrium in some neighborhood about any point.

In hydrodynamics, it is useful to work with densities per unit volume: the energy

density ǫ ≡ U/V and the entropy density s ≡ S/V . The usual relation for the energy can

be rewritten as Ts = ǫ + P — note that all these densities are intensive quantities.26

In hydrodynamics, we work directly with the equations of motion and assume an

expansion in derivatives so that ∂µ ≪ l−1
mfp. We express the stress tensor through the

temperature T (x) and velocity uµ(x).

For an ideal fluid, the hydrodynamic equations are equivalent with the laws of conser-

vation of energy and momentum:

∂µT µν = 0 , T µν = (ǫ + P )uµuν + Pgµν . (A.1)

It is clear from the above expression that the momentum density is (ǫ+P )~v and so, unlike

the non-relativistic fluid, the pressure contributes to the inertia of a relativistic fluid.

At the next order we obtain the energy momentum tensor of a relativistic viscous

fluid whose conservation equation reproduces the relativistic version of the Navier-Stokes

equation. The stress tensor at this order becomes

T µν = Pgµν + (ǫ + P )uµuν − σµν

with the dissipative part

σµν = PµαP νβ

[

η

(

∂αuβ + ∂βuα − 2

3
gαβ∂µuµ

)

+ ̺gαβ∂µuµ

]

. (A.2)

Here, Pµν = gµν + uµuν is the usual projector operator: for a fluid at rest it becomes

Pµν = diag(0,+1,+1,+1) and so it projects on space.

The numerical coefficient of the traceless part, η, is called the shear viscosity. The

numerical coefficient of the trace part, ̺, is called bulk viscosity.

To understand better the physical interpretation of the transport coefficients and why

a measure of η/s (and ̺/s) is relevant (see, also, [84]), let us work in the fluid rest frame

uµ = (1, 0, 0, 0) and consider a small fluctuation around the thermal equilibrium: ui ≪ 1,

u0
⋍ 1 + O(uiui), T = T + δT , etcetera.

For the ideal fluid, we find the following perturbed stress tensor at first order:

T 00 = ǫ + δǫ , T 0i = (ǫ + P )ui , T ij = (P + δP )δij . (A.3)

26All thermodynamic quantities associated with a fluid element, e.g. s, ǫ, and P , are defined in the rest

frame and so they are Lorentz scalars by construction.
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The deviation from the ideal fluid stress tensor (at first order) in the fluid rest frame

(we use the properties of the projector) is

δTij = σij = η

(

∂jui + ∂iuj −
2

3
δij∂ku

k

)

+ ̺δij∂ku
k

=
η

Ts

(

∂jT
0
i + ∂iT

0
j − 2

3
δij∂kT

k0

)

+
̺

Ts
δij∂kT

k0. (A.4)

In the last expression we used (A.3) and Ts = ǫ + P .

Now it is clear that, since the temperature is the only relevant energy scale (exper-

imental parameter), the viscous terms are characterized by the coefficients η/s and ̺/s

(medium parameters). The physical interpretation is as follows: the bulk viscosity encodes

the resistance of the system to uniform expansion and the shear viscosity controls the rate

of the momentum diffusion in the transverse direction to the flow.

For conformal fluids the energy-momentum tensor should be traceless in flat space,

which implies ̺ = 0 and ǫ = 3P .

We have defined the dissipative coefficients as phenomenological constants. However,

it is important to find a way to compute them directly from the microscopic theory. The

computation of the shear viscosity in quantum field theory relies on the Kubo formula —

the dual models of CFTs are well suited to evaluate Kubo expressions.

Let us now briefly present Kubo formula and its physical interpretation.

We are interested to understand the response of a macroscopic quantum (many-body)

system to a localized disturbance, which is created by an applied external force. Let

us consider a local observable O(~x, t) (e.g., the charge current or T µν , which is a set of

conserved currents) and an external source that couples linearly to the observable so that

the new action is

S = S0 +

∫

dxO(x)J(x). (A.5)

The response, which is the change (from zero at the equilibrium) in the expectation

value of the observable induced by the source, is linear in the source:

< O(x) >=

∫

dyχ(x − y)J(y) ≡ χ � J. (A.6)

The coefficient of proportionality is called ‘susceptibility’ and is nothing else than the

retarded Green function of the physical observable:

χ(x − y) ≡ − i

~
θ(x0 − y0) < [O(x), O(y)] > . (A.7)

One can also Fourier transform to obtain that, indeed,

χ(ω, ~p) =
< O(ω, ~p) >

J(ω, ~p)
. (A.8)

Let us know find the Kubo formula for viscosity (see, e.g., [5]). We consider a pertur-

bation of the metric so that the only non-zero component h12(t) does not depend of space
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coordinates (it corresponds to ~p = 0 in momentum space). Obviously, this perturbation

can not excite the temperature (which is a scalar) and the velocity (which is a vector).

One can easily compute the 12-component of the stress tensor (by using the covariant

derivative) to obtain

η = − lim
ω→0

1

ω
Im

(
∫

d4x θ(t)eiωt < [T12(x), T12(0)] >

)

. (A.9)

B Coefficients in expansion (3.3) at O(r − rh)
2

For completeness, in this appendix we present the other coefficients that appear in the near

horizon expansion of different fields in eq. (3.3). They are

u2 = eαϕh

(

5B2

3r4
h

+
7q2

3

)

+
3

4
z2
1r2

h − 2

v2 =
1

288π2T 2

(

e−2αφh
(

24B4ζ2eαφh + 24
(

5B2 + 2q2
)

e3αφh − 72B2ζ2

+
(

6B4
(

α2 − 4
)

− B2q2
(

9α2 + 8
)

+ q4
(

3α2 − 4
))

e4αφh − 144e2αφh
))

w2 =
e−4αφh

288π2T 2

(

− 36B4ζ4 − 24B2ζ2
(

B2 + q2
)

e3αφh + 48
(

q2 − 2B2
)

e5αφh + 288B2ζ2e2αφh

+
(

− 3B4
(

α2 − 4
)

− 8B2q2 + q4
(

3α2 − 4
))

e6αφh − 144e4αφh
)

z2 = −Bζ
(

B2
(

9ζ2e−3αφh + 1
)

+ 5
(

q2 − 6e−αφh
))

6πT

p1 =
Bqζe−3αφh

((

3α2 + 4
) (

B2 − q2
)

e3αφh − 12B2ζ2 + 24e2αφh
)

96π2T 2
.

C Details on entropy function when the modulus is turned on

In the presence of the modulus, the attractor equation are:

− βπ
√

υ2

Lυ2
1

[

4B2L2eαϕh + υ2
1(−4L + 24L2 + 4q2eαϕh + υ2z12)

]

= 0

βπ

Lυ1
√

υ2

[

4B2L2eαϕh − υ2
1(−4L + 24L2 + 4q2eαϕh + 3υ2z

2
1)
]

= 0

βπ
√

υ2

Lυ2
1

[

4B2L2eαϕh + υ2
1(−24L2 + 4q2eαϕh + υ2z

2
1)
]

= 0

2βπ

L

[

L
(

Θ − 4Bp2
1ζ
)

+ υ1
√

υ2(4p1qe
αϕh − υ2z1)

]

= 0

8βπq

L
[2BLζ + υ1

√
υ2z1e

αϕh ] = 0

2πβ

(

8Bp1ζ − 4υ1
√

υ2qe
αϕh

L
+ Q

)

= 0

−2βeαϕhLυ1
√

υ2π

(

− 2B2

υ2
1

+
2q2

L2

)

α = 0. (C.1)
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From the last equation, we observe that, in the presence of the modulus, a non-trivial

extremal black hole can be obtained if neither q nor B vanish. Following the same steps as

in section 3.2.2, we can obtain the near horizon geometry. First we compute the following

quantities:

q =
e−αϕhL(Q + 8Bp1ζ)

4υ1
√

υ2

z1 =
L(p1Q + Θ + 4Bp2

1ζ)

υ1υ
3

2

2

p1 =
−Q +

√

Q2 ± 16B(2BE
αϕh

2 υ2 ∓ Θ)ζ

8Bζ

υ2 =
Q2 − 16BΘζ

32eαϕh(3υ2
1 − B2e−

αϕh
2 (e

3αϕh
2 ± ζ))

. (C.2)

With these results, the constraint (5th) relation becomes

B

36υ1
e−αϕh/2(e

3αϕh
2 ± ζ)

√

3υ2
1 − B2eαϕh

2
= 0 (C.3)

and we obtain the following expression for the entropy:

S = βυ1π

√

Q2 − 16BΘζ

2e
αϕh

2 (3υ2
1e

αϕh
2 − B2(e

3αϕh
2 ± ζ))

. (C.4)

Now, let us rewrite the near horizon geometry in terms of the charges

q =
1

6υ1
e−αϕh/2

√

3υ2
1 − B2eαϕh

2

z1 = ± 2Be
αϕh

2

3υ1

√

Q2−16BΘζ

2e
αϕh

2 (3υ2

1
e

αϕh
2 −B2(e

3αϕh
2 ±ζ))

. (C.5)

By using the last equation of C.1 we obtain

υ1 = ±Beαϕh/2

√
2

(C.6)

and from the fifth relation of C.1, we see that the only possibility is a fixed horizon value

of the scalar:

ϕh =
2

3
ln |ζ|. (C.7)

What comes as a surprise is the fact that the horizon value of the scalar is fixed by the

Chern-Simons coupling. Consequently, the entropy is

S = βπ

√

Q2 − 16BΘζ

6|ζ|2/3
. (C.8)
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D Decoupling of hxy mode

In what follows, we provide a detailed derivation of the decoupling of the dual gravitational

mode (4.1). We have explicitly checked that the hxy = eitω+2V (r)ǫΦ(r) mode does not

couple with any other field when the momentum vanishes.

For two derivative gravity theory, this can be easily seen from the equations of mo-

tion (2.3), (2.4), (2.5). However, we are interested in the most general four-derivative

action (4.9). In this case, instead of writing the equations of motion in the presence of

higher derivative terms, we will explicitly compute the action up to order ǫ2. In this way,

it can be explicitly checked that there is no coupling between hxy and the other fields.

Let us turn on the following perturbations of the metric

gαβ = g
(0)
αβ + ǫhαβ

=



















1
U(r) +eitωǫξ1(r) eitωǫξ2(r) eitωǫξ3(r) eitωǫξ4(r) eitωǫξ5(r)

eitωǫξ2(r) e2W (r)Z(r)2−U(r) eitωǫΥ(r) 0 e2W (r)Z(r)+eitωǫυ(r)

eitωǫξ3(r) eitωǫΥ(r) e2V (r) eitω+2V (r)ǫΦ(r) eitωǫχ(r)

eitωǫξ4(r) 0 eitω+2V (r)ǫΦ(r) e2V (r) 0

eitωǫξ5(r) e2W (r)Z(r)+eitωǫυ(r) eitωǫχ(r) 0 e2W (r)



















(D.1)

and gauge gauge fields

Aα = A(0)
α + ǫfα

=

(

eitωǫar(r), e
itωǫat(r) − E(r),

By

2
+ eitωǫax(r),−Bx

2
+ eitωǫay(r), e

itωǫaz(r) + P (r)

)

(D.2)

Here g
(0)
αβ and A

(0)
α are the background metric (2.8) and the background gauge field; ǫ

dependent terms are the perturbations.

Using these field excitations, we can now compute the action.27 The result is com-

plicated, but for our purpose it is enough to pick up the Φ(r)-dependent terms — for

27We use the Mathematica notebook for this computation. We emphasize that our system is symmetric

in x− and y−directions.
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concretness, let us write the Φ(r)-dependent part of the action:

SΦ,Φ = Φ(r)2
[

1

4U(r)
((e−2V (r)−W (r)(−U(r)e2W (r)(4B2eαϕ(r) + 4Q(r)2e4V (r)+αϕ(r)

−2e4V (r)U ′′(r) − 4e4V (r)U ′(r)
(

2V ′(r) + W ′(r)
)

+ e4V (r)+2W (r)Z ′(r)2 + 24e4V (r))

+2U(r)2e4V (r)(2P ′(r)2eαϕ(r) + e2W (r)(4V ′′(r) + 4V ′(r)W ′(r) + 6V ′(r)2

+2W ′′(r) + 2W ′(r)2 − ϕ′(r)2)) + 14ω2e4V (r)+2W (r))))

]

+Φ(r)Φ′(r)

[

(2e2V (r)+W (r)
(

U ′(r) + U(r)
(

3V ′(r) + W ′(r)
))

−(2α′eW (r)−2V (r)(−2U(r)V ′(r)(U(r)
(

B2c2+c1e
4V (r)+2W (r)Z ′(r)2

)

−2c1U(r)2e4V (r)

(

2V ′′(r) + 3V ′(r)2 + W ′(r)2
)

+ 2c1ω
2e4V (r)) + 2c1U(r)e4V (r)U ′(r)2V ′(r)

+c1e
4V (r)U ′(r)

(

2U(r)2
(

V ′′(r) + 3V ′(r)2
)

+ ω2
)

))/U(r))

]

+Φ(r)Φ′′(r)

[

(2U(r)e2V (r)+W (r) − 4c1α
′U(r)e2V (r)+W (r)(U ′(r)V ′(r)

+2U(r)
(

V ′′(r) + V ′(r)2
)

))

]

+Φ′(r)2
[

(α′eW (r)−2V (r)(U(r)(B2c2 + 2c1e
4V (r)U ′(r)V ′(r) − c1e

4V (r)+2W (r)Z ′(r)2)

+c1e
4V (r)

(

U ′(r)2 + 4ω2
)

+ 2c1U(r)2e4V (r)
(

−2V ′′(r) + V ′(r)2 + W ′(r)2
)

)

+
3

2
U(r)e2V (r)+W (r))

]

+Φ′(r)Φ′′(r)

[

(2c1α
′U(r)e2V (r)+W (r)

(

U ′(r) + 4U(r)V ′(r)
)

)

]

+Φ′′(r)2
[

2c1α
′U(r)2e2V (r)+W (r)

]

(D.3)

Since there is no mixing between Φ and the other modes in the zero momentum limit,

this mode remains massless and a computation of the related Green’s function from the

near-horizon data is still possible.

However, the other metric fluctuations namely hxz or hyz are not decoupled from

the gauge field perturbations in the zero momentum limit (even in the absence of higher

derivative terms) — these coupled terms are proportionl to B or ζ (CS term). Therefore,

these modes are not massless in the zero momentum limit and the near horizon geometry

is not sufficient to compute the related two point correlation functions, i.e. < [Txz, Txz] >

or < [Tyz, Tyz ] > .
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