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INTRODUCTION

Albert Einstein’s development of general
relativity in 1915 was one of the landmarks of
twentieth-century theoretical physics. Ein-
stein (1879-1955) had few experimental facts
to guide him in replacing Newtonian gravity
with a theory compatible with his earlier
theory of special relativity (see RELATIVITY,
SPECIAL). Using arguments of consistency,
simplicity, and aesthetics, Einstein arrived at
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a theory that has subsequently passed strin-
gent experimental tests, and that has pre-
dicted and explained a wide range of astro-
nomical phenomena that were completely
unknown at the time Einstein did his work.
Einstein's methodology had a great influ-
ence on the style of later attempts to simplify
and unify theories of high-energy physics.
Nevertheless, it is only since about 1970 that
developments in astronomy and in experimen-
tal physics have placed general relativity into



the mainstream of physics, part of the ex-
pected competence of any theoretical physi-
cist.

General relativity is now the accepted the-
ory of gravity. Although compatible with spe-
cial relativity, it is incompatible with quantum
theory. Presumably it will eventually be re-
placed by a quantum theory of gravity, and for
this reason there is considerable interest in
alternative theories of gravity and in testing
gravity to find small departures from the
classical theory. So far, all experiments and
observations have been consistent with gen-
eral relativity, many at a high level of preci-
sion.

This article discusses relativistic gravita-
tion from a nonmathematical point of view,
highlighting the underlying connections of
general relativity with the rest of physics
(including Newton's theory of gravity), exam-
ining the foundations of the theory (equiva-
lence principle, geometrical approach), and
emphasizing the observable and experimental
consequences of the theory. These include
astronomical phenomena, such as black holes,
gravitational lenses, and the Big Bang; high-
precision tests of the equivalence principle, of
solar-system effects, and of gravitational radi-
ation; and present efforts to make direct ob-
servations of gravitational waves from super-
nova explosions, colliding black holes and
neutron stars, and the Big Bang itself.

Most aspects of experimental gravity push
modern technology to its limits, and they are
therefore fruitful areas for the application
and development of new technology. Exam-
ples include the development of low-temper-
ature superconducting quantum-interference
device (SQUID) technology for space-based
tests of magnetogravity and for gravitational-
wave detectors; the routine employment of
corrections for the gravitational redshift in
the U.S. Air Force’s Global Positioning System
(GPS) navigation system; the application of
dilution refrigeration on a large scale to cool
gravitational-wave bar detectors weighing sev-
eral tons to temperatures approaching 10 mK;
and the use of high-power cw lasers and
ultralow-loss optical components in interfer-
ometric gravitational-wave detectors. Current
research into squeezed light for telecommu-
nications (see OPTICAL COMMUNICATIONS) was
stimulated in large part by theoretical work
on ways of making gravitational-wave detec-
tors more sensitive.
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The field of experimental relativity is an
active one; this article presents a snapshot of
current developments as of the time of its
completion, early in 1993.

1. GENERAL RELATIVITY AND
RELATIVISTIC GRAVITY

Einstein's theory of general relativity (GR)
is the accepted theory of gravity in modern
physics. In the Solar System and other regions
of weak gravitational fields, it differs little
from Newton’s theory of gravity; but when
gravity is strong enough to accelerate particles
to near the speed of light, its predictions are
very different. General relativity describes
gravity in geometrical terms; the curved ge-
ometry of space and time is an arena in which
all the rest of physics takes place. The theory
has become an everyday tool for astrophysi-
cists who model the most unusual phenomena
in astronomy: black holes, gravitational waves,
and the theory of cosmology are all features of
the theory that find application in astronomy.
For textbook introductions to general relativ-
ity, see Misner et al. (1973) or Schutz (1985).

1.1 Gravitation Theory: An Overview

1.1.1 Relativistic Gravity in Physics

1.1.1.1 Roots in Newtonian Gravity.
Newton’s laws of motion and his theory of
gravity had a revolutionary effect on science.
They explained the motions of the planets and
taught scientists that the heavenly bodies were
subject to the same laws as bodies on Earth.
Newton showed that masses exert forces on
each other that diminish with the square of
the distance between them. The success of
Newtonian gravity in the Solar System, as
well as in other stellar systems, is described in
the article ASTRONOMY.

In Newton's theory, the gravitational forces
between bodies act instantaneously across
any distance. Space is flat and time is univer-
sal: once synchronized, identical clocks keep
time with one another regardless of their state
of motion. It was not until the nineteenth
century that physicists had any experimental
evidence that challenged this idea about time
(the Michelson-Morley experiment). The first
evidence for the curvature of space came from
the 1919 eclipse expedition, described in Sec.
3.2.1 below.
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1.1.1.2 The Impact of Special Relativity:
Relativistic Gravity is Required. Einstein's
development of special relativity (SR) changed
notions of space and time (see RELATIVITY,
SPECIAL). Space, while still flat, merged with
time to form spacetime. Clocks in relative
motion would not remain synchronized, and
moving lengths would contract. Most impor-
tantly, no influences could travel faster than
light.

This limiting speed undermines Newton-
ian gravity: gravity cannot “act at a distance”
without a delay. In the solar system, where
light crosses an orbit in a small fraction of the
orbital period, the delay is small, and New-
ton’s theory works well. But the theory had to
be replaced.

It took Einstein another decade to find a
suitable replacement: general relativity. It in-
corporates SR as the limit of vanishing grav-
ity. It approaches Newton's theory as a limit
when gravity is the dominant force but is still
weak enough that the resulting motions are
much slower than light. But in other regimes
GR makes startlingly new predictions. Black
holes, gravitational waves, the Big Bang: Ein-
stein had no inkling of these when he devised
the theory, and it is remarkable that these
unforeseen consequences of the theory have
been verified by astronomical observations in
recent years.

It is interesting that Einstein was “beaten”
to the correct form of the equations of GR by
the great mathematician David Hilbert, whose
paper (Hilbert, 1915) was submitted five days
before Einstein presented his theory to the
Prussian Academy (Einstein, 1915). Einstein
is universally credited with the theory because
his physical insight into its foundations, such
as the equivalence principle and the geomet-
ric form of the theory, guided Hilbert as much
as they guided Einstein; and it was Einstein
who worked out the first physical conse-
quences of the equations.

Despite GR's success, it is not the only
possible relativistic generalization of Newton-
ian gravity. In many ways it is the simplest,
but many others exist. Most, like the Brans-
Dicke-Jordan class of theories {(Sec. 1.2.5),
introduce extra fields that have further gravi-
tational effects. Others depart from GR by
violating the equivalence principle (Sec.
1.2.2.2). The only way to decide which theory
is right in detail is to test them experimentally.
Testing relativistic gravity is one of the areas

in which modern technology has made possi-
ble great advances (Sec. 3).

1.1.1.3 The Impact of Quantum Mechan-
ics: Quantum Gravity is Required.  Al-
though GR reconciled the contradiction be-
tween SR and Newtonian gravity, it soon fell
afoul of a different inconsistency. The theory
of quantum mechanics matured only two
decades after the birth of GR, and now almost
all of physics is described by quantum theo-
ries; GR is the only major exception.

Much current research attempts to find an
appropriate quantum theory of gravity. So far
that effort, while producing many interesting
new ideas, has not reached its goal. Because
GR is a highly nonlinear theory, conventional
methods of quantizing theories have so far
failed to produce a consistent quantum theory
of gravity. The search is made more difficult
because of the paucity of experimental guid-
ance. If there are properties of the known
universe that give us decisive clues to quan-
tum gravity, we have not yet recognized them.

Dimensional analysis is interesting in this
respect. If quantum gravitational effects dom-
inate in some situation, then the laws must
involve the three fundamental constants of
nature, G (Newton'’s constant of gravitation),
h (Planck’s constant), and ¢ (the speed of
light). From these constants one can con-
struct numbers with any of the fundamental
dimensions, e.g.,

(he’/G)V?=49%10° 1=3.1x10%8 eV
(Planck energy); (1)

(hG/)V?=4.1%x10"3 g
(Planck time); (2)

(hG/)V?=1.4x10"m
(Planck length). (3)

These are so far from accessible experimental
domains that it is not surprising that we have
little experimental guidance for quantum grav-
ity.
It may well be, however, that effects related
to quantum gravity are important on other
scales, particularly if gravity is part of a grand
unified theory of physical interactions. (See
UNIFIED FIELD THEORIES.) There may be small
corrections to Einstein's equations that are



appropriate in a semiclassical limit, and these
might take the form of extra gravitational
fields. For this reason, there has been renewed
interest of late in alternative theories of grav-
ity and in the experimental limits that can be
placed on them.

The regime of quantum gravity may be far
from the experimental domain, but the theo-
retical motivation for finding the right theory
is very strong. Besides the need simply for
consistency with other theories, there is also
the striking fact that GR seems to predict its
own failure: many solutions, including appar-
ently all black-hole solutions, contain singu-
larities, which are places where GR fails to
describe the Universe in a consistent way.
(See Sec. 2.2.3.) The Big Bang begins with
such a singularity. There is a strong feeling
that quantum gravity will tell us what the
singularities really mean.

1.1.2 Where Relativistic Gravity Is Impor-
tant. Relativistic gravity is required where
the speeds produced by gravitational attrac-
tions approach the speed of light. A system
with mass M and overall size R will produce
velocities of order

Vself-gravity = (GM/R) vz (4

For example, the escape velocity from a spher-
ical body is v2Vgf gravitys and the velocity of a
planet in a circular orbit of radius R about a
star of mass M is exactly Vet gravity - A test for
the importance of relativistic effects is

®:=GM/Rc? <1 = gravity is nonrelativistic.
(5)

At the Sun’s surface, ®=2x10%; everywhere
else in the Solar System it is smaller. This
accounts for the accuracy of Newtonian grav-
ity. One needs relativistic gravity when & is
not small.

1.1.2.1 Compact Objects of High Density.
To make ® larger one can increase M and/or
decrease R. If a body of fixed mass shrinks in
size, relativistic effects become important when
the radius nears the gravitational radius R,:

R;:=2GM/c . (6)

The factor of 2 in this is conventional.

The gravitational radius of the Sun is about
3 km. Remarkably, stars do collapse to nearly
this size: perhaps 1% of all stars are neutron
stars (Sec. 2.4.1), with radii about 10 km. If a
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star actually reaches the gravitational radius,
then it collapses further to a black hole (Sec.
2.2).

The density p of a neutron star is enor-
mous. If we take M=1M, (astronomer’s no-
tation for the mass of the Sun) and R=10 km,
we have pys=5x 1017 kg m~3. This is compa-
rable to the density of a typical atomic nu-
cleus.

The critical density p. at which the object
reaches its gravitational radius depends only
on M:

pei=3c%/32aG3 M . (7

For the Sun it is about 2x 10" kg m~3, but
such enormous densities are not required for
bodies of larger mass. A cluster of some 10®
stars will collapse to a black hole if it reaches
the density of water. This seems to have
happened in the centers of galaxies (Sec.
2.4.2.2).

1.1.2.2 Cosmology: Relativistic Gravity
at Low Densities. A second interesting way
of reaching a situation where relativistic grav-
ity is required is by increasing the size of a
system of fixed density. As the mass increases,
the critical density drops. Eventually the crit-
ical density approaches the system’s fixed
density and the body becomes relativistic. For
most systems, this size would be unrealisti-
cally large. But there is one system that we can
make as large as we like: the Universe itself.

The average mass density of the Universe
(or at least of the piece we can see) is highly
uncertain, but an observational lower bound
is 10728 kg m~3. A sphere of radius 1.3x 10%
m, or about 10!! light years, would enclose
enough matter to give a relativistic gravita-
tional field. Such distances are the regime of
cosmology, the study of the Universe as a
whole (Sec. 2.4.5).

Being able to describe cosmology consis-
tently was in fact one of the great triumphs of
GR: Newtonian theory is highly ambiguous
when applied to infinite systems, whereas GR
provides well-defined models.

1.1.2.3 Small Relativistic Effects: Gravi-
tational Waves and Equations of Motion.
Relativistic gravity is essential for the descrip-
tion of compact objects and of cosmology, but
it can also be important for situations where
its effects make small but measurable changes
to Newtonian gravity. These are easiest to
measure when the new relativistic effect is
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absent from Newtonian gravity, so that its
signature is easy to see. Some effects we will
look at below include the following:

1. Gravitational radiation (Sec. 2.3) is adirect
consequence of the limitation on the speed
of propagation of gravitational influences:
oscillating motions of stars (say, in a bi-
nary system) produce an oscillating field
that moves through space, a wave in the
gravitational field. These can be directly
detected essentially by looking for time-
dependent gravitational fields. The weak-
ness of gravity makes this one of the great-
est technical challenges in physics today
(Sec. 4). Even when direct detection of the
waves is impossible, the back-reaction ef-
fects of their emission can sometimes be
observed. An example of great importance
is the binary pulsar PSR1913+416 (Sec.
3.3).

2. Gravity deflects light and produces observ-
able time delays, effects that can be directly
observed (Sec. 3.2.1). Light deflection also
leads to gravitational lensing of astronom-
ical images (Sec. 2.4.3).

3. Relativistic gravity produces small anoma-
lies in the motions of planets and satellites
of the Earth. We will discuss these in Secs.
3.2.2 and 3.4.1.

1.2 Fundamental Ideas and New Concepts
of General Relativity

1.2.1 The Incorporation of Newtonian
Gravity. Any theory of gravity must address
two issues: how gravity affects matter, and
how matter creates gravity. We review these
in the context of Newtonian gravity, and then
look at what new ideas Einstein brought to the
subject.

1.2.1.1 The Equivalence Principle: How
Gravity Affects Matter. Gravity affects ev-
erything: unlike any other force in nature, it
cannot be turned off or screened out. Galileo
showed that it affects all things in the same
way: all bodies fall with the same acceleration
in a gravitational field. For this reason, one
cannot experimentally distinguish a uniform
gravitational field from a uniform accelera-
tion of the experimenter. This equivalence
between gravity and acceleration is called the
weak equivalence principle (WEP).

1.2.1.2 Newton’s Field Equation: How
Matter Creates Gravity. Newton's law for
the gravitational force between two bodies of
masses w1, and m,, separated by a distance 7,

Fgm‘,=Gm1m2/r2 , (8)

incorporated the equivalence principle: the
acceleration of body 1, Fg,y/my, is indepen-
dent of m,. Newton arrived at the 1/7* law by
studying the motion of the Moon, but the
resulting law turned out to describe all the
known properties of the solar system. One of
its great triumphs was that it predicted that
planetary orbits should be ellipses with the
Sun at a focus.

Later development of Newton's theory
found that the simple law given by Eq. (8) was
in an inconvenient form to deal with compli-
cated bodies. The modern form introduces the
gravitational potential created by particle 1 as
the following integral over its density p,:

(l")d3 ’
¢1(r)=*cf’—’i——x. (9)

r—r'|

The force on particle 2 due to particle 1 is

F12=——m2V¢1(l‘) . (10)
The field ¢ solves the Poisson equation:
V2=4nGp . (11)

This very compact form for Newton's poten-
tial is usually known as Newron'’s field equa-
tion. It is the equation that must be general-
ized in any new theory of gravity.

1.2.1.3 Galileo's Principle of Relativity.
Galileo’s other seminal contribution to mod-
ern gravitational theory is what is now called
the principle of relativity. A simple statement
of the principle is that the (uniform) speed of
an experimenter does not affect the outcome
of an experiment. Galileo used the example of
a ship moving on a calm sea: if you stand on
the deck and drop a ball, it falls straight down
relative to you, not along a vertical line as
judged by an observer on the shore. For
modern travelers, the experience of flying in




an airplane at 900 km/h is more compelling;
unless one hits air turbulence or looks out the
window, it is impossible to tell how fast one is
going.

1.2.2 Basic Ingredients of General Rela-

tivity

1.2.2.1 Special Relativity.  Newtonian
gravity already incorporated the Galilean prin-
ciple of relativity, that the laws of physics
were independent of the state of motion of the
experimenter. In SR, this becomes formalized
into the idea of an observer, who is basically
an entire reference frame with an information-
gathering mechanism to determine what hap-
pens in experiments. We usually restrict our-
selves to so-called Lorentz observers, who
move at a uniform speed relative to one
another, and who normally use a rectangular
coordinate system for locating things in space.
Their time coordinate consists of a set of
synchronized clocks.

What Einstein added to Galileo’s principle
in order to get SR was the central role of the
speed of light ¢. In SR, the speed of light has
the status of a physical law: it is invariant
under a change of experimenter. If two dif-
ferent experimenters measure the speed of the
same beam of light, they will each measure
¢=2.998...x 108 m s~ !, regardless of their speed
relative to each other.

Special relativity made many conceptual
changes in physics, which in turn carry over
to any relativistic theory of gravity. Space and
time are no longer distinct, but form a four-
dimensional spacetime, whose points are called
events. The set of all events experienced by a
given particle through all its history is called
its world line. Different observers make dif-
ferent measurements of simultaneity, of dis-
tance (the Lorentz contraction), and of time
(time dilation), but there is still an invariant
measure of distance, called the spacetime
interval ds*:

ds? =dx* +dy? +d2 - Pde? . (12)

(There are many conventions for this defini-
tion. We adopt the one most commonly used
in GR.)

This is a generalization of the Pythagorean
theorem of Euclidean geometry. Just as in
Euclidean geometry, the physical length of the
hypotenuse of the right triangle is given by the
square root is the sum of the squares of the
sides, so also in SR is the square root of the
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interval a physical observable. For two events
separated by a positive (spacelike) interval, its
square root is the length of a physical ruler
that would stretch between the events in a
frame in which the events are simuitaneous.
This is called the proper distance between the
events. For two events separated by a negative
(timelike) interval, we define the proper time
dr by d?= —ds*/c*. The proper time is the
time elapsed on a clock that experiences both
events. Events separated by a zero (null or
lightlike) interval have zero proper time be-
tween them.

Because spacetime is four dimensional,
vectors have four components and are called
four-vectors. A simple four-vector is a tangent
vector to a timelike world line. All such tan-
gent vectors at a given event are parallel to
one another. A useful one, conventionally
called the four-velocity U, is defined to have
components

dt dx dy dz

( ) e
(Here we have introduced some conventions:
vector indices are written as superscripts, and
the time dimension is normally taken first.)
Because 7 is an invariant, the components of
U change in the same way as the coordinates
do when the observer changes. This is part of
the definition of a four-vector. Note that for
small velocities, the interval dr is nearly equal
to the time interval dt, and the spatial compo-
nents of U are nearly equal to the ordinary
velocity. At the other extreme, the four-
velocity of a null world line (e.g., that of a
photon) is undefined, because dr=0 along it.

Although SR is normally described in terms
of Lorentz observers with rectangular coordi-
nates, one can allow other coordinate systems
for both space and time. This complicates the
mathematics, such as the form of Eq. (12), but
is a price worth paying in particular circum-
stances, such as when dealing with an accel-
erated particle. What distinguishes SR from
GR is, fundamentally, that it is possible to find
a single Lorentz frame that covers all of
spacetime. The notion that Eq. (12) describes
the way rulers and clocks behave everywhere
in spacetime is very restrictive; in particular,
since the interval depends only on the coor-
dinate differences between events and not on
their absolute location (no explicit depen-
dence on x,y,z,t), it follows that SR can only
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hold in a spacetime that is perfectly uniform,
or homogeneous.

Special relativity also unifies energy and
momentum. Just as time is dilated under a
change of observer, so is energy increased.
Just as there is no invariant separation be-
tween space and time, so is there none be-
tween energy and momentum. They are parts
of a single vector in spacetime, the energy-
momentum four-vector, which equals the rest
mass of the particle times its four-velocity. Its
time component is the particle’s energy, and
its spatial components are the momentum.
For photons, the energy-momentum vector
exists, even though the four-velocity does not.
Since this vector is null, photons have energy
equal to ¢ times their momentum.

The introduction of the energy-momentum
vector was a great conceptual advance for
physics. In Newtonian mechanics, neither en-
ergy nor momentum had any observer inde-
pendence: both changed when the observer’s
velocity changed. In SR, there is a single
energy-momentum four-vector, unique to the
particle. Its time component (the energy) and
spatial components (momentum) do change,
but they are subsidiary to the unique four-
vector.

The identification of an invariant four-
vector is a way of thinking introduced by SR
that has great importance for GR. It is easy to
understand what it means for a scalar quan-
tity to be invariant, such as the interval in Eq.
(12): its value is the same for all observers. A
four-vector is likewise an invariant under
spacetime coordinate transformations, just as
the electric field vector E, for example, is
under spatial rotations; its orientation with
respect to other vectors is unchanged, even
though its components change. (Many au-
thors call such a thing a geometrical object.)

1.2.2.2 The Einstein Equivalence Princi-
ple. Special relativity requires a new formu-
lation of the equivalence principle. In the
Galilean principle, we traded off gravity against
acceleration. But what does acceleration mean
for light, whose speed cannot change? Fortu-
nately, there is a new way to state the princi-
ple that is equally at home in Galilean or
Einsteinian relativity.

The key is to focus on an experimenter who
falls freely in a uniform gravitational field.
This experimenter could, say, be in a space-
ship that is coasting through this field. Any
other particle that falls freely (has no non-

gravitational forces on it) will keep a constant
velocity with respect to the experimenter. This
can then also apply to light: if a photon passes
by the falling experimenter, it will maintain a
constant relative velocity, maintaining not
only its speed ¢ but also its direction.

More generally, any observer who works in
a freely falling reference frame in a uniform
gravitational field will not be able to deter-
mine that there is a gravitational field at all.
The results of any experimenters are just as in
SR. This is the Einstein equivalence principle
(EEP).

The EEP implies that SR can cope with
uniform gravitational fields: just use freely
falling observers and the effects of the fields
go away. More importantly, it also means that
SR is incompatible with nonuniform gravity,
which is what one has in every real situation.
Near the Earth, for example, the local accel-
eration of gravity changes from place to place.
Since SR requires a Lorentz frame to exist and
be rigid everywhere, it is not possible to
identify such a frame in the presence of real
gravity. Thus, SR cannot incorporate nonuni-
form gravity.

However, even in a nonuniform field, a
local freely falling observer sees no gravity
locally. Weightless astronauts feel no gravity,
even though gravity holds them in orbit around
the Earth. The EEP implies that gravity can
still be removed locally, even if not globally. It
is a powerful principle. Three of its conse-
quences are explored in the next three sec-
tions.

1.2.2.3 Tidal Forces Are the Real Gravity.
The EEP implies that all the real, irremovable
effects of gravity must therefore have to do
with the differences between nearby freely
falling observers. Any relativistic theory of
gravity must give special importance to these
differences between local gravitational accel-
erations.

These differences are called the tidal forces.
They get their name from the tides raised on
the Earth by the Moon and Sun. The Earth's
oceans bulge out on both the near side and the
far side with respect to the Moon. The near
side of the Earth wants to fall towards the
Moon slightly faster than the average, while
the far side falls slightly slower. The size of the
bulge is determined by the difference in the
acceleration of gravity due to the Moon across
the Earth. This gradient is called the tidal
force of the Moon. If we could not see the



Moon, we could still infer its existence from
observations of the tides: tidal forces are the
observer-independent gravitational forces.

1.2.2.4 Gravitational Redshift. Photons
are redshifted (lose energy) as they climb out
of a gravitational field. A simple thought ex-
periment shows how this follows from the
EEP. We send a photon up from the ground to
the top of a tower of height 4, where it is
detected by equipment at rest with respect to
the Earth. During the time %/c it takes the
photon to reach the top of the tower, a local
freely falling frame has acquired a speed
v=gh/c downwards, where g is the accelera-
tion of gravity on the surface of the Earth. In
this frame, the EEP tells us that the photon’s
frequency does not change, as measured by
this observer. Since the top of the tower is
rising at speed gh/c relative to this observer,
there is a Doppler redshift that produces a
lengthening of the wavelength 4 by a frac-
tional amount

A v gh

T2 (14)
The EEP implies that an experimenter who
remains at rest with respect to the Earth
measures this redshift of the photon as it
climbs upwards in the gravitational field. Since
the product gk is the change in the Newtonian
gravitational potential between the emitter
and the absorber, the redshift is just a func-
tion of the potential difference.

The gravitational redshift has another im-
portant interpretation. Since the frequency of
the photon is measured essentially by clocks
located at the emitting and absorbing loca-
tions, it is impossible for these clocks to
remain synchronized. During a given number
of oscillations of the photon'’s electromagnetic
field, the clock on the ground ticked less time
than the one higher up. The clock nearer the
ground runs more slowly. The gravitational
redshift implies a gravitational time dilation.
This is now routinely measured by the GPS of
satellites (Sec. 3.1.3).

1.2.2.5 Gravitational Deflection of Light.
Consider light passing a star. Since light must
travel on a straight line with respect to a local
freely falling observer, and since these observ-
ers all fall towards the center of the star, the
light must continually bend its direction of
travel in order to go on a straight line with
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respect to each observer it happens to pass.
We can estimate the size of the effect roughly
by the following argument, which uses New-
tonian concepts.

Let us consider just one freely falling ob-
server who is at rest with respect to a star of
mass M at the point where the light beam
makes its closest approach to the star as it
passes it by. Let this closest distance be R. The
observer’s acceleration towards the star is
g=GM/R?. Traveling at speed c, the photon
will experience most of its deflection in a time
of order R/c, the time it takes for the photon
to move significantly further away from the
star. During this time, the observer has ac-
quired a speed v=gR/c=GM/Rc perpendic-
ular to the motion of the photon. By the EEP,
the photon must also have acquired roughly
this same speed transverse to its original
direction. This means it changes its direction
of travel relative to the star by an angle
a=v/c=GM/Rc* rad.

The total deflection should be double this,
since the photon will experience the same
deflection in to the point of nearest approach
as going out. A more careful integration of
this effect along the whole of the light path
gives, coincidentally, exactly the same as our
rough estimate, a total Newtonian deflection
of 2GM/Rc?. This calculation was first per-
formed by Cavendish in 1784 and indepen-
dently by von Soldner in 1801, on the assump-
tion that light was a corpuscie moving at
speed c.

In relativistic gravity, however, there is an
added effect that increases the deflection. This
is, as we will see later, that space is curved
near the star, and so the actual natural path of
light as it passes the star, even if it were to go
at an infinite speed, is deflected. The result in
GR is that light is deflected by a net angle of

a=4GM/Rc?*, (15)

double the Newtonian result.

For a light beam passing the Sun, just
grazing its surface, the effect is small: a is less
than 1.75 seconds of arc. This is measurable,
as described in Sec. 3.2.1.

More dramatically, if the gravitational field
is that of a faint cluster of galaxies, and the
source of the light is a more distant but
brighter quasar, then light from the quasar
might reach the Earth by two or more differ-
ent routes, giving separate images of the source
separated by angles that are easy to resolve.
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This is called gravitational lensing. By study-
ing the distribution and relative brightness of
multiple images, and the shape of distorted
arclike images of a distant quasar, produced
by an intervening galaxy or galactic cluster,
astronomers can infer the distribution of mass
in the cluster, particularly that of dark matter,
which produces gravity, but not light. Indeed,
one astronomer has dubbed this method grav-
itational tomography. By looking for differ-
ences in the arrival time of temporal features
in the quasar signal (such as flare-ups) in the
different images, a result of the light having
traveled different path lengths, it may be
possible to determine the distance of the
lensed quasars and thereby obtain cosmolog-
ical information. This is described more fully
in Sec. 2.4.3.

1.2.3 General Relativity: Gravity as Geom-
etry

1.2.3.1 Why Gravity Is Geometrical. The
EEP tells us that the effect of gravity on a body
does not depend on its internal properties. In
a given gravitational field, a freely falling
body will follow a straight line with respect to
local freely falling observers. This means that
its trajectory depends only on its initial posi-
tion and velocity. Any body with the same
initial position and velocity will follow the
identical trajectory.

Einstein reasoned that the trajectories were
more a property of the gravitational field itself
than of its interaction with specific bodies.
Gravity is not a force like electromagnetism
or the strong interactions. It is a property of
space and time.

It is natural to try to relate gravity to
curvature. If the trajectories of freely falling
bodies—bodies on which no nongravitational
forces are acting—are curved lines, then maybe
there is a natural way to associate these lines
with the locally straight lines, called geodesics,
of a curved space. This is exactly what Ein-
stein did, but he had to include the curvature
of space and time together. Consider a curved
surface, such as that of an apple. By following
as straight a line as possible, one traces out a
curve that meanders over the surface. This
curve is determined by one’s initial position
and direction. It is not determined, however,
by the speed with which one travels along the
apple. Since gravitational trajectories depend
not only upon direction but also upon speed,

they cannot be modeled by the curvature of
space alone.

In a curved four-dimensional spacetime,
the natural trajectories (the geodesics) will,
by analogy, be determined by the initial posi-
tion and the initial direction of the tangent
vector, but not by the length of the tangent.
Now, as we saw in our discussion of SR in Sec.
1.2.2.1, the four-velocity is a tangent vector to
a particle’s world line. Its components do
contain the information about the ordinary
velocity of the particle. For example, the ratio
of the x component to the time component is
(dx/dr)/(dt/dr)=dx/dt=v".Since any other
tangent is a multiple of U, this ratio will be the
same for any tangent: it depends only on the
direction and not the length of the tangent
four-vector. Therefore, the information needed
to determine a geodesic in a curved spacetime
is exactly that needed to determine a gravita-
tional trajectory: the position and ordinary
velocity of the particle.

In this way, the EEP leads to the represen-
tation of gravity by the curvature of space-
time.

1.2.3.2 The Metric of Gravity. Curved
spaces usually have no natural coordinate
system. Special coordinates, such as Lorentz
observers, do not exist in nonuniform gravi-
tational fields, as we have seen. So we must
admit arbitrary spacetime coordinate systems
{x*, @=0,1,2,3} and we do not necessarily
attach any physical significance to particular
coordinate values or intervals. (Another con-
vention here: we use Greek letters for space-
time indices, and the index 0 stands for the
coordinate t.) Physical significance attaches
only to things that can be measured. Coordi-
nates are usually matters only of definition,
not of independent measurement.

The intrinsic geometry of a curved space-
time is completely defined if one gives the
distances between points (events, in our case).
One only needs local distances, which may be
integrated up along curves in the spacetime to
give global ones. The distance information is
contained in the metric tensor g,g:

3 3
ds? = z 2 gaﬂdx"d.xﬁ. (16)

a=0 B=0

This equation gives a prescription for calcu-
lating the invariant length ds” between nearby
events separated by coordinate intervals dx®
in terms of the given set of functions g.g. The




interval is an invariant; this property deter-
mines how the components g,5 change when
the coordinates change. The term “tensor”
refers to the fact that the 4x4 matrix of
components must transform this way. (See
GEOMETRICAL METHODS for more information
on tensors.)

The metric tensor of SR is conventionally
called 7,5. By comparing Eq. (12) with Eq.
(16), we find ngy=—c?, Nax=Nyy=Nz=+1,
and all other components of 7,4 vanish. The
spacetime of SR is called Minkowski space-
time, and the metric tensor 7,5 is called the
Minkowski metric.

The metric contains observable informa-
tion. For example, the proper time on a clock
that stays at fixed spatial coordinates (dx=dy
=dz=0 on its world line) is related to the
coordinate time interval dt by dr? = —gg,dt?/
2. Given two clocks at different locations .«
and #, then the ratio goo()/goo( ) deter-
mines the time dilation between them.

We saw in Newtonian gravity that the
gravitational time dilation depends on the
difference between the potentials at the two
points (Sec. 1.2.2.4). Since Newtonian theory
only applies when gravity is weak and the
metric is close to the Minkowski form, we
have that ggo=—(1+¢€)c? where € is small.
Then the ratio of the two values of gy depends
to first order on the difference between the
values of €. Therefore, there is a close connec-
tion between ¢ and e. If one follows the
algebra through, one finds that, for a given
Newtonian-type field, the metric needs to have
goo= — (1+2¢/c%) 2. This establishes the role
of the metric tensor in relativistic gravity: it is
the analog of the Newtonian potential.

The metric has some simple properties that
one can infer from Eq. (16). First, since
exchanging dx® and dx® in this equation can
be accomplished by relabeling the indices,
there cannot be any difference between g4
and gg, : the 4X4 matrix of components g is
symmetric. This means there are 10 indepen-
dent components. Second, since one has com-
plete freedom to change the coordinates, there
are essentially four degrees of arbitrariness
among the 10 components: a given curved
spacetime can be described by a variety of
metric tensors, all related by coordinate trans-
formations. There are essentially 10—4=6
geometrically independent functions that one
can choose in order to determine the space-
time.
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1.2.3.3 Local Flatness of Spacetime and
the Local Freely Falling Frames. The
freely falling observers are a special class of
coordinate systems that make spacetime look
as much like SR as possible in the region of
one event. This idea is very similar to the
observation that any smooth surface is nearly
flat if we look at only a small region. The local
flatness theorem states that we can choose any
point as the origin of a locally flat (or in
spacetime, freely falling) coordinate system
and adjust the coordinates in such a way that
if we make a Taylor expansion of the metric
components about this point, the first depar-
ture from flatness will be at second order in
the coordinates. This means that the coordi-
nates can be chosen to make the first deriva-
tives of the metric vanish at any desired point.
Since the acceleration of gravity also vanishes
in a freely falling frame, the local flatness
theorem suggests that the acceleration of grav-
ity resides in the first derivatives of the metric
tensor components at the point. This is consis-
tent with the relation we saw earlier between
the metric and the Newtonian potential.

1.2.3.4 Curvature and Tidal Forces. The
curvature of the spacetime is a function of the
metric tensor. The relation is not immediately
straightforward, since even in the flat
(Minkowski) spacetime of SR, one can choose
a funny coordinate system and make the
metric components look very complicated.
The local flatness theorem tells us that the
curvature is not defined by the first derivatives
of the metric, since these can be made to
vanish. Therefore, the curvature information
must reside in the second derivatives of the
metric components. Now, if the acceleration
of gravity is given by the first derivatives, then
the true gravitational forces—the tidal forces—
are given by the gradients of the acceleration
of gravity, which are the second derivatives of
the metric. Therefore, we conclude that the
tidal forces are represented mathematically by
the curvature of spacetime.

The fundamental measure of curvature is
the Riemann curvature tensor, denoted by
R%,p,. Itisan object with four indices, essen-
tially because it must be a function of the
second derivatives of the metric, which have
four indices: #g,p/dx#dx". There are a num-
ber of symmetries among the indices, so that,
among its 4*=256 components, only 20 are
algebraically independent. This is far fewer
than the number of independent second de
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rivatives of the metric tensor components
(102 =100) because most of the second deriv-
atives can be adjusted or even set equal to zero
by appropriate coordinate choices. The 20
Riemann components represent the irreduc-
ible, coordinate-free geometrical information
about the curvature. It is a theorem that the
spacetime is flat (Minkowskian) if and only if
the Riemann tensor vanishes everywhere.

One can derive from this tensor another
called the Ricci curvature tensor R° by taking
a trace. (It turns out that there is only one
independent trace of the Riemann tensor, so
that the Ricci tensor is essentially unique).
The Ricci tensor is a symmetric tensor, with
10 independent components. It has two indi-
ces. One can likewise take its trace to get an
object with no indices: this is called the Ricci
scalar R.

A further two-index tensor is the so-called
Einstein tensor G®, which is formed by sub-
tracting one-half of the product of the Ricci
scalar and the metric tensor from the Ricci
tensor. Its derivatives in a locally flat coordi-
nate system satisfy a remarkable identity,
called the Bianchi identity: for any metric, the
Einstein tensor is divergence-free. (The diver-
gence of a symmetric two-index tensor is
defined as the trace of its first derivative, the
trace being taken on the derivative index and
one of the tensor indices.) This identity is
central to Einstein’s theory of gravity, as we
will see in the next section. Notice also that
there is one other divergence-free two-index
tensor: the metric tensor itself, whose first
derivatives all vanish in a locally flat coordi-
nate system.

1.2.4 Sources of Gravity: How Matter
Creates the Geometry

1.2.4.1 The Stress-Energy Tensor. In
Newtonian gravity, the source of gravity is
simple: the density of mass. It creates the field
(the Newtonian potential ¢) through New-
ton’s field equation, Eq. (11). Because of the
interconvertibility of mass and energy, we
would expect the density of total mass-energy
to be the source. This is, however, incompat-
ible with SR for two reasons. First, in SR,
mass is a form of energy, and energy is not a
scalar: it is only one component of the energy-
momentum four-vector. Second, in a relativ-
istic theory, the notion of a density is not
frame independent. The Lorentz contraction

means that volumes and therefore densities
depend on the observer.

These two transformations of mass-energy
density (one acting on mass—energy, the other
on density) mean that the mass—energy den-
sity is actually only one component of a
two-index tensor. The other components of
this tensor include the momentum density
and the stress tensor. Just as SR links momen-
tum and energy in a single four-vector, so too
does it link stress and energy-momentum
density into a single four-tensor with two
indices. The unified tensor is called the stress—
energy tensor. It is denoted by T, The mass
density is measured by T, the density of
x-momentum by 7% and the stresses by the
spatial components.

Energy and momentum are conserved in
ordinary physics, and by the EEP this must be
true in a local freely falling frame. For energy,
for example, the conservation law says that
the rate of change of energy in any volume
equals the total net rate at which energy enters
the volume across its sides. This implies that
the (four-)divergence of the stress-energy ten-
sor vanishes.

If mass density creates gravity in Newton’s
theory, then it is natural to expect the stress—
energy tensor to be the source for a relativistic
theory of gravity. A simple counting argument
reinforces this idea. The stress—energy tensor
can be shown to be symmetric on its two
indices, so it has 10 independent components.
This matches the 10 components of the metric
tensor that describe the gravitational field: 10
un}a(nowns g.5 determined by the 10 sources
T,

However, this simple argument is too hasty:
we saw above that there are effectively only
six components of the metric that can be
determined by the physics, since there are
four degrees of coordinate freedom. Would
such a theory be overdetermined? The answer
is no, because there are as well four identities
among the components of the stress-energy
tensor: the laws of conservation of energy and
momentum. So the counting is indeed encour-
aging: there are as many independent “sources”
of gravity as there are “fields.”

1.2.4.2 Einstein’s Field Equations. To
turn the counting argument into a full theory
of gravity, Einstein had to find the appropriate
differential equations that would allow the
fields to be found in terms of the sources. He
made what seemed to be the simplest choice.



We shall see below that there are more com-
plicated alternatives.

One wants a generalization of Eq. (11),
which has the form of a differential equation
involving second derivatives of the potential
set equal to the mass density as a source. The
analog of the potential in a geometrical theory
is, as we have seen, the metric tensor. So we
need an equation involving second derivatives
of the metric. The natural tensorial object
involving second derivatives is the curvature
tensor. If we take the hint of the preceding
section and assume that the source will be the
stress—energy tensor, then what we want is to
equate the stress—energy tensor to a two-index
curvature tensor that, like the stress—energy
tensor, is divergenceless. As we pointed out
earlier, there is such a tensor: the Einstein
tensor. Einstein’s choice was, then, to adopt
the following form of the field equations:

Einstein tensor=«X stress—energy tensor ,

where « is a constant of proportionality that is
not fixed by the argument so far.

We fix k by demanding that the solution of
the field equations when the density is low
and the velocities of the sources are small
should have geodesics that are the paths of
freely falling particles in the Newtonian grav-
itational field of the same sources. This gives
k=87G/c*. In mathematical notation, the field
equations of GR are

G =87G/ T . (17)

These equations are determined only by
the correspondence with Newtonian gravity:
there are no free parameters. Therefore, ex-
perimental constraints on GR can be very
strict. One new consequence of Einstein’s field
equations after another has been calculated:
the perihelion shift of Mercury's orbit (Sec.
2.4.4); the gravitational deflection of light
(Sec. 2.4.3); the energy radiated in gravita-
tional waves by a binary star system (Sec.
2.4.4); the existence of black holes (Sec.2.4.2);
the Big Bang and its consequences (Sec. 2.4.5).
Each one could have proved the undoing of
the theory. Yet in each case, there has been
excellent quantitative agreement with the pre-
dictions of GR.

Because the Einstein equations are exceed-
ingly nonlinear in the metric tensor, it has not
been easy to find solutions of the field equa-
tions. Some exact solutions are known, which
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fortunately correspond to some of the most
interesting simple cases: the field outside an
isolated neutron star, the field of a black hole,
and the metric of the homogeneous universe
as a whole. In other cases, approximations
can be made to good effect, such as when
looking for small corrections to Newtonian
gravity or for gravitational waves. And increas-
ingly, as computers improve, relativists are
attempting to solve more complicated systems
numerically.

1.2.5 Other Theories of Gravity. General
relativity is not the only geometrical theory of
gravity possible. By the Einstein equivalence
principle (EEP), the spacetime metric is the
only field that directly affects geodesics or the
behavior of stress—energy. Nevertheless, there
could be other gravitational fields in the uni-
verse. Most alternative metric theories intro-
duce such auxiliary fields; they could be scalar
fields, vector fields, tensor fields, and so on.
These fields may mediate the manner in which
matter generates the spacetime metric, but
they do not act back directly on the matter.
Theories of gravity in which auxiliary fields
act directly on matter are called nonmetric
theories and typically violate the EEP. Exper-
imental tests of that principle, described in
Sec. 3.1, place tight constraints on such theo-
ries.

The prototypical example of an alternative
metric theory of gravity is the Brans-Dicke
theory, in which a scalar field exists in addi-
tion to the metric. This field plays the role of
allowing the gravitational “constant” to vary
in space and time. The differences in the
predictions for observable effects between
Brans-Dicke theory and GR depend on how
strongly coupled the scalar field is to the
metric—the weaker the coupling, the smaller
the differences.

When one focuses on the weak-field, slow-
motion regime that is appropriate to the Solar
System (the so-called post-Newtonian limit
because it includes the first corrections to
Newtonian gravity) one finds that, in a broad
class of metric theories, the metric looks the
same, except for the numerical values of
coeflicients in front of various terms. A frame-
work for studying metric theories in general
has been developed, called the parametrized
post-Newtonian (PPN) framework, in which
parameters take the place of the numerical
coefficients, parameters whose values depend
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on the theory under study. We shall encounter
the use of some of these parameters in Sec.
3.2.1.

1.2.6 A Cosmological Term in Einstein’s
Equations.  When we derived the form of
Einstein's equations, Eq. (17) above, we rea-
soned that we needed a curvature tensor that
had two indices and was divergenceless, and
so we followed Einstein and used the Einstein
tensor. But we remarked in Sec. 1.2.3.4 that
there is another divergenceless tensor, the
metric tensor itself. So it is possible to amend
Einstein’s equations to the following form:

Einstein tensor+ A X metric tensor

=k X stress—energy tensor, (18)

which satisfies all the properties we needed
for consistency and which will reduce to
Newton's field equation in the appropriate
limit provided the constant A is sufficiently
small. Einstein introduced this modification
into his theory when he found that his original
equations did not admit static cosmologies,
because the astronomical prejudices of his
day held that the Universe was static and
unchanging. Einstein found that he could
choose a value of A that would indeed allow a
static cosmological solution. He called A the
cosmological constant.

There was no experimental evidence for A
in Einstein’s time, and when the expansion of
the Universe was established a decade or so
later, Einstein disavowed the cosmological
term, calling it one of his biggest blunders.
This is understandable: had he stuck to the
original form of the equations, he would have
predicted the expansion of the Universe and
the associated Big Bang long before there was
astronomical evidence for it.

Today there is a different view of A. If we
carry the cosmological term over to the right-
hand side of the equation, it then plays the
role of an effective stress—energy tensor of the
form

T = — Agag. (19)

Because g, <0, this means that A is an
effective energy density, constant everywhere.
Provided A is much smaller than the mean
energy density of the solar system, its effects
will not have been noticeable. The values
discussed today are much smaller. Interest-
ingly, since the stresses are given by the

spatial parts of Eq. (19), we find that the
effective pressure is — A: if the energy density
is positive, the pressure is negative.

Strange as this may look for ordinary mat-
ter, it seems almost inevitable in some schemes
for quantizing gravity. When a classical field
is quantized, there are renormalization terms
that affect the residual energy density of the
field (see Birrell and Davies, 1982). If one
quantizes the vacuum gravitational field, the
stress—energy tensor that survives renormal-
ization will have to be proportional to the
metric tensor, since there are no other tensors
around, and no preferred frames. (This effect
has an electromagnetic analog, called the
Casimir effect.) It could happen, of course,
that the cosmological term turns out to be
zero; but there is no reason for this to be
inevitable, and there is an expectation among
many cosmologists today that the term may
be comparable to the smoothed-out energy
density of the present Universe.

2. SOME CONSEQUENCES OF
EINSTEIN'S FIELD EQUATIONS

2.1 Momentum and Stress Also Make
Gravity

The fact that all components of the stress—
energy tensor contribute to gravity has impor-
tant consequences.

2.1.1 Gravitomagnetism. Inthe Solar Sys-
tem, Einstein's equations will give the New-
tonian potential in g,,, using the mass density
(zt component of the stress-energy tensor) as
the source (Sec. 1.2.3.2). But the momentum
density is also a source, so that moving bodies
create new parts of the gravitational field.
These couple to the velocities of particles, so
they are called gravitomagnetic effects.

An important example is rotation. The an-
gular momentum density of the Earth gener-
ates a metric term whose value is proportional
to the angular momentum and which falls off
as 1/72, just as the electromagnetic potential
of a rotating conductor does.

This term has a number of consequences. A
free particle falling straight down will acquire
a small motion in the same sense as the
Earth’s rotation. This is sometimes called the
“dragging of inertial frames” or the Lense-
Thirring effect, after its discovers. For the




same reason, the orbital period of a satellite
orbiting from west to east is slightly less than
that of one going in the opposite direction. A
spinning gyroscope in orbit will couple to this
effect in much the same way that the spin of
an electron in an atom couples to the mag-
netic moment of the nucleus, producing a
precession of the spin.

These effects are weak compared to the
dominant Newtonian orbital effects and hence
hard to measure, for two reasons. First, the
angular momentum density is small com-
pared to the mass density, basically by a factor
of v/c, which for the Earth’s rotational mo-
tion is about 1.5%x 107% the gravitomagnetic
metric terms are therefore smaller than ¢ by
this factor. But the effect is smaller still be-
cause, like magnetic effects, it only couples to
the speed of the orbiting body, not simply to
its mass. This introduces yet another factor of
v/c. Such effects that are predicted by Ein-
stein’s equations but are of order (v/c)?
smaller than the Newtonian effects are called
post-Newtonian effects. Measuring them is
one way of testing the validity of GR (Sec.
3.4.1).

2.1.2 Gravitational Collapse. Inthe same
way, the stresses inside a body also make a
contribution to gravity. These have an even
smaller effect in nonrelativistic bodies like the
Earth, being down by order (v/¢)* But in a
relativistic star, like the neutron stars we will
describe in Sec. 2.4.1 below, they can be
important. The dominant stress inside a star is
the ordinary pressure of the fluid. In a neu-
tron star, pressure and density are compara-
ble, in the sense that p/c?~p. Such a large
pressure has the effect of increasing the effec-
tive gravitational field inside the star. The
result in GR is that there is actually a limit on
how compact and relativistic a star can be,
regardless of what it is made of: no star of
mass M and radius R can have GM/Rc?
>2.25.

This leads to a very interesting conclusion.
Suppose a star is right at the limiting size, and
then it is perturbed, to make its radius mar-
ginally smaller. It cannot restore itself to
equilibrium, and so it will collapse. Once it
begins to collapse, it cannot stabilize itself at a
smaller radius, for this would violate the
inequality. This is called gravitational col-
lapse: the unstoppable collapse of a star. The
result of such collapse is a black hole.
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2.2 Black-Hole Theory

2.2.1 Black Holes in the Eighteenth Cen-
tury. Probably the most dramatic predic-
tion of Einstein's equations is the existence of
black holes. It may seem surprising, therefore,
that essentially the same concept was dis-
cussed in the context of Newtonian gravity
two centuries ago!

Black holes are regions of space in which
gravity is so strong that light is trapped. The
boundary of this region is the korizon: no light
emitted from inside the horizon can reach the
outside. The idea that light could be trapped
by gravity occurred to eighteenth-century phys-
icists as well. The first to suggest it was the
amateur scientist John Michell (1724-1793),
who in 1784 reasoned that, since light traveled
at a finite speed, it would in principle be
possible for an astronomical body to exist
whose escape velocity was greater than the
speed of light. Similar conclusions were drawn
by Pierre Laplace in 1796.

Since the escape velocity is (2GM/ R)Y'\? it
follows that a body will trap light in Newton-
ian gravity if 2GM/Rc?> 1. This is, remark-
ably, exactly the condition for the formation
of a black hole in Einstein's theory as well.
[Michell's suggestion was no fluke of specula-
tion: it was Michell who suggested to his
friend Henry Cavendish (1731-1810) that Cav-
endish should perform the famous experi-
ment to measure the value of G that now bears
his name.]

In the Newtonian picture, the trapping star
is dark, because light cannot reach us from it,
but its gravitational field is unchanged, and it
can be discovered and identified by its gravi-
tational effects. The same is true for the
relativistic black hole.

2.2.2 Black Holes in General Relativity.
The modifications needed to turn the Newton-
ian picture into a black hole in GR arise
because of the special role played by the speed
of light in relativity. In the Newtonian picture,
light would still leave the surface of the trap-
ping body, but it would slow down progres-
sively and eventually turn around and fall
back to the surface. Light emitted somewhat
further out would escape, passing at some
point the previous photon where it turns
around. In relativity, all photons travel at the
same speed. If a photon leaves the surface of
the body, it cannot turn around later while
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other photons pass it, still moving outwards.
Instead, there is a horizon: any photons out-
side the horizon can escape to infinity, while
:hose inside are trapped.

Moreover, in the Newtonian picture, an
interested astronaut could still in principle
explore the dark star, getting away on a
sufficiently powerful rocket. In relativity, noth-
ing can go faster than light, so anyone or
anything that crosses inside the horizon is
trapped there forever.

There are no markers at the horizon, no
signs saying “Point of no return”. The horizon
is defined as the boundary between what is
trapped and what is not, but this boundary
may not be known until the whole dynamics
of the collapse that formed the black hole has
occurred. The horizon is generally a place in
the vacuum gravitational field, locally flat, in
every way locally unremarkable.

2.2.3 Singularities Inside the Hole. We
saw in Sec. 2.1.2 that a star with a radius
smaller than 9/8 of the horizon size of a black
hole of the same mass as the star cannot
support itself against gravity. This means that
the mass that has collapsed to form the black
hole cannot find an equilibrium radius inside
the hole: the material must continue to move
inwards. The details of what happens to it are
conjectural at present, but there is a set of
singularity theorems, proved within GR by the
mathematical physicists Roger Penrose and
Stephen Hawking (see Hawking and Ellis,
1973), that show that matter obeying rather
weak conditions (such as that its energy den-
sity should be positive) will always generate
some sort of singularity inside the horizon.
The nature of this singularity is, in general,
poorly understood. Quantizing gravity (or even
the matter fields) may change or eliminate the
singularity, but it is hard to see how quantum
effects could get outside the horizon and change
the external aspect of the hole of macroscopic
size.

It is also not clear whether gravitational
collapse can lead to a singularity that is not
inside the horizon. Such an event would prove
much more damaging to notions of causality:
singularities inside the horizon are confined,
but those outside might make unpredictable
effects on their surroundings. Such naked
singularities are an active subject of research
today. Penrose has formulated the cosmic
censorship hypothesis, which asserts that na-

ked singularities do not form. There is no
proof of it at present.

2.2.4 Black Holes Have No Hair. Al-
though the inside of a black hole mayv be
messy, the external gravitational field is ex-
traordinarily simple. A series of “no hair”
theorems by Hawking, Brandon Carter, and
others (see Wald, 1984) has shown that black
holes, once formed, quickly radiate away ev-
erything possible and settle into a stationary
state characterized entirely by values of the
conventional conserved quantities of physics:
total energy (the mass of the hole), total
angular momentum, electric charge, and mag-
netic monopole moment (should monopoles
exist). These properties of the hole are all
measurable externally: the mass from orbital
periods of satellites, the angular momentum
from the Lense-Thirring effect (Sec. 2.1.1),
and the charge from electrostatic attraction.

Higher multiple moments of the electro-
magnetic or gravitational field that might
have characterized the collapsing star are
carried away from the hole in a burst of
radiation that accompanies its formation. The
total number of baryons and leptons that
formed the hole is not measurable from out-
side, because the nuclear forces have short
range.

The metric of the spherical uncharged black
hole was the first exact solution found for
Einstein's equations, derived by Karl Schwarz-
schild (1873-1916) in 1916. It was not com-
pletely understood until the 1960s, after work
by Martin Kruskal, Peter Szekeres, John
Wheeler, and others. (See Misner et al., 1973,
for references.) The rotating hole is described
by the Kerr metric. The term “black hole” was
coined by Wheeler in the 1960s.

2.2.5 Black-Hole Thermodynamics.
Forming a black hole entails a considerable
loss of information: by the “no hair” theo-
rems, most of what goes down the hole is lost
forever. It is not surprising, then, that one can
assign an entropy to the black hole. In fact, the
whole of thermodynamics can be generalized
to include black holes, and black-hole thermo-
dynamics is one of the most beautiful parts of
black hole theory (see Thorne et al., 1986).
The entropy of the hole is proportional to the
surface area of its horizon. A theorem of
Hawking establishes that this area cannot
decrease with time (Hawking and Ellis, 1973).



There is a corresponding temperature, which
is proportional to the surface gravity of the
hole.

This temperature is the most remarkable
black-hole property of all. In black-hole ther-
modynamics, it plays a formal role in deter-
mining the energy (mass) change associated
with a change in the entropy (surface area) of
a black hole: dM=TdS. But in ordinary ther-
modynamics, objects also exhibit their tem-
perature by emitting blackbody radiation. De-
spite the fact that black holes trap all photons,
they also give off a thermal radiation whose
spectrum is exactly that of a blackbody of the
thermodynamic temperature. This is called
the Hawking radiation (Hawking, 1974).

Hawking’s demonstration of this radiation
relies on quantum mechanics, but it requires
only the quantum field theory of the electro-
magnetic field near the hole, not any quantum
theory of gravity. The Hawking temperature
is inversely proportional to the mass of the
hole, and for a hole that has the mass of the
Sun, it is entirely negligible. This means that
the radiation is likely to be exceedingly diffi-
cult to observe. Its existence is accepted, how-
ever, partly because well-established tech-
niques of quantum field theory predict it, and
partly because it allows black-hole thermody-
namics to fit so beautifully into standard
thermodynamics.

Black holes have other macroscopic prop-
erties as well (Thorne et al, 1986). For exam-
ple, the horizon has a finite electrical conduc-
tivity. This comes essentially from the “no
hair” theorems as well: if a charge is lowered
near the horizon, it will have to look from a
distance as if it is smeared uniformly over the
horizon; otherwise there would be an electric
dipole moment. The horizon therefore effec-
tively conducts charge along its surface.

2.2.6 Wormholes. The simplest black-
hole solution, the one found by Schwarz-
schild, describes a stationary black hole, i.e.,
one that has existed for all time. It has an
interesting topology: it actually involves rwo
“exterior” spaces connected by a throat, or
wormhole. Although the gravitational field
outside the hole in both exterior regions is
static, the throat is not. It opens up to a
maximum size and then closes off in a finite
proper time. In fact, it closes off so fast that a
particle falling into the hole would not have
time to get through it: the wormhole is not a
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channel for communication between the two
exteriors. Moreover, a black hole formed by
the collapse of a star has a simpler topology,
with no wormhole, and only one exterior
region.

Nevertheless, wormholes have intriguing
properties. If physicists could manipulate quan-
tum fields to create and maintain a region of
negative energy (as happens in the Casimir
effect referred to in Sec. 1.2.6), then they
could in principle maintain a wormhole open
long enough for a particle to travel through it.
If the two ends of the wormhole are open in
the same space, then a particle could circle
through the throat many times. If, in addition,
the ends of the wormhole were made to move
relative to one another, then, as Thorne (1991)
has shown, the time dilation effect of special
relativity could be arranged to allow the par-
ticle to travel backwards in time.

The realization that GR allows such behav-
ior, even under what present technology sug-
gests are implausible conditions, has created
considerable interest. If such closed timelike
curves exist, they raise questions about cau-
sality and especially the consistency of initial-
value formulations of the law of physics, and
they have to be taken into account in formu-
lations of quantum gravity. The study of these
rather exotic conditions may in the future
shed new light on fundamental physics.

2.3 Gravitational Waves

2.3.1 The Necessity of Gravitational Waves.
Gravitational waves (GWSs) are present in any
relativistic theory of gravity. When fields are
weak and motions slow, the relativistic equa-
tions must reduce to Newton’s field equation,
Eq. (11). This involves the differential opera-
tor V2. If fields are weak but motions may be
rapid, then one expects the theory to be rela-
tivistically invariant. The operator V> will be
replaced by its relativistic generalization

2
—;2 ¥+V .

This is the wave operator, with the character-
istic wave speed c¢. We should expect wave
effects in relativistic gravity, propagating at
the speed of light. Different theories of gravity
will differ in the details of the waves, but GWs
will be present in all of them.



320 Gravitation and General Relativity

In GR, the waves bear a striking mathemat-
ical resemblance to electromagnetic waves.
They are transverse, have two independent
polarizations, and fall off in amplitude as 1/7.
Electromagnetic waves do not carry mono-
pole radiation: for slow-motion sources they
are dominated by dipole emission. Gravita-
tional waves in Einstein's theory do not carry
either monopole or dipole radiation, but are
dominated by quadrupole emission (Sec.
2.3.3).

2.3.2 The Interaction of Gravitational
Waves with Matter. Waves can only be
detected through their time-dependent tidal
forces. If a wave passes a single particle, one
can always choose comoving coordinates, so
that the particle remains at a fixed coordinate
position. By the EEP, the particle will not feel
anything locally from the wave: bowls of soup
will not spill, pocket calculators will work
normally. The particle will only be able to
detect the wave if it looks at other things
sufficiently far away for the tidal effects of
gravity to be noticeable.

The absence of single-particle effects of
GWs led to much misunderstanding in the
early development of GR. The intuition devel-
oped in electromagnetism, where single
charged particles can detect electromagnetic
waves, was not helpful. Many relativists, in-
cluding at times Einstein himself, believed
that GWs were a mathematical illusion. Work

Polarization of a Gravitational Wave
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in the 1950s and 1960s by Hermann Bondi,
Richard Isaacson, Penrose, Joseph Weber,
and many others showed that to detect GWs
one needs at least two particles, but that the
waves are very real, transferring energy and
angular momentum away from their sources
to their detectors. [See Misner et al. (1973) or
Schutz (1985) for more details.]

The simplest way to detect a GW is to
monitor the proper distance between two
nearby free particles, particles that have no
external forces on them. The distance can be
monitored, for example, by measuring the
round-trip light-travel time between the parti-
cles. A GW can affect this distance. Gravita-
tional waves are transverse, and so if the wave
moves in the z direction, then only distances
in the x-y plane will be affected.

The pattern of distance changes produced
by a given wave is shown in Fig. 1. The dots
represent a ring of free particles. The circles
and ellipses are not physical connections: they
only illustrate the pattern of the placement of
the particles. The first ring is the undisturbed
position: a circular ring of particles. The sec-
ond diagram shows the effect of a GW on
proper distances. It has lengthened the x axis
of the circle and shortened the y axis by the
same fraction, preserving the area of the ring.
When the wave reaches its opposite phase
(final diagram), the effects on the axes are
reversed. At the bottom of the diagram are
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Response of a three-mass gravitational wave “detector” in two orientations
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FIG. 1. lllustration of the action of a GW on
a ring of free particles transverse to the
direction of propagation.



shown the lines joining certain particles to the
center of the ring. The top lines are for the
particles at 12 o'clock and 3 o’clock (particles
oriented in the “+” configuration relative to
the ellipse’s principal axes). Their lines re-
main perpendicular but change their relative
length. The bottom lines are for the particles
at 1:30 and 4:30 (particles oriented in the “x”
orientation relative to the ellipse’s principal
axes). Their lines remain the same length but
the angle between them changes.

Nothing is preferred about the x axis in this
diagram. The entire ellipse can be rotated
about the z axis to give possible patterns. A
rotation of 90° effectively carries the pattern
back into itself, which is characteristic of a
tensor (spin-2) wave. The second indepen-
dent polarization is obtained by a rotation of
45°.

Because tidal effects grow linearly with
distance, the shape of the ellipse in Fig. 1is a
property only of the wave, independent of the
size of the ring. The relative change in the axes
is, therefore, a measure of the amplitude of
the wave itself. It is conventionally called /4,
and can be defined from Fig. 1 as
h:=2(8D) max/1 (20)
where [ is the length of the semimajor axis of
the ellipse. (The factor of 2 is conventional.)
The relative distortions shown in the figure
are, of course, exaggerated in order to make
them easy to see. Modern GW detectors are
being built to detect amplitudes as small as
10~22, We shall consider the technical chal-
lenges of this in Sec. 4.2.

This tiny amplitude means that the effect of
matter on the gravitational wave will also be
of this order; the wave will lose or scatter only
a fraction of order 10~22 of its energy as it
passes through a detector. By extension, this
means that the waves that arrive at our detec-
tors have lost little of their original form: they
carry information from their sources uncor-
rupted by scattering or absorption. In this
they are a unique carrier of information in
astronomy; even the neutrinos detected from
the supernova event in 1987 (SN1987A) were
from a thermal distribution that had scattered
many times before leaving the collapsed core
(Sec. 2.4.1.4). Traveling at the speed of light,
gravitational waves follow geodesics through
the Universe; they can be gravitationally lensed,
but scattering and absorption are negligible.
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2.3.3 Wave Emission: The Quadrupole
Formula. Sources of gravitational waves re-
spect the conservation laws for energy and
momentum that are built into Einstein’s equa-
tions. For weak GWs, these have a similar
effect to that produced by the conservation of
charge in electromagnetism, which ensures
that there are no monopole electromagnetic
waves: the lowest order of radiation is dipole.
In GR, the law of conservation of energy
similarly ensures there is no spherical gravi-
tational radiation. Any oscillating spherical
mass leaves its exterior gravitational field
undisturbed in GR (just as in Newtonian
gravity), and so it does not radiate GWs.
Conservation of momentum has the same
effect on dipole radiation: there is no dipole
gravitational radiation.

From a fundamental point of view, charge
conservation (and its consequence, the ab-
sence of monopole radiation) in electromag-
netism follows from the gauge invariance of
the theory. (See SYMMETRY AND CONSERVA-
TION LAws.) In GR, energy-momentum con-
servation (and the absence of monopole and
dipole radiation) follow from the general
coordinate invariance of the theory.

At quadrupole order, the formulas for the
radiation emitted by a slow-motion system are
remarkably similar to those for electric quad-
rupole radiation in electromagnetism. (For
highly relativistic, fast-motion systems, the
formulas below can only be used approxi-
mately.) We define the quadrupole moment
tensor of the mass distribution:

L) = J-p(t,r)xl-xkd3x , (2D

where p is the mass density (rest mass domi-
nates in a nonrelativistic system), and where
we follow the usual convention of employing
Latin indices for purely spatial values (1,2,3).
This equation can only be used in a Cartesian
spatial coordinate system. The trace-free or
reduced quadrupole moment is derived from
this by

iﬂd:[jk“% Sl (22)
where [ is the trace of Ij.

The amplitude of the radiation at a distance
r from the source is roughly

h~4G/cty (£/7), (23)
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where £ stands for the second time derivative
of a typical component of the quadrupole
moment. If the motions that are responsible
for the time derivatives are driven by the
internal gravitational fields of the source,
which is the case for all the realistic sources of
GWs that we will consider later, then there is
a convenient upper bound on this amplitude,
given by

h<( GM/rc4)¢internal ’ (24)

where é;nernat 1S the typical size of the New-
tonian gravitational potential within the source
(Schutz, 1984).

Although the local conservation laws of
energy and momentum eliminate the mono-
pole and dipole radiation, it does not follow
that GWs remove no energy or angular mo-
mentum from the source. Unlike electromag-
netism, which is a linear theory, GR is non-
linear, and GWs can act as sources for gravity.
So when they leave the system, there is a
gradual decrease in its energy. This is com-
pensated by a well-defined energy flux carried
by the waves (Isaacson, 1968). Energy from
this flux can be transferred to other systems,
such as GW detectors. The GW luminosity
(Landau and Lifshitz, 1962) is probably the
most useful of the quadrupole formulas:

G | & & .
Low=ss ( £ 2 Hal?), (25)
5\ /31 k2

where the angle brackets denote an average
over one period of the motion of the source.
Notice that this depends on the square of a
third time derivative, just as the analogous
formula for electric quadrupole radiation does.
It is therefore very sensitive to the size of the
velocities inside the source. As a source be-
comes more relativistic, the power radiated
goes up very rapidly, as (v/c)S.

2.4 Applications of General Relativity

For its first 50 years, GR was mainly the
property of mathematicians and theoretical
physicists who valued it for its intellectual
challenge and its aesthetic beauty. It seemed
to have little practical relevance to the rest of
physics. But astounding discoveries in astron-
omy, beginning with the realization in 1963
that quasars have enormous luminosities, at-
tracted physicists to the challenge of explain-
ing the new phenomena, and they found that

they needed to use GR as an everyday tool in
making models of astronomical phenomena.
In this section we describe some of the ways
that GR is used. For more details of many of
these phenomena, the reader is referred to the
article on ASTROPHYSICS.

2.4.1 Relativistic Stars (Pulsars) and Grav-
itational Collapse

2.4.1.1 Stellar Evolution. An ordinary
star nearing the end of its nuclear-burning
lifetime undergoes many changes as it switches
from its primary fuel (hydrogen) to short-
lived secondary sources of energy (helium,
then carbon, and so on). When it finally
exhausts its nuclear fuel, it can no longer
generate energy to replace that which it radi-
ates from its surface, with the result that gas
pressure can no longer hold the star up against
gravity. The star then has only two options: it
can rely on degeneracy pressure (the quantum-
mechanical resistance of identical fermions to
being squeezed into too small a volume), or it
can collapse to a black hole. Which option it
takes depends on its mass.

2.4.1.2 White Dwarfs. If the mass of the
star when it reaches this point is less than
about 1.4 times the mass of the Sun, then it
can end its days quietly, supported by electron
degeneracy pressure. It is called a white dwarf,
and has a radius roughly that of the Earth,
about 10* km.

However, Chandrasekhar (1939) showed
that electron degeneracy cannot support more
than about 1.4M(,. The burnt-out core of a
star that is larger than this will inevitably
grow to exceed this size, and then it must
gravitationally collapse. During the collapse,
which lasts less than a tenth of a second,
essentially all electrons and protons combine
to form neutrons. This process is called neu-
tronization. When the density is high enough
for neutron degeneracy pressure to become
effective, the collapse will halt, provided again
that the star is not too massive. This neutron
star has the density of a typical atomic nu-
cleus, so that a 1M(; star has a radius of about
10 km.

2.4.1.3 Neutron Stars. We have met neu-
tron stars (NSs) in Sec. 1.1.2.1. The upper
mass limit of NSs is sensitive to poorly under-
stood high-density nuclear physics, and to the
details of the relativistic theory of gravity. It is
probably between 2M; and 3M, in GR (Har-
tle, 1978).




The result of halting the collapse is a bounce;
a shock travels outwards through the rest of
the envelope of the star, blowing it away in an
explosion called a supernova. Since the col-
lapsing core originally had a rest mass of
1.4M,, one expects the supernova to leave
behind a NS of about that rest mass or a little
more. Because the gravitational redshift re-
duces all energies as measured from far away,
and because the strong equivalence principle
(Sec. 3.2.3) ensures that all energies contrib-
ute to gravity, it follows that the gravitational
mass of the star as measured by orbits in its
gravitational field will be some 10% or so less
than its rest mass.

2.4.1.4 Black Holes. Collapse to a NS is
likely to be complicated by a number of
factors. One is rotation. If the collapsing core
has as much angular momentum as the Sun
(which is a slow rotator), centrifugal effects
will halt the collapse before neutron-star den-
sities. Smaller amounts of rotation may there-
fore have significant dynamical effects. Work
is currently in progress to model rotating
collapse on computers.

Another complication is neutrino physics.
The collapse generates many neutrinos, first
from the neutronization reaction p+e—n
+v,, but more copiously from the thermal
equilibrium reaction y + y<»v+ v that develops
as the collapse halts. These appear to exert a
crucial pressure to power the shock outwards.
The neutrinos detected from the nearby su-
pernova event in 1987 (called SN1987A—see
ASTROPHYSICS) came primarily from the ther-
mal distribution.

Whatever the complications, it seems that
on occasion the shock does not blow away the
whole star, and enough further matter falls on
the collapsed core to push it over the upper
mass limit. It must then collapse further, and
it forms a black hole (BH). In the next section
we will see that there is good evidence for a
number of 10M BHs in our Galaxy.

2.4.1.5 Pulsars. When a NS is formed, it
is likely to be rotating. By what seems like a
great stroke of luck, we are able to observe
this rotation in hundreds of cases. During the
collapse, not only is the rotation speed ampli-
fied, but so is the magnetic field of the star. It
happens that the magnetic and rotation axes
do not line up; in fact, they seem to prefer to
be perpendicular to each other. The result is
that rotation carries the magnetic poles around.
Charged particles spiral around the magnetic
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field lines and crash into the star at its mag-
netic poles, in a colossal version of our terres-
trial auroral displays. The result is a beam of
radiation that emerges from the poles and is
spun by the star’s rotation in the same way a
lighthouse beam turns. If we happen to sit in
the direction of the beam, we see the radiation
(radio, optical, and x-ray) turning on and off.
This is a pulsar.

Pulsar periods must be longer than the
orbital period at the surface of a NS, which is
about 0.5-1 ms. In fact, the fastest known
pulsar has a 1.6-ms period. However, all pul-
sars that we know are young (for example,
those that can be identified with supernova
explosions whose remnant clouds of gas are
still visible) are rather slow rotators. For
example, the pulsar in the Crab nebula spins
“only” 30 times per second. We now believe
that this is typical of new NSs, and that the
really rapid rotators have been spun up by
accreting gas from a companion star in a
binary system (Sec. 2.4.2).

Puisars in binaries are not uncommon, but
they are hard to find because the orbital
motion keeps changing their apparent pulse
period. However, binary pulsars are prized
discoveries, because by monitoring the Dop-
pler shifts of the period one gets dynamical
information about the system. In a few cases,
we get enough information to determine the
masses of the individual stars, as we describe
in Sec. 3.3. Interestingly, all six neutron stars
with well-determined masses are within 10%
of 1.4M,.

2.4.2 Black Holes in X-Ray Binaries and
in Galactic Centers

2.4.2.1 X-Ray Binaries. When gravity
overwhelms neutron degeneracy, the star must
collapse. Even though high-density nuclear
physics is poorly understood, simple con-
straints (such as that the speed of sound in
nuclear matter must be less than the speed of
light) are enough to guarantee that nuclear
physics cannot support more than about 3M,
at these densities (Hartle, 1978). This implies
that a compact object with a significantly
larger mass, such as 7M, or 10M;, must be a
BH. Since BHs do not emit observable radia-
tion themselves, practically the only way we
can identify holes of this size is by their effects
in binary systems.

When NSs or BHs orbit ordinary stars,
mass can sometimes flow from the compan-
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ion onto the compact star. The angular mo-
mentum of the infalling gas forces it into a
disk around the star, and friction in the disk
leads to a more or less steady accretion of
matter onto the compact object. As we noted
above, NSs can be spun up by this process.
Black holes also spin up, but this may not be
observable. But the hot accretion disk is itself
a source of observable radiation: x rays.

One of the big surprises of the early 1970s
was the discovery, by x-ray satellite observa-
tories, that our Galaxy has dozens of such
binary x-ray sources. If the companion can be
identified by optical observations and its mass
estimated from its spectrum, then the mass of
the compact object can be estimated. In this
way, we now have three or four fairly secure
identifications of BHs. The best identification,
in a system called V404-Cyg, has a minimum
mass of 8M, (Casares et al., 1992).

This certainly underestimates the number
of BHs in the Galaxy. Most mass determina-
tions are uncertain by 50% or so, and, given
the uncertainty in the upper mass limit of
NSs, there are a number of binaries where we
are unable to be sure about the nature of the
compact object. Therefore, while we are con-
fident that about 10% of the stars in the Galaxy
are white dwarfs and 1% are NSs, the fraction
that are BHs is very uncertain. X-ray binary
observations suggest a plausible lower limit of
about one in 10°

2.4.2.2 Galactic Black Holes. Giant BHs
seem to be relatively more common than this:
it is possible that every normal galaxy has in
its center a BH of mass between 10*M, and
10'°M. These would probably have been
formed at about the same time as the galaxy
itself formed, either from a dense gas cloud in
the center or from the collective collapse of a
swarm of NSs and small BHs formed near the
center. Recall that the density of a 108M®
cloud of gas when it forms a BH is only the
density of water.

For general information about galaxies,
the reader is referred to the article on GALAX-
IES AND C0oSMOLOGY. The evidence for BHs in
the centers of galaxies is manifold, and in
many ways better than that for individual
x-ray binary BHs. The strongest evidence is
velocity information. By measuring the Dop-
pler shifts of spectral features in many wave
bands, astronomers have accumulated evi-
dence for rotation, collapse, and/or expan-
sion with velocities of typically hundreds of

km/s inside volumes no larger than a parsec
(3% 10'® m, which is a typical distance be-
tween individual stars in the neighborhood of
the Sun). Using the order-of-magnitude rela-
tion GM/R=1* gives masses of the order we
have quoted (Rees, 1990). There do not seem
to be any mechanisms that would allow such
concentrations of mass to remain stable for
long without collapsing to BHs. The inference
is that the collapse has already occurred in
most cases, and we are seeing a small amount
of gas swirling around in the resulting gravi-
tational field.

Another line of evidence also points to
BHs: the jets of relativistic particles that are
expelled from the centers of galaxies. Some
jets are narrow (opening angles of less than
1°) and run straight for millions of light years,
which argues that their emission has been
constant over millions of years. Jets are often
found in opposing directions. The phenome-
non is ubiquitous and at the same time highly
variable. Some galaxies seem quite ordinary
except for the immense radio emission that
takes place at the ends of the jets, far outside
the galaxies themselves. Other galaxies con-
tain quasars, which are very small sources of
immense luminosity, from which emerge jets
(Blandford et al., 1982). Quasars in particular
seem to be associated with young galaxies:
a far larger fraction of galaxies exhibited the
quasar phenomenon when the Universe was
} of its present age than today.

These facts fit the BH model too, chiefly
because only BHs seem to be able to form
stable centers of activity, to supply sufficient
energy, and (through their rotation) to pro-
vide a consistent direction for jets. Gas prob-
ably forms an accretion disk around a mas-
sive BH, just as it does in binary systems.
Something then forms jets of relativistic par-
ticles and expels them perpendicular to the
disk in both directions. That something prob-
ably involves twisted magnetic fields, but it
may also involve the BHs directly. Since BHs
have an electrical conductivity (Sec. 2.2.5)
and will in general rotate, they can interact
with magnetic fields to produce large voltage
differences from pole to equator, which can
accelerate and indeed even create pairs of
charged particles. The energy would come
from spinning down the rotating BH (Bland-
ford and Znajek, 1977). Modeling the quasar
and jet activity of galaxies is one of the most
active areas of theoretical astrophysics today.



2.4.3 Gravitational Lensing. In Sec.
1.2.2.5 we saw that gravitational fields bend
light, and that this can lead to a form of
lensing. The amount of deflection depends on
the theory of gravity, but the qualitative fea-
tures are the same in all theories. Lensing was
predicted more than 50 years ago, but the
phenomenon does not seem to have been
taken very seriously by astronomers until the
now-famous “double quasar” 0957+ 561 was
discovered in 1979 (Walsh et al., 1979). Since
then, dozens of examples of gravitational lenses
have been found.

Gravitational lensing is one of the most
dramatic confirmations of relativistic gravity.
Lensed images come in many forms. Some
are simply multiple images of a single point-
like source, each with a different magnifica-
tion. (The number of such images must al-
ways be odd, although they may not all be
bright enough to be observed.) Sometimes
images are smeared out into arcs. Some im-
ages do not change position but are “micro-
lensed” by the gravitational field of a single
star of an intervening galaxy that happens to
move across the image, magnifying it briefly.

Lensing takes place at all scales, and to
some extent in every astronomical image, but
to be observable it must stand out from the
confusion of other properties of images. The
ideal situation is a compact image that is
lensed into two or more similar images sepa-
rated by a few arc seconds, far enough apart
to be distinguished but close enough to be
noticed as unusual. Spectra provide the “fin-
gerprints” that convince one that the images
are of the same object and not neighboring
distinct objects. The lensing mass is typically a
cluster of galaxies somewhere between the
source and us.

Unless the galaxies in the cluster can all be
seen, it is hard to model the lens. However,
modeling has potential rewards. The biggest is
to predict the Shapiro time delay (the excess
travel time, as described in Sec. 3.2.1.2) along
each of the image paths. Since the only data
we have about the distance to and thus the
linear size of the lens and the source are the
redshifts produced in their spectra by the
cosmological expansion, we need the Hubble
constant (Sec. 2.4.5) to predict the actual time
delays. Conversely, the measurement of the
time delays between various images of a vari-
able source in a well-modeled lens can pro-
vide a determination of the Hubble constant,
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and from it an estimate of the age of the
Universe. This is a very active area of research
today.

2.4.4 Solar System and Stellar Orbits.
General relativity makes small corrections to
the orbits of bodies in the solar system. The
effect may be described by a small 1/7° cor-
rection to the gravitational acceleration pro-
duced by the Sun. It is smaller than the
Newtonian term by the ratio of the Sun’s
gravitational radius to r, which is of order
10~7 or less for the planets. Its effect is to
make the planet’s ellipsoidal orbits precess:
the direction from the Sun to the point of a
planet’s closest approach to the Sun (its peri-
helion) rotates with time.

The precession of Mercury's perihelion pro-
vided an early confirmation of GR, as we
describe in Sec. 3.2.2. But at 43 seconds of arc
per century, it is hard to measure, since the
gravitational fields of other planets produce
similar but much larger effects on Mercury's
orbit. In fact, the measurement of the relativ-
istic precession of any other planet is hope-
less, partly because of the dominance of plan-
etary perturbations.

When stars orbit each other, there are
similar effects. They are easiest to observe in
binaries containing pulsars, where we have
excellent dynamical information about the
orbit. Indeed, the periastron shift (as it is
called for binaries) is necessary if we are to
determine the masses of the individual stars.
Fortunately, the orbits of such stars bring
them much closer to each other than Mercury
gets to the Sun, so the effect is larger. For the
pulsar binary system PSR1913+ 16 (Sec. 3.3),
the rate of periastron advance is 4.2° per year,
easily measurable.

Another dramatic effect of GR on the orbits
of stars is caused by the emission of GWs by
the orbital motion. The energy lost to waves
brings the stars gradually closer together, and
also tends to make orbits more circular. As the
stars approach, their orbital period decreases,
and the system actually speeds up. This effect
has been observed in PSR1913 4+ 16. It is also
thought to control the evolution of certain
classes of binaries, where mass is transferred
from one star to another when they get too
close. The transfer pushes the stars apart, but
they come closer together because of gravita-
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tional radiation reaction. The net effect is a
steady transfer of mass from one star to
another.

2.4.5 Cosmology, Inflation, and the Ori-
gins of the Universe. General relativity
opened the door to the study of cosmology,
the Universe in the large. In Newtonian grav-
ity it is not even possible to formulate the
gravitational force consistently for a Universe
of infinite size, and if one takes the Universe to
be finite but large, then the exact shape of its
boundary affects the gravitational field every-
where in a measurable way. General relativity
gives a consistent picture of the Universe. The
reader should consult the article GALAXIES
AND COSMOLOGY for a complete survey of
cosmology; we concentrate here on the gen-
eral relativistic aspects of the study.

2.4.5.1 Cosmological Models. Observa-
tions suggest that we can make a good first
approximation to describing the Universe by
assuming that it is homogeneous on the larg-
est scales and isotropic around us. Since the
Universe is also expanding, these assumptions
imply the existence of a special choice of time
everywhere: “now” has to be chosen so that
the density, say, is the same everywhere at
that time. This choice of time is unique: the
Universe has a preferred reference frame.
When cosmologists speak of the distance be-
tween galaxies, they are referring to proper
distance at a particular time in this preferred
frame. Similarly, the age of the Universe is the
proper time since the Big Bang, as measured
in this frame.

There are only three possible geometries
for the spaces of constant time in a homoge-
neous and isotropic cosmology: flat, open, and
closed. In the flat model, space at a constant
time is Euclidean. In the closed model it is a
three-sphere, which is the locus of all points
equidistant from a fixed point in four Euclid-
ean dimensions (equidistant as measured by
the four-dimensional Euclidean distance). In
the open model it is a three-hyperbola, which
cannot be described as a subsurface of Euclid-
ean space; rather, it has the same geometry as
the hyperbola in Minkowski spacetime that
consists of all points at a given timelike inter-
val from the origin.

Without a cosmological constant, the field
equations of GR imply that all models have a
singularity at some time: they expand from a
singular point of infinite density, contract to

one, or both (the closed model). Since we
observe the Universe to be expanding (see
Sec. 2.5.4.2), we infer that there was a singu-
lar point a finite time in the past. This is the
Big Bang. .

If the initial expansion velocity was suffi-
ciently great compared to the overall gravita-
tional attraction, the expansion will continue
forever. The critical measure here is the local
density of mass—energy. It turns out that mod-
els that expand forever have hyperbolic space
sections; those that recontract are three-
spheres; and the marginal case is flat. There-
fore, measuring the actual mass—energy den-
sity has implications for the large-scale
structure of the Universe.

Although much is sometimes made of the
philosophical implications of this, it must be
emphasized that we can only observe a small
section of our Universe, and any assertion
about the large-scale topology of space de-
pends on our assuming that the parts of the
Universe that are too far away to observe are
in fact identical to the section we can observe.
This can, of course, never be proved.

2.4.5.2 Hubble's Law: The Big Bang. The
expansion velocity of the Universe is given by
the Hubble constant. Edwin Hubble was the
first to show, by painstaking systematic obser-
vation of many galaxies, that all distant
galaxies recede from us, and more distant
galaxies recede faster (see GALAXIES AND COS-
MOLOGY). He expressed this as a linear rela-
tion between the distance d of a galaxy and the
recession velocity v:

v=Hd . (26)

We call the proportionality constant H the
Hubble constant. This law is what one expects
in a Universe that expands homogeneously: in
any given interval of time, galaxies twice as
far away should have moved by twice as
much, leading to twice the recession velocity.

A frequently suggested analogy is an ex-
panding balloon. If one draws dots on the
balloon and measures their separations, then
when the balloon is twice as large the points
will have receded from one another in exactly
this way. The balloon is also an excellent
two-dimensional analog of the geometry of
the three-spherical (closed) universe.

2.4.5.3 Cosmic Microwave Background
Radiation. The Big Bang picture provides
a simple model for our history. At a finite time



in the past, the Universe was infinitely dense.
It began expanding and maintained thermal
equilibrium among all the exotic species of
particles for a short time. Gradually, as the
temperature dropped, different species froze
out. When nuclei froze out, about 20% of the
mass was in helium, the rest in hydrogen.
Later, hydrogen atoms froze out and the ex-
panding cloud of gas became neutral. The
mean free path of photons increased dramat-
ically, and most photons in existence at the
time have not scattered since. This epoch of
“decoupling” of photons and matter left be-
hind a thermal distribution of photons that
has remained thermal as the Universe has
expanded. The temperature of this distribu-
tion is inversely proportional to the expan-
sion. Today this temperature is about 2.7 K,
and the resulting microwave background ra-
diation, discovered by Penzias and Wilson
(1965), is one of the strongest pieces of evi-
dence favoring the Big Bang model.

2.4.5.4 The Age of the Universe. The
measurement of the Hubble constant is fraught
with difficulties. The velocity v is easy to
obtain from spectra, but measuring the dis-
tance is hard. Astronomers look for “standard
candles”: objects of known intrinsic bright-
ness, whose apparent brightness can be used
to infer their distance. No really reliable stan-
dard candles exist, and even today astrono-
mers differ by up to a factor of 2 in their
determinations of H. In the astronomers’ cus-
tomary units, where distances between galax-
ies are measured in megaparsecs (1 Mpc=3
% 10?2 m=3x 10° light-years) and velocity is
measured in km/s, H is likely to lie in the
following range:

45 km s~ ! Mpc~!<H<100 kms~! Mpc~!.

It is usual to parametrize H by h=H/
(100 km s~ ! Mpc1) .

If the expansion were at a constant rate,
then the age of the Universe (time since the
Big Bang) would be 1/H. If h=1, then 1/H
=10!® yr. Smaller values of H lead, of course,
to older Universes. In fact, gravity has been
slowing down the expansion rate, so 1/H
overestimates the age of the Universe. There-
fore one can also constrain H by measuring
the age of, say, the Earth, or better, of an old
(hopefully first-generation) star or cluster of
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stars. The Earth seems to be about 4.5 x 10°
years old, but some clusters may be older than
10'° years.

2.4.5.5 Mass and Missing Mass. Once
we know H we know the so-called critical
density, the density of mass-energy just needed
to stop the expansion, to make the Universe
flat. In terms of A, the critical density is

pe=2%x10"2%Hr* kgm™3.

Measuring the actual mass-energy density is
even harder than measuring H; the uncer-
tainty seems to be a factor of 10 at present.
The problem is that the mass that is radiating
light, mainly in the form of stars, accounts for
less than 1% of the critical density, and there
is much evidence for at least 10 times this
amount of dark or hidden mass. The evidence
is dynamical: the rotation rates of spiral gal-
axies and the internal motions of large clus-
ters of galaxies are simply much too large for
these objects to stay together if their masses
were only what we could infer from the light
they emit. This dark mass may consist of BHs
or other low-brightness remnants of the early
evolution of stars, or (and this is the more
popular idea at present) it may consist of a
cosmological distribution of elementary par-
ticles of an unknown kind (Knapp and Kor-
mendy, 1986). Searches are now under way
for such particles randomly passing through
the laboratory. Their detection would have
important implications for high-energy phys-
ics as well as for astronomy.

Indirect evidence of this dark matter may
be sought in the dynamics of galaxy forma-
tion. It turns out that density perturbations in
ordinary baryons do not grow rapidly in the
early Universe, mainly because these particles
are charged and couple too strongly to the
equilibrium radiation field. Once the Universe
has expanded and cooled off enough for hy-
drogen to become neutral, the perturbations
may grow, but that does not leave enough
time for galaxies as we observe them—well
separated objects even at early times—to have
evolved.

A pervasive background of neutral parti-
cles could provide seeds for galaxy formation
that grew unhindered in the early Universe. If
the particles had reasonably large rest mass,
they would cool off rapidly and form strong
condensations. Computer simulations per-
formed within this cold dark matter hypothe-
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sis provide reasonable consistency with the
present distribution of galaxies and their clus-
tering. It must be stressed, however, that there
are many other possibilities for providing
seeds for galaxy formation. Cosmic strings,
mentioned below, are also attractive. The real
story of galaxy formation may involve several
such factors.

2.4.5.6 Microwave Anisotropies. The mi-
crowave background ought, if the Big Bang is
correct, to be a very good black-body distri-
bution. Indeed, measurements by the recent
COBE spacecraft show it to be (Smoot et al.,
1992). However, its temperature need not be
the same in all directions. For one thing, the
Earth may be moving with respect to the
cosmological rest frame, the mean rest frame
of the matter at decoupling. This would pro-
duce a dipole anisotropy in the temperature,
and this has been measured. The inferred
velocity of the Sun is 370 km s~?, again from
the COBE measurements.

In 1992 COBE also measured another effect
on the microwave temperature: fluctuations
that arise from the early density irregularities
of the Universe. While not surprising, these
provide striking “baby pictures” of the con-
densations that eventually evolved into large
aggregates of clusters of galaxies.

2.4.5.7 Inflation and the Homogeneity
Problem. The measurements performed by
COBE highlight a conceptual problem for
cosmology: the structures seen by it were on a
scale so large that light could not have trav-
eled across the structure in the time between
the Big Bang and the time of decoupling,
when the radiation was produced. Yet the
structures seen by COBE were relatively con-
sistent right around the sky. How could they
be causally related? And if they were not
causally related, why are they so similar?

The same problem exists for other measure-
ments. We can see quasars in opposite direc-
tions on the sky that are today so far apart that
they could not have communicated since the
Big Bang, and yet the distributions of quasars
and other galaxies near them look similar at
both places. How indeed can the Universe be
homogeneous over distances that could not
communicate?

A simple answer is that it is all in the initial
conditions of the Big Bang. But such an
explanation is unsatisfying to many scientists,
and an attractive alternative has been pro-
posed: inflation. If, in the early universe, just

after the Big Bang, the laws of high-energy
physics at energy scales inaccessible to present-
day experimentation were of a certain form,
then the Universe could at some point have
undergone a phase transition that pushed it
into very rapid expansion, much more rapid
than one would infer by working backwards
from today’s expansion. The expansion would
in fact have been exponential, hence the term
inflation. If it halted after many e-foldings,
then parts of the Universe that now seem too
far apart to have communicated would in fact
have been much closer before inflation, and
could have been causally connected. Inflation
can solve, at least in this sense, the homoge-
neity problem (Guth and Steinhardt, 1984;
Blau and Guth, 1987).

Inflation has side benefits, one of which is
that it might produce exactly the spectrum of
seed perturbations that COBE saw. Observa-
tional evidence is slim at present, but by the
year 2000 one can expect much stronger con-
straints on inflationary models.

3. TESTS OF GRAVITATIONAL
THEORIES AND THEIR
TECHNOLOGICAL DEMANDS

For the first half-century of GR’s existence,
experimental tests were infrequent, largely
because the smallness of the predicted effects
made them extremely difficult to measure
with any accuracy. The validity of the theory
rested on two tests, the deflection of light,
measured in 1919, and the resolution of an
anomaly in Mercury’s perihelion advance.
But beginning in the 1960s, advances in tech-
nology made high-precision tests of the theory
possible, and there followed a systematic ef-
fort to put the theory to the test (for a review
of these tests see Will, 1993).

3.1 Tests of the Einstein Equivalence
Principle

3.1.1 Tests of Special Relativity. The
Einstein equivalence principle described in
Sec. 1.2.2.2 demands that in any local, freely
falling reference frame (in which gravity is
absent locally), the nongravitational laws of
physics (such as mechanics, electromagne-
tism, quantum mechanics) must be compati-
ble with special relativity. As we have seen, a



consequence of this principle is that gravity
must be described by spacetime curvature.

Special relativity has become such a suc-
cessful and integral part of such areas of
modern physics as quantum field theory, nu-
clear physics, and particle physics that physi-
cists often take its validity for granted. But in
many of these subdisciplines of physics, the
experiments are designed to test particular
models of fields and interactions rather than
the underlying special relativistic framework.
The Michelson-Morley experiment and its
modern-day descendants provide clean tests
of SR in that they can constrain directly and
quantitatively possible violations of SR (see
RELATIVITY, SPECIAL).

3.1.1.1 Michelson-Morley Experiments.
One way to understand the significance of
these tests is to imagine an explicit violation of
SR in electrodynamics, by permitting the lim-
iting speed of material particles, c,,, to differ
from the speed of electromagnetic waves, c,.
Since moving frames are no longer equiva-
lent, this assumption establishes a preferred
universal rest frame. From the field-theoretic
point of view, such a violation is likely to be
induced by some long-range field created by
the matter in the universe; hence the pre-
ferred frame is likely to be that of the smoothed
out distribution of matter, or equivalently of
the cosmic microwave background. The re-
sulting observable violations of SR in such a
model depend on the fact that the Earth is
moving through the universe at about 370
km/s, and are parametrized by <S=(cm/ce)2
—1. By placing a limit on a difference in the
speed of light in two perpendicular directions
using an interferometer, the 1887 Michelson-
Morley experiment set a limit |§| <10~% A
1979 laser-interferometric version of the ex-
periment improved the limit to 10~ (Brillet
and Hall, 1979).

3.1.1.2 Hughes-Drever Experiment. But
in 1960, a substantial improvement in the
limit on &8 resulted from experiments that
tested the “isotropy of inertia”, done indepen-
dently by Hughes et al. (1960) and Drever
(1961). If SR is violated in the way described
above, then the energy levels of an atom or
nucleus can depend both on the velocity of the
nucleus through the preferred frame and on
the orientation of the quantization axis rela-
tive to the direction of motion. Anomalous
shifts of energy levels can then occur. The
Hughes-Drever experiments used nuclear mag-
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netic resonance techniques to look for such
anomalous shifts as the Earth rotated in space.
More recently, new techniques of atomic phys-
ics, such as laser-cooled ion and atom traps,
have yielded improved limits on such varia-
tions with direction in the energy levels of
beryllium ions, neon atoms, and mercury
isotopes, ranging from 2x 107" to 2x 1072
eV. These results give the bound |§] <107}, a
truly high-precision confirmation of SR
(Prestage et al., 1985; Lamoreaux et al., 1986;
Chupp et al,, 1989).

3.1.2 The Eo6tvos Experiment, the Weak
Equivalence Principle, and the Fifth Force

3.1.2.1 Eotvos and the Weak Equivalence
Principle. Another experiment that helped
lay the foundation for GR was the Eotvos
experiment (1889,1908), which verified what
we have called the weak equivalence principle
(WEP), the equality of gravitational acceler-
ation of objects of different composition. The
precision achieved was a few parts in 10°. Two
new experiments, by Dicke at Princeton Uni-
versity in the early 1960s (Roll er al., 1964),
and by Braginski at Moscow State University
in 1970 (Braginski and Panov, 1971), im-
proved the accuracy by two orders of magni-
tude.

3.1.2.2 Fifth-Force Experiments. In
1986, there was renewed interest in the Eotvos
experiment. As a result of a detailed reanaly-
sis of E6tvos’s original data, Fischbach et al.
(1986) suggested the existence of a “fifth
force” of nature, with a strength of about a
percent of that of gravity, but with a range (as
defined by the range A of a Yukawa potential
e~""*/r augmenting the usual Newtonian po-
tential) of a few hundred meters. This pro-
posal dovetailed with earlier hints of a devia-
tion from the inverse-square law of Newtonian
gravitation derived from measurements of the
gravity profile down deep mines in Australia.

During the next four years, over a dozen
new experiments looked for evidence of the
fifth force by searching for composition-
dependent differences in acceleration, with
variants of the Ettvés experiment or with
free-fall Galileo-type experiments. Many of
the Eotvos-type torsion-balance experiments
took advantage of new high-Q torsion suspen-
sion systems, advanced seismic isolation, and
sophisticated arrangement of component
masses to reduce gravity-gradient couplings.
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One of the free-fall experiments used laser
interferometry to measure the differential ac-
celeration of two chambers, fitted with corner
retroreflectors, containing different materi-
als. Although two early experiments reported
positive evidence, all others yielded null re-
sults. Over the range between 1 and 10* m, the
null experiments produced upper limits on
the strength of a postulated fifth force of
between 10~3 and 10~6 the strength of grav-
ity. Interpreted as tests of the WEP (corre-
sponding to the limit of infinite-range forces),
the results of a University of Washington
experiment (dubbed E6t-Wash) were compa-
rable to that of Dicke (Adelberger et al., 1991).

At the same time, tests of the inverse-
square law of gravity were carried out by
comparing variations in gravity measure-
ments up tall towers or down mines or bore-
holes with gravity variations predicted using
the inverse-square law together with Earth
models and surface gravity data mathemati-
cally “continued” up the tower or down the
hole. Despite early reports of anomalies, three
independent tower measurements now show
no evidence of a deviation (see, for example,
Jekeli et al.,, 1990). The consensus at present
is that there is no credible experimental evi-
dence for a fifth force of nature (for recent
reviews see Adelberger et al., 1991; Fischbach
and Talmadge 1992; and Will 1990).

3.1.3 Gravitational Redshift. Although
the gravitational redshift of light is a simple
consequence of the EEP (Sec. 1.2.2.2), as
Einstein found some eight years before he
completed the full theory, it was not con-
firmed experimentally until the Pound-Rebka
experiment of 1960, in which the frequency
shifts of y rays rising and falling in a tower
were observed, making use of the Mossbauer
effect to reduce recoil broadening of the emis-
sion and absorption y-ray lines (Pound and
Rebka, 1960).

Other tests included transporting atomic
clocks on jet aircraft, and measuring the shift
of solar spectral lines. The most accurate
confirmation to date has been a 1976 rocket
experiment, in which a hydrogen maser clock
was launched on a Scout rocket to an altitude
of 10 000 km, and its rate compared with an
identical clock on the ground, resulting in a
0.02% test (Vessot et al, 1980). Recently, a
measurement of the shift of the rate of oscil-
lator clocks on the Voyager spacecraft caused

by Saturn’s gravitational field yielded a 1%
test (Krisher et al., 1990).

The gravitational redshift now has practi-
cal consequences. In satellite-based naviga-
tion systems, such as the U.S. Air Force's
Global Positioning System, the atomic clocks
on the satellites tick faster, as a consequence
of the gravitational frequency shift and the
special relativistic time dilation, than do clocks
on the ground by over 30 000 ns per day. Yet
the navigational accuracy requirement of 10
m demands timekeeping accuracy to 30 ns at
all times, and therefore general relativistic
corrections must be taken into account in
order for the system to function. Since GPS is
now used extensively both for military and
civilian navigation, this represents a new “ap-
plied” side of GR.

3.2 Solar-System Tests of General
Relativity

3.2.1 The Deflection and Retardation of
Light

3.2.1.1 Light Deflection. One of the first
calculations that Einstein performed in No-
vember of 1915, when he had the final (vac-
uum) field equation of GR, was the deflection
of light. Earlier, in 1911, he had determined
the deflection in a preliminary theory based
essentially purely on the EEP (Sec. 1.2.2.2)
and got the answer, 2GM/Rc?, as in a New-
tonian gravity theory in which light was treated
as a corpuscle (see Sec. 1.2.2.5).

The result of Einstein’s 1915 calculation
was to double the prediction. For a light ray
that grazes the Sun, for example, the deflec-
tion would be 1.75” instead of 0.875”. The
difference can be understood as follows: half
the deflection indeed comes directly from the
Einstein principle, or equivalently from a
Newtonian ballistic calculation; the remain-
ing part derives from the curvature of space
near the Sun relative to space far away. The
first contribution is the same in any theory of
gravity that is a metric theory. The second,
space-curvature contribution varies from one
metric theory to another, and is convention-
ally represented by the PPN parameter v,
whose general-relativistic value is 1 (see Sec.
1.2.5). In this parametrized language, the de-
flection of a light ray by the Sun is given by

AO=3(1+71)1.75"/d, 27



where d is the distance of closest approach of
the ray to the Sun, in units of a solar radius.

The measurement of this effect by British
astronomers during a total solar eclipse in
1919 (Dyson et al., 1920) catapulted Einstein
and GR to worldwide fame. However, the
accuracy was 20% at best. A few measure-
ments during the next 45 years failed to yield
substantial improvements. The development
of radio interferometry during the 1960s cou-
pled with the discovery of quasars led to
dramatically better accuracy (see RADIO TELE-
SCOPES). The technique involved monitoring
the relative angle between a pair or group of
quasars as they passed near the Sun as seen
from Earth. During the passage, the light from
a quasar whose image is closer to the Sun
would be deflected more than that from a
more distant one, leading to a displacement of
one image relative to the other. Between 1969
and 1975 a dozen measurements of this sort
were carried out systematically, culminating
in confirmations of GR at about the 1.5% level
(Fomalont and Sramek, 1976). After 1975,
further direct measurements of the deflection
of light to test relativity essentially ceased.

However, in the early 1980s systematic
efforts were initiated by geophysicists to mon-
itor the Earth’s rotation state accurately by
means of very-long-baseline interferometric
(VBLI) measurements of the positions of
radio galaxies and quasars. Using transconti-
nental and intercontinental baselines, and
improved timing accuracy made possible by
hydrogen maser and other atomic clocks,
these measurements reached the several hun-
dred microarcsecond level in accuracy, mak-
ing it necessary to take the relativistic deflec-
tion of light into account over the entire
celestial sphere, not just near the Sun. For a
ray that approaches the Earth from a direc-
tion 90° away from the Sun, for example, the
deflection is 4 milliarcseconds and is readily
detectable. A by-product of this effort was a
0.1% confirmation of GR (Robertson et al.,
1991).

The European Space Agency (ESA) satel-
lite HIPPARCOS, which is completing its mis-
sion as this is being written (1993), has simi-
larly made precise determinations of the
positions of some 10° stars, for which it has to
take into account (and therefore measure)
the light deflection over the whole celestial
sphere. This will measure y to similar accu-
racy.
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3.2.1.2 Shapiro Time Delay. There is
another important test of the propagation of
light through curved spacetime, which was
not around in 1915, yet which is closely
related to the deflection of light. It was first
predicted as a consequence of GR by Shapiro
(1964), and is now commonly called the
Shapiro time delay. It is an excess propagation
delay of light passing through a region of
curved space near a body compared to the
analogous propagation time if the ray passes
far from the body. A light ray that passes the
Sun on a round-trip, say, from Earth to Mars
at superior conjunction (when Mars is on the
far side of the Sun) suffers a delay given by

At=3(1+7)250(1-0.16 In d) us . (28)

The close relationship between this effect and
the deflection of light is reflected in the factor
3(1+y) and is to be expected, since any phe-
nomenon that bends light (refraction, curved
space) may be expected to alter its propaga-
tion time as well. Observations of the Shapiro
time delay began in the mid-1960s with the
use of radar echoes from Mercury and Venus.
Later, use was made of interplanetary space-
craft equipped with radar transponders, such
as Mariners 6, 7, and 9 and the Viking landers
and orbiters. Data from Viking yielded a 0.1%
test (Reasenberg et al., 1979).

The result of these measurements on light
is y=1.000+0.002, in agreement with GR.
This precise determination of the parameter y
is one of the crowning achievements of exper-
imental gravitation.

3.2.2 Mercury's Perihelion Advance. The
first effect that Einstein calculated in Novem-
ber 1915 using his new field equations was the
advance of the perihelion of Mercury. The
discrepancy between the observed advance
and the amount that could be accounted for
from the Newtonian gravitational perturba-
tions of Mercury by the other planets was a
problem that had bedeviled celestial mecha-
nicians for the latter half of the nineteenth
century. As mentioned in Sec. 2.4.4, GR pre-
dicted an amount that neatly accounted for
the discrepancy. Einstein wrote later that he
had palpitations of the heart upon finding this
result. For another half a century, this stood
as one of the triumphs of general relativity.

The predicted rate of advance of the peri-
helion of Mercury (excluding the part from
planetary perturbations) can be written in the
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following form, in seconds of arc per century:
dw/dt=42.98"1,, (29)
Ay =3(2+2y—B) +0.0003(J,/1077) . (30)

The first term in the coefficient 4, is the
relativistic contribution to the advance, in a
form that encompasses a wide class of alter-
native metric theories of gravity. The param-
eter y is the same parameter that appeared in
the deflection of light and the Shapiro time
delay, while the parameter 8 is a rough mea-
sure of how “nonlinear” gravity is in a given
theory. Both parameters are unity in GR. The
second term comes from the Newtonian effect
of a possible oblateness of the Sun, which will
alter its external gravitational field from the
pure inverse-square form of a spherical body.
The oblateness is measured by the quantity
h=(I3—-1,)/(Mg/R%), where I is the Sun'’s
moment of inertia about its rotation axis and
I, is the same about an equatorial axis; for a
Sun that rotates uniformly with its observed
surface angular velocity, so that the oblate-
ness is caused by centrifugal flattening, J is
estimated to be of order 10 ~7.

Now, the measured perihelion shift of Mer-
cury is known very accurately because of the
combination of two factors: improved radar
ranging to Mercury since 1966, leading to a
more accurate determination of its orbit, and
improved data on the masses and orbits of the
other planets from radar ranging and space-
craft encounters, leading to improved values
for the planetary perturbations. After those
perturbing effects have been accounted for,
the excess shift is known to about 0.1%, with
the result that Ap=1.000+0.001 (Shapiro,
1990).

If J, were indeed as small as 10~7 this
would be in complete agreement with GR.
However, in 1966, a value for J, of 2.5+ 10
was inferred from visual solar-oblateness mea-
surements made by Dicke and Goldenberg
(1974), a result that, if confirmed, would have
disagreed strongly with GR. Between 1966
and 1980 J, values ranging over two orders of
magnitude were reported. Beginning around
1980, however, the observation and classifica-
tion of modes of oscillation of the Sun (“he-
lioseismology”) made it possible to obtain
information about its internal rotation rate,
thereby constraining the possible centrifugal
flattening; current results favor a value ;= 1.7
+10~7 (Brown et al., 1989), making the peri-

helion shift of Mercury another success for
general relativity.

3.2.3 Test of the Strong Equivalence Prin-
ciple. Another important Solar-System ex-
periment tests a generalization of the EEP,
known as the strong equivalence principle
(SEP). The strong equivalence principle states,
for example, that all bodies should fall with
the same acceleration in an external gravita-
tional field, including bodies with significant
internal gravitational binding energy, such as
planets, stars, and so forth. In the WEP, one
considers only laboratory-sized bodies, whose
internal structures are dominated by nongrav-
itational energies. Different theories of gravity
can treat the effect of gravity on gravitational
energy differently, and so could predict viola-
tions of the SEP by massive, self-gravitating
bodies. General relativity is one of the few
theories that actually obeys the SEP. The
Brans-Dicke theory, for example, does not.

Since 1969, this principle has been tested
using lunar laser ranging (LURE), in which
laser pulses sent from Earth bounce off corner
retroreflectors deposited on the Moon during
U.S. and Soviet lunar landings. The goal is to
look for the orbital effects of a possible differ-
ence in acceleration between the Earth and
Moon toward the Sun (the Nordtved: effect:
Nordtvedt, 1968a,b). No orbital perturbation
of this type has been found to date down to the
6-cm level, placing a limit of 7 parts in 10'3 on
a difference in acceleration between the two
bodies (Dickey et al., 1989; Shapiro, 1990;
Miiller et al, 1991). The accuracy of lunar
laser ranging is approaching the level of sev-
eral millimeters, at which point the accuracy
of this experiment as a test of the effect of
gravity on gravitational energy (test of the
SEP) will be limited by the accuracy of labo-
ratory tests of the weak principle, because the
composition of the Earth (iron rich) and
Moon (iron poor) differ.

3.3 The Binary Pulsar: An Astronomical
Relativity Laboratory

Until 1974, the solar system provided the
principal testing ground for GR, because it is
a “clean” system (few uncertain or messy
physical processes to complicate the gravita-
tional effects) and it is accessible to high-
precision tools. However, the discovery of
the binary pulsar PSR1913+16 in 1974 by



astronomers at the Arecibo Radio Telescope
in Puerto Rico (Hulse and Taylor, 1975)
showed that certain kinds of distant astronom-
ical systems may also provide precision labo-
ratories for testing GR. The system consists of
a 59-ms-period pulsar in an 8-h orbit with a
companion that has not been seen directly,
but that is generally believed to be another
NS. The unexpected stability of the pulsar
“clock” and the cleanliness of the orbit al-
lowed radio astronomers to determine the
orbital and other parameters of the system to
extraordinary accuracy, by analyzing the vari-
ations in pulse arrival times caused by the
orbital displacements (for the most recent
data, see Taylor et al, 1992).

Furthermore, the system is highly relativ-
istic (vorpi/c=107>). Observation of the rel-
ativistic periastron advance (4.226 628
+0.000 018 deg per year) and of the effects on
pulse arrival times of the gravitational red-
shift caused by the companion's gravitational
field and of the special relativistic time dila-
tion caused by the pulsar's orbital motion
(0.15% accuracy) have been used, assuming
that GR is correct, to constrain the nature of
the system. In GR, these two effects depend in
a known way on measured orbital parameters
and on the unknown masses m,, and m, of the
pulsar and companion (assuming that the
companion is sufficiently compact that tidal
and rotational distortion effects can be ig-
nored), and consequently the two masses may
be calculated with these two pieces of data,
with the result 7,=(1.4411+0.0007) M, and
m.=(1.3873+0.0007) M, . These are the most
accurately known masses of any astronomical
bodies outside the Solar System. It is interest-
ing how GR plays a crucial role in this high-
precision determination of astrophysical pa-
rameters.

This binary system should radiate GWs,
which, unfortunately, are of too low a fre-
quency to be detected directly by a ground-
based GW detector. On the other hand, the
loss of energy in GWs should cause the orbit-
ing stars to spiral together, and the orbital
period to decrease. The “quadrupole formula”
(Sec. 2.3.3) determines the rate of loss of
energy and the consequent orbital damping
rate. It was first detected successfully in 1979,
with about 10% precision. Using the measured
orbital elements and the two masses, one can
predict the rate of decrease of the period to be
dP/dt yedicrea= — (2.402 43£0.000 05) X 10
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~125/5. Because of the extraordinary stability
of the pulsar, and with the added ability to
transfer stable atomic time from the world’s
systemn of atomic clocks to the Arecibo Radio
Telescope via the Global Positioning System,
the observations of this period decrease have
now reached 0.5% in accuracy, giving dP/
dt gpserved= — (2.408 +£0.015) x 10~ 2 (Taylor
et al., 1992). This agrees completely with the
prediction and is very strong indirect evi-
dence for the correctness of GR’s predictions
about GWs.

3.4 Future Work in Experimental
Gravitation

3.4.1 Search for Gravitomagnetic Effects.
According to GR, moving or rotating matter
should produce a contribution to the gravita-
tional field that is the analog of the magnetic
field of a moving charge or a magnetic dipole
(Sec.2.1.1). Although gravitomagnetism plays
a role in a variety of measured relativistic
effects, it has not been seen to date, isolated
from other post-Newtonian effects.

The Relativity Gyroscope Experiment at
Stanford University (also known by the NASA
terminology Gravity Probe B, or GP-B) is in
the advanced stage of developing a space
mission to detect this phenomenon directly
(Everitt, 1988). A set of four superconducting-
niobium-coated, spherical quartz gyroscopes
will be flown in a low polar Earth orbit, and
the precession of the gyroscopes relative to
the distant stars will be measured. The pre-
dicted effect of gravitomagnetism is about 42
milliarcseconds per year, and the accuracy
goal of the experiment is about 0.5 milliarc-
seconds per year.

To achieve this accuracy, which corre-
sponds to a precession rate of 10~1¢ rad/s,
numerous technical challenges have had to be
met, including fabricating gyroscopes that are
homogeneous and spherical to better than a
part per million; developing and testing a
“London moment” readout system that ex-
ploits the magnetic dipole moment developed
by a spinning superconductor and uses SQUIDs
to read out the varying currents in supercon-
ducting loops surrounding the gyroscope; and
developing a magnetic shield of novel design
to reduce the ambient magnetic field of the
Earth below 10~7 G. Recently, a full-size flight
prototype of the instrument package was tested
as an integrated unit. Current plans call for a
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test of the final flight hardware on the Space
Shuttle followed by a shuttle-launched science
experiment.

Another proposal to look for an effect
of gravitomagnetism is to measure the rela-
tive precession of the line of nodes of a pair
of laser-ranged geodynamics satellites
(LAGEOS), with supplementary inclination
angles; the inclinations must be supplemen-
tary in order to cancel the dominant nodal
precession caused by the Earth’s Newtonian
gravitational multipole moments (Ciufolini,
1989). A third proposal envisages orbiting an
array of three mutually orthogonal, supercon-
ducting gravity gradiometers around the Earth
to measure directly the contribution of the
gravitomagnetic field to the tidal gravitational
force (see, for example, Mashhoon et al, 1989).

3.4.2 Tests of the Einstein Equivalence
Principle. The concept of an Eotvos exper-
iment in space has been developed as a pos-
sible joint NASA-ESA mission, with the poten-
tial to test the WEP to 10~'7, a millionfold
improvement over current ground-based re-
sults (Worden, 1988). Such an experiment
could also look for additional long-range,
fifth-force-type interactions, with ranges in
excess of about 40 km, and could lead to
improvements in the value of the Newtonian
constant G. It would also map the multipole
moments of the Earth’s Newtonian field to
high accuracy.

The accuracy of measurements of gravita-
tional redshift could be improved to the 10~°
level, and higher-order effects could be seen
for the first time by placing a hydrogen maser
clock on board Solar Probe, a proposed space-
craft that would travel to within four solar
radii of the Sun (Vessot, 1989).

3.4.3 Further Fifth-Force Searches. Be-
cause they are relatively inexpensive and be-
cause they have the potential to constrain
certain classes of particle-physics models, lab-
oratory fifth-force experiments are likely to
continue at some level for many years.

4. GRAVITATIONAL-WAVE DETECTION:
A TECHNOLOGICAL FRONTIER

4.1 Likely Sources of Detectable Waves

In Sec. 2.3 we learned about GWs. Here we
discuss their detection. Although detectors

have been under development since Weber
(1960) built the first one at the University of
Maryland in the early 1960s, it is only recently
that technology has permitted the design of a
detector that meets theoretician’s predictions
about the likely strengths of expected waves.
It is not unreasonable to expect that, by the
year 2000, the first direct detection of a GW
will have occurred.

Simple detection is not the main goal of the
present detector development. GWs carry in-
formation about their sources that is obtain-
able in no other way. In order to extract
maximum information from the waves, one
needs to be able to infer their amplitude and
direction. Since GW detectors are not direc-
tional, this can only be done with a worldwide
network of detectors, which infer directions
from the relative times of arrival of waves at
different locations. Three detectors is the min-
imum for extraction of full information from
the waves.

The first aspect of designing a detector is to
estimate what amplitudes and frequencies
one might expect from astronomical sources.
These set targets for the experimental devel-
opment.

We can dispose of one source right away:
laboratory generators. It is not possible to
build a laboratory generator of detectable
GWs. One can make an apparatus that dis-
turbs a detector by generating a time-depend-
ing gravitational field; this has been done in
several laboratories (for example, Astone et al.,
1991a). But it is always the near-zone New-
tonian field, and the disturbance would be the
same in Newtonian gravity. To detect waves
one must be at least one wavelength A away
from the source, and at this distance all
reasonable sources are too weak.

We look therefore to relativistic sources in
astronomy. All of these are powered by their
internal gravitational forces, and so the key
equation for estimating the strength of their
emissions is Eq. (24), which sets a relatively
simple upper bound on the amplitude we can
expect. Here is a brief review of the principal
candidates and the astronomical information
we might expect to get from them. It is by no
means an exhaustive list, but it represents the
most conservative predictions that have been
made about possible sources.




4.1.1 Supernovae. Supernovae are rare
events, occurring once in perhaps 50 years in
any galaxy. We would like to be able to detect
them, therefore, in a volume of space contain-
ing perhaps 2000 galaxies, so that we have a
reasonable chance of seeing one. This means
that realistic detectors must reach as far as the
Virgo cluster, a cluster of galaxies about 15
Mpc away, containing more than 1000 galax-
ies.

Supernovae will give off GWs if the col-
lapse event is very nonspherical. The mass
involved will be about a solar mass, and the
size of the emission region is about 10 km.
These give, from Eq. (24), an upper limit of a
few times 107! for waves from the Virgo
cluster. Given that this is an upper bound, the
usual target is 1072!, A detector with that
sensitivity has some chance of seeing an oc-
casional supernova explosion, unless they are
all very symmetrical.

The expected frequency can be inferred
from the collapse time scale. The whole col-
lapse takes about 10 ms, but not much radia-
tion comes off during most of this time. The
bounce time scale is about 1 ms, and subse-
quent oscillations may also have this time
scale. The relevant frequency is the inverse,
about 1 kHz. One expects a broadband burst
of this central frequency from a supernova
explosion.

If such bursts are seen, they may allow us
to identify the object (NS or BH) formed by
the collapse; they may provide crucial infor-
mation about high-density nuclear physics;
they may allow rapid notification of other
astronomers that a supernova has occurred at
a particular position; and they will enlighten
our understanding of the late stages of stellar
evolution.

Bursts of radiation will also be emitted if
galactic-size BHs are formed in a single event
or if compact stars fall into such BHs. The
frequency of the emitted radiation is inversely
proportional to the mass of the hole, and for
holes in the centers of galaxies this can be in
the millihertz region or lower. Such events are
not observable from the ground since ground
vibrations and the near-zone Newtonian grav-
itational disturbances produced by atmo-
spheric mass motions in this frequency range
are too strong to screen out. But studies have
shown (Bender et al., 1989) that space-based
detectors could be very sensitive at these
frequencies. A suitable detector could see a
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giant BH formation event anywhere in the
Universe; it could verify or rule out that mode
of formation of galactic BHs.

4.1.2 Coalescing Binaries. The remark-
able binary pulsar described in Sec. 3.3 will be
even more remarkable in about 10® years,
when the orbit has shrunk to the point that the
two NSs in the system are orbiting 10 or more
times per second. The system will be a strong
source of GWs at relatively high frequency
during the remaining few seconds before the
stars coalesce. The frequency of the waves is
twice the orbital frequency.

Such events are, of course, rare, occurring
perhaps once every 10° to 107 years in any
galaxy (Narayan et al.,, 1991; Phinney, 1991;
Tutukov and Yungelson, 1993). We therefore
would need to be able to detect them in a
volume of space up to 200 000 times larger
than that for supernovae, or as much as 60
times further away. Fortunately, this is made
possible by the regularity and predictability of
the signal from such a system.

In contrast to supernovae, which are likely
to be messy, binaries of compact objects emit
a steady, almost monochromatic “chirp” sig-
nal, whose frequency increases with time in a
predictable way. If one has N cycles of such a
signal in one's data stream, then one can use
pattern-matching techniques (such as matched
filtering) to find it at an amplitude that is
smaller by a factor of VN than one could find
if one had only a single cycle. Supernovae are
basically single-cycle signals, so we can see
binaries 60 times further away if we can
detect 3600 cycles. The binary wave train will
be followed by a much less predictable burst
associated with the coalescence of the two
stars.

The detector has to have a broad band-
width at a few tens or hundreds of hertz to
permit such filtering and following of the
signal. In fact, the broadband interferometers
described below are less noisy at the lower
frequencies of binary signals, but on the other
hand the intrinsic signal from a binary is a bit
weaker than the strongest possible supernova
(because ¢;ernar is smaller when the stars are
still several radii apart), so that the calcula-
tion must be done carefully. The result is that
detectors will have about 40 times the range
for binaries as they have for moderate super-
nova explosions. Detectors that can just barely
see supernovae in Virgo (such as the first-
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stage interferometers described below) are
unlikely to see coalescing binaries. But the
second stage of development, with 10 times
better amplitude sensitivity, ought to see hun-
dreds per year.

The binary signal contains much informa-
tion, including the individual masses of the
component stars. By observing them, we will
directly identify NSs and BHs and get much
better statistics on their mass distributions.
Since they occur at great distances, these
events sample the cosmological mass distribu-
tion on very large scales. The signal contains
enough information to allow the absolute
distance to the binary to be estimated: they are
true standard candles. They therefore contain
cosmological information, including the pos-
sibility of measuring the Hubble constant
(Schutz, 1986). The actual coalescence of the
two objects (NSs and/or BHs) may be asso-
ciated with the mysterious y-ray bursts seen
by satellite detectors (Meegan et al., 1992). If
so, they will be easier to model and under-
stand. Finally, the detection of the radiation
from the merger of two BHs will provide a
strong test of GR itself; modeling this event on
computers is an area of current research.

4.1.3 Pulsars. A NS that is axially sym-
metric will not emit GWs when it rotates, but
we know that pulsars are not symmetrical;
they have off-axis magnetic fields. If they have
other asymmetries, perhaps mass deforma-
tions that help to pin the magnetic poles in
one place, then they may give off detectable
radiation. There is an upper limit on the
strength of this radiation for any pulsar whose
spin-down rate has been measured: GWs prob-
ably do not carry away more than the rota-
tional energy loss of the pulsar.

The signal will be steady, so one’s ability to
find it increases with the square root of time,
for exactly the same reason as for coalescing
binaries. Again, a broadband detector is desir-
able, so that signals of any frequency can be
detected. Given a few months’ observation,
second-stage interferometers are expected to
be able to beat the upper limits on several
pulsars by factors of 10 or more.

It is possible to conduct searches for un-
known pulsars through their GW emission.
Here, as for known pulsars, one must remove
the Doppler effects caused by the Earth's
motion before the signal becomes periodic.
This correction depends on the position of the

pulsar. To perform a sensitive all-sky search is
a demanding computational task, and the
sensitivity will be limited by the capacity of
available computers (Schutz, 1991).

4.1.4 Ordinary Binaries. Binary star sys-
tems emit radiation at twice the frequency of
their orbit. For all except the coalescing bina-
ries considered before, this is a very low
frequency, not observable from the ground
(Sec. 4.1.1). But space-based detectors would
be able to reach as low as 10~* Hz and could
detect steady radiation from many binaries.
One of the most prominent would be PSR1913
+ 16. Other compact binaries might be discov-
ered this way.

Binaries containing white dwarfs are so
numerous that at the lower frequencies they
provide a chaotic background of waves that
might mask other sources, at least if only one
detector is used in space.

4.1.5 Cosmological Background. Just as
there is a cosmological background of electro-
magnetic radiation, one expects a background
of GWs. The thermal background may be too
weak to see, but many other potential sources
have been discussed. Most rely on aspects of
high-energy physics that give rise to inflation
or to topological anomalies.

Theories that produce cosmic strings have
been studied extensively. Strings are massive
linear regions of trapped field, which can seed
galaxy formation and can emit GWs. If strings
do provide the seeds for galaxy formation,
then they ought to produce a background of
GWs that is detectable by interferometers
(Allen and Shellard, 1992).

Searches for such a background rely on
cross-correlation of the output of two detec-
tors, since in a single detector the background
appears simply as another source of noise. If
the detectors are close enough, the back-
ground will produce a correlated response in
both that can stand out against other local
sources of noise.

4.1.6 Unexpected Sources. One of the
most exciting prospects is that there might be
significant radiation from unpredicted sources.
Whenever new windows on astronomy have
been opened, such as radio or x-ray astron-
omy, completely unexpected objects have been
found. This will undoubtedly be true for GWs
as well, but of course one does not know what
sensitivity will be required to reveal them. By



going 10 times deeper in amplitude (100 times
in energy) than the strongest predictions for
bursts, second-stage interferometers must
stand a good chance of making such discov-
eries.

4.2 Detectors

The reason for the current interest in GWs
is technological: it now seems possible to
build a detector that meets theoretical predic-
tions about sources. But detectors of various
types have been under development since
1960, and six or seven detectors around the
world are able to make observations today. In
this section we review the techniques, with an
emphasis on the areas of technology that are
relevant.

4.2.1 Bar-Type Detectors. Weber de-
signed and built the first GW detector in the
1960s. It was based on a cylinder of alumi-
num, suspended and isolated from ground
vibrations (Weber, 1967). When a GW hits the
bar broadside, the tidal forces represented in
Fig. 1 stretch it along its axis. By monitoring
the excitation of the fundamental longitudinal
mode of vibration of the bar, one can look for
GWs,

Weber chose a bar that had a resonant
frequency in the kilohertz region to look for
supernova events. He showed that, even for a
burst event, it is desirable for the vibrational
mode to have a large Q; such a mode is weakly
coupled to the thermal bath of the other
modes, making it easier to recognize the rapid
change in its excitation caused by a GW.

The dominant background is thermal vi-
brations. Subsequent generations of bars have
been cooled to 4.2 K to reduce this back-
ground. A further generation of bars now
under construction (1993) may reach 10 mK
(for example, see Astone et al., 1991b). Weigh-
ing several tons, such bars will be the coldest
large objects the Universe has ever seen! Where
Weber's original bar had a sensitivity limit of
h~10"'¢for abroadband burst around 1 kHz,
cryogenic bars today reach about 10~ %, and
the new bars may go to 10~2,

For bars to go below this to the interesting
level of 102! means defeating the quantum
limit. This refers to the fact that, in classical
terms, the excitation energy deposited in a bar
by a GW of that amplitude will be smaller
than the energy of one phonon of longitudinal
excitation. Although one might think this would
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be an absolute limit, GW theorists showed that
one can use the uncertainty principle to
“squeeze” the uncertainty in a particular ob-
servable (not the phonon number) and de-
duce from that the amplitude of the incident
GW (Caves et al., 1980).

Incidentally, when the same theory was
applied to the laser interferometric detectors,
the notion of “squeezed light” was developed
(Caves, 1981). Although it had been discussed
before, GW detectors stimulated the current
strong interest in the quantum optics and
communications community in this tech-
nique for reducing photon noise.

Despite more than a decade of research
into squeezing for bars, no practical scheme
has emerged, and one cannot be hopeful that
bars will break the 10~2! barrier. For the next
five years, while interferometers are being
constructed, the ultracryogenic bars will have
the best chance of detecting GWs. If a super-
nova occurs in our Galaxy or in a nearby one,
they may well succeed.

4.2.2 Laser-Interferometric Detectors.
An interferometer is designed to measure the
relative difference in two optical paths. If one
places an interferometer in the center of the
ring in Fig. 1, with the ends of two perpendic-
ular arms on the ring, then the subsequent
motion of the ends relative to the center can
be detected by interferometry.

The relative motions are small, however,
and so the technical challenge is large. For the
end mirrors to respond as free masses, they
must be hung from supports and isolated
from ground vibration. Because the tidal grav-
itational forces scale with distance, it is desir-
able to make the arms as long as possible.
Present prototypes (see the various articles in
Blair, 1991) are in the 10-40-m range, but
detectors now under construction (see below)
will be as long as 4 km. It is this ability to take
advantage of the tidal scaling that gives inter-
ferometers the edge over bars.

Even over 4 km, a disturbance of 10~%!
translates into a mirror motion of 4x 1016
cm, less than 0.01 fm. To sense average dis-
placements of the surface of a macroscopic
object to this accuracy with optical or infrared
photons whose wavelengths are 12 orders of
magnitude larger requires many photons. In
turn, this requires excellent mirrors and high-
power continuous-wave lasers. The physical
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principles of such detectors have been re-

viewed by Giazotto (1989).

The detectors will be built in stages. The
first stage will aim at a sensitivity to broad-
band bursts of 10~2!. The second stage will
aim for 10722, Current designs anticipate mir-
rors with losses well below 10™* per reflec-
tion, and neodymium-doped yttrium alumi-
num garnet (YAG) lasers as sources for the
second stage. (See LASERS, SOLID STATE.) For
the second stage, light will have to be con-
served, and designers like R. W. P, Drever and
the late B. J. Meers have devised clever meth-
ods of optimizing the use of light. It is now
clear that, although the detectors are intrinsi-
cally broadband, they can also be tuned to
narrow frequency ranges if desired.

The light must travel along the arms in a
good vacuum, better than 1028 Torr for the
second stage. This is not hard in principle, but
the volume to be evacuated is large: tubes 4
km in length and 1.5 m in diameter. The cost
of this vacuum system is the dominant cost of
the detectors.

Data will flow from these detectors at an
enormous rate. Recent short observing runs
using prototypes at Glasgow University and
the Max Planck Institute for Quantum Optics
in Garching, Germany, produced data rates
approaching 1 Gbyte/h. The storage and anal-
ysis of data from a network of interferometers
are formidable problems.

There are proposals for a number of inter-
ferometric detectors around the world. A
project called LIGO to build two in the United
States (Abramovici et al, 1992) is funded,
and should begin construction in 1993. If
present (1993) schedules hold, LIGO could
begin observing by 1998. A French-Italian
detector called VIRGO, to be built near Pisa,
Italy, is likely to get final approval in 1993
(Bradaschia er al., 1990). There are further
proposals for a British-German detector near
Hannover, Germany, and an Australian detec-
tor near Perth that are awaiting funding.
Japan is planning an intermediate-sized detec-
tor (300 m). Because detectors have broad
quadrupolar antenna patterns, an accurate
direction to a detected source can only be
obtained by triangulation, using the time de-
lays among various detectors. For this reason,
a minimum of three detectors worldwide is
required for the extraction of full information
from detected signals.

4.2.3 Space-Based Detectors.  Aswe noted
in Sec. 4.1.1, the interesting frequency range
around 1 mHz is only accessible to space-
based detectors. Space-based searches for GWs
have already been made using transponding
data from interplanetary space probes. A pass-
ing GW would affect the time delays of round-
trip signaling to the probes; the signature of
this effect is unique, and sensitive searches
can be made at very low frequencies. No
positive detections have been reported (e.g.,
Armstrong et al., 1987). As the principal limit
on sensitivity is propagation disturbances of
the radio communication signals, sensitivity
can be increased by using multiple-frequency
communication, by going to higher frequen-
cies, and by using multiple spacecraft. A three-
spacecraft experiment was performed in 1993
using NASA's Mars Observer and Galileo
probes and the European Space Administra-
tion's Ulysses solar observatory. When the
data are analyzed, they may improve previous
limits by a factor of 10 or more.

Proposals have been made for purpose-
built interferometers in space. Laser interfer-
ometers using the Earth-Moon or even the
Sun-Earth Lagrangian points to stabilize their
orbits look very promising.

GLOSSARY

Cosmology: The study of the large-scale
properties of the observable universe as a
whole.

Geodesics: Locally straight lines of a
curved space or spacetime. They are also
paths of extremal proper distance.

Homogeneous Cosmology: A cosmology
in which there is a choice of time (a reference
frame) such that all its properties are the
same everywhere at a constant time.

Isotropic Cosmology: A cosmology that
is homogeneous and in which, in addition,
there is no preferred direction in space, such
as a systematic velocity of the matter.

Reference Frame: A coordinate system
for space and time that includes facilities for
measuring and recording the exact location
and time of any event. In special relativity, a
Lorentz reference frame has rigid spacings
between spatial coordinate locations, and its
clocks are synchronized everywhere. In gen
eral relativity, a local reference frame makes
measurements only in a restricted region.
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