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Abstract.

Gravitational wave detectors on the ground and in space will,
during the next two decades, study a rich variety of astronom-
ical systems. The nature of the information they return places
them directly on the very active interface between fundamen-
tal physics and astronomy. Sources of gravitational radiation
include stellar-mass black-hole systems in our Galaxy and very
massive black holes in distant galaxies. Gravitational waves
from supernovae and from merging neutron stars will tell us
about matter at nuclear densities. Observation of a cosmologi-
cal background of gravitational waves would give us a glimpse
of the Universe at the very instant of the Big Bang. In order to
understand these conclusions, one must know how to estimate
the gravitational radiation produced by different sources. In the
first part of this lecture I review the dynamics of gravitational
wave sources, and I derive simple formulas for estimating wave
amplitudes and the reaction effects on sources of producing this
radiation. I then describe the projects now under construction
and planned that have the ability to make sensitive observa-
tions, and what they may see. Finally, in the third part of the
lecture I use these estimates to discuss what we can expect to
learn about fundamental physics from observations of binary
systems, black holes, and the early Universe.
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1. Introduction

After a long period of development (going back to Weber [1]), gravitational
wave detectors are now reaching a sensitivity that will give them a chance
to detect gravitational waves regularly. With further development, say over
the next two decades, their sensitivity should improve to the point where
they are making several detections per day. If they follow the example set
by most other branches of astronomy when they were young (such as radio,
X-ray, and gamma-ray astronomy), it will not be long before gravitational
wave detectors begin revealing information that will reshape our view of
the Universe.

In this paper I will review the developments we can expect for detectors
over the next two decades, and I will discuss the information these detectors
can bring us about fundamental physics, as far as we can predict on the
basis of our current understanding of astronomy. I begin in this section with
a short introduction on how to understand and calculate gravitational wave
emission.

There are many good reviews of the subject available. A recent review
by Kip Thorne is available on the web [2]. 1 have given Les Houches
lectures on this subject [3], and some of the transparencies I used for the
present talk can be seen at the PPEUC web site [4]. Students wanting
more elementary introductions may find them in Physics World magazine
[5] and in an encyclopedia article [6].

2. Making waves: the physics of gravitational wave sources

The gravitational wave spectrum of space- and ground-based detection
spans 8 orders of magnitude in frequency, from 10~* Hz to 10* Hz. This is
similar to the range from high-frequency radio waves (10 GHz) to X-rays
(10'8 Hz). In this range, therefore, we should expect considerable variety.
But there is also a lot that is systematic. The dynamics of most sources
are dominated by their self-gravity, and their gravitational-wave ampli-
tudes will usually be given to a good approximation by the lowest-order
quadrupole approximation for radiation. This combination of two factors
happily brings together the two founders of gravitation theory: Newton and
Einstein. Newton tells us how, to a first approximation, self-gravitating
sources behave; Einstein tells us how they radiate.

2.1. Newtonian dynamics: the natural frequency

For self-gravitating Newtonian systems, it is well-known that there is a
natural dynamical frequency associated with the mean mass density p of
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the system: ,

1 12 G\ M2
fdyn - Q—TF (ﬁGP) (1677R3 (1)

where M is the system’s mass and R its typical size. Wherever [ use the
symbol ~ instead of =, I mean to indicate that there are factors of order 2
or pi left out. (In this case, the factor is 7/3.) Moreover, | will always use
proper frequencies (measured in Hz), not angular frequencies (radians/s)
in my formulas.

It is interesting to put some numbers into this formula:

WERLE R —3/2
=32 _ . 2
Jayn [Q.SMQ} [2 X 105 m] Hz @

Similarly, solving Equation (1) for the density, we get
~ 9 1 14 _f_ ) o —-37 3
p~2x10 [ T, kem (3)

Notice that, for frequencies in the range 107% - 10* Hz, the density ranges
from nuclear-matter density at the high end down to the density of water

at the low end. This illustrates the enormous range of physics in these
sources.

This formula for the relation between frequency and density is valid to
a first approximation in general relativity as well. It governs the orbits of
binary stars, the orbital and escape velocity near self-gravitating masses,
the frequency of the fundamental mode of vibration of a self-gravitating
mass, and essentially all other processes where self-gravitation determines
the structure and dynamics of the system. If we change the frequency into
a velocity,
Vdyn = 27 fayn R, (4)

and then we set this to the speed of light, we deduce:
Udyn = ¢ = R~GM/c. ()

This is, to .within a factor of 2 (our accuracy) the equation for an object
whose gravitational escape speed is the speed of light: a black hole.

2.2. Einstein: the quadrupole formula

GraYltational waves are described by a dimensionless wave amplitude, con-
vegtlonally Callec.i h, which describes the way that the waves interact with
a'h etector (or with a}'\ything else they pass through). It is easiest to S€€
what happens to an idealised detector, consisting of two free particles 11
empty space, far from any ordinary gravitational ficlds. Their separation 13



575

POLARIZATION OF GRAVITATIONAL WAVES

2 Independent Linear Polarization Modes
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Figure 1. Illustration of gravitational wave polarisation. The diagram
shows a ring of free particles in empty space responding to a wave incident
from above. The wave in the top row has what is called “+” polarisation,
stretching in the z-direction while compressing in the y-direction, then
reversing. The bottom diagram illustrates the “x” polarisation, rotated
by 45°. Any other polarisation state of a wave travelling in this direction
is a linear combination of these two. Notice that the amplitude A is the
ratio of the distortion to the original size, so that the shape of the ellipses
will be independent of their size.

L. This will change because of the gravitational forces carried by a wave.
A wave that arrives with a suitable orientation and polarisation will change
L by an amount 6L = %hL. Because h is the ratio of two lengths, a larger
detector will have a larger displacement. This is part of the reason that
the detectors now under construction are being built on kilometre scales.

The orientation of the waves matters because they are transverse. Like
electromagnetic waves, they act only in the plane perpendicular to the di-
rection of propagation of the wave. Their polarisation matters too: there
are two independent polarisation states, described in Figure 1. Although
the effect of the wave in this illustration is large, the real situation is differ-
ent: we need to be able to detect relative length changes of less than one
part in 10%! to see realistic gravitational waves a few times per year.

Radiation of gravitational waves is, to a first approximation, given by
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Einstein’s quadrupole formula, which gives the amplitude A of the wave at
a distance r from its source in terms of an integral over the source, which
is assumed to be described well enough by Newtonian gravity. To avoid
complications of tensor analysis, which a full study in general relativity
would require, 1 just write the approximate formula as

_2G d?
Tt di?

where the quadrupole moment @ (sometimes also called #) is the largest of
the components of the trace-free second mass moment of the system:

I,
Q= n}gx/p (zjrk — gr'éjk) dr. (7)

QY (6)

For estimation purposes we shall use an even simpler version of this for-
mula which makes order-of-magnitude estimates of the integrand in Equa-
tion (7) and ignores the indices there. Ignoring the indices means that
we get upper limits on the amplitude of the waves, since the projections
and the removal of the trace (the term containing the 1/3 term in Equa-
tion (7)) can eliminate components that our estimate will include. The
simpler estimator is:

L \
‘Q’ < W/pxzdax ~ /pvgyndax ~ Mv®, (8)

where M is the total mass of the source and vdyn is given by Equation (4).

Of course, this is an upper limit because not all the mass needs to move
in such a way that it gives off gravitational radiation. Spherical motions,
for example, radiate nothing. One way of approximating Equation (6),
then, would be to take only the nonspherical part of the kinetic energy
Mv?/2 in Equation (8), which leads to

h ~ égK (9)

Ar nonspherical »
where Knonspherical is the non-spherical part of the system’s kinetic energy.
This 1s a good generally-applicable estimate ([2]).

If all the mass of the system is involved in the motion, and the velocity is
determined by self-gravity (this excludes radiation from a small lump on a
spinning neutron star, where only the mass of the eccentricity radiates and
the relevant velocity is the rotation speed of the star, which could be much
smaller than the dynamical speed), then we can use the virial theorem to
simplify this even further, giving us an upper bound that is usually fairly
close to the correct value for many sources:

2G*M? GMGM

h< cirR NQRC2 re? (10)
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This is a very simple formula that was first derived in the context of a
scalar approximation to relativistic gravity ([7]). It gives an upper limit on
the gravitational wave amphtude in terms of the product of two (dimen-
sionless) Newtonian gravitational potentials: the typical internal potential
of the system, GM/Re?, and the external potential at the observer’s loca-
tion, GM/rc:'. Since the internal potential must be smaller than about 1
(or the system would form a black hole), we see that the gravitational wave
amplitude must be smaller than the dimensionless Newtonian potential of
the system: waves are a small disturbance in the Newtonian field, not a
replacement of it.

This formula only gives an upper bound on the wave amplitude, but this
is not as bad as it might seem. The real amplitude can fall below this only
if the source has some kind of symmetry that does not allow it to radiate
fully (such as a nearly-spherical system), or if the frequency is not given
by the natural frequency but by a smaller internal frequency, such as the
rotational frequency of a spinning star. But for highly asymmetric source,
and in particular for the binary black hole systems that are interesting and
important sources across the frequency band, this formula is not an upper
bound: it is a realistic estimate.

Normally, the frequency of the radiation is twice the natural frequency
of the system, essentially because if v depends on time as exp2rift in
Equation (8), then the factor of v? in the integrand has time-dependence
expdmift. It is not always the case that gravitational waves come off
at twice the natural dynamical frequency, but these exceptions need not
concern us here. Accordingly, we will take

GM )”2

fgw = 2.fdyn ~ (m (11)

With some interesting values for space-based detectors, Equation (10) be-

comes
2 -1
o< 2.6x10‘22[M] [ R }

2Mg 2 x 108 m
- ~1
% [10 kpc]
(10° s compact binary at galactic centre). (12)
) M VR 77
A< 2x 1077 [2 > 1061»1@] [6 X 10° m]
(massive bh-binary at redshift z = 1), (13)

where 1 have assumed a value for the Hubble parameter of Hy =
60 km s~! Mpce~!.
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2.3. Energy loss to radiation

Waves carry off energy, and this is important for some of the systems we
will discuss. One might think that this would be a hard thing to estimate,
but this is not really the case. Relativists argued for decades over whether
gravitational waves really did carry energy, because when one looks at
the question in the full nonlinear theory of general relativity it becomes a
difficult one. But work in the 1950s and 1960s by H. Bondi, R. Penrose,
R. Isaacson, S. Chandrasekhar, and others put the arguments to rest by
showing that general relativity does indeed transmit energy from one place
to another via gravitational radiation, and in fact that the formula for the
amount of energy is very similar to those in other classical field theories of
physics — electromagnetism and scalar fields, for example.

In particular, the energy flux carried by a wave is proportional to the
square of the time-derivative of the amplitude? h:

F x h2.

‘The constant. of proportionality must get the dimensions right, and it can
only be made up of pure numbers and the fundamental constants G and
c. Remembering that h is dimensionless, the dimensions of F' (energy per
unit time per unit area) determine the way it depends on G and c:

3

c’ .,
F o —h=
O(G

The remaining constant is not something that can be deduced by analogy
with other theories: it is the only part of this formula that comes from the
full tensor theory. I simply quote it here without proof:

Fyw = ——h? for each polarisation. (14)

Because the constant ¢3/G has a large value in SI units, this flux can be
surprisingly large. For example, for the weakest burst of radiation that
the ground-based detectors anticipate detecting in the near future, we use
h=1x10"2? and f = 1 kHz. Then the flux is (allowing for two equally
strong polarisations)

Fow =3 mW m~2 h : £y
gw = oMW M e T | | TkHZ |

2 In electromagnetism, for example, the relevant field is the vector potential, and its
time-derivative is proportional to the electric field in the wave, E. Then the rule given
here would make the flux proportional to E - E, which is the magnitude of the Poynting
flux for a wave. up to constants of proportionality.
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which is twice than the energy flux on Earth from the full Moon. So for
the roughly 1 ms that this source is radiating, it is the brightest object in
the night sky!

Unfortunately, all that energy goes right through the detector. and
so the detector’s response is woefully small. But even this cloud has an
important silver lining: the waves have also gone right through everything
else that might have been between their source and us, and have done
so with negligible scattering and absorption. Gravitational waves are the
ultimate unbiased information transmitter.

Assuming two equally strong polarisations generally (this is still within
our factor-of-two uncertainties), using h = 27 fh, taking f = few = 2fayn
[from Equation (1))], and getting h from Equation (10), we find

S (GMY® ]
Fgwﬁm(ﬁc—z) : (15)

If we again approximate the radiation as being isotropic, we can integrate
this over a sphere of radius r to get the total luminosity of the source,

5 M\?
Lgw < = oM [) . (16)
- G Re?

Notice that this is a very strong function of the internal compactness of
the source: a source with GM/Rc? ~ 0.2 (as a neutron star) would radiate
1025 times the power of one with the compactness of the Sun (GM/Rc® ~
2 x 107%)! The natural luminosity in this equation of

g

Lnatural = 5 =3.6x 1052 A%

is enormously large, and Equation (16) shows that it is an upper limit on
the luminosity of any gravitational wave source.

For many purposes, the important consideration regarding energy ra-
diated is the time-scale: how long does it take for the gravitational energy
loss to manifest itself in a significant way? The energy is typically lost from
the gravitational potential energy of the source Egray = GM?/R (or from
its kinetic energy: to within our factors of two, these are the same, by the
virial theorem). So the timescale on which cbservable changes occur is

Egrav _ R (GM\® .
w = s D . 1
Ty Lgw — me ( Rc‘-’) (17)

oM -3 R *
MPEITH 2x 105m] °

(for a very compact binary). (18)

v
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This gives the timescale as a multiple of the light-crossing time, R/c. The
dynamical timescale 1/ f4yn might be a more relevant comparison, which
leads us to the dimensionless product

1 GM\ P2
Tow fow 2 @ (ch> - (19)

This example illustrates one of the most spectacular sources that
ground-based detectors will look for: coalescences of neutron stars in orbit
around one another. Once the orbital radiation becomes detectable from
the ground (a few tens of Hz), the system has only minutes or seconds to
live before the stars coalesce.

2.4. Dynamaics in a nutshell

The most important formulas above can be summarised in a single diagram,
which shows a number of relevant lines as a function of the mass M and size
R of a the source. Figure 2 shows lines of constant frequency fgw = 2f4yn
in the mass-radius plane for 3 important frequencies: 10~* Hz, the lowest
frequency accessible to planned space-based detectors; 1 Hz, roughly the
boundary between what can be detected from the ground and from space;
and 10* Hz, the upper limit to what can in practice be observed from the
ground. The upper part of the diagram is therefore the space-accessible
region; the lower part, the domain of ground-based detectors.

In the diagram we place a number of interesting possible gravitational-
wave sources. At the low-mass end, the natural vibrations of a typical
neutron star and stellar-mass black hole radiate in the ground-based band;
these should be excited when the objects are formed. The Sun lies in the
space band, and indeed its natural vibrations could be detected by a space
detector, through the near-zone Newtonian gravitational oscillations they
produce rather than through their gravitational waves. Binaries in this
mass range are discussed below. At the high-mass end, a 10°M black
hole would radiate in the space band. These vibrations could be excited
by the formation of the hole or by a neutron star falling into such a hole.

There are other useful lines in this diagram, as described in the next
sections.

2.4.1. The black-hole line The most important is the black-hole line,
drawn for

26 M 5 M

= = 1 .

R = 3 x 10 [IOGMQ] m (20)

(Compare this with Equation (4)). The region of the diagram below this
line does not contain any physically realisable systems: a system forms
a black hole when it reaches this line from above. The space-accessible
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Gravitational Dynamics

radius R (m)
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Figure 2. This diagram shows the wide range of masses and radii of
sources whose natural dynamical frequency is in the band detectable from
space or the ground. The three heavy lines delineate the outer limits of the
space band at gravitational wave frequencies of 0.1 mHz, 1 Hz, and 10 kHz.
The “black hole line” limits possible systems: there are none below it if
general relativity is correct. The “chirp line” shows the upper limit on bi-
nary systems whose orbital frequencies change (due to gravitational-wave
energy emission) by a measurable amount (30 pHz) in one year: any circu-
lar binary of total mass M and orbital separation R that lies below this line
will “chirp” in a I-year observation, allowing its distance to be determined.
The curve labelled “binary lifetime = [ yr” is the upper limit on binaries
that chirp so strongly that they coalesce during a 1-year observation. These
lines and the indicated sources are discussed more fully in the text.
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frequency region contains black holes above about 10*A: up to 10341,
which means that space detectors can in principle confirm the present as-
trophysical consensus that most galaxies contain one or more giant black
holes. Conversely, ground-based detectors cannot see massive black holes,
being limited to observing the kind we expect to form from normal massive
stars.

2.4.2. Binary lifetime line Two other lines in the diagram refer to the
chirping of a binary system, as discussed above. The line called “binary
lifetime = 1 yr” is the line along which the characteristic timescale for the
frequency to change, as inferred from Equation (17), is one year. Binary
systems below this line are systems which can be followed right to coales-
cence during a reasonable observation period. and whose detectability is
therefore not strongly dependent on how compact they are when they are
first observed. From Equation (18), we see that this is a line on which
R"/M3 is constant. Notice that all solar-mass binary systems observable
from the ground will coalesce within a year. A typical coalescing neutron-
star binary is illustrated in the diagram. A compact binary that is observed
from the time it reaches about 1 Hz will coalesce within a year. At present,
no detectors are planned which can operate well at this frequency. If one
were available, it could give advance warning to existing detectors about co-
alescence events. From space, we can expect only binaries of massive black
holes, above M ~ 10°M,, to coalesce during an observation, as shown.

2.4.3. Binary chirp line Just as important, but less dramatic, is just seeing
a binary system “chirp”, i.e. change its orbital frequency. Here the criterion
is not that its coalescence time-scale be the observation time, but rather
that its frequency should change by an observable amount during the same
one-year observation Tops. This means that its frequency change need only
be as large as the frequency resolution of a l-year observation, Afgw =
1/Tons = 3 x 1078 Hz. If we take the frequency change to be the same
Af, and assume that this occurs because of gravitational radiation, then
we have
_ /8w

Afgw Tgw Tobs~
The formulas above can be used to show that the resulting “chirp line” is
a line of constant R''/M7. For a separation and mass appropriate to a
compact binary with a 1000 s period, we have

RO M 177 [ Tows 1° .
Tx10°m| |28Mo] ~ |37yr| (21)

The diagram shows the chirp line appropriate to a l-year observation.
essentlally the same as Equation (21).. It shows that chitping without
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coalescence is important for space-based detectors; ground-based detectors
will be able to follow any chirping system right to coalescence. As we show
below, this allows a detector to determine the distance to the binary. A
space detector should also detect chirping in binaries consisting of massive
black holes. The resulting distances will be particularly interesting, as we
describe below.

2.4.4. Distance to a chirping binary The key to determining the distance
is to show that there are enough observables in the signal from a binary
system to make the measurement. The mass and radius of the system,
which are convenient axes for the diagram in Figure 2, are not directly
observable. What we can determine from the response of the detector
are the frequency fgw, rate of change of frequency fow = fgw/Tgw (if the
system chirps) and amplitude h of the signal. Equations 11, 17, and 10
(taken as an equality, which is okay for a binary system) together allow us
to eliminate all the unknowns and solve for the distance r to the binary.
This gives the remarkably simple formula

c _ _ §
r = ngw gv?h 1. (22)

This equation, first derived in a somewhat different form by (8], is actu-
ally more robust than our simple derivation might suggest. We have used
a single mass M to characterise the system, but of course a binary has
two masses. Which combination of them is appropriate here? More impor-
tantly, can we really eliminate the mass at all from these equations: maybe
we have to eliminate two masses, and we don’t have enough equations.

The answer is that there is only one mass that matters, which is the
combination

M =y B M5, (23)

where p is the reduced mass of the binary and M its total mass. Our
analysis here was not detailed enough to distinguish these two masses,
but if we had done so then we would have found that this is the way
the masses of the individual stars enter the radiation timescale equation,
Eqrefeqn:timescale, if we eliminate the unknown radius R in favour of the
measurable frequency fsyn. This gives a relation between the measured
timescale and frequency and the mass of the system, which then can be
used to determine the chirp mass M.

What is remarkable about binaries is that the same chirp mass also
enters the equation for the amplitude of the radiation, again obtained by
eliminating R in favour of fyyn in Equation (10). Then one can go through
the same procedure, only using M in place of M in all our equations, and
arriving finally at the distance r to the binary given by Equation (22), with
M replaced by M.
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For cosmological sources, this distance turns out to be what cosmolo-
gists call the luminosity distance. The ability to treat chirping binaries as
standard candles is one of the most interesting aspects of gravitational wave
observations. [t opens the possibility of using observations of chirping sys-
tems to measure the Hubble parameter Hy ([8]) and even the deceleration
parameter of the universe qq.

3. Detectors and sources: seeing waves

3.1. Ground-based detectors and what they may see

Right now there are three promising detector projects with instruments
under construction. I call these three projects the first generation interfer-
ometers. They are called GEO600 [9], LIGO [10], and VIRGO [11]. They
are of course not the first interferometers to be built: prototypes operate
at Glasgow [12), Garching [13], Caltech [14], and MIT [15]. There is a large
300 m interferometer under construction in Japan, called TAMA300 [16].
In addition, the original bar detector design of Weber has been improved
‘dramatically, and there are many bar detectors in regular operation, in Italy
[17], the USA [18], and Australia [19]. These have similar sensitivity to the
prototype interferometers, and will be orders of magnitude less sensitive
than the first-generation interferometers for certain kinds of sources. But
bars, too, will get better. There are plans for sensitive spherical solid-mass
detectors [20] and for arrays of smaller bars to get to very high frequencies
[21].

However, the GEO600, LIGO, and VIRGO interferometers are the first
that should reach the target strain sensitivity of 10=%!, which has always
been the theorists’ threshold, because at this sensitivity there are grounds
to believe that gravitational wave events could be detected a few times per
year. And interferometers have the most straightforward path to improve-
ment

An enlarged TAMA and improvements in the optical systems of the
LIGO and VIRGO detectors could, after a few more years, lead to detectors
that are a factor of 10 more sensitive. I would call such detectors second
generation interferometers. On the same timescale we may see spherical
detectors or large arrays of smaller bars [21] that would have astrophysical
interesting sensitivity at higher frequencies, above 1 kHz.

In this frequency range, as we can see in Figure 2, the sources of gravi-
tational waves are all on the stellar scale. We expect to see large numbers
of coalescences of binary neutron star systems (as the Hulse-Taylor pulsar
will so in 108 vears), and of stellar-mass black holes, which are rarer but
stronger and can be seen further away. We expect to be able to see su-
pernova explosions, leading to the emission of gravitational radiation if the
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collapse is highly asymmetric. We may see isolated neutron stars, radiating
as they spin because of some asymmetry in their crust or because they are
in free precession. We may see the vibrations of neutron stars, especially
with bar detectors. And we may see a background of gravitational waves
left over from processes in the very early universe. We will come back to
some of these below.

3.2. A space-based detector and what it may see

The most spectacular and ambitious detector project is called LISA, a plan
to put a low-frequency detector into space. LISA is currently identified as
a future European Space Agency Cornerstone mission in the next century.
The fascinating and challenging technology to do has been reviewed in the
literature ({22, 23]).

LISA will operate in what we call the low-frequency band of gravita-
tional waves, between 1 x 107* Hz and 1 Hz. We have seen that this is
an interesting band, where we expect radiation from binary stars, massive
black holes, and possibly the Big Bang. The sources that radiate strongly in
this band are very different from those that radiate in the higher-frequency
band from about 1 Hz to 10* Hz. Most of them do not radiate at the higher
frequencies, and so much of the physics and astrophysics that LISA can ex-
plore will be totally new, even if (as we hope) ground-based instruments
are successful soon in making the first detections of gravitational waves.

The most impressive source for LISA is the coalescence of two massive
black holes in the centre of a distant galaxy. This is certainly a rare event,
but with LISA’s sensitivity it can be seen everywhere in the Universe,
so it may be observed relatively frequently. More certain, and almost as
spectacular, will be the radiation from compact objects (neutron stars and
black holes of stellar size) as they spiral into the giant central black holes
in galaxies. It is believed that quasars are powered by the gas that results
from the break-up of an ordinary star falling into the hole. Compact stars
will not break up. Instead they will give a characteristic gravitational wave
signature. This will be one of the most important LISA sources.

In addition, LISA will see hundreds, perhaps thousands of binary sys-
tems in our Galaxy. There will be so many that they will probably blend
into a confused background at low frequencies, and only the nearest will be
studied individually. Many known binary systems should be detectable.

Finally, LISA will search for the cosmic background of gravitational
radiation. If it is stronger than the confusion limit of binaries, it will be

seen by LISA.
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3.3. Ground-based and space-based frequency ranges

Importantly, the low-frequency band cannot be observed from the ground.
Any gravitational wave detector is a sensitive recorder of time-dependent
changes in the gravitational field, and it will respond as well to changes
in the local Newtonian gravitational field induced by the motion of a ter-
restrial mass (a person or a truck) as to a gravitational wave. Because
gravitational fields cannot be screened out, it is impossible to avoid terres-
trial interference.

In the higher-frequency band from about 1 Hz to 10* Hz, terrestrial
gravitational noise is smaller than the signals from astronomical sources,
and detectors can be built on the ground. In the LISA band, the reverse
is true: gravitational interference from local mass movements, from den-
sity perturbations carried by seismic activity, and even from the passage
of atmospheric masses is much stronger than extraterrestrial waves, and
Earth-based detection is hopeless. By putting a detector in space, far
enough from Earth, one escapes this interference: terrestrial noise falls off
in strength moving away from Earth, while the amplitude of the incoming
gravitational waves is essentially the same everywhere in the solar system,
since they come from so far away.

Ground-based interferometers are limited in size to a few kilometres
simply by the cost of building a vacuum system of that size; ideally they
should be several hundred kilometres in length. In space one can make as
large a detector as one likes, within technological constraints. The result is
that detectors need not be designed to have only barely enough sensitivity
to detect something: LISA will be so sensitive that its signal-to-noise ratio
when it detects the collision of two massive black holes in a distant galaxy
could well be better than that of an optical observation of the same galaxy.
It will have enough signal to pin down directions to sources, to measure
their masses and other properties, and especially to look for the small de-
tails in the signal that will test our understanding of aspects of fundamental
physics. When thinking about LISA, one must forget the impression that
one has from ground-based gravitational wave projects, that gravitational
wave detectors operate at the margins of detection. LISA will be a robust
observatory.

This is illustrated in Figure 3, where I compare the sensitivity of LISA to
that of the first and second-generation ground-based interferometers when
looking at “bursts” of radiation, which are defined as signals that have
broad bandwidth. Interesting sources in the high-frequency band are Just
barely detectable, while those in the space-based band will be so strong
that they can be studied in great detail.



587
Burst Sensitivity Across the Spectrum
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Figure 3. Sensitivity to bursts (signals of short duration and wide band-
width) in the space and ground-based bands. Ground-based detectors at
high frequencies will see coalescences (chirps) of black holes and neutron
stars with low signal-to-noise ratios, but LISA will see coalescences of mas-
sive black holes with signal-to-noise ratios of several thousand.




588
4. Fundamental physics from gravitational wave detection

In this section I will run through a list of possible observations that will,
if successful, have a direct and important impact on our understanding of
fundamental physics.

e FExistence of gravitational waves. The most direct conclusion from the
first detection of gravitational waves is that they exist! The Hulse-
Taylor pulsar has given us very strong indirect evidence that gravi-
tational radiation behaves just as Einstein predicted, but it would be
reassuring to have a direct detection that confirmed this. In addition,
a detection with reasonable signal-to-noise ratio in several detectors
(say, four interferometers) could study the polarisation properties of
the waves. If there are hidden gravity-like fields, they could show
up this way. It would probably take the signal-to-noise ratios antici-
pated from LISA to be able to make any serious constraints on this
possibility.

e Black hole studies. Black holes are the most fundamental way in
which general relativity differs from our pre-Einsteinian notions of
space and time. In relativity there are many theorems about black
hole uniqueness (all stationary uncharged holes are Kerr black holes)
and dynamics (the area of a hole must always increase); and there
are reasonably but unproved conjectures (space-time singularities can
only occur inside black holes, where they cannot affect the outside
world). Observations with ground-based interferometers, and espe-
cially LISA observations of massive mergers and of compact objects
falling into massive holes, have the potential to verify observationally
for the first time the validity of these theorems. And it is always pos-
sible that we will see naked singularities {not inside black holes). In
addition, the merger of black holes is the ideal laboratory for observ-
ing stong-field, nonlinear dynamical gravity, something that is very
poorly understood theoretically. By comparing observations of black-
hole mergers with numerical simulations, we can begin to develop our
intuition about strong-field gravity.

o (Cosmological parameters. As emphasised earlier, coalescing binaries
are standard candles: one can tell the distance to them from grav-
itational wave observations alone. Coupled with some information
that can be used to identify an optical counterpart that would give
a redshift, gravitational wave observations could establish a cosmic
distance scale. Ground-based detectors have a chance through this
method to measure the Hubble constant Hy and put bounds on the
deceleration of the Universe, go. LISA can do much better, and may
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indeed reveal how close to closure the Universe really 1s. This has, of
course, enormous implications for fundamental physics.

e Early universe. The Big Bang should have produced a background
of gravitational waves, but the size of it and its spectrum depend
in detail on the physics at high energies [24]. Measurements by ei-
ther ground-based or space-based detectors (which in this respect
have similar sensitivities) could confirm the existence of the radia-
tion, constrain physics at the GUTs scale, and even go a long way to
establishing the reality of inflation.

o Neulron matter equation of state. The equation of state at nuclear
densities is poorly known, since nuclei are not large enough. There
are many guesses at how matter behaves inside neutron stars, but
experimental data is very limited. Direct observations of the normal
mode frequencies of neutron stars, or of the dynamics of the merger of
two neutron stars, would help to pin down some of the uncertainties.
These observations will probably be made by bar detectors, since they
require good high-frequency sensitivity. There are proposals that
there could be more exotic stars, quark stars or boson stars. If these
exits, their binaries will be very different and readily identifiable.
If binary coalescences are associated with the puzzling gamma-ray
bursts, the association could greatly narrow down the list of viable
models.

o Miscellaneous tests. One can look for secondary gravitational fields
by detecting the differences in polarisation. One can try to set a
limit on the mass of the graviton by comparing travel time differences
between gravitational waves and light from distant events, or even by
looking for dispersion inside the gravitational signal.

Any of these observations could bring about major changes in our un-
derstanding of physics. Which ones, if any, will come about is what we
are all eagerly waiting to see. Answers could come within a few years, and
should be there before the next two decades are finished.
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