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SUMMARY

Upper bounds are computed for the energy emitted in gravitational radiation
by two black holes falling into one another from rest at a range of separations.
It is shown that before the ratio of total mass to proper separation exceeds
0°759 an event horizon must have formed around both.

INTRODUCTION

In a previous paper (Gibbons 1972a), one of us combined Hawking’s (1972)
recent theorem (that the area of the event horizon must increase in time) with
a study of the time-symmetric initial value problem to obtain upper bounds on
the energy available for gravitational radiation during the evolution of systems
more general than those originally considered by Hawking. In this paper we
apply these methods to a class of time-symmetric initial value surfaces first given
by Misner (Misner (1960, 1963), Wheeler (1961)), all of which can be given
various topologies, including that of a wormhole. Our aims are:

1. To obtain upper limits on the efficiency for radiating gravitational waves
when the initial system can be regarded as two separate non-rotating black holes
with finite separation (i.e. gravitationally bound); and

2. To obtain some criterion for deciding when the initial system must be
regarded as a single distorted non-rotating black hole.

We find that the upper limit on the efficiency decreases with decreasing initial
separation of the black holes, being always less than the 29-3 per cent obtained
by Hawking. We also find that the initial system must be regarded as a single
black hole by the time the ratio of total mass to proper separation has increased

to 0-759.

THE INITIAL VALUE SURFACE

The solution given by Misner (1960, 1963) has the following form. Let u, 6, ¢
be bispherical coordinates for Euclidean space. The two poles of the system are
a distance 2a apart. Then ¢ is a cylindrical angle about the axis joining the poles
(0 < ¢ < 27). The lines 6 = constant, ¢ = constant are arcs of circles with
end points on the poles, & being = minus half the angle subtended by the arc
(0 < 0 < =, with § = = the axis). The lines s = constant, ¢ = constant are the
orthogonal trajectories of these circles and form a system of coaxial circles. As
p = * o0, the circles shrink down onto the poles; u = o is the plane perpendicu-
larly bisecting the axis. The black holes are constructed by removing the spheres
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{n] > po, calling their boundaries 7 and T, and giving the initial hypersurface
S the metric
ds? = a2Q4{du2+d02+sin? 0 dp?},

n=+w
® = ) [cosh(p+2npg)—cos 6]-1/2,

fn=—ow
This metric is conformally flat and « is an overall constant length scale. Notice
that @ is a periodic function of p with period 2pq.

If corresponding points on T and T are identified, a ¢ wormhole * resuls,

If S is joined to a similar surface S’ at the spheres we obtain two sheets joined by
two Einstein—Rosen bridges. Many other topologies are possible. Here we are
only concerned with the exterior region given above. The hypersurface S is
- asymptotically flat with total mass (Misner 1960)

M=a'y 4sinhnuo)L.
n=1

The least proper distance between the two spheres, passing through the external
region, is (Lindquist 1963)

L = 2a[1 +2 i npo (sinh np.o)_l].
n=1

In the limit po — 0 we obtain ordinary Euclidean space. Asymptotically we
have

M - 4afsinh pg,

L — 2a(1+ po e ).

Thus the two black holes shrink to zero mass at a distance 24 apart. As pg decreases,
both M and L increase such that M/L increases.

The spheres T3 and T, are both minimal surfaces and marginally trapped
surfaces and must lie within the event horizon (Gibbons 1972a). For close separa-
tions we expect a third minimal surface T to enclose both T1 and Ts. This must
lie within the event horizon. Fig. 1 illustrates the three qualitatively different
situations that are obtained as uo decreases from oo.

In both types I and II of Fig. 1, the lack of a third minimal surface means
that the area of the horizon, A(2B), must exceed the sum of the areas of T; and

T2.* Thus we have
A(2B) > A(T1)+ A(Ts) = 24(T)).

Knowing A(T}) gives a lower bound for A(2B).
For type III we have

A(2B) > A(Ts) < A(T1)+A(Ty).

In this case we cannot obtain a bound on A(2B) this way.
As the system evolves to form a final Schwarzschild black hole with final
mass My, the area of the event horizon increases to a final value 167M;2. Thus

* To make the argument strictly rigorous for type 11, one must put a topology on the
space of surfaces homologous to @B and show that (1) the space is compact, and (2) the
area is a continuous function on this space. There seems no reason why this should not

be possible.
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F1G. 1. The three possible topologies for the exterior of T1 and Ts. The intersection of the
event horizon with S is 0B. Shaded parts are the interiors of the black holes. In type I,
T1 and Tq are enclosed by disconnected pieces of 9B. (But note that if Ty and Tg are
identified to form a wormhole, then by the precise definition of a black hole given by Hawking
(1972) the shaded region is a single black hole.) In type II the minimal surfaces are close
enough to be enclosed within a connected 9B, but there does not exist a third minimal
surface. In type III the third minimal surface, Ts, has formed inside OB.

the efficiency for radiating gravitational waves,

o o D
77 = Ml,
is bounded above by
_ 1 [A(0B) _I JA(Th) _
17<IM I61r<I]T4 8r ¥

the last inequality holding only for types I and II.
The proper~ area of the sphere T is given by

A(T) = 2ma? f "[®(n = po, 0)] sin 646,
(1]

For large pg this becomes -
A(T1) - 128 ma?2 (cosh pg)=2.
From this one can deduce that asymptotically
I 1 M2
N0 —> I-—W (I+§ fz)
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NUMERICAL RESULTS AND DISCUSSION

We have computed M, L, A and 7o for a range of the parameter up. The
results are shown in Table I and Fig. 2. Note that as M/L increases (holes becoming
more tightly bound), 7o falls from Hawking’s maximum of 29-3 per cent to zero
at po = 1°16, M|L = o-759. If this were a valid efficiency limit, then for larger
M|L we would have My > M;, an absurd result. We must conclude that the
system has become of type III (or that possibly a naked singularity will develop)

TaBLE 1

Calculated values of mass (M), proper separation (L), © relativity parameter’ (M/L), area

of T1 (A), and upper limit on efficiency (no), for a range of po. Computational accuracies are:

Jor M and L., +0-05 per cent; for M/L, +o-1 per cent; for Ajzm, +0-5 per cent; for no,

+ 0-003 absolute. Negative no indicates that A(T1) no longer limits the efficiency, i.e. that the
system is of type 111,

1o M L MJ|L Alaw M0
o'9 6-167 6-486 0-9508 1964 —0°137
0°95 5621 6-199 0-9obg 154°3 —0-106
10 5141 5°938 0-8659 1223 —o0-076
1'25 37425 4'952  0°6916 43°97 0031
I's 2394 4'294  0°5576 18-47 0102
175 1-728 3824 0-4518 8:562 0-153
2'0 1°274 3°472 0-3669 4-277 o-188
2°25 0°9530 3199  0°2979 2+237 o-215
25 0-7205 2:983 0°2416 1-216 0°234
275 05490 2-808 0-1955 0-:6789 0-249
30 0-4206 2666 o-1578 0-3867 o-260
50 005433 2°137  0:02543 0°005906 0°293
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FIG. 2. Plot of the limit on the efficiency computed using A(T1) (solid line) against the
parameter M/L.. The dotted curve represents the conjectured behaviour of the efficiency
for large M/L. Its point of departure from the solid line marks the boundary between
types II and I1I. As this boundary has not been computed, no significance should be attached
to the value of M/L or no at which we indicate the junction of the two curves.
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before M/L reaches 0-759, invalidating the efficiency limit computed from 4(T}). -
At the point of transition from type II to type III, we must have

A(Ts) = A(Ty)+ A(Ts).

For larger M/L the real efficiency limit must branch off the curve of our cal-
culations. Such a branch is shown dotted in Fig. 2. No significance should be
attached to the values of M/L and 7o at the branching point as they are not cal-
culable by the simple methods used in this paper. As M/L gets very large the
system looks more and more like a slightly distorted black hole, so the true effi-
ciency limit should go asymptotically to zero. This view is supported by a second
order perturbation calculation (Gibbons 1972b, to be published). Behaviour like
this occurs in a similar system discussed by Brill & Lindquist (1963), though those
authors did not compute areas.

For small M|L, no depends only on (M/L)2. The difference between 5o and
the Hawking limit of 29-3 per cent represents an energy unavailable for radiation,
i.e. the difference in gravitational potential energy between the state at infinite
separation and that at finite separation. Its dependence on (M/L)? might be
thought to indicate an inverse cube law for the attraction between two widely
separated black holes. This is not correct. The dependence on (M/L)? is only
along a curve parameterized by pg along which M and L cannot be varied inde-
pendently. In fact, as yp - 0 and M|L - o, L becomes constant, so the change
in potential energy results only from a change in the mass M. It is easy to show
that the resulting change in efficiency (i.e. in the potential energy divided by M)
is proportional to M2, not M.
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