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Synopsis

Gravitational waves and their detection are becoming increasingly important
both for the theoretical physicist and the astrophysicist. In fact, technological
developments have enabled the construction of such sensitive detectors (bars
and interferometers) that the detection of gravitational radiation could become
a reality during the next few years. In these lectures we give a brief overview of
this interesting and challenging field of modern physics.

The topics covered are divided into six lectures. We begin (chapter 2) by
describing gravitational waves in linearized general relativity, where one can
examine most of the basic properties of gravitational radiation itself; propagation,
gauge invariance and interactions with matter (and in particular with detectors).

The second lecture (chapter 3) deals with gravitational-wave detectors:
how they operate, what their most important sources of noise are, and what
mechanisms are used to overcome noise. We report here on the most important
detectors planned or under construction (both ground-based and space-based
ones), their likely sensitivity and their prospects for making detections. Other
speakers will go into much more detail on specific detectors, such as LISA.

The third lecture (chapter 4) deals with the astrophysics of likely sources
of gravitational waves: binary systems, neutron stars, pulsars, x-ray sources,
supernovae/hypernovae, y -ray bursts and the big bang. We estimate the expected
wave amplitude 4 and the suitability of specific detectors for seeing waves from
each source.

The fourth lecture (chapter 5) is much more theoretical. Here we develop
the mathematical theory of gravitational waves in general, their effective stress-
energy tensor, the energy carried by gravitational waves, and the energy in a
random wave field (gravitational background generated by the big bang).

The fifth lecture (chapter 6) takes the theory further and examines the
generation of gravitational radiation in linearized theory. We show in some
detail how both mass-quadrupole and current-quadrupole radiation is generated,
including how characteristics of the radiation such as its polarization are related
to the motion of the source. Current-quadrupole radiation has become important
very recently and may indeed be one of the first forms of gravitational radiation to
be detected. We attempt to give a physical description of the way it is generated.
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16 Elements of gravitational waves

particular we choose units in which ¢ = G = 1; Greek indices run from 0
to 3; Latin indices run from 1 to 3; repeated indices are summed; commas
in subscripts or superscripts denote partial derivatives; and semicolons denote
covariant derivatives. The metric has positive signature. These above two
textbooks and others referred to at the end of these chapters give more details
on the theory that we outline here. For an even simpler introduction, based on a
scalar analogy to general relativity, see [1].

2.1 Mathematics of linearized theory
Consider a perturbed flat spacetime. Its metric tensor can be written as

8ap = MNap + hap.  |hopl € 1. a.B8=0... .. 3 (2.1)

where ngpg is the Minkowski metric (—1,1.1.1) and hog is a very small
perturbation of the flat spacetime metric. Linearized theory is an approximation
to general relativity that is correct to first order in the size of this perturbation.
Since the size of tensor components depends on coordinates, one must be careful
with such a definition. What we require for linearized theory to be valid is that
there should exist a coordinate system in which equation (2.1 ) holds in a suitably
large region of spacetime. Even though Nap is not the true metric tensor, we are
free to define raising and lowering indices of the perturbation with 7 ap» as if it
were a tensor on flat spacetime. We write

WP = " n"h,;.

This leads to the following equation for the inverse metric, correct to first order
(all we want in linearized theory):

g% = P _ pob, (2.2)

The mathematics is simpler if we define the truce-reversed metric
perturbation:

hap := hap — 3n0ph. (2.3)
where h := Uaﬁho’ﬂv There 18 considerable coordinate freedom in the components
hep. since we can wiggle and stretch the coordinate system with a comparable
amplitude and change the components. This coordinate freedom is called gauge
freedom, by analogy with electromagnetism. We use this freedom to enforce the
Lorentz (or Hilbert) gauge:

hP g = 0. (2.4)
In this gaugeithe Einstein field equations (neglecting the quadratic and higher
terms in h“7) are just a set of decoupled lincar wave equations:
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(“Tz + Vz) RP = _lex TP, (2.5)
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To understand wave propagation we look for the easiest solution of the vacuum
gravitational field equations:

_ 3* -
C1A%8 = <_F + Vz) W = 0. (2.6)

Plane waves have the form:
hap = Aeqp expliky x7) (2.7)

where the amplitude A, polarization tensor €*? and wavevector k¥ are all
constants. (As usual one has to take the real part of this expression.)

The Einstein equations imply that the wavevector is ‘light-like’, k 7k, = 0,
and the gauge condition implies that the amplitude and the wavevector are
orthogonal: e*’kg = 0.

Linearized theory describes a classical gravitational field whose quantum
description would be a massless spin 2 field that propagates at the speed of
light. We expect from this that such a field will have only two independent
degrees of freedom (helicities in quantum language, polarizations in classical
terms). To show this classically we remember that 44 is symmetric, so it has
ten independent components, and that the Lorentz gauge applies four independent
conditions to these, reducing the freedom to six. However, the Lorentz gauge does
not fully fix the coordinates. In fact if we perform another infinitesimal coordinate
transformation (x# — x* + &# with §# , = O(h)) and impose E# = 0, we
remain in Lorentz gauge. We can use this freedom to demand:

e =0—= e’jkj =0 (transverse wave), (2.8)

eii =0 (traceless wave). (2.9)

These conditions can only be applied outside a sphere surrounding the source.
Together they put the metric into the transverse-traceless (TT) gauge. We will
explicitly construct this gauge in chapter 5.

2.2 Using the TT gauge to understand gravitational waves

The TT gauge leaves only rwo independent polarizations out of the original ten,
and it ensures that figg = hgg. In order to understand the polarization degrees of

freedom, let us take the wave to move in the z-direction, so that k. = w, k" = w,
ky = 0, k, = 0; the TT gauge conditions in equations (2.8) and (2.9) lead to
% = ¢ = (0 and &' = —e"*. This leaves only two independent components

of the polarization tensor, say e'' and e** (which we denote by the symbols
b, ®).
A wave for which e* = 0 (pure & polarization) produces a metric of the

form: R N
ds? = —dt> + (1 + hy)dx + (1 — hy) dv? + dz°, (2.10)
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Figure 2.1. Illustration of two linear polarizations and the associated wave amplitude.

where hy = Ae** exp[—iw(t — z)]. Such a metric produces opposite effects on
proper distance at the two transverse axes, contracting one while expanding the
other.

If e** = 0 we have pure ® polarization / x which can be obtained from the
previous case by a simple 45° rotation, as in figure 2.1. Since the wave equation
and TT conditions are linear, a general wave will be a linear combination of these
two polarization tensors. A circular polarization basis would be:

1 . 1 .
€R = —(e++lex)‘ eLZ—(e+—lex), (211)

V2 V2

where e,, ey are the two linear polarization tensors and eg and ep
are polarizations that rotate in the right-handed and left-handed directions,
respectively. It is important to understand that, for circular polarization,
the polarization pattern rotates around the central position, but test particles
themselves rotate only in small circles relative to the central position.

Now we compute the effects of a wave in the TT gauge on a particle at rest in
the flat background metric 744 before the passage of the gravitational wave. The
geodesic equation

d?xn dx? dx?
= A [y e
dr dr dr
implies in this case:
d?x! , 1
— = —Tgo = —=2hjoo — hoo;) = O, 2.1
a2 00 2( 0,0 00.i) =0 (2.12)

so that the particle does not move. The TT gauge, to first order in h 4, represents
a coordinate system that is comoving with freely-falling particles. Because
hooe = 0, TT time is proper time on the clock of freely-falling particles at rest.
Tidal forces show the action of the wave independently of the coordinates.
Let us consider the equation of geodesic deviation, which governs the separation
of two neighbouring freely-falling test particles A and B. If the particles are
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initially at rest, then as the wave passes it produces an oscillating curvature tensor,
and the separation £ of the two particles is:

dEEi

= Ri(),/ué"'l (2.13)

To calculate the component Ri(]j() of the Riemann tensor in equation (2.13), we
can use the metric in the TT gauge, because the Riemann tensor is gauge-invariant
at linear order (see exercise (d) at the end of this chapter). Therefore, we can
replace Ri()_,‘() by Ri()j() = %/lTTij_()() and write:

a2 = E/ITT’.,'_()()E’/. (2.14)

This equation, with an initial condition S(-’m = constant, describes the oscillations
of Bs location as measured in the proper reference frame of A. The validity of
equation (2.14) is the same as that of the geodesic deviation equation: geodesics
have to be close to one another, in a neighbourhood where the change in curvature
is small. In this approximation a gravitational wave is like an extra force, called
a ridal force, perturbing the proper distance between two test particles. If there
are other forces on the particles, so that they are not free, then as long as the
gravitational field is weak, one can just add the tidal forces to the other forces and
work as if the particle were in special relativity.

2.3 Interaction of gravitational waves with detectors

We have shown above that the TT gauge is a particular coordinate system in
which the polarization tensor of a plane gravitational wave assumes a very simple
form. This gauge is comoving for freely-falling particles and so it is not the
locally Minkowskian coordinate system that would be used by an experimenter
to analyse an experiment. In general relativity one must always be aware of how
one’s coordinate system is defined.

We shall analyse two typical situations:

e  the detector is small compared to the wavelength of the gravitational waves
it is measuring; and
e the detector is comparable to or larger than that wavelength.

In the first case we can use the geodesic deviation equation above to represent
the wave as a simple extra force on the equipment. Bars detectors can always be
analysed in this way. Laser interferometers on the Earth can be treated this way
too. In these cases a gravitational wave simply produces a force to be measured.
There is no more to say from the relativity point of view. The rest of the detection
story is the physics of the detectors. Sadly. this is not as simple as gravitational
wave physics!
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In the second case, the geodesic deviation equation is not useful because
we have to abandon the ‘local mathematics’ of geodesic deviation and return to
the *global mathematics’ of the TT gauge and metric components /1 '1,4. Space-
based interferometers like LISA, accurate ranging to solar-system spacecraft and
pulsar timing are all in this class. Together with ground interferometers, these are
beam detectors: they use light (or radio waves) to register the waves.

To study these detectors, it is easiest to remain in the TT gauge and to
calculate the effect of the waves on the (coordinate) speed of light. Let us
consider, for example, the @ metric from equation (2.10) and examine a null
geodesic moving in the x-direction. The speed along this curve is:

dx \’ 1
(_‘ - . (2.15)
df |+h+

This is only a coordinate speed, not a contradiction to special relativity.

To analyse the way in which detectors work, suppose one arm of an
interferometer lies along the x-direction and the wave, for simplicity, is moving
in the ;-direction with a @ polarization of any waveform h 4 (1) along this axis (it
is a plane wave, so its waveform does not depend on x). Then a photon emitted at
time ¢ from the origin reaches the other end, at a fixed coordinate position x = L,
at the coordinate time

L
rfar=r+f ST R dr, (2.16)
0

where the argument 7 (x) denotes the fact that one must know the time to reach
position x in order to calculate the wave field. This implicit equation can be solved
in linearized theory by using the fact that 4 ; is small, so we can use the first-order
solution of equation (2.15) to calculate /4 4 (1) to sufficient accuracy.

To do this we expand the square root in powers of 4 ,, and consider as a
zero-order solution a photon travelling at the speed of light in the x-direction of a
flat spacetime. We can set t (x) = t + x. The result is:

L
tow =1+ L+ %/ hy(r + x)dx. 2.17)
0

In an interferometer, the light is reflected back, so the return trip takes

L

1 )
rrelum=f+L+%|:/ h+(t+x)dr+/ h+(t+x+L)dr:|. (2.18)
0

0
What one monitors is changes in the time taken by a return trip as a function of
time at the origin. If there were no gravitational waves # ey Would be constant
because L is fixed, so changes indicate a gravitational wave.

The rate of variation of the return time as a function of the start time ¢ is

d’return

1
= ]+—[ll+(f+2L)—h+([)|. (2'9)
dr 2
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This depends only on the wave amplitude when the beam leaves and when it
returns,

' Let us consider now a more realistic geometry than the previous one, and
m particular suppose that the wave travels at an angle ¢ to the z-axis in the x—2
plane. If we redo this calculation, allowing the phase of the wave to depend on
X in an appropriate way, and taking into account the fact that i I:T""' is reduced if
the wave is not moving in a direction perpendicular to x, we find (see exercise (a)
at the end of this chapter for the details of the calculation)

% = 5{(1 —sin@)AL (t +2L) — (1 + sin)h'* (1)

+2sin6h% (1 + L(1 — sinf)]}. (2.20)
+

This three-term relation is the starting point for analysing the response of all beam
detectors. This is directly what happens in radar ranging or in transponding
1o spacecraft, where a beam in only one direction is used. In long-baseline
interferometry, one must analyse the second beam as well. We shall discuss these
cases in turn.

2.4 Analysis of beam detectors

2.4.1 Ranging to spacecraft

Both NASA and ESA perform experiments in which they monitor the return time
of communication signals with interplanetary spacecraft for the characteristic
effect of gravitational waves. For missions to Jupiter and Saturn, the return times
are of the order 24 x 10? s. Any gravitational wave event shorter than this
will leave an imprint on the delay time three times: once when the wave passes
the Earth-based transmitter, once when it passes the spacecraft, and once when
it passes the Earth-based receiver. Searches use a form of pattern matching to
look for this characteristic imprint. There are two dominant sources of noise:
propagation-time irregularities caused by fluctuations in the solar wind plasma,
and timing noise in the clocks used to measure the signals. The plasma delays
depend on the radio-wave frequency, so by using two transmission frequencies
one can model and subtract the plasma noise. Then if one uses the most stable
atomic clocks, it is possible to achieve sensitivities for 4 of the order 10 73, In
the future, using higher radio frequencies, such experiments may reach 10 ~'7.
No positive detections have yet been made, but the chances are not zero. For
example, if a small black hole fell into a massive black hole in the centre of
the Galaxy, it would produce a signal with a frequency of about 10 mHz and an
amplitude significantly bigger than 10~!3. Rare as this might be, it would be a
dramatic event to observe.
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2.4.2 Pulsar timing

Many pulsars. in particular old millisecond pulsars. are extraordinarily regular
clocks, whose random timing irregularities are too small for even the best
atomic clocks to measure. Other pulsars have weak but observable irregularities.
Measurements of or even upper limits on any of these timing irregularities for
single pulsars can be used to set upper limits on any background gravitational
wave field with periods comparable to or shorter than the observing time. Here the
three-term formula is replaced by a simpler two-term expression (see exercise (b)
at the end of this chapter), because we only have a one-way transmission from
the pulsar to Earth. Moreover. the transit time of a signal to Earth from the pulsar
may be thousands of years. so we cannot look for correlations between the two
terms in a given signal. Instead. the delay time is a combination of the effects
of uncorrelated waves at the pulsar when the signal was emitted and at the Earth
when it is received.

If one simultaneously observes two or more pulsars. the Earth-based part of
the delay is correlated between them. and this offers a means of actually detecting
long-period gravitational waves. Observations require a timescale of several years
in order to achieve the long-period stability of pulse arrival times. so this method
is suited to looking for strong gravitational waves with periods of several years.

2.4.3 Interferometry

An interferometer essentially measures changes in the difference in the return
times along two different arms. It does this by looking for changes in the
interference pattern formed when the returning light beams are superimposed
on one another. The response of each arm will follow the three-term formula
in equation (2.20), but with a different value of 6 for each arm. depending in a
complicated way on the orientation of the arms relative to the direction of travel
and the polarization of the wave. Ground-based interferometers are small enough
to use the small-L formulae we derived earlier. However. LISA, the space-based
interferometer that is described by Bender in this book. is larger than a wavelength
of gravitational waves for frequencies above 10 mHz, so a detatled analysis of its
sensitivity requires the full three-term formula.

2.5 Exercises for chapter 2
Suggested solutions for these exercises are at the end of chapter 7.
(a) 1. Derive the full three-term return equation, reproduced here:

dfrclurn _ l

[(l - .\il](’)[,“‘(, 4+ 20y — (! FSill“)h“‘(l)

a2
+2sin6h e + Ll — sint) ]} (2.21)
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[8%]

Show that, in the limit where L is small compared to the wavelength of

the gravitational wave, the derivative of the return time is the derivative

of the excess proper distance SL = Lh'*(t) cos" 8 for small L. Make

sure you know how to interpret the fuctor of cos? 6.

3. Examine the limit of the three-term formula when the gravitational wave
is travelling along the x-axistoo (60 = + %) what happens to light going
parallel to a gravitational wave ?

(b) Derive the nvo-term formula governing the delays induced by gravitational
waves on a signal transmitted only one-way, for example from a pulsar to
Earth.

(¢) A frequently asked question is: if gravitational waves alter the speed of light,
as we seem to have used here, and if they move the ends of an interferometer
closer and further apart, might these effects not cancel, so that there would
be no measurable effects on light? Answer this question. You may want to
examine the calculation above: did we make use of the changing distance
berween the ends, and why or why not?

(d) Show that the Riemann tensor is gauge-invariant in linearized theory.
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Chapter 3

Gravitational-wave detectors

Gravitational radiation is a central prediction of general relativity and its detection
is a key test of the integrity of the theoretical structure of Einstein’s work.
However, in the long run, its importance as a tool for observational astronomy is
likely to be even more important. We have excellent observational evidence from
the Hulse—Taylor binary pulsar system (described in chapter 4) that the predictions
of general relativity concerning gravitational radiation are quantitatively correct.
However, we have incomplete information from astronomy today about the likely
sources of detectable radiation.

The gravitational wave spectrum is completely unexplored, and whenever a
new electromagnetic waveband has been opened to astronomy, astronomers have
discovered completely unexpected phenomena. This seems to me just as likely
to happen again with gravitational waves, especially because gravitational waves
carry some kinds of information that electromagnetic radiation cannot convey.
Gravitational waves are generated by bulk motions of masses, and they encode
the mass distributions and speeds. They are coherent and their low frequencies
reflect the dynamical timescales of their sources.

In contrast, electromagnetic waves come from individual electrons executing
complex and partly random motions inside their sources. They are incoherent, and
individual photons must be interpreted as samples of the large statistical ensemble
of photons being emitted. Their frequencies are determined by microphysics on
length scales much smaller than the structure of the astronomical system emitting
them. From electromagnetic observations we can make inferences about this
structure only through careful modelling of the source. Gravitational waves, by
contrast, carry information whose connection to the source structure and motion
is fairly direct.

A good example is that of massive black holes in galactic nuclei. From
observations that span the electromagnetic spectrum from radio waves to x-
rays. astrophysicists have inferred that black holes of masses up to 10"M,,
are responsible for quasar emissions and control the jets that power the giant
radio emission regions. The evidence for the black hole is very strong but
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indirect: no other known object can contain so much mass in such a small
volume. Gravitational wave observations will tell us about the dynamics of the
holes themselves, providing unique signatures from which they can be identified.
measuring their masses and spins directly from their vibrational frequencies.
The interplay of electromagnetic and gravitational observations will enrich many
branches of astronomy.

The history of gravitational-wave detection started in the 1960s with J Weber
at the University of Maryland. He built the first bar detector: it was a massive
cylinder of aluminium (~2 x 10? kg) operating at room temperature (300 K)
With a resonant frequency of about 1600 Hz. This early prototype had a modest
sensitivity, around 10713 or 10714,

Despite this poor sensitivity, in the late 1960s Weber announced the detection
of a population of coincident events between two similar bars at a rate far
higher than expected from instrumental noise. This news stimulated a number
of other groups (at Glasgow, Munich, Paris, Rome, Bell Laboratories, Stanford,
Rochester, LSU, MIT, Beijing, Tokyo) to build and develop bar detectors to
check Weber’s results. Unfortunately for Weber and for the idea that gravitational
Waves were easy to detect, none of these other detectors found anything, even at
times when Weber continued to find coincidences. Weber’s observations remain
unexplained even today. However, the failure to confirm Weber was in a real
sense a confirmation of general relativity, because theoretical calculations had
never predicted that reasonable signals would be strong enough to be seen by
Weber's bars.

Weber’s announcements have had a mixed effect on gravitational-wave
research. On the one hand, they have created a cloud under which the field
has laboured hard to re-establish its respectability in the eyes of many physicists.
Even today the legacy of this is an extreme cautiousness among the major projects.
a conservatism that will ensure that the next claim of a detection will be ironclad.
On the other hand, the stimulus that Weber gave to other groups to build detectors
has directly led to the present advanced state of detector development.

From 1980 to 1994 groups developed detectors in two different directions:

e  Cryogenic bar detectors, developed primarily at Rome/Frascati, Stanford,
LSU and Perth (Australia). The best of these detectors reach below 10
They are the only detectors operating continuously today and they have
performed a number of joint coincidence searches, leading to upper limits
but no detections.

e [nterferometers, developed at MIT, Garching (where the Munich group
moved), Glasgow, Caltech and Tokyo. The typical sensitivity of these
prototypes was 107! The first long coincidence observation with
interferometers was the Glasgow/Garching 100 hr experiment in 1989 [2].

In fact, interferometers had apparently been considered by Weber, but at that
time the technology was not good enough for this kind of detector. Only 10—
15 years later, technology had progressed. Lasers, mirror coating and polishing
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techniques and materials science had advanced far enough to allow the first
practical interferometers, and it was clear that further progress would continue
unabated. Soon afterwards several major collaborations were formed to build
large-scale interferometric detectors:

e LIGO: Caltech and MIT (NSF) LIGO:;
VIRGO: France (CNRS) and Italy (INFN)
GEO600: Germany (Max Planck) and UK (PPARC).

Later, other collaborations were formed in Australia (AIGO) and Japan (TAMA
and JGWQ). At present there is still considerable effort in building successors to
Weber's original resonant-mass detector: ultra-cryogenic bars are in operation in
Frascati and Padua, and they are expected to reach below 10720, Further, there
are proposals for a new generation of spherical or icosahedral solid-mass detectors
from the USA (LSU), Brazil, the Netherlands and Italy. Arrays of smaller bars
have been proposed for observing the highest frequencies. where neutron star
normal modes lie.

However, the real goal for the near future is to break through the 10 2! level,
which is where theory predicts that it is not unreasonable to expect gravitational
waves of the order of once per year (see the discussion in chapter 4 later). The
first detectors to reach this level will be the large-scale interferometers that are
now under construction. They have very long arms: LIGO. Hanford (WA) and
Livingstone (LA), 4 km; VIRGO: Pisa. 3 km: GEO600: Hannover, 600 m;
TAMA300: Tokyo, 300 m.

The most spectacular detector in the near future is the space-based detector
LISA. which has been adopted by ESA (European Space Agency) as a
Cornerstone mission for the twenty-first century. The project is now gaining a
considerable amount of momentum in the USA, and a collaboration between ESA
and NASA seems likely. This mission could be launched around 2010.

3.1 Gravitational-wave observables

We have described earlier how different gravitational-wave observables are from
electromagnetic observables. Here are the things that we want to measure when
we detect gravitational waves:

e N (1), h«(1), phase(t): the amplitude and polarization of the wave, and
the phase of polarization, as functions of time. These contain most of the
information about gravitational waves.

e 0, ¢: the direction on the sky of the source (except for observations of a
stochastic background).

From this it is clear that gravitational-wave detection is not the same as
electromagnetic-radiation detection. In electromagnetic astronomy one almost
always rectifies the electromagnetic wave. while we can follow the oscillations of
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the gravitational wave. Essentially in electromagnetism one detects the power in
the radiation, while for gravitational radiation, as we have said before, one detects
the wave coherently.

Let us consider now what we can infer from a detection. If the gravitational
Wave has a short duration, of the order of the sampling time of the signal stream,
then each detector will usually give just a single number, which is the amplitude
of the wave projected on the detector (a projection of the two polarizations /1 +
and h ). If the wave lasts more than one sampling time, then this information is
a function of time.

If the signal lasts for a sufficiently long time, then both the amplitude and
the phase of the wave can be affected by the motion of the detector, which moves
and turns with the motion of the Earth. This produces an amplitude and phase
modulation which is not intrinsic to the signal. If the signal’s intrinsic form is
understood, then this modulation can be used to determine the location of the
source. We distinguish three distinct kinds of signals, from the point of view of
Observations.

Bursts have a duration so short that modulation due to detector motion is not
Observable. During the detection, the detector is effectively stationary. In this
Ccase we need at least three, and preferably four, interferometers to triangulate the
Positions of bursts on the sky and to find the two polarizations &  and h .. (See
discussions in Schutz 1989.) A network of detectors is essential to extract all the
information in this case.

Continuous waves by definition last long enough for the motion of the
detector to induce amplitude and phase modulation. In this case, assuming a
simple model for the intrinsic signal, we can use the information imprinted on
the signal (the amplitude modulation and phase modulation) to infer the position
and polarization amplitude of the source on the sky. A single detector, effectively,
performs aperture synthesis, finding the position of the source and the amplitude
of the wave entirely by itself. However, in order to be sure that the signal is not an
artefact, it will be important that the signal is seen by a second or third detector.

Stochastic backgrounds can be detected just like noise in a single detector.
If the detector noise is well understood, this excess noise may be detected as
a stochastic background. This is closely analogous to the way the original
microwave background detection was discovered.

A more reliable method for detecting stochastic radiation is the cross-
correlation between two detectors, which experience the same cosmological noise
but have a different intrinsic noise. Coherent cross-correlation between two
detectors eliminates much detector noise and works best when detectors are closer
than a wavelength.

In general, detection of gravitational waves requires joint observing by a
network of detectors, both to increase the confidence of the detection and to
provide accurate information on other physical observables (direction, amplitude
and so on). Networks can be assembled trom interferometers, bars, or both.
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3.2 The physics of interferometers

Interferometric gravitational-wave detectors are the most sensitive instruments,
and among the most complex, that have ever been constructed. They are
remarkable for the range of physics that is important for their construction.
Interferometer groups work at the forefront of the development in lasers. mirror
polishing and coating, quantum measurement, materials science, mechanical
isolation, optical system design and thermal science. In this section we shall
only be able to take a fairly superficial look at one of the most fascinating
instrumentation stories of our age. A good introduction to interferometer design
is Saulson (1994).

Interferometers use laser light to compare the lengths of two perpendicular
arms. The simplest design, originated by Michelson for his famous experiment
on the velocity of light, uses light that passes up and down each arm once, as
in the first panel in figure 3.1. Imagine such an instrument with identical arms
defined by mirrors that hang from supports, so they are free to move horizontally
in response to a gravitational wave. If there is no wave, the arms have the same
length, and the light from one arm returns exactly in phase with that from the
other. When the wave arrives, the two arms typically respond differently. The
arms are no longer the same length, and so the light that arrives back at the centre
from one arm will no longer be in phase with that arriving back from the other
arm. This will produce a shift in the interference fringes between the two beams.
This is the principle of detection.

Real detectors are designed to store the light in each arm for longer than
just one reflection (see figure 3.1(»)). It is optimum to store the light for half
of the period of the gravitational wave, so that on each reflection the light gains
an added phase shift. Michelson-type delay-line interferometers store the light
by arranging multiple reflections. Fabry—Perot interferometers store the light in
cavities in each arm, allowing only a small fraction to escape for the interference
measurement (figure 3.1(e)).

An advantage of interferometers as detectors is that the gravitational-wave-
induced phase shift of the light can be made larger simply by making the arm
length larger, since gravitational waves act by tidal forces. A detector with an arm
length / = 4 km responds to a gravitational wave with an amplitude of 10 ~2! with

Slgw ~ Shl ~2 x 107"% m (3.1)

where 8lgyw is the change in the length of one arm. If the orientation of the
interferometer is optimum, then the other arm will change by the same amount
in the opposite direction, so that the interference fringe will shift by twice this
length.

If the light path is folded or resonated, as in figure 3.1(h) and (d). then the
effective number of bounces can be traded off against overall length to achieve
a given desired total path length, or storage time. Shorter interferometers with
many bounces have a disadvantage, however: even though they can achicve the
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Figure 3.1. Five steps to a gravitational-wave interferometer. (a) The simple Michelson.
Notice that there are two return beams: one goes toward the photodetector and the other
toward the laser. (b) Delay line: a Michelson with multiple bounces in each arm to enhance
the signal. (¢) Power recycling. The extra mirror recycles the light that goes towards the
laser, which would otherwise be wasted. (d) Signal recycling. The mirror in front of the
photodetector recycles only the signal sidebands, provided that in the absence of a signal
no light goes to the photodetector. (¢) Fabry—Perot interferometer. The delay lines are
converted to cavities with partially silvered interior mirrors.

same response as a longer interferometer, the extra bounces introduce noise from
the mirrors, as discussed below. There is, therefore, a big advantage to long-arm
interferometers.
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There are three main sources of noise in interferometers: thermal. shot and

vibrational. To understand the way they are controlled. it is important to think
in frequency space. Observations with ground-based detectors will be made in a
range from perhaps 10 Hz up to 10 kHz, and initial detectors will have a much
smaller observing bandwidth within this. Disturbances by noise that occur at
frequencies outside the observation band can simply be filtered out. The goal of
noise control is to reduce disturbances in the observation band.

Thermal noise. Interferometers work at room temperature, and vibrations of
the mirrors and of the suspending pendulum can mask gravitational waves.
To control this noise, scientists take advantage of the fact that thermal noise
has its maximum amplitude at the frequency of the vibrational mode, and
if the resonance of the mode is narrow (a high quality factor Q) then the
amplitude at other frequencies is small. Theretore, pendulum suspensions
are designed with the pendulum frequency at about 1 Hz, well below
the observing window, and mirror masses are designed to have principal
vibration modes above 1 kHz, well above the optimum observing frequency
for initial interferometers. These systems are constructed with high values of
Q (10% or more) to reduce the noise in the observing band. Even so, thermal
noise is typically a dominant noise below 100 or 200 Hz.

Shot noise.  This is the principal limitation to sensitivity at higher
frequencies, above 200-300 Hz. It arises from the quantization of photons.
When photons form interference fringes, they arrive at random times
and make random fluctuations in the light intensity that can look like a
gravitational wave signal; the more photons one uses, the smoother will be
the interference fringe. We can easily calculate this intrinsic noise. If N 1is
the number of photons emitted by the laser during our measurement. then
as a random process the fluctuation number é N is proportional to the square
root of N. If we are using light with a wavelength A (for example infrared
light with & ~ 1 xm) one can expect to measure lengths to an accuracy of

A
8ot ~ ———.
2n/N
To measure a gravitational wave at a frequency f, one has to make at least 2 f
measurements per second, so one can accumulate photons for a time 1/2 f.
If P is the light power, one has

P
N =

he
A

(387

f

It is easy to work out from this that, for 8/ to be equal to 8l in
equation (3.1). one needs light power of about 600 kW. No continuous laser
could provide this much light to an interferometer.

The key to reaching such power levels inside the arms of a detector is
a technique called power recycling (see Saulson 1994) first proposed by
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Drever and independently by Schilling. Normally, interferometers work
on a ‘dark fringe’, that is they are arranged so that the light reaching
the photodetector is zero if there is no gravitational wave. Then, as
shown in figure 3.1(a). the whole of the input light must emerge from the
interferometer travelling towards the laser. If one places another mirror.
correctly positioned, between the laser and the beam splitter (figure 3.1(¢)).
it will reflect this wasted light back into the interferometer in such a way that
it adds coherently in phase with light emerging from the laser. In this way,
light can be recycled and the required power levels in the arms achieved.

Of course, there will be a maximum recycling gain, which is set by mirror
losses. Light power builds up until the laser merely re-supplies the losses at
the mirrors, due to scattering and absorption. The maximum power gain is

1

P:—
1 — R2

where 1 — R is the total loss summed over all the optical surfaces. For the
very high-quality mirrors used in these projects, | —R < ~ 10>, This reduces
the power requirement for the laser by the same factor, down to about 6 W.
This is attainable with modern laser technology.

Ground vibration and mechanical vibrations are another source of noise
that must be screened out. Typical seismic vibration spectra fall sharply
with frequency, so this is a problem primarily below 100 Hz. Pendulum
suspensions are excellent mechanical filters above the pendulum frequency:
it is a familiar elementary-physics demonstration that one can wiggle the
suspension point of a pendulum vigorously at a high frequency and the
pendulum itself remains undisturbed. Suspension designs typically involve
multiple pendula, each with a frequency around 1 Hz. These provide very
fat roll-off of the noise above 1 Hz. Interferometer spectra normally show
a steep low-frequency noise ‘wall’: this is the expected vibrational noise
amplitude.

In addition, there are noise sources that are not dominant in the present

interferometers but will become important as sensitivity increases.

Quantum effects: uncertainty principle noise. Shot noise is a quantum noise,
but in addition there are other effects similar to those that bar detectors
face, as described below: zero-point vibrations of suspensions and mirror
surfaces, and back-action of light pressure fluctuations on the mirrors. These
are small compared to present operating limits of detectors, but they may
become important in five years or so. Practical schemes to reduce this noise
have already been demonstrated in principle, but they need to be improved
considerably. This is the subject of considerable theoretical work at the
moment.

Graviry gradient noise. Gravitational-wave detectors respond to any changes
in the gradients (tidal forces) of the local gravitational field. not just
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those carried by waves. The environment always contains changes in the
Newtonian fields of nearby objects. Besides obvious ones, like people,
there are changes caused by density waves in ground vibrations. atmospheric
pressure changes, and many other disturbances. Below about 1 Hz,
these gravity gradient changes will be stronger than waves expected from
astronomical objects, and they make it impossible to do observing at low
frequencies from Earth. This is the reason that scientists have proposed the
LISA mission, discussed later. Above 1 Hz, this noise does not affect the
sensitivity of present detectors, but in ten years this could become a limiting
factor.

Besides these noise sources, which are predictable and therefore can be
controlled by detector design, it is possible that there will be unexpected or
unpredicted noise sources. Interferometers will be instrumented with many kinds
of environmental monitors, but there may occasionally be noise that is impossible
to identify. For this reason, short bursts of gravitational radiation must be
identified at two or more separated facilities. Even if detector noise is not at
all understood, it is relatively easy to estimate from the observed noise profile of
the individual detectors what the chances are of a coincident noise event between
two detectors.

3.2.1 New interferometers and their capabilities

Interferometers work over a broad bandwidth and they do not have any natural
resonance in their observing band. They are ideal for detecting bursts, since one
can perform pattern-matching over the whole bandwidth and detect such signals
optimally. They are also ideal for searching for unknown continuous signals, such
as surveying the sky for neutron stars. And in observations of stochastic signals
by cross-correlating two detectors, they can give information about the spectrum
of the signal.

If an interferometer wants to study a signal with a known frequency, such
as known pulsars, then there is another optical technique available to enhance its
sensitivity in a narrow bandwidth, at the expense of sensitivity outside that band.
This is called signal recycling [3]. In this technique, a further mirror is placed in
front of the photodetector, where the signal emerges from the interferometer (see
figure 3.1(d)). If the mirror is chosen correctly, it will build up the signal, but only
in a certain bandwidth. This modifies the shot noise in the detector, but not other
noise sources. Therefore, it can improve sensitivity only at the higher frequencies
where shot noise is the limiting factor.

Four major interferometer projects are now under construction, and they
could begin acquiring good data in the period between 2000-2003. They will all
operate initially with a sensitivity approaching 10 2! over a bandwidth between
50-1000 Hz. Early detections are by no means certain, but recent work has

made prospects look better for an early detection than when these detectors were
funded.
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Figure 3.2. TAMA300 sensitivity as a function of frequency. The vertical axis is the
lo noise level, measured in strain per root Hz. To get a limit on the gravitational wave
amplitude h, one must multiply the height of the curve by the square root of the bandwidth
of the signal. This takes into account the fact that the noise power at different frequencies
is independent, so the power is proportional to bandwidth. The noise amplitude is therefore
proportional to the square root of the bandwidth.

TAMA300 [4] (Japan) is located in Tokyo, and its arm length is 300 m.
It began taking data without power recycling in 1999, but its sensitivity is not
yet near 102!, Following improvements, especially power recycling, it should
get to within a factor of ten of this goal. However, it is not planned as an
observing instrument: it is a prototype for a kilometre-scale interferometer in
Japan, currently called JGWO. By 2005 this may be operating, possibly with
cryogenically cooled mirrors.

GEO600 (5] (Germany and Britain) is located near Hannover (Germany).
Its arm length is 600 m and the target date for first good data is now the end of
2001. Unlike TAMA, GEO600 is designed as a leading-edge-technology detector,
where high-performance suspensions and optical tricks like signal recycling can
be developed and applied. Although it has a short baseline, it will have a similar
sensitivity to the larger LIGO and VIRGO detectors at first. At a later stage, LIGO
and VIRGO will incorporate the advanced methods developed in GEO, and at that
point they will advance in sensitivity, leaving GEO behind.

As we can see from figure 3.3 the sensitivity of GEO600 depends on its
bandwidth, which in its turn depends on the signal recycling factor. GEO600 can
change its observing bandwidth in response to observing goals. By choosing low
or high reflectivity tor the signal recycling mirror, scientists can make GEO600
wide-band or narrow-band, respectively. The centre frequency of the observing
band (in the right-hand panel of figure 3.3 it is ~600 Hz) can be tuned to any
desired frequency by shifting the position of the signal recycling mirror, thus
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Figure 3.3. GEO600 noise curves. As for the TAMA curve, these are calibrated in strain
per root Hz. The figure on the left-hand side shows GEO's wideband configuration; that
on the right-hand side shows a possible narrowband operating mode.

changing the resonance frequency of the signal recycling cavity. This feature
could be useful when interferometers work with bars or when performing wide-
band surveys.

LIGO [6] (USA) is building two detectors of arm length 4 km. One is
located in Hanford WA and the other in Livingstone LA. The target date for
observing is mid-2002. The two detectors are placed so that their antenna patterns
overlap as much as possible and yet they are far enough apart that there will be a
measurable time delay in most coincident bursts of gravitational radiation. This
delay will give some directional information. The Hanford detector also contains
a half-length interferometer to assist in coincidence searches. The two LIGO
detectors are the best placed for doing cross-correlation for a random background
of gravitational waves. LIGO’s expected initial noise curve is shown in figure 3.4.
These detectors have been constructed to have a long lifetime. With such long
arms they can benefit from upgrades in laser power and mirror quality. LIGO has
defined an upgrade goal called LIGO II, which it hopes to reach by 2007, which
will observe at 10™2? or better over a bandwidth from 10 Hz up to 1 kHz.

VIRGO [7] (ltaly and France) is building a 3 km detector near Pisa. Its
target date for good data is 2003. Its expected initial noise curve is shown in
figure 3.4. Like LIGO, it can eventually be pushed to much higher sensitivities
with more powerful lasers and other optical enhancements. VIRGO specializes
in sophisticated suspensions, and the control of vibrational noise. lIts goal is to
observe at the lowest possible frequencies from the ground, at least partly to be
able to examine as many pulsars and other neutron stars as possible.

3.3 The physics of resonant mass detectors

The principle of operation of bar detectors is to use the gravitational tidal force
of the wave to stretch a massive cylinder along its axis, and then to measure the
elastic vibrations of the cylinder.
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Figure 3.4. Noise curves of the initial LIGO (left) and VIRGO (right) detectors. The
VIRGO curve is in strain per root Hz, as the GEO curves earlier. The LIGO curve is
calibrated in metres per root Hz, so to convert to a limit on / one multiplies by the square
root of the bandwidth and divides by the length of the detector arm, 4000 m.

Let us suppose we have a typical bar with length L ~ | m. (In the future,
spheres may go up to 3 m.) Depending on the length of the bar and its material.
the resonant frequency will be f ~ 500 Hz to 1.5 kHz and mass M ~ 1000 kg.
A short burst gravitational wave h will make the bar vibrate with an amplitude

8lgw ~ hl ~ 107 m,

Unlike the interferometers, whose response is simply given by this equation,
the bars respond in a complicated way depending on all their internal forces.
However, if the duration of the wave is short, the amplitude will be of the same
order as that given here. If the wave has long duration and is near the bars resonant
frequency, then the signal can build up to much larger amplitudes. Normally. bar
detector searches have been targeted at short-duration signals.

The main sources of noise that compete with this very small amplitude are:

®  Thermal noise. This is the most serious source of noise. Interferometers can
live with room-temperature thermal noise because their larger size makes
their response to a gravitational wave larger, and because they observe at
frequencies far from the resonant frequency, where the noise amplitude is
largest. However, bars observe at the resonant frequency and have a very
short length, so they must reduce thermal noise by going to low temperatures.
The best ultra-cryogenic bars today operate at about T = 100 mK, where
the rms amplitude of vibration is found by setting the kinetic energy of the
normal mode, M (8/)* /2. equal to kT /2. the equipartition thermal energy of
a single degree of freedom. This gives then

|
5

2, kT 18
(67)g, = m ~6x 107" m.
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This is far larger than the gravitational wave amplitude. In order to detect
gravitational waves against this noise, bars are constructed to have a very
high Q. of order 10° or better.

The reason that bars need a high Q is different from the reason that
interferometers also strive for high-Q systems. To see how Q helps bars,
we recall that Q is defined as Q = f - v where f is the resonant frequency
of the mode and 1 is the decay time of the oscillations. If Q is large, then
the decay time is long. If the decay time is long, then the amplitude of
oscillation changes very slowly in thermal equilibrium. Essentially. the bar’s
mode of vibration changes its amplitude by a random walk with very small
steps. taking time Q/f ~ 1000 s to change by the full amount. On the other
hand. a gravitational wave burst will cause an amplitude change in time of

the order 1 ms, during which the thermal noise will have random walked to

. i
an expected amplitude change that is Q2 = 1??2;

case

)% times smaller. In this

1=

24 ¥ kT _21
O vme =\ gpoprzg) ~ 0107 m.

Thus, thermal noise only affects a measurement to the extent that it changes
the amplitude of vibration during the time of the gravitational-wave burst.
This change is similar to that produced by a gravitational wave of amplitude
6 x 10721, It follows that, if thermal noise were the only noise source,
bars would be operating at around 10~ today. Bar groups expect in fact to
reach this level during the next few years, as they reduce the other competing
sources of noise. Notice that the effect of thermal noise has nothing to
do with the frequency of the disturbance, so it is not the reason that bars
observe near their resonant frequency. In fact, both thermal impulses and
gravitational-wave forces are mechanical forces on the bar, and the ratio of
their induced vibrations is the same at all frequencies for a given applied
impulsive force.

Sensor noise. Because the oscillations of the bar are very small, bars require
a rransducer to convert the mechanical energy of vibration into electrical
energy, and an amplifier that increases the electrical signal to a level where
it can be recorded. If the amplifier were perfect, then the detector would
in fact be broadband: it would amplify the smaller off-resonant responses
just as well as the on-resonance ones. Conversely, real bars are narrow-band
because of sensor noise, not because of their mechanical resonance.
Unfortunately sensing is not perfect: amplifiers introduce noise and this
makes small amplitudes harder to measure. The amplitudes of vibration are
largest in the resonance band near the resonant frequency fy. so amplitier
noise limits the detector sensitivity to frequencies near fi. Now, the signal
(a typical gravitational-wave burst) has a duration time v, ~ 1 ms, so the
amplifier’s bandwidth should be at least 1 /7y, in order for it to be able to
record a signal every 1. In other words, bars require amplitiers with very
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small noise in a large bandwidth (~1000 Hz) near fo (note that this band is
much larger than f Q). Today typical bandwidths of realizable amplifiers
are | Hz, but in the very near future it is hoped to extend these to 10 Hz. and
eventually to 100 Hz.

®  Quantum limit. According to the Heisenberg uncertainty principle, the zero-
point vibrations of a bar with a frequency of 1 kHz have rms amplitude

i h 2
(817 ang = (th) ~4x 107" m.

This is bigger than the expected signal, and comparable to the thermal limit
over 1 ms. It represents the accuracy with which one can measure the
amplitude of vibration of the bar. So as soon as current detectors improve
their thermal limits, they will run into the quantum limit, which must be
overcome before a signal at 107! can be seen with such a detector. One
way to overcome this limit is by increasing the size of the detector and even
by making it spherical. This increases its mass dramatically, pushing the
quantum limit down below 102!,

Another way around the quantum limit is to avoid measuring 8/, but instead
to measure other observables. After all, the goal is to infer the gravitational-
wave amplitude, not to measure the state of vibration of the bar. It is possible
to define a pair of conjugate observables that have the property that one of
them can be measured arbitrarily accurately repeatedly, so that the resulting
inaccuracy of knowing the conjugate variable’s value does not disturb the
first variable’s value. Then, if the first variable responds to the gravitational
wave, the gravitational wave may be measured accurately, even though the
full state of the bar is poorly known. This method is called “‘back reaction
evasion’. The theory was developed in a classic paper by Caves et al [8].
However, no viable schemes to do this have been demonstrated for bar
detectors so far.

3.3.1 New bar detectors and their capabilities

Resonant-mass detectors are limited by properties of materials and, as we have
just explained, they have their best sensitivity in a narrow band around their
resonant frequency. However. they can usefully explore higher frequencies (above
500 Hz), where the interferometer noise curves are rising (see earlier figures).
From the beginning, bars were designed to detect bursts. If the burst
radiation carries significant energy in the bar’s bandwidth, then the bar can do
well. Standard assumptions about gravitational collapse suggest a signal with a
broad spectrum to | kHz or more. so that most of the sensitive bars today would
be suited to observe such a signal. Binary coalescence has a spectrum that peaks
at low frequencies, so bars are not partiularly well suited for such signals. On
the other hand. neutron-star and stellar-mass black-hole normal modes range in
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frequency from about 1 kHz up to 10 kHz, so suitably designed bars could, in
principle, go after these interesting signals.

A bar gets all of its sensitivity in a relatively narrow bandwidth, so if a bar
and an interferometer can both barely detect a burst of amplitude 10 =%, then
the bar has much greater sensitivity than the interferometer in its narrow band,
and much worse at other frequencies. This has led recently to interest in bars as
detectors of continuous signals. If the signal frequency is in the observing band of
the bar, it can do very well compared to interferometers. Signals from millisecond
pulsars and possible signals from x-ray binaries are suitable if they have the right
frequency. However, most known pulsars will radiate at frequencies rather low
compared to the operating frequencies of present-day bars.

The excellent sensitivity of bars in their narrow bandwidth also suits them
to detecting stochastic signals. Cross-correlations of two bars or of bars with
interferometers can be better than searches with first-generation interferometers
[9]. One gets no spectral information. of course, and in the long run expected
improvements in interferometers will overtake bars in this regard.

Today's best bar detectors are orders of magnitude more sensitive than the
original Weber bar. Two ultra-cryogenic bars have been built and are operating
at thermodynamic temperatures below 100 mK: NAUTILUS [10] at Frascati, near
Rome. and [11]in Legnaro. With a mass of several tons, these may be the coldest
massive objects ever seen anywhere in the universe. These are expected soon to
reach a sensitivity of 1072" near 1 kHz. Already they are performing coincidence
experiments with bars at around 4 K at Perth, Australia, and at LSU.

Proposals exist in the Netherlands, Brazil, Italy, and the USA for spherical
or icosahedral detectors (see links from [10]). These detectors have more
mass. so they could reach 1072! near 1 kHz. Because of their shape, they
have omnidirectional antenna patterns; if they are instrumented so that all five
independent fundamental quadrupolar modes of vibration can be monitored, they
can do all-sky observing and determine directions as well as verify detections
using coincidences between modes of the same antenna.

3.4 A detector in space

As we have noted earlier. gravitational waves from astronomical objects at
frequencies below 1 Hz are obscured by Earth-based gravity-gradient noise.
Detectors must go into space to observe in this very interesting frequency range.

The LISA [12] mission is likely to be the first such mission to fly. LISA
will be a triangular array of spacecraft, with arm lengths of 5 x 10¢ km. orbiting
the Sun in the Earth’s orbit. about 20° behind the Earth. The spacecraft will be
in a plane inclined to the ecliptic by 60°. The three arms can be combined in
different ways to form two independent interferometers. During the mission the
configuration of spacecraft rotates in its plane, and the plane rotates as well, so
that LISA’s antenna pattern sweeps the sky.
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LISA has been named a cornerstone mission of the European Space Agency
(ESA), and NASA hag recently formed its own team to study the same mission,
with a view toward a collaboration with ESA. LISA will be sensitive in a range
from 0.3 mHz 'O about 0.1 Hz, and it will be able to detect known binary
star systems in the Galaxy and binary coalescences of supermassive black holes
anywhere they OcCcur in the universe. A joint ESA-NASA project looks very
likely, aiming at a launch around 2010. A technology demonstration mission
might be launched in 2005 or 2006.

LISA’s technology is fascinating. We can only allude to the most interesting
parts of the miss1on here. A full description can be found in the pre-Phase A study
document [13]. The most innovative aspect of the mission is drag-free control. In
order to guarantee that the interferometry is not disturbed by external forces, such
as fluctuations in solar radiation pressure, the mirror that is the reference point
for the interferometry is on a free mass inside the spacecraft. The spacecraft acts
as an active shield, sensing the position of the free mass. firing jets to counteract
external forces On itself and ensure that it does not disturb the free mass. The
Jets themselves are remarkable, in that they must be very weak compared to most
spacecraft’s control jets, and they must be capable of very precise control. They
will work by expelling streams of ions, accelerated and controlled by a high-
voltage electric field. Fuel for these jets is not a problem: 1 ¢ will be enough for
a mission lifetime of ten years!

LISA interferometry is not done with reflection from mirrors. When a laser
beam reaches one spacecraft from the other. it is too weak to reflect: the sending
spacecraft would only get the occasional photon! Instead, the incoming light
is sensed, and an on-board laser is slaved to it, returning an amplified beam
with the same phase and frequency as the incoming one. No space mission has
yet implemented this kind of laser-transponding. The LISA team had to ensure
that there was enough information in all the signals to compensate for inevitable
frequency fluctuations among all six on-board lasers.

A further serious problem that the LISA team had to solve was how
to compensate for the relative motions of the spacecraft. The laser signals
converging on a single spacecraft from the other two corners will be Doppler
shifted so that their fringes change at MHz frequencies. This has to be sensed on
board and removed from the signal that is sent back to Earth, which can only be
sampled a few tens of times per second.

When LISA flies it will, on a technical as well as a scientific level, be a
worthy counterpart to its Earth-based interferometer cousins!

3.4.1 LISA’s capabilities

In the low-frequency LISA window. most sources will be relatively long lived,
at least a few months. During an observation, LISA will rotate and change its
velocity by a signiticant amount. This will induce Doppler shifts into the signals.
and modulate their amplitudes. so that LISA should be able to infer the position.
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Figure 3.5. LISA sensitivity to binary systems in the Galaxy (top) and to massive black
hole coalescences (bottom). The top figure is calibrated in the intrinsic amplitude of the
signal, and the noise curve shows the detection threshold (5o ) for a one-year observation.
It also shows the confusion limit due to unresolved binary systems. The bottom panel
shows the effective amplitude of signals from coalescences of massive black holes. Since
some such events last less than one year, what is shown is the expected signal-to-noise ratio
of the observation.

polarization and amplitude of sources entirely from its own observations. Below
about | mHz, this information weakens, because the wavelength of the radiation
becomes comparable to or greater than the radius of LISA’s orbit. The amplitude
modulation is the only directional information in this frequency range.
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3.5 Gravitational and electromagnetic waves compared and

contrasted

To conclude this lecture it is useful to discuss the most important differences and
similarities between gravitational waves and electromagnetic ones. We do this in

the form of a table.

Table 3.1.

Electromagnetism

General relativity

Two signs of charges—large bodies
usually neutral—waves usually emitted
by single particles, often incoherently—
waves carry ‘local’ information.

A genuine physical force, acting differ-
ently on different bodies. Detected by
measuring accelerations.

Maxwell’s equations are linear. Physi-
cal field is Fy» (E and B). Gauge field
is vector potential A.

Source is charge-current density J,.
Charge creates electric field, current
magnetic field.

Moderately strong force on the atomic
2
scale: w =10%.
Gmy,
Wave generation for Aj;: 3ﬂ8ﬁA” =
4mepJ, in a convenient gauge (Lorentz
gauge).

Propagate at the speed of light, ampli-
tude falls as 1/r.

Conservation of charge = radiation by
low-velocity charges is dominated by
dipole component.

One sign of
accumulates—waves  emitted  more
strongly by larger body—waves carry
“global” information.

mass-—gravity

Equivalence principle: gravity affects
all bodies in the same way. Represented
as a spacetime curvature rather than a
force. Detected only by tidal forces—
differential accelerations.

Einstein’s equations are nonlinear.
Physical field is Riemann curvature ten-
sor Ry ap. Gauge fields are metric g,
and connection I'j,,. Gauge transfor-
mations are coordinate transformations.

Source is stress-energy tensor Tj,.
Mass creates a Newtonian-like field,
momentum as gravito-magnetic effects.
Stress creates field too.

Weaker than ‘weak’ interaction.

Wave generation for iy = g0 — np
Bﬂaﬂ(h;w — %U;whaa) = 81Ty ina
convenient gauge.

Propagate at the speed of light, ampli-
tude falls as 1/r.

Conservation of mass and momentum
= radiation by low-velocity masses is
dominated by quadrupole component.




42

Gravitational-wave detectors

Table 3.1. (Continued)

Electromagnetism

General relativity

Simple detector:  oscillating charge.
Action is along a line, transverse to the
directions of propagation. Spins = 1
and two states of linear polarization that
are inclined to each other at an angle of
90°.

Strength of force = waves scatter and
refract easily.

Local energy and flux well defined:
Poynting vector etc.

Multipole expansion in slow-motion
limit is straighttforward, radiation reac-
tion well defined.

Exact solutions, containing waves, are
available and can guide the construction
of approximation methods for more
complicated situations.

Simple detector:  distorted ring of

masses. Action is elliptic in a
plane transverse to the direction of
propagation. Spin s = 2 and two

states of linear polarization that are
inclined to each other at an angle of 45°.
Equivalence principle = action depends
only on /i, which is dimensionless.

Weakness of gravity = waves propa-
gate almost undisturbed and transter en-
ergy very weakly. Dimensionless ampli-
tude /1 is small.

Equivalence principle = local energy
density cannot be defined exactly. Only
global encrgy balance is exact.

Multipole expansion different if fields
are weak or strong. For quasi-
Newtonian case fields are weak. and the
resulting post-Newtonian expansion is
delicate. Radiation reaction is still not
fully understood.

Fuily realistic exact solutions for dy-
namical situations of physical interest
are not available. Extensive reliance on
approximation methods.

Chapter 4

Astrophysics of gravitational-wave sources

There are a large number of possible gravitational-wave sources in the observable
waveband, which spans eight orders of magnitude in frequency: from 10 ~* Hz
(lower bound of current space-based detector designs) to 104 Hz (frequency limit
of likely ground-based detectors). Some of these sources are highly relativistic
and not too massive, especially above 10 Hz: a black hole of mass 1000M .
has a characteristic frequency of 10 Hz, and larger holes have lower frequencies
in inverse proportion to the mass. Neutron stars have even higher characteristic
frequencies. Other systems are well described by Newtonian dynamics, such as
binary orbits.

For nearly-Newtonian sources the post-Newtonian approximation (see
chapter 6) provides a good framework for calculating gravitational waves. More
relativistic systems, and unusual sources like the early universe, require more
sophisticated approaches (see chapter 7).

4.1 Sources detectable from ground and from space

4.1.1 Supernovae and gravitational collapse

The longest expected and still probably the least understood source. gravitational
collapse is one of the most violent events known to astronomy. Yet, because we
have little direct information about the deep interior. we cannot make reliable
predictions about the gravitational radiation from it.

Supernovae are triggered by the gravitational collapse of the interior
degenerate core of an evolved star. According to current theory the result should
be a neutron star or black hole. The collapse releases an enormous amount
of energy. about 0.15M ¢, most of which is carried away by neutrinos: an
uncertain fraction is converted into gravitational waves. One mechanism for
producing this radiation could be dynamical instabilities in the rapidly rotating
core betore it becomes a neutron star. Another likely source of radiation is the r-
mode instability (see chapter 7). This could release ~0.1 M - ¢ in radiation every
time a neutron star is formed.

43
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However, both kinds of mechanisms are difficult to model. The problem with
gravitational collapse is that perfectly spherical motions do not emit gravitational
waves, and it is still not possible to estimate in a reliagble way the amount
of asymmetry in gravitational collapse. Even modery computers are not able
to perform realistic simulations of gravitational collapse in three dimensions.
including all the important nuclear reactions and neutrino- and photon-transport.
Similarly, it is hard to model the r-mode instability because its evolution depends
on nonlinear hydrodynamics and on poorly known physics, such as the cooling
and viscosity of neutron stars.

An alternative approach is to use general energy considerations. If, for
example, we assume that 1% of the available energy is converted into gravitational
radiation, then, from formulae we will derive in the next chapter, the amplitude /4
would be large enough to be detected by the first ground-based interferometers
(LIGO/GEO600/VIRGO) at the distance of Virgo Cluster (18 Mpc) if the
emission centres at 300 Hz. Moreover, bar and spherical-mass detectors with
an effective sensitivity of 102! and the right resonant frequency could see these
signals as well.

The uncertainties in our predictions have a positive aspect: it is clear that if
we can detect radiation from supernovae, we will learn much that we do not know
about the end stages of stellar evolution and about neutron-star physics.

4.1.2 Binary stars

Binary systems have given us our best proof of the reliability of general relativity
for gravitational waves. The most famous example of such systems is the
binary pulsar PSR1916+16, discovered by Hulse and Taylor in 1974; they were
awarded the Nobel Prize for this discovery in 1993, From the observations of
the modulation of the pulse period as the stars move in their orbits, one knows
many important parameters of this system (orbital period, eccentricity, masses of
the two stars, etc), and the data also show directly the decrease of the orbital
period due to the emission of gravitational radiation. The observed value is
2.4 x 107'2 s/s. Post-Newtonian theory allows one to predict this from the other
measured parameters of the system, without any free parameters (see chapter 7);
the prediction is 2.38 x 1072, in agreement within the measurement errors.

Unfortunately the radiation from the Hulse—Taylor system will be too weak
and of too low a frequency to be detectable by LISA.

4.1.3 Chirping binary systems

If a binary gives off enough energy for its orbit to shrink by an observable amount
during an observation, it is said to chirp: as the orbit shrinks, the frequency and
amplitude go up. LISA will see a few chirping binaries. If a binary system
is compact enough to radiate above 107 Hz, it will always chirp within one
year, provided its components have a mass above about 1M ;. If they are above
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Table_4-1- The range for detecting a 2 x 1.4Mg NS binary coalescence. The threshold for
deteClion ig yken to be So. The binary and detector orientations are assumed optimum.

The ;Verage S/N ratio for randomly oriented systems is reduced from the optimum by
1/ -

Detector: TAMA300 GEO600 LIGOI VIRGO LIGOII

Range (SN=5) 3 Mpc 14Mpc  30Mpe  36Mpc 500 Mpe

about 103 M | the binary will go all the way to coalescence within the one-year
obs€rvation,

Chirping binary systems are more easily detectable than gravitational
collapse events because one can model with great accuracy the gravitational
waveform during the inspiral phase. There will be radiation, possibly with
considerable energy, during the poorly understood plunge phase (when the objects
reach the last stable orbit and fall rapidly towards one another) and during the
meTger event, but the detectability of such systems rests on tracking their orbital
€m1iSsions.

The major uncertainty about this kind of source is the event rate. Current
pulsar observations suggest that there will be ~1 coalescence per year of a Hulse-
Taylor binary out to about 200 Mpc. This is a lower limit on the event rate, since it
comes from systems we actually observe. It is possible that there are other kinds
of binaries that we have no direct knowledge of, which will boost the event rate.

Theoretical modelling of binary populations gives a wide spectrum of
mutually inconsistent predictions. Some authors [14] suggest that there may be
a large population that escapes pulsar surveys but brings the nearest neutron star
coalescence in one year as far as 30 Mpc, only slightly farther than the Virgo
cluster; but other models [15] put the rate near to the observational limit.

The most exciting motivation for detecting coalescing binaries is that they
could be associated with gamma-ray bursts. The event rates are consistent,
and neutron stars are able to provide the required energy. If gamma-bursts
are associated with neutron-star coalescence, then observations of coalescence
radiation should be followed within a second or so by a strong gamma-ray burst.

LISA will see a few chirping binaries in the Galaxy, but the sensitivity of
the first generation of ground-based detectors is likely to be oo poor to see many
such events (see table 4.1).

A certain fraction of such systems could contain black holes instead of
neutron stars. In fact black holes should be overrepresented in binary systems
(relative to their birth rate) because their formation is much less likely to disrupt
a binary system (there is much less mass lost) than the formation of a neutron
star would be. Pulsar observations have not yet turned up a black-hole/neutron-
star system, and of course one does not expect to see binary black holes
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Table 4.2. The range for detecting a 10Mz black-hole binary. Conventions as in table 4. 1.

Detector: GEO600 LIGO1 VIRGO LIGO 11

Range (S/N=35) 75 Mpc 160 Mpe 190 Mpe 2.6 Gpe

electromagnetically. So we can only make theoretical estimates. and there are
big uncertainties.

Some evolution calculations [14] suggest that the coalescence rate of BH—
BH systems may be of the same order as the NS—NS rate. Other models [15]
suggest it could even be zero. because stellar-wind mass loss (significant in very
massive stars) could drive the stars far apart before the second BH forms. leading
to coalescence times longer than the age of the universe. A recent proposal
identifies globular clusters as “factories” for binary black holes, forming binaries
by three-body collisions and then expelling them [16]. Gamma-ray bursts may
also come from black-hole/neutron-star coalescences. If the more optimistic event
rates are correct, then black-hole coalescences may be among the first sources
detected by ground-based detectors (table 4.2).

4.1.4 Pulsars and other spinning neutron stars

There are a number of ways in which a spinning neutron star may give off a
continuous stream of gravitational waves. They will be weak, so they will require
long continuous observation times, up to many months. Here are some possible
emission mechanisms for neutron stars.

The r-modes. Neutron stars are born hot and probably rapidly rotating.
Before they cool (during their first year) they have a family of unstable normal
modes, the r-modes. These modes are excited to instability by the emission
of gravitational radiation, as predicted originally by Andersson [17]. They are
particularly interesting theoretically because the radiation is gravitomagnetic,
generated by mass currents rather than mass asymmetries. We will study the
theory of this radiation in chapter 6. In chapter 7 we will discuss how the emission
of this radiation excites the instability (the CFS instability mechanism).

Being unstable, young neutron stars will presumably radiate away enough
angular momentum to reduce their spin and become stable. This could lower the
spin of a neutron star to ~100 Hz within one year after its formation [18]. The
energy emitted in this way should be a good fraction of the star’s binding energy,
so in principle this radiation could be detected from the Virgo Cluster by LIGO
I1, provided matched filtering can be used effectively.

We discuss a possible stochastic background of gravitational waves from the
r-modes below.

Accreting neutron stars (figure 4.1) are the central objects of most of the
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Figure 4.1. Accreting neutron star in a low-mass x-ray binary system.

binary x-ray sources in the Galaxy. Astronomers divide them into two distinct
groups: the low-mass and high-mass binaries, according to the mass of the
companion star. In these systems mass is pulled from the low- or high-mass giant
by the tidal forces exerted by its neutron star companion. In low-mass x-ray
binaries (LMXBs) the accretion lasts long enough to spin the neutron star up to
the rotation rates of millisecond pulsars. Astronomers have therefore supposed
for some time that the neutron stars in LMXBs would have a range of spins, from
near zero (young systems) to near 500 or 600 Hz (at the end of the accretion
phase). Until the launch of the Rossi X-ray Timing Explorer (RXTE), there was
no observational evidence for the neutron star spins. However, in the last two
years there has been an accumulation of evidence that most, if not all, of these
stars have angular velocities in a narrow range around 300 Hz [19)]. It is not known
yet what mechanism regulates this spin, but a strong candidate is the emission of
gravitational radiation.

A novel proposal by Bildsten [20] suggests that the temperature gradient
across a neutron star that is accreting preferentially at its magnetic poles should
lead to a composition and hence a density gradient in the deep crust. Spinning at
300 Hz, such a star could radiate as much as it accretes. It would then be a steady
source for as long as accretion lasts, which could be millions of years.

In this model the gravitational-wave energy flux is proportional to the
observed x-ray energy flux. The strongest source in this model is Sco X-1,
which could be detected by GEO600 in a two-year-long narrow-band mode if
the appropriate matched filtering can be done. LIGO II would have no difficulty
in detecting this source.

Older stars may also be lumpy. For known pulsars, this is constrained by the
rate of spindown: the energy radiated in gravitational waves cannot exceed the
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total energy loss. In most cases, this limit is rather weak, and stars would have to
sustain strains in their crust of order 1073 or more. It is unlikely that crusts could
sustain this kind of strain, so the observational limits are probably significant
overestimates for most pulsars. However. millisecond pulsars have much slower
spindown rates, and it would be easier to account for the strain in their crusts,
for example as a remnant Bildsten asymmetry. Such stars could, in principle, be
radiating more energy in gravitational waves than electromagnetically.

Observations of individual neutron stars would be rich with information
about astrophysics and fundamental nuclear physics. So little is known about
the physics of these complex objects that the incentive to observe their radiation
1s great.

However, making such observations presents challenges for data analysis,
since the motion of the Earth puts a strong phase modulation on the signal, which
means that even if its rest-frame frequency is constant it cannot be found by
simple Fourier analysis. More sophisticated pattern-matching (matched-filtering)
techniques are needed, which track and match the signal’s phase to within one
cycle over the entire period of measurement. This is not difficult if the source’s
location and frequency are known, but the problem of doing a wide-area search for
unknown objects is very challenging [21]. Moreover, if the physics of the source
is poorly known, such as for LMXBs or r-mode spindown, the Jjob of building an
accurate family of templates is a difficult one. These questions are the subject of
much research today, but they will need much more in the future.

4.1.5 Random backgrounds

The big bang was the most violent event of all, and it may have created a
significant amount of gravitational radiation. Other events in the early universe
may also have created radiation, and there may be backgrounds from more
recent epochs. We have seen earlier, for example, that compact binary systems
in the Galaxy will merge into a confusion-limited noise background in LISA
observations below about | mHz.

Let us consider the r-modes as another important example. This process may
have occurred in a good fraction of all neutron stars formed since the beginning
of star formation. The sum of all of their r-mode radiation will be a stochastic
background, with a spectrum that extends from a lower cut-off of about 200 Hz in
the rest frame of the emitter to an upper limit that depends on the initial angular
velocity of stars. If significant star formation started at, say, a redshift of five,
then this background should extend down to about 25 Hz. If 10 =3 of the mass of
the Galaxy is in neutron stars, and each of them radiates 10% of its mass in this
radiation, then the gravitational-wave background should have a density equal to
10~* of the mean cosmological density of visible stars. Expressed as a fraction
Qgw of the closure density of the universe, per logarithmic frequency interval, this
converts to

QI (25-1000 Hz) =~ 107 *-1077.
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This background would be easily detectable by LIGO I1.

There may also be a cosmological background from either topological
defects (e.g. cosmic strings) or from inflation (which amplifies initial quantum
gravitational fluctuations as it does the scalar ones that lead to galaxy formation).
Limits from COBE observations suggest that standard inflation could not produce
a background stronger than ch,"fa“““ ~ 107 today. This is too weak for any
of the planned detectors to reach, but it remains an important long-range goal
for the field. However, there could also be a component of background radiation
that depends on what happened before inflation: string cosmological models, for
example, predict spectra growing with frequency [22].

First-generation interferometers are not likely to detect these backgrounds:
they may not be able to go below the upper limit set by the requirement
that gravitational waves should not disturb cosmological nucleosynthesis, which
is Qgw = 107, (This limit does not apply to backgrounds generated after
nucleosynthesis, like the r-mode background.) Bar detectors may do as well or
better than the first generation of interferometers for a broad-spectrum primordial
background: as we have noted earlier, their noise levels within their resonance
bands are very low. However, their frequencies are not right for the r-mode
background.

Second-generation interferometers may be able to reach to 10 ~!! of closure
or even lower, by cross-correlation of the output of the two detectors. However,
they are unlikely to get to the inflation target of 10 ~'%. LISA may be able to go as
low as 10719 (if we have a confident understanding of the instrumental noise). but
it is likely to detect only the confusion background of binaries, which is expected
to be much stronger than a cosmological background in the LISA band.

4.1.6 The unexpected

At some level, we are bound to see things we did not expect. LISA, with its
high signal-to-noise ratios for predicted sources, is particularly well placed to do
this. Most of the universe is composed of dark matter whose existence we can
infer only from its gravitational effects. It would not be particularly surprising if
a component of this dark matter produced gravitational radiation in unexpected
ways, such as from binaries of small exotic compact objects of stellar mass. We
will have to wait to see!
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Chapter 5

Waves and energy

Here we discuss wave-like perturbations /1, of a general background metric v
The mathematics is similar to that of linearized theory: /1 ,,, is a tensor with respect
to background coordinate transformations (as it was for Lorentz transformations
in linearized theory) and it undergoes a gauge transformation when one makes an
infinitesimal coordinate transformation. As in linearized theory, we will assume
that the amplitude of the waves is small. Moreover, the waves must have a
wavelength that is short compared to the radius of curvature of the background
metric. These two assumptions allow us to visualize the waves as small ripples
running through a curved and slowly changing spacetime.

5.1 Variational principle for general relativity

We start our analysis of the small perturbation /., by introducing the standard
Hilbert variational principle for Einstein’s equations. The field equations of
general relativity can be derived from an action principle using the Ricci scalar
curvature as the Lagrangian density. The Ricci scalar (second contraction of the
Riemann tensor) is an invariant quantity which contains in addition to g ,,,, and its
first derivatives also the second derivatives of g .. so our action can be written
symbolically as:

1
[[g/u'l = E / R(A’/u'-&’/u'.u~A’/u'.uﬁ)\/ -8 d4-\' (5.1)

where \/—g is the square root of the determinant of the metric tensor. As usuat in
variational principles, the metric tensor components are varied g, — Lo+,
and one demands that the resulting change in the action should vanish to first
order in any small variation /., of compact support:

8 = I[.&'u/l -+ h/u'I - ”&’;u‘]
! dR/—g)

=— [ =M 2 Ldfv 4+ 00 5.2
6w (S/L’,“r LT i\ (2) ( )
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|

= 17 | G huv g d'k + 02) (5.3)

where *0O(2)" denotes terms quadratic and higher in A wv. All the divergences
obtained in the intermediate steps of this calculation integrate to zero since /1 .y
is of compact support. This variational principle therefore yields the vacuum
Einstein equations: G*" = (.

Let us consider how this changes if we include matter. This will help us
to see how we can treat gravitational waves as a new kind of ‘matter’ field on
spacetime.

Suppose we have a matter field, described by a variable ® (which may
represent a vector, a tensor or a set of tensors). It will have a Lagrangian density
Ly = Lpn(P. Dy, ....gu) that depends on the field and also on the metric.
Normally derivatives of the metric tensor do not appear in L . since by the
equivalence principle, matter fields should behave locally as if they were in flat
spacetime, where of course there are no metric derivatives. Variations of L ,, with
respect to & will produce the field equation(s) for the matter system, but here we
are more interested in variations with respect to &0, Which is how we will find
the matter field contribution to the gravitational field equations. The total action
has the form:

I= /(R+ 167 Lin)/—gd*x. (5.4)
whose variation is
S§(RJ—g dMLmy—g
51 :/(——"’)h,“, d4x+/ o /8 g (53
8gun g

This variation must yield full Einstein equations, so we must have the following
result for the stress-energy tensor of matter:

OLm/—
T /_gZZE;“Tg. (5.6)
v

leading to

GH" =8aTH" | (5.7)

This way of deriving the stress-energy tensor of the matter field has deep
connections to the conservation laws of general relativity, to the way of
constructing conserved quantities when the metric has symmetries and to the so-
called pseudotensorial definitions of gravitational wave energy (see Landau and
Lifshitz 1962) [23]. We shall use it in the latter sense.

5.2 Variational principles and the energy in gravitational
waves

Before we introduce the mathematics of gravitational waves, it is important to
understand which geometries we are going to examine. We have said that these
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geometries consist of a slowly and smoothly changing background metric which
is altered by perturbations of small amplitude and high frequency. If L and A are
the characteristic lengths over which the background and ‘ripple’ metrics change
significantly, we assume that the ratio /L will be very much smaller than unity
and that |h,,| is of the same order of smallness as /L. In this way the total
metric remains slowly changing on a macroscopic scale. while the high-frequency
wave, when averaged over several wavelengths, will be the principal source of the
curvature of the background metric. This is the “short-wave" approximation [24].
Obviously this is a direct generalization of the treatment in chapter 2.

5.2.1 Gauge transformation and invariance

Consider an infinitesimal coordinate transformation generated by a vector field
s(l
x% > x¥ 4 £, (5.8)

In the new coordinate system, neglecting quadratic and higher terms in A of it is
not hard to show that the general gauge transformation of the metric is

h/n' i h;n' - Su:\' - gv:uv (5.9

where a semicolon denotes the covariant derivative. We assume that the
derivatives of the coordinate displacement field are of the same order as the metric
perturbation: |EXP| ~ |hoF|.

Isaacson [24] showed that the gauge transformation of the Ricci and
Riemann curvature tensors has the property

_ AN\
R — R ~ <—) (5.10)

where Rflll? and RLIH)M, are the first order of Ricci and Riemann tensors (in
powers of perturbation 4 ,,,) and an overbar denotes their values after the gauge
transformation. In our high-frequency limit, therefore, these tensors are gauge-

invariant to linear order, just as in linearized theory.

5.2.2 Gravitational-wave action

Let us suppose that we are in vacuum so we have only the metric, no matter fields,
but we work in the high-frequency approximation. The full metric is g ., (smooth
background metric) +h . (high-frequency perturbation). Our purpose is to show
that the wave field can be treated as a ‘matter’ field, with a Lagrangian and its
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OWn stress-energy tensor. To do this we have to expand the action out to second
order in the metric perturbation,

I[g,m 'f‘hu\'] = /R(g;w +h;w, Suv.a + h/w,au o -)\/ _g[g/w +h/1\'ld4x
S(R/—¢g
= /R(g/11'~---)v _gd4x+/(—‘_$_)h/wd4x

5g,w
+l/<LR" 8, e 120 RYTD,
2 aguvagaﬂ B aguvagcxﬂ.y dtafly
I (RV=g) I (RV=%) s
+ a—'a——hw,_rhuﬂ_y + 2511,“,11‘1/“,, d’x
Suv.tV8aB.y dg/w()gaﬂ.yr
+ 0(3).

The first term is the action for the background metric g,,,. The second term
Vvanishes (see equation (5.2)), since we assume that the background metric is a
solution of the Einstein vacuum equation itself, at least to lowest order.

. If we compare the above equation with equation (5.4), we can see that the
third term, complicated as it seems, is an effective ‘matter’ Lagrangian for the
gravitational field. Indeed, if one varies it with respect to h v holding g,
fixed (as we would do for a physical matter field on the background), then the
complicated coefficients are fixed and one can straightforwardly show that one
gets exactly the linear perturbation of the Einstein tensor itself. Its vanishing is
the equation for the gravitational-wave perturbation 4 wv- In this way we have
shown that, for a small amplitude perturbation, the gravitational wave can be
treated as a ‘matter’ field with its own Lagrangian and field equations.

Given this Lagrangian, we should be able to calculate the effective stress-
encrgy tensor of the wave field by taking the variations of the effective Lagrangian
with respect to gy, holding the ‘matter’ field h . fixed:

T(Gw)aﬂ\/—_g=23L(GW)[8;L\)vhuu} /_g

38ap (5.11)
with
52 02
LOW) /=g = ﬁ(:—“—e—@hwhaﬂ + 2?:(_@hmhaﬂ.y
81v08up 08,v98ap.y
+ Mg_) woh 2Mh h
08uv.108ap.y HE 08,v98up.yt my aﬂ,yr).

(5.12)

) This quantity is quadratic in the wave amplitude 4 .. It could be simplified
turther by integrations by parts, such as by taking a derivative off & ap.yz- This
would change the coefficients of the other terms. We will not need to worry about
finding the *best’ form for the expression (4.12), as we now show.
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As in linearized theory, so also in the general case, the quantity /1 ,,,- behaves
like a tensor with respect to background coordinate transtormations, and so does
T,‘EW). However, it is not gauge-invariant and so it is not physically observable.
Since the integral of the action is independent of coordinate transtormations that
have compact support, so too is the integral of the effective stress-energy tensor.
In practical terms, this makes it possible to localize the energy of a wave to within
a region of about one wavelength in size where the background curvature does
not change significantly. In fact, if we restrict our gauge transformations to have
a length scale of a wavelength, and if we average (integrate) the stress-energy
tensor of the waves over such a region. then any gauge changes will be small
surface terms.

By evaluating the effective stress-energy tensor on a smooth background
metric in a Lorentz gauge. and performing the averaging (denoted by symbol
(--+)), one arrives at the Isaacson tensor:

e = #(hwzalz’“[ﬁ). (5.13)

This is a convenient and compact form for the gravitational stress-energy
tensor. It localizes energy in short-wavelength gravitational waves to regions of
the order of a wavelength. It is interesting to remind ourselves that our only
experimental evidence of gravitational waves today is the observation of the effect
on a binary orbit of the loss of energy to the gravitational waves emitted by the
system. So this energy formula, or equivalent ones, is central to our understanding
of gravitational waves.

5.3 Practical applications of the Isaacson energy

If we are far from a source of gravitational waves, we can treat the waves by
linearized theory. Then if we adopt the TT gauge and specialize the stress-energy
tensor of the radiation to a flat background, we get

1 .
e = - (it ). (5.14)

Since there are only two components, a wave travelling with frequency f
(wavenumber k = 2m f) and with a typical amplitude A in both polarizations
carries an energy Fg, equal to (see exercise (f) at the end of this lecture)

T 1,2
Fow = 3 170, (5.15)

Putting in the factors of ¢ and G and scaling to reasonable values gives

ki 8 R

/ 2 2
Fow =3mWm™> i = / . (5.16)
= 1 x 10—== | kHz
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which is a very large energy flux even for this weak a wave. It is twice the encrgy
flux of a full moon! Integrating over a sphere of radius r, assuming a total duration
of the event 7, and solving for h, again with appropriate normalizations, gives

1

11:10_21[ G A R 5.17
0.01Mgc? 20 Mpc 1 kHz [lms] ’ (2153

This is the formula for the ‘burst energy’, normalized to numbers appropriate to a
gravitational collapse occurring in the Virgo cluster. It explains why physicists
and astronomers regard the 102! threshold as so important. However. this
formula could also be applied to a binary system radiating away its orbital
gravitational binding energy over a long period of time 7, for example.

5.3.1 Curvature produced by waves

We have assumed that the background metric satisfies the vacuum Einstein
equations to linear order, but now it is possible to view the full action principle
as a principle for the background with a wave field /1 ., on it, and to let the wave
energy affect the background curvature [24]. This means that the background will
actually solve. in a self-consistent way, the equation

Gaﬁ[g/u'] =87TT(S;w[g/u'+h/u']A (5.18)

This does not contradict the vanishing of the first variation of the action, which we
needed to use above, because now we have an Einstein tensor that is of quadratic
order in h,,, contributing a term of cubic order to the first-variation of the action,
which is of the same order as other terms we have neglected.

§.3.2 Cosmological background of radiation

This self-consistent picture allows us to talk about, for example, a cosmological
gravitational wave background that contributes to the curvature of the universe.
Since the energy density is the same as the flux (when ¢ = 1), we have

T 1,2
Ogw = zf"/l". (5.19)

but now we must interpret /i in a statistical way. This will be treated in the
contribution by Babusci er al, but basically it is done by replacing 47 by a
statistical mean square amplitude per unit frequency (Fourier transform power),
so that the energy density per unit frequency is proportional to f 2|A|°. It is then
conventional to talk about the energy density per unit logarithm of frequency,
which means multiplying by f. The result, after being careful about averaging
over all directions of the waves and all independent polarization components. is

ng»\
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Finally, what is of the most interest is the energy density as a fraction of the This shows that the divergence-free property of GV is closely related to the
closure or critical cosmological density, given by the Hubble constant Hg as coordinate invariance of Einstein’s theory.
By = 3H02/8n_ The resulting ratio is the symbol Q.. ( f) that we met in the (D) Suppose a plane wave, travelling in the z-direction in linearized theory, has
previous lecture: both polarizatign components h . and hy. Show that its energy flux in the
N3 T P (GW)0:z
Qe f) = 3..[;!2 PO, (5.21) I-direction, T , is
2R

v k?
GW)0:z 2
(TE%) = 5 (A2 + A),

5.3.3 Other approaches

where the angle brackets denote an average over one period of the wave.

We finish this lecture by observing that there is no unique approach to defining
energy for gravitational radiation or indeed for any solution of Einstein’s
equations. Historically this has been one of the most difficult areas for physicists
to get to grips with. In the textbooks you will find discussions of pseudotensors, of
energy measured at null infinity and at spacelike infinity. of Noether theorems and
formulae for energy, and so on. None of these are worse than we have presented
here, and in fact all of them are now known to be consistent with one another, if
one does not ask them to do too much. In particular, if one wants only to localize
the energy of a gravitational wave to a region of the size of a wavelength, and
if the waves have short wavelength compared to the background curvature scale,
then pseudotensors will give the same energy as the one we have defined here.
Similarly, if one takes the energy flux defined here and evaluates it at null infinity,
one gets the so-called Bondi flux, which was derived by H Bondi in one of the
pioneering steps in the understanding of gravitational radiation. Many of these
issues are discussed in the Schutz—Sorkin paper referred to earlier [23].

5.4 Exercises for chapter 5

(e) In the notes above we give the general gauge transformation

h/w - h;u) - Eu:v - Ev:;u
Use the formula for the derivation of Einstein’s equations from an action

principle,
1 3(R/—g
5= —— | 2EVTRY,
16 88
with

S(RY=R) _

5/2/11'

-G"" /=g,

but insert a pure gauge h ... Argue that since this is merely a coordinate
transformation, the action should be invariant. Integrate the variation of the
action to prove the contacted Bianchi identity

GHY L =1,




Chapter 6

Mass- and current-quadrupole radiation

In this lecture we focus on the wave amplitude itself. and how it and the
polarization depend on the motions in the source. Consider an isolated source
with a stress-energy tensor T%*. As in chapter 2. the Einstein equation is

92 ,
~ v = CtexTe® 6.1)
or?

(7" = pet — %n"ﬂh and ﬁaﬂﬁ = 0). Its general solution is the following retarded
integral for the field at a position x’ and time ¢ in terms of the source at a position
yv* and the retarded time t — R:

Flﬁ

. 1 A
(') = 4/ ET"”(t — R.yHd'y. (6.2)
where we define ) .
R? = (x' — y))(x; — vj). (6.3)

6.1 Expansion for the far field of a slow-motion source

Let us suppose that the origin of coordinates is in or near the source, and the field
point x' is far away. Then we define r* = x'x; and we have r2 > viy;. We
can, therefore, expand the term R in the dominator in terms of y'. The lowest
order is r, and all higher-order terms are smaller than this by powers of r ~!.
Therefore, they contribute terms to the field that fall off faster than » ~!, and they
are negligible in the far zone. Therefore, we can simply replace R by r in the
dominator, and take it out of the integral.

The R inside the time-argument of the source term is not so simple. If we
suppose that 7" does not change very fast we can substitute t — R by 1 — r (the
retarded time to the origin of coordinates) and expand

; 1 : _\'i .
t—R=t—r+n'vi+0 (—) withn' = —_ n'n; = 1. (6.4)
r r
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The two conditions r > v'y; and the slow-motion source. can be expressed
quantitatively as:

r> A
R« A

where 3 s the reduced wavelength A = 1/2m and R is the size of source.

The terms of order r ~! are negligible for the same reason as above, but the
first term in this expansion must be taken into account. It depends on the direction
to the field point, given by the unit vector n/. We use this by making a Taylor
eXpansion in time on the time-argument of the source. The combined effect of
these approximations is

4 . P o
R <2 f[T"ﬁ(t YT ot T v+ 3T g0yt vy

7 ) ‘

+ %T"’ﬂ.mo(r'. _\'i)njnkn[_\'j_vk_w + -] d3_\'. (6.5)

We will need all the terms of this Taylor expansion out to this order.

The integrals in expression (5.5) contain moments of the components of the
stress-energy. It is useful to give these names. Use M for moments of the density
Tf)f), P for moments of the momentum 7% and S for the moments of the stress
T". Here is our notation:

M) :/TOO(I'.y’)d3_\', Mi) :/T""(r’.y")yf d*y,
Mk () = f T, yi)yjyk d3y, MMy = / T, ",i)",j),kyl d3_v.
Py = / TV vhyddy, Pli@)y = f T vyl dy.
plik('y = / T()I(t/’.\,i)),j),k &y,
S (1" =/T"”(z’.,\v")d3y. 5™ty =/T"”<r’,,»'i)_x-f dy.

These are the moments we will need.

Among these moments there are some identities that follow trom the
conservation law in linearized theory, T* 4 = 0, which we use to replace time
derivatives of components of T by divergences of other components and then
integrate by parts. The identities we will need are

M=0 M'=p  m*=prtypti mH = ptl g pRiy plik,
(6.6)
PJ) =0, P/*=gik = pik_ gikl | gilk (6.7)
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These can be applied recursively to show, for example, two further very useful

relations N

d*mk G dIMIk <k
= :2511\‘ b :651,/ )
dr- dr:
where the round brackets on indices indicate full symmetrization.
Using these relations and notations it is not hard to show that

(6.8)

A 44 4.,
Foo(r.x') =-M+-Pn; + —Sfl‘(t/)njnk + — Sk njngn; + - - (6.9)
r r r r

. ) 4 . 4 . A gous

B, 1y = 2pi 4 Zsikyn, 4+ 250k Yapng + - - - (6.10)
r r r

ik A A

= 280Gl £ 25 g 6.11)
r r

In these three formulae there are different orders of time-derivatives, but in fact
they are evaluated to the same final order in the slow-motion approximation. One

5 .. —ap . . ; .
can see that from the gauge condition 2" g = 0, which relates time-derivatives
of some components to space-derivatives of others.

In these expressions, one must remember that the moments are evaluated
at the retarded time 1" = r — r (except for those moments that are constant in
time), and they are multiplied by components of the unit vector to the field point
ni =xi/r.

6.2 Application of the TT gauge to the mass quadrupole field

In the expression for the amplitude that we derived so far, the final terms are
those that represent the current-quadrupole and mass-octupole radiation. The
terms before them represent the static parts of the field and the mass-quadrupole
radiation. In this section we treat just these terms, placing them into the TT gauge.
This will be simpler than treating it all at once, and the procedure for the next
terms will be a straightforward generalization.

6.2.1 The TT gauge transformations

We are already in Lorentz gauge, and this can be checked by taking derivatives
of the expressions for the field that we have derived above. However, we are
manifestly not in the TT gauge. Making a gauge transformation consists of
choosing a vector field £% and modifying the metric by

hap —> hop — Eu.p — Ep.ar- (6.12)
i ol B
The corresponding expression for the potential £ ™" is

R T A S (6.13)
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For the gjfferent Components this implies changes

8500 — £00 4 %.j‘j (6.14)
sV = g0 4 g0 (6.15)
SEjk _ Ej,k +€_—k.j _ Sjkg_-/l.“ (6.16)

where §ik js the Kronecker delta (unit matrix). In practice, when taking
deriVatives, the algebra is vastly simplified by the fact that we are keeping only
r~ lerms in th€ potentials. This means that spatial derivatives do not act on
1/r but only on t" =t _ . It follows that at’'Jox) = —n;, and dh(t'y oxd =
—h(t'yn ;.

It is not hard to show that the following vector field puts the metric into the
TT Bauge to the Order we are working:

1, 1 . 1 S .
g0 = ”Pl\k + —Pfl‘n,'n/\- + —Slpn* + —S'Jl‘irinfrlk, (6.17)
r r ’ r r ’

A 4 PR R N
& = ;‘Ml + -Pn; — - P — —P~”‘njnkn' + —S’/I‘r1_,r1k
r r r r

1 . | I .
— :S[[knl"n' — ;S’”‘njn[nkn’. (6.18)

6.2.2 Quadrupole field in the TT gauge

The result of applying this gauge transformation to the original amplitudes is

—TT

il e (6.19)
r

—TTO;

R o, (6.20)

—TTij 4 ; S 1 s 5 )

oY =C [ i 137 S+ 3 1Y (Synkn' — s‘k)]. (6.21)
r

Remember that here we are not including $/%/, because it is a third-order effect.
The notation _L* represents the projection operator perpendicular to the
direction »' to the field point.

LIk— §ik _ pipk, (6.22)

It can be verified that this tensor is transverse to the direction n’ and is a
projection, in the sense that it projects to itself

1k =0, L1, 0= 1, (6.23)

The spherical component of the field is not totally eliminated in this gauge
transformation: the time-time component of the metric must contain the constant
Newtonian field of the source. (In fact we have succeeded in eliminating the
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dipole, or momentum part of the field. which is also part of the non-wave solution-
Our gauge transformation has incorporated a Lorentz transformation that has put
us into the rest frame of the source.) The time-dependent part of the field is nOW
purely spatial, transverse (because everything is multiplied by L), and traceless
(as can be verified by explicit calculation).

The expression for the spatial part of the field actually does not depend On
the trace of S ;. as can be seen by constructing the trace-free part of the tensor
defined as:

Sit = s/t — Lgiksl,, (6.24)

In fact, it is more conventional to use the mass moment here instead of the stress,
so we also define

- I . 2y ik
Mk = mik g(SMM,’. Sik = %dd’ﬁ , (6.25)
In terms of M the far field is
“TTi 2 ikl a L=
PRRL A - 1% Mk1+§J_J Mun'n* ). (6.26)

This is the usual formula for the mass-quadrupole field. In textbooks the notation
is somewhat different than we have adopted here. In particular, our tensor M
is what is called 4 in Misner er al (1973) and Schutz (1985). It is the basis of
most gravitational-wave source estimates. We have derived it only in the context
of linearized theory, but remarkably its form is identical if we go to the post-
Newtonian approximation, where the gravitational waves are a perturbation of
the Newtonian spacetime rather than of flat spacetime.

Given this powerful formula, it is important to try to interpret it and
understand it as fully as possible. One obvious conclusion is that the dominant
source of radiation, at least in the slow-motion limit, is the second time-
derivative of the second moment of the mass density 7™ (the mass-quadrupole
moment). This is a very important difference between gravitational waves
and electromagnetism, in which the most important source is the electric-
dipole. In our case the mass-dipole term is not able to radiate because it is
constant, reflecting conservation of the linear momentum of the source. In
electromagnetism, however, if the dipole term is absent for some reason (all
charges positive, for example) then the quadrupole term dominates and it looks
very similar to equation (6.26).

6.2.3 Radiation patterns related to the motion of sources

The projection operators in equation (6.26) show that the radiative field is
transverse, as we expect. However, the form of equation (6.26) hides two equally
important messages:
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e the only motions that produce the radiation are the ones transverse to the line
of sight; and

e the induced motions in a detector mirror the motions of the source projected
onto the plane of the sky.

To see why these are true, we define the transverse traceless quadrupole tensor
TT k ! 1 ¢
Mi_j =1%; L My — 5 L,‘j_L” M. 6.27)

(Notice that some of our definitions of tracelessness involve subtracting % of the
trace, as in equation (6.24), and sometimes % of the trace, as in equation (6.27).
The appropriate factor is determined by the effective dimensionality (rank) of
the tensor. Although we have three spatial dimensions, the projection tensor L
projects the mass-quadrupole tensor onto a two-dimensional plane, where the
trace involves only two components, not three.)

Now, if in equation (6.26) we replace 1\71,-_,- by its definition in terms of M;,
and then collect terms appropriately, it is not hard to show that the equation
simplifies to its most natural form:

R — 24T (6.28)
r
This could of course have been derived directly by applying the TT operation to
equations (6.9)-(6.11). Since this equation involves only the TT part of M, our
first assertion above is proved. According to this equation, in order to calculate
the quadrupole radiation that a particular observer will receive, one need only
compute the mass-quadrupole tensor’s second time-derivative, project it onto the
plane of the sky as seen by the observer looking toward the source, take away its
trace, and rescale it by a factor 2/r. In particular, the TT tensor that describes the
action of the wave (as in the polarization diagram in figure 2.1) is a copy of the
TT tensor of the mass distribution. This proves our second assertion above.
Looking again at figure 2.1 we imagine a detector consisting of two free
masses whose separation is being monitored. If the wave causes them to oscillate
relative to one another along the x-axis (the @ polarization), this means that the
source motion contained a component that did the same thing. If the source is a
binary, then the binary orbit projected onto the sky must involve motion of the
stars back and forth along either the x- or the v-axis.
It is possible from this to understand many aspects of quadrupole radiation
in a simple way. Consider a binary star system with a circular orbit. Seen by a
distant observer in the orbital plane, the projected source motion is linear, back
and forth. The received polarization will be linear, the polarization ellipse aligned
with the orbit. Seen by a distant observer along the axis of the orbit of the
binary, the projected motion is circular, which is a superposition of two linear
motions separated in phase by 90°. The received radiation will also have circular
polarization. Because both linear polarizations are present, the amplitude of the




64 Mass- and current-quadrupole radiation

wave emitted up the axis is twice that emitted in the plane. In this way we can
completely determine the radiation pattern of a binary system.

Notice that, when viewed at an arbitrary angle to the axis, the radiation
will be elliptically polarized, and the degree of ellipticity will directly measure
the inclination of the orbital plane to the line of sight. This is a very special
kind of information, which one cannot normally obtain from electromagnetic
observations of binaries. It illustrates the complementarity of the two kinds of
observing.

6.3 Application of the TT gauge to the current-quadrupole
field

Now we turn to the problem of placing next-order terms of the wave field, the
current quadrupole and mass octupole, into the TT gauge. Our interest here is to
understand current-quadrupole radiation in the same physical way as we have just
done for mass-quadrupole radiation. So we shall put the field into the TT gauge
and then see how to separate the current-quadrupole part from the mass-octupole,
which we will discard from the present discussion.

6.3.1 The field at third order in slow-motion

The next order terms in the non-TT metric bear a simple relationship to the mass-
quadrupole terms (see equations (6.9)—(6.11)). In each of the metric components,
just replace sk by S/ n; 10 go from one order to the next.

This means that we can just skip to the end of the application of the gauge
transformations in equations (6.17) and (6.18) and write the next order of the final
field, only using S again, not M

. 4 . T .. ! .
AT = - [Mu’ Siemn™ + 5 1Y (Spmn*nin™ — Skk/n’):l , (6.29)

or more compactly

ATl

SRS

o g il L s £ :
(L”‘ LI Sppmn™ + 3 LY Sppmn'nf '”) . (6.30)
The tilde on S represents a trace-free operation on the first two indices.
Skim = Sikm — %Sklslim-
These are the indices that come from the indices of T /*, so the tensor is symmetric
on these. By analogy with the quadrupole calculation, we can also define the TT

part of S;; by doing the TT projection on the first two indices,

S,-;}-n =J_k i J-[ jSklm _ % J—ij—LkI Sklm- (631)
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The T projection of the equation for the metric is
T _ 4 erTijk
Y = -85V Ry, (6.32)
r

6.3.2 Separating the current quadrupole from the mass octupole

The last equation is compact, but it does not have the ready interpretation that
we have 4 quadrupole order. This is because the moment of the stress, S;jx.
does not have such a clear physical interpretation. We see from equations (6.6)—
(6.8) thay Sijx 15 @ complicated mixture of moments of momentum and density.
To gain more physical insight into radiation at this order, we need to separate
these different contributions. It is straightforward algebra to see that the following
identity follows fTom the earlier ones:

Sijk 1 v ik L 2 B L 2 BlkL
S = 2 M M A 3 PR 4 S pURE (6.33)
where square brackets around indices mean antisymmetrization:
AUKL . LAik _ pkiy

This is a complete separation of the mass terms (in M) from the momentum terms
(in P) because the only identities relating the momentum moments to the mass
moments involve the symmetric part of PY* on its first two indices. and this is
absent from equation (6.33).

The first term in equation (6.33) is the third moment of the density, and this
is the source of the mass-octupole field. It produces radiation through the third
time-derivative. Since we are in a slow-motion approximation, this is smaller than
the mass-quadrupole radiation by typically a factor v/c. Unless there were some
Very special syminetry conditions, one would not expect the mass octupole to be
anything more than a small correction to the mass quadrupole. For this reason we
will not treat it here.

The second and third terms in equation (6.33) involve the second moment
of the momentum, and together they are the source of the current-quadrupole
field. It involves two time-derivatives, just as the mass quadrupole does, but these
are time-derivatives of the momentum moment, not the mass moment, so these
terms produce a field that is also v/c smaller than the typical mass-quadrupole
field. However, it requires less of an accident for the mass quadrupole to be
absent and the current quadrupole present. It just requires motions that leave the
density unchanged to lowest order. This happens in the r-modes. Therefore, the
current quadrupole deserves more attention, and we will work exclusively with
these terms from now on.

The terms in equation (6.33) that we need are the ones involving PU*.
These are antisymmetrized on the first two indices, which involves effectively
a vector product between the momentum density (first index) and one of the
moment indices. This is essentially the angular momentum density. To make
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the angular momentum explicit and to simplify the expression. we introduce the
angular momentum and the first moment of the angular momentum density
(6.34)
(6.35)

F =" P,
J = ik ij[.

where e"* is the fully antisymmetric (Levi-Civita) symbol in three dimensions. It
follows from this that
pUKI — Lgiki gl

These terms enter the TT projection of the field (6.32) with the last index
of § always contracted with the direction n' to the observer from the source.
According to equation (6.33), this contraction always occurs on one of the
antisymmetrized indices, or if we use the form in the previous equation then we
will always have a contraction of n’ with €% This is a simple object, which we
call

Lel* = etk (6.36)
This is just the two-dimensional Levi-Civita object in the plane perpendicular to
n', which is the plane of the sky as seen by the observer. These quantities will be
used in the current-quadrupole field, which contains projections on all the indices.
Therefore, the only components of J /¥ that enter are those projected onto the skY,
and so it will simplify formulae to define the sky-projected moment of the angular
momentum | J

LJU = -Li ! J—j m-][m- (637)
Using this assembled notation, the current-quadrupole field is
W = 3—ru6" LI+ e T Y M ). (6.38)

This is similar in form and complexity to the mass-quadrupole field
expression. The interpretation of the contributions is direct. Only components
of the angular momentum in the plane of the sky contribute to the field. Similarly
only moments of this angular momentum transverse to the line of sight contribute.
If one wants, say, the xx component of the field, then the | € factor tells us it is
determined by the y-component of momentum, i.e. the component perpendicular
to the x-direction in the sky. In fact, it is much simpler just to write out the
actual components, assuming that the wave travels toward the observer along the
z-direction. Then we have

hTT,\',\' — i(J\'\ + J‘_v.\)‘

.39

3r (0-39)

hTT'\'\ = ,;—(J-\-‘ _ J-“)‘ (6.40)
ar

and the remaining components can be found from the usual symmetries of the
TT-metric. I have dropped the prefix ; on J because in this coordinate system the
given components are already transverse.

Appliction of the TT gauge to the current-quadrupole field 67

Figure 6.1, A simple current-quadrupole radiator. The left-hand panel shows how the two
wheels are connected with blade springs to a central axis. The wheels turn in opposite
directions, each oscillating back and forth about its rest position. The right-hand panel
shows the side vieW of the system. and the arrows indicate the motion of the near side of
the Wheels at the time of viewing. The + signs indicate where the momentum of the mass
of the wheel is toward the viewer and the — signs indicate where it is away from the viewer.

The simplicity of these expressions is striking. There are two basic cases
where one gets current-quadrupole radiation.

e If there is an oscillating angular momentum distribution with a dipole
moment along the angular momentum axis, as projected onto the sky, then
In an appropriate coordinate system J** will be nonzero and we will have ®
radiation. To have a non-vanishing dipole moment, the angular momentum
density could, for example, be symmetrical under reflection through the
origin along its axis, so that it points in opposite directions on opposite sides.

e If there is an oscillating angular momentum distribution with a dipole
moment along an axis perpendicular to the angular momentum axis, as
projected onto the sky, then in an appropriate coordiate system J** will be
nonzero and we will have @ radiation.

6.3.3 A model system radiating current-quadrupole radiation

To see that the first of these two leads to physically sensible results, let us consider
a simple model system that actually bears a close resemblance to the r-mode
system. Imagine. as in the lett panel of figure 6.1, two wheels connected by an
axis, and the wheels are sprung on the axis in such a way that if a wheel is turned
by some angle and then released, it will oscillate back and forth about the axis.
Set the two wheels into oscillation with opposite phases. so that when one wheel
rotates clockwise, the other rotates anticlockwise, as seen along the axis.

Then when viewed along the axis. the angular momentum has no component
transverse to the line of sight, so there is no radiation along the axis. This
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is sensible. because when projected onto the plane of the sky the two wheels
are performing exactly opposite motions, so the net effect is that there is zer©
projected momentum density.

When viewed from a direction perpendicular to the axis. with the axis alon&
the x-direction, then the angular momentum is transverse, and it has opposit€
direction for the two wheels. There is therefore an x-moment of the x-component
of angular momentum, and the radiation field will have the ® orientation.

To see that this has a physically sensible interpretation. look back again at the
polarization diagram, figure 2.1, and look at the bottom row of figures illustratin2
the ® polarization. See what the particles on the x-axis are doing. They arc
moving up and down in the v-direction. What motions in the source could b€
producing this?

At first one might guess that it is the up-and-down motion of the mass in the
wheels as they oscillate, because in fact the near side of each wheel does exactly
what the test particles at the observer are doing. However, this cannot be the
explanation, because the far side of each wheel is doing the opposite. and when
they both project onto the sky they cancel. What in fact gives the effect is that at
the rop of the wheel the momentum density is first positive (towards the observer)
and then negative, while at the botrom of the wheel it is first negative and then
positive. On the other wheel, the signs are reversed.

Current-quadrupole radiation is produced, at least in simple situations like
the one we illustrate here, by (the second time-derivative derivative of) the
component of source momentum along the line of sight. If this is positive in the
sense that it is towards the observer, then the momentum density acts as a positive
gravitational ‘charge’. If negative, then it is a negative ‘charge’. The wheels
have an array of positive and negative spots that oscillates with time, and the
test particles in the polarization diagram are drawn toward the positive ones and
pushed away from the negative ones. Interestingly, in electromagnetism, magnetic
dipole and magnetic quadrupole radiation are also generated by the component of
the electric current along the line of sight.

This is a rather simple physical interpretation of some rather more complex
equations. It is possible to re-write equation (6.38) to show explicitly the
contribution of the line-of-sight momentum, but the expressions become even
more complicated. Instead of dwelling on this, I will turn to the question of
calculating the total energy radiated by the source.

6.4 Energy radiated in gravitational waves

We have calculated the energy flux in equation (5.14), and we now have the TT
wave amplitudes. We need only integrate the tlux over a distant sphere to get
the total luminosity. We do this for the mass and current quadrupoles in separate
sections.
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6.4-1 Mass-quadrupole radiation

The mass-quadrllpok: radiation field in equation (6.26) must be put into the energy
flux fOrrnula, and the dependence on the direction n' can then be integrated over
a sPhere. 1¢js not a difficult calculation, but it does require some angular integrals
ovel Multiple products of the vector n', which depends on the angular direction
on the Sphere. BY Symmetry, integrals of odd numbers of factors of n ! vanish. Fo
eve Numpers of factors, the result is essentially determined by the requirement
that after inegration the result must be fully symmetric under interchange of any
twO 'Ndices and it cannot have any special directions (so it must depend only on
the Kronecker delta S’j ). The identities we need are

- 4 .
fn'nf dQ = T”s'f, (6.41)
f n'ninkfp! dQ = 1—:(5”5“ + 8kgil 4 gl giky, (6.42)

UsINg these, one gets the following simple formula for the total luminosity of
masS-quadrupole radiation

L?\gsx — %(Mjk Mjk> A (6.43)

Her€ we sitill preserve the angle brackets of equation (5.14), because this formula
only makes sense in general if we average in time over one cycle of the radiation.

6.4.2 Current-quadrupole radiation

The energy radiated in the current quadrupole is nearly as simple to obtain as the
mass-quadrupole formula. The extra factor of ' in the radiation field makes the
angular integrals longer, and requires two further identities:

Pk 215 S,
/ nindn*n'nPntdq = 78“’6“8”‘”, (6.44)
Eijkgi’j’k’ — 3ii’8jj’5kk' 4 (Sij’sjk/(ski’ + (Sik'aji'skj'
A SR U T L T ()
where the round brackets indicate full symmetrization on all indices. The
expression is simplest if we define
ij - ejIm lek + eklm ﬁlmj-
where
Pku = Pklj . %51./ Pk/]'
The result of the integration of the flux formula over a distant sphere is
[18,.25]. in our notation,

L;\‘J;rcnl — %(j/’\ jjk)- (6.46)
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6.5 Radiation in the Newtonian limit

The calculation so far has been within the assumptions of linearized theory. Real
sources are likely to have significant self-gravity. This means. in particular,
that there will be a significant component of the source energy in gravitational
potential energy, and this must be taken into account.

In fact a more realistic equation than equation (6.1) would be

Oh*? = — 167 (T 4 19F-) (6.47)

where 1% is the stress-energy pseudotensor of gravitational waves. This is hard
to work with: equation (6.47) is an implicit equation because 1 “# depends on heP.

Fortunately, the formulae that we have derived are more robust than they
seem. It turns out that the leading order radiation field from a Newtonian source
has the same formula as in linearized theory. By leading order we mean the
dominant radiation. If there is mass-quadrupole radiation. then the mass-octupole
radiation from a Newtonian source will not be given by the formulae of the
linearized theory. On the other hand. current-quadrupole and mass-quadrupole
radiation can coexist, because they have different symmetries, so the work we
have done here is generally applicable.

More details on how one calculates radiation to higher order in the
Newtonian limit will be given in Blanchet’s contribution in this book. This is
particularly important for computing the radiation to be expected from coalescing
binary systems. whose orbits become highly relativistic just before coalescence
and which are, therefore, not well described by linearized theory.

Chapter 7

Source calculations

NoW that we have the formulae for the radiation from a system, we can use them
for 5O0me gimple €Xamples.

7.1 Radiation from a binary system

The Most numerous sources of gravitational waves are binary stars systems. In
just half an orbital period, the non-spherical part of the mass distribution returns
to it$ original configuration, so the angular frequency of the emitted gravitational
waves is twice the orbital angular frequency.

We shall calculate here the mass-quadrupole moment for two stars of masses
m and m,, orbiting in the x—y plane in a circular orbit with angular velocity €2,
governed by Newtonian dynamics. We take their total separation to be R, which
means that the orbital radius of mass m | is ma R/(m| + m>) while that of mas:
ma 1S m R/(m1 -+ m2). We place the origin of coordinates at the centre of mass
of the sysiem. Then, for example, the xx-component of M ¥/ is

Mix = my (.M) . (M)

my + nmo - my + mo
= /4R2 cosz(QI), (7.1

where p := mm2/(m| + my) is the reduced mass. By using a trigonometric
identity and throwing away the part that does not depend on time (since we will
use only time-derivatives of this expression) we have

M. = i R? cos(2€1). (12
By the same methods. the other nonzero components are
M., = -%/lRZ cos(2Q), M, = %/4 R sin(2Q1).
This shows that the radiation will come out at twice the orbital frequency.
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In this case the trace-free moment M/ differs from M only by a constant:
so we can use these values for M to calculate the field and luminosity.

As an example of calculating the field, let us compute 4™ as seen by an
observer at a distance r from the system along the y-axis. i.e. lying in the plan¢
of the orbit. We first need the TT part of the mass-quadrupole moment, from
equation (6.27):

MTT,\‘x — MY _ %(M“ + M:‘_‘).
However, since M<* = 0, this is just M** /2. Then from equation (6.28) we find

AT = 2B (R cos22(r — 1)), (7.3)
r
Similarly, the result for the luminosity is

Low = %;12R4§26. (7.4)

The various factors in these two equations are not independent, because the
angular velocity is determined by the masses and separations of the stars. When
observing such a system, we cannot usually measure R directly, but we can infer
Q from the observed gravitational-wave frequency, and we may often be able to
make a guess at the masses (we will see below that we can actually measure an
important quantity about the masses). So we eliminate R using the Newtonian
orbit equation

R = w (7.5)
Ql_
If in addition we use the gravitational-wave frequency Q,. = 22, we get
_ MIBQA3
RTH = 213 8% o[ Quu(t — )], (7.6)
r
4 10 7
ng == S_XW(MQgW) L (7 )

where we have introduced the symbol for the chirp mass of the binary system:
M= u3/5(m1 +m2)2/5.

Notice that both the field and the luminosity depend only on M, not on the
individual masses in any other combination.
The power represented by L, must be supplied by the orbital energy,

E = —mm>/2R. By eliminating R as before we find the equation
1 §/3.2
- 5/302/3
E_~25/3A/I Quw -

This is remarkable because it too involves only the chirp mass M. By setting the
rate of change of £ equal to the (negative of the) luminosity. we find an equation
for the rate of change of the gravitational-wave frequency

12 x 21/3

g = 2

M. (7.8)
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As W€ mentioned in Chapter 4, since the frequency increases, the signal is said to
‘chirp’ |

. These results show that the chirp mass is the only mass associated with the
plnary that can be deduced from observations of its gravitational radiation. at least
if onl.y the NewtoMian orbit is important. Moreover, if one can measure the field
amplitude (e.g. 1Y) plus Qgw and Qg“, one can deduce from these the value
of M and the distance r to the system! A chirping binary with a circular orbit,
observed iy gravilational waves, is a standard candle: one can infer its distance
purel:\’ Srom the gravitational-wave observations. To do this one needs the full
amplitude ot just its projection on a single detector, so one generally needs a
network of detectOrs or a long-duration observation with a single detector to get
enough jnformation.

. It s very unusual in astronomy to have standard candles, and they are highly
prized.  For example, one can, in principle, use this information to measure
Hubble’s copstant [26].

7.1-1 Corrections

In the calculation above we made several simplifying assumptions. For example.
how good is the @ssumption that the orbit is circular? The Hulse-Taylor binary
is i“. a highly eccentric orbit, and this turns out to enhance its gravitational-wave
luminosity by more than a factor of ten, since the elliptical orbit brings the two
stars much nearer 'O one another for a period of time than a circular orbit with the
same period would do. So there are big corrections for this system.

However, systems emitting at frequencies observable from ground-based
interferometers are probably well approximated by circular orbits, because they
have arrived at their very close separation by gravitational-wave-driven in-spiral.
This process removes eccentricity from the orbit faster than it shrinks the orbital
radius, so by the time they are observed they have insignificant eccentricity.

Another assumption is that the orbit is well described by Newtonian
theory. This is not a good assumption in most cases. Post-Newtonian orbit
correCtions will be very important in observations. This is not because the
stars eventually approach each other closely. It is because they spend a long
time at wide separations where the small post-Newtonian corrections accumulate
systematically, eventually changing the phase of the orbit by an observable
amount. So it is very important for observations that we match signals with
a template containing high-order post-Newtonian corrections, as described in
Blanchet’s contribution. But even so, the information contained in the Newtonian
part of the radiation is still there, so all our conclusions above remain important.

7.2 The r-modes

We consider rotating stars in Newtonian gravity and look at the effect that the
emission of gravitational radiation has on their osciliations. One might expect
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that the loss of energy to gravitational waves would damp out any perturbations-
and indeed this is normally the case. However. it was a remarkable discovery of
Chandrasekhar [27] that the opposite sometimes happens.

A rotating star is idealized as an axially symmetric perfect-fluid system-
In the Newtonian theory the pulsations of a perturbed fluid can be described
by normal modes which are the solutions of perturbed Euler and gravitational
field equations. If the star is stable, the eigenfrequencies o of the normal modes
are real; if the star is unstable, there is at least one pair of complex-conjugate
frequencies, one of which represents an exponentially growing mode and the other
a decaying mode. (We take the convention that the time-dependence of a mode i8S
expliot).)

In general relativity, the situation is, in principle. the same. except that there
is a boundary condition on the perturbation equations that insists that gravitational
waves far away be outgoing, i.e. that the star loses energy to gravitational waves.
This condition forces all eigenfrequencies to be complex. The sign of the
imaginary part of the frequency determines stability or instability.

The loss of energy to gravitional radiation can destabilize a star that would
otherwise (i.e. in Newtonian theory) be stable. This is because it opens a pathway
to lower-energy configurations that might not be accessible to the Newtonian
star. This normally happens because gravitational radiation also carries away
angular momentum, a quantity that is conserved in the Newtonian evolution of
a perturbation.

The sign of the angular momentum lost by the star is a critical diagnostic
for the instability. A wave that moves in the positive angular direction around a
star will radiate positive angular momentum to infinity. A wave that moves in the
opposite direction, as seen by an observer at rest far away. will radiate negative
angular momentum. In a spherical star, both actions result in the damping of
the perturbation because, for example, the positive-going wave has intrinsically
positive angular momentum, so when it radiates its angular momentum decreases
and so its amplitude decreases. Similarly. the negative-going wave has negative
angular momentum, so when it radiates negative angular momentum its amplitude
decreases.

The situation can be different in a rotating star. as first pointed out by
Friedman and Schutz [28]. The angular momentum carried by a wave depends
on its pattern angular velocity relative to the star’s angular velocity, not relative
to an observer far away. If a wave pattern travels backwards relative to the star,
it represents a small effective slowing down of the star and therefore carries
negative angular momentum. This can lead to an anomalous situation: if a wave
travels backwards relative to the star, but forwards relative to an inertial observer
(because its angular velocity relative to the star is smaller than the star’s angular
velocity), then it will have negative angular momentum but it will radiate positive
angular momentum. The result will be that its intrinsic angular momentum will
get more negative, and its amplitude will grow.

This is the mechanism of the Chandrasekar-Friecdman-Schutz (CFS)
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instability. In an ideal star, it is always possible to find pressure-driven waves
O_f short enough wavelength around the axis of symmetry (high enough angular
eigenvalue m) that satisfy this condition. However, it turns out that even a small
amount of viscosity can damp out the instability in such waves , so it is not clear
that pressure-driven waves will ever be significantly unstable in realistic stars.

However, in 1997 Andersson [17] pointed out that there was a class of modes
called r-modes (Rossby modes) that no-one had previously investigated, and
that were formally unstable in all rotating stars. Rossby waves are well known
in oceanography, where they play an important role in energy transport around
the Earth’s oceans. They are hard to detect, having long wavelengths and very
low-density perturbations. They are mainly velocity perturbations of the oceans.
whose restoring force is the Coriolis effect, and that is their character in neutron
stars too. Because they have very small density perturbation, the gravitational
radiation they emit is dominated by the current-quadrupole radiation.

For a slowly-rotating, nearly-spherical Newtonian star, the following
velocity perturbation is characteristic of r-modes:

8! = c(r)e*P Vv, Y. (7.9)

where ¢ (r) is some function of r determined by the mode equations. This velocity
1s a curl, so it is divergence-free: since it has no radial component, it does not
change the density. If the star is perfectly spherical. these perturbations are simply
a small rotation of some of the fluid, and it continues to rotate. They have no
oscillation, and have zero tfrequency.

If we consider a star with a small rotational angular velocity €2, then the
frequency o is no longer exactly zero and a Newtonian calculation to first order

in €2 shows that there is a mode with pattern speed wp = —o/m equal to
2
=Q|1l- 1. 7.10
“r [ I+ 1)] (710

These modes are now oscillating currents that move (approximately) along the
equipotential surfaces of the rotating star.

Forl > 2, wy, is positive but slower than the speed of the star, so by the CFS
mechanism these modes are unstable to the emission of gravitational radiation for
an arbitrarily slowly rotating star.

The velocity pattern given in equation (7.9) for ( = 2. m = 2) is closely
related to the wheel model we described for current-quadrupole radiation in
figure 6.1. Take two such wheels and orient their axes along the x- and v-axes.
with the star rotating about the z-axis. Choose the sense of rotation so that the
wheels at positive-x and positive-y are spinning in the opposite sense at any time.
i.e. so that their adjacent edges are always moving in the same direction. Then
this relationship will be reproduced for all other adjacent pairs of wheels: adjacent
edges move together.

When seen tfrom above the equatorial plane, the line-of-sight momenta of
the wheels reinforce each other. and we get the same kind of pattern that we saw
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when looking at one wheel from the side. However, in this case the pattern rotates
with the angular velocity 2€2/3 of equation (7.10). Since the pattern of line-of-
sight momenta repeats itself every half rotation period, the gravitational waves
are circularly polarized with frequency 42/3. Seen along the x-axis, the wheel
along the x-axis contributes nothing, but the other wheel contributes fully, so the
radiation amplitude in this direction is half that going out the rotation axis. Seen
along a line at 45° to the x-axis, the line-of-sight momenta of the wheels on the
front part of the star cancel those at the back, so there is no radiation. Thus,
along the equator there is a characteristic series of maxima and zeros, leading
to a standard m = 2 radiation pattern. This pattern also rotates around the star,
but the radiation in the equator remains linearly polarized because there is only
the ® component, not the ¢. Again, the radiation frequency is twice the pattern
speed because the radiation goes through a complete cycle in half a wave rotation
period.

This discussion cannot go into the depth required to understand the r-modes
fully. There are many issues of principle: what happens beyond linear order in
2; what happens if the star is described in relativity and not Newtonian gravity;
what is the relation between r-modes and the so-called g-modes that can have
similar frequencies; what happens when the amplitude grows large enough that
the evolution is nonlinear; what is the effect of magnetic fields on the evolution of
the instability? The literature on r-modes is developing rapidly. We have included
references where some of the most basic issues are discussed {17, 18,29-31], but
the interested student should consult the current literature carefully.

7.2.1 Linear growth of the r-modes

We have seen how the r-mode becomes unstable when coupled to gravitational
radiation, and now we turn to the practical question: is it important? This will
depend on the balance between the growth rate of the mode due to relativistic
effects and the damping due to viscosity.

When coupled to gravitational radiation and viscosity, the mode has a
complex frequency. If we define (o) := 1/7, then 1 is the characteristic
damping time. When radiation and viscosity are treated as small effects, their
contributions to the eigenfrequencies add, so we have that the total damping is
given by

1 1 1 | I 1

= —sy e m= e Sy 7.11
7(2) TGR Ty Ty . Th ( )

where 1/tGr, 1/7y are the contributions due to gravitational radiation emission
and viscosity, and where the latter has been further divided between shear
viscosity () and bulk viscosity (-).

If we consider a ‘typical’ neutron star with a polytropic equation of state
p = kp? (for which k has been chosen so that a 1.5M,, model has a radius
R = 12.47 km), and if we express the angular velocity in terms of the scale for

S T ne T
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Table 7.1. Gravitational radiation and viscous timescales, in seconds. Negative values
indicate instability, i.e. a growing rather than damping mode.

I m 1gw () Pgw  Toy (8) Py Tsv (8)
2 2 ~20.83 593 93x 100 177 225« 10%
3 03 —3161 798 1.89x 100 183 353x 107

the approximate maximum speed /7 Gp and the temperature in terms of 10° K,
then it can be shown that [30]

6 5
| | (109K) L ( ¥ ) a12)
= N\ Pew N\ Py - ’ y
T rgw(lms) ofs 1 (lms) b T o LI09K

P Ty \ P

where the scaling parameters Ty, Thy, Tew and the exponents Pew and ppy have
to be calculated numerically. Some representative values relevant to the r-modes
with 2 < 1 < 6 are in table 7.1 [30].

The physics of the viscosity is interesting. Itis clear from equation (7.12) that
gravitational radiation becomes a stronger and stronger destabilizing influence
as the angular velocity of a star increases, but the viscosity is much more
complicated. There are two contributions: shear and bulk. Shear viscosity comes
mainly from electrons scattering off protons and other electrons. This effect falls
with increasing temperature, just as does viscosity of everyday materials. So a
cold, slowly rotating star will not have the instability, where a hotter star might.
However, at high temperatures, bulk viscosity becomes dominant. This effect
arises in neutron stars from nuclear physics. Neutron-star matter always contains
some protons and electrons. When it is compressed, some of these react to form
neutrons, emitting a neutrino. When it is expanded, some of the neutrons beta-
decay to protons and electrons, again emitting a neutrino. The emitted neutrino
1s not trapped in the star; within a short time, of the order of a second or less, it
escapes. This irreversible loss of energy each time the star is compressed creates
a bulk viscosity. Now, bulk viscosity acts only due to the density perturbation,
which is small in r-modes. So the effect of bulk viscosity only dominates at very
high temperatures.

The balance of the viscous and gravitational effects is illustrated in figure 7.1
[30]. This is indicative, but not definitive;: much more work is needed on the
physics of viscosity and the structure of the modes at large values of €2 (small P).

7.2.2 Nonlinear evolution of the star

Our description so far is only a linear approximation. To understand the full
evolution of the r-modes we have to treat the nonlinear hydrodynamical effects
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log,, T/1K

Figure 7.1. The balance of viscous and gravitational radiation effects in the r-modes is
illustrated in a diagram of rotation speed. showing the ratio of the maximum period P
to the rotation period P versus the temperature of the star. The solid curve indicates the
boundary between viscosity-dominated and radiation-dominated behaviour: stars above
the line are unstable. The dashed curves illustrate possible nonlinear evolution histories as
a young neutron star cools.

that become important as the modes grow. This could only be done with a
numerical simulation, which some groups are now working on. However, it is
possible to make simple estimates analytically.

We characterize the initial configuration with just two paramters: the uniform
angular velocity 2, and the amplitude « of the r-modes perturbation. The star is
assumed to cool at the accepted cooling rate for neutron stars, independently of
whether it is affected by the r-mode instability or not. The star is assumed to
lose angular momentum to gravitational radiation at a rate given by the linear
radiation field. with its large amplitude «. This loss is taken to drive the star
through a sequence of equilibrium states of lower and lower angular momentum.
Details of this approximation are in [31], here we report only the results. The
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evVolution turns out to have three phases.

(@) Initially the angular velocity Q of the hot rapidly rotating neutron star is

Nearly constant. evolving on the viscous timescale 1/t while the amplitude

@ grows exponentially on the gravitational radiation timescale 1/t g.

(b) Aftera short time nonlinear effects become important and stop the growth of
the amplitude «. Most of the initial angular momentum of the star is radiated
dway by gravitational radiation. The star spins down and evolves to a point
Where the angular velocity  and the temperature is sufficiently low that the
r-mode is stable.

(©) Finally gravitational radiation and viscosity damp out the r-mode and drive
the star into its final equilibrium configuration.

This may take about a year, a timescale governed by the cooling time of the
Star. During this year, the star would radiate away most of its angular momentum
:and rotational kinetic energy. This could be a substantial fraction of a solar mass
In energy.

7.2.3  Detection of r-mode radiation

The large amount of energy radiated into the r-modes makes them attractive for
detection, but detection will not be trivial. The r-mode event occurs at the rate
of supernovae: some fraction (hopefully large) of all supernovae leave behind a
rapidly spinning neutron star that spins down over a one-year period. This means
we should have sufficient sensitivity to reach the Virgo Cluster (20 Mpc distance).
Estimates [31] suggest that a neutron star in the Virgo Cluster could be detected
by second generation of LIGO and VIRGO gravitational-wave detectors with an
amplitude signal-to-noise of about eight, provided one can use matched filtering
(exact template matching).

It will not be easy to use matched filtering, since one must follow all cycles
of the signal as the star spins down, and we will not know this well because of
many uncertainties: initial temperature, initial spin distribution, detailed physics
of viscosity, and so on. However, it would be helpful to have a parametrized
model to take account of the uncertainties, so that we could look for a significant
fit to one or more of the parameters.

In addition, it is likely that. if a significant proportion of all neutron stars
went through the r-mode instability, then the universe has been filled by their
radiation. There should be a background with an energy density €2, that is a
good fraction of the closure density. Its lower frequency limit should be around
200 Hz in the rest frame of the star. When we see radiation cosmologically. its
lower frquency limit will indicate the epoch at which star formation began.

It is clear that the discovery of this new source of gravitational waves will
open several prospects for astronomy. Observations could be used as supernovae
detectors, revealing supernovae hidden in clouds of dust. identifying them about a
year after they are formed. The existence of the radiation raises several prospects
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and questions about the physics of neutron stars, not least the interaction of
magnetic fields with the instability.

7.3 Conclusion

These lectures (chapters 2 to 7) have taken us through the basic theory of
gravitational radiation and its applications in astrophysics, so far as we can
understand and predict them now. In a few years, perhaps as little as two, perhaps
as many as eight, we will start to make observations of gravitational radiation from
astrophysical sources. If gra: itational-wave astronomy follows other branches of
observational astronomy, it will not be long before completely unexpected signals
are seen, or unexpected features in long-predicted signals. To interpret these will
require joining a physical understanding of the relationship between gravitational
radiation and its source to a wide knowledge of astronomical phenomena. We
encourage the students who have attended these lectures, and others who may
study them, to get themselves ready to contribute to this activity. It will be an
exciting time!
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Solutions to exercises

Chapter 2

Exercise (a)

I. Let us take the form of the wave to be
RTTK — el —h - 5)

where eéak is the polarization tensor for the @ polarization, and where n is the
unit vector in the direction of travel of the wave. We will let A ; be an arbitrary
function of its phase argument.

If the wave travels in the x—z plane at an angle 9 to the z-direction, then the
unit vector in our coordinates is

A" = (sin6, 0, cos ).

We need to calculate the polarization tensor’s components in x, v, z coordinates.
We do this by rotating the @ polarization tensor from its TT form in coordinates
parallel to the wavefront to its form in our coordinates. This requires a simple
rotation around the y-axis. The transformation matrix is:

B cosé 0 siné#
A= ( 0 1 0 ) .
—sinf 0 cosH

The polarization tensor in our coordinates (primed indices) becomes:

ej/\' = A/ IAI\' melm

cosZ f 0 —sinfcosh
( 0 —1 0 ) .

—sinfcosé 0 sin? 0

Notice that the new polarization tensor is again traceless.
The gravitational wave will be. at an arbitrary time ¢ and position (x. 2) in
our (v, 7)-plane,
RTTIH = oi'k hy(t —xsinf — zZcos6).
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For this problem we need the xx-component because the photon is propagating
along this direction, and we will always stay at z = 0, so we have
RTTY = cos2 Oh4 (1 — x 5in6).

We see that for this geometry the wave amplitude is reduced by a factor of cos S8,

Generalizing the argument in the text, the relation between time and position
for the photon on its trip outwards along the x-direction is t = r( + x, where
Iy 18 the starting time. The analogous relation after the photon is reflected is
! =1y + L 4+ (L — x), since in this case x decreases in time from L to (. If we
put these into the equation for the linearized corrections to the return time, we get

L
treturn = fo + 2L + %coszé’{/ hylto + (1 —sinf)x]dx
0
L
X / hilto+2L — (1 +sin9)_r|drl.

0

This expression must be differentiated with respect to 1 to find the variation
of the return time as a function of the start time. The key point is how (O
handle differentiation within the integrals. Consider, for example, the function
hilto + (1 —sinO)x]. Itis a function of a single argument,

& =1ty + (1 —sinO)x

so derivatives with respect to ry can be converted to derivatives with respect to x
as follows

dhy dhy d& dhy

drg ~ d& dry  de

dh dh, d& . dh
— = —— = (1l —sinf)—.
dx dé¢ dx dé
It follows that
dh, dh

—— = — /(1 —sinf).
dry dy / !

On the return trip the factor will be —(1 + sin#). So when we differentiate we

can convert the derivatives with respect to 1 inside the integrals into derivatives

with respect to x. Taking account of the factor cos26 = (1 —sin#)(1 + sin#) in

front of the integrals. the result is

d’rclurn

drg

1 . Lodn,
= l+—(l+smH)/ ——fty+ (1 —sinf)x]dy
2 o dx
1 , Ldh o
+ —(l —sinf) —{t+ 2L — (1 +sinf)x]dx.
2 o dx
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The integrals can now be done. since they simply invert the differentiation by X~ The gauge transformation for a perturbation in linearized theory is
Evaluating the integrands at the end points of the integrals gives equation (2.20): "
(; fes p g g q hyp = hap — Eap — Epu.  (iiD) (7.15)
Ire : ; .
:j;um =1- %(1 +sinf)h. (f9) + sinBh_ [ty + (1 —sin0)L] Substituting (iii) into (i) and (ii), we obtain
0
+%(1 —sin@)h (19 + 2L). (i) = 117“”(/1(,5&\ +Enﬂal +h(7aﬁ\ +Enaﬂ\r huﬁnl)
2. If we Taylor-expand this equation in powers of L about L = 0, the leading (iiy = j "o hm ap t Eavap + hrru pu T Sa.apy — uxxnﬂ)'
term vanishes. and the first-order term is: If we find the difference between the two formulae above we get
dtretumn e 3 : ; 2 It .. \ /,l ' '
a = Lsin@(1 — sin@)h (to) + L(1 — sin@)i (19). Rype = (i) =) =Ty, 4 — Cogn = RJ;“

= L cos” Oh(1p).
Chapter 5

This is just what was required. The factor of cos” @ comes, as we saw above, from
the projection of the TT field on the x-coordinate direction. Exercise (e)
3. All the terms cancel and there is no effect on the return time.

The action principle is:
Exercise (b) S(R/—-g)
S :/ __\/—g hy dtx = _fG/“’,/~g11,l,, d*x=0. (i) (7.16)
This is part of the calculation in the previous example. All we need is the segment 88
where the light travels from the distant end to the centre: If we perform an infinitesimal coordinate transformation x #* — v/* + £/* without
otherwise varying the metric, then the action / must not change:

L
tou = to + %0052(9/ hyltp+ L — (1 4 sinf8)x]dx
0 0=461= / G/“’(E/t:l’ + &V —8 d*x

and so dtyy /dty is:

dt =2 e
d‘t’”‘ =14 $(1 —sin®)hy(tog — sinOL) — hy (to + L)]. / G S
0
This can be transformed in the following way:

81 = /(G‘“’E,,);M/Ag d*x — f(G’“';\,S“),/—g d*y = 0.
This question is frequently asked, but not by people who have done the

calculation. The answer is that the two effects occur in different gauges, not The first integral is a divergence and vanishes. The second, because of the
in the same one. So they cannot cancel. The apparent speed of light changes in arbitrariness of £,,, gives the Bianchi’s identities:
the TT gauge, but then the positions of the ends remain fixed, so that the effect is

Exercise (¢)

all in the coordinate speed. In a local Lorentz frame tied to one mass, the ends do G" =0,
move back and forth, but then the speed of light is invariant.
Exercise (f)
The t izati care WY — _pYY — e tktr—z) . L
Exercise (d) 7\:2(()’ Po)lan/auon components are h h Ae and i,
Age The energy flux is the negame of
To first order we have i i
1 o S T(_GW) = e /Iij II,' B — A A' k(r —
Ruﬂl Fp — l:,;;. (Ty-" ) 32n< ohijc) o (A2 + A2)(sin k(1 — 2))
T _ 1 . . /\’
luﬂ\ = 27 (Ilnﬂ(1|*+hnu B huﬂnl')- (1) (7.13) = 32 (A +A' ).
I‘(I;‘ ﬂ (hﬂl ap +hunlﬂ — Mgy nﬂ) (i) (714) i
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