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LINEAR PULSATIONS AND STABILITY OF DIFFERENTIALLY
ROTATING STELLAR MODELS. I. NEWTONIAN ANALYSIS*

Bernarp F. Scuutz, Jr.f
California Institute of Technology, Pasadena, California
Received 1971 August 3

ABSTRACT
A systematic method is presented for deriving the Lagrangian governing the evolution of small
perturbations of arbitrary flows of a self-gravitating perfect fluid. The method is applied to a differ-
entially rotating stellar model; the result is a Lagrangian equivalent to that of Lynden-Bell and Ostriker.
A sufficient condition for stability of rotating stars, derived from this Lagrangian, is simplified greatly
by using as trial functions not the three components of the Lagrangian displacement vector &, but three
scalar functions defined by

pE=VA+V X (xi+V X vi),

where i is an arbitrary vector field. This change of variables saves one from integrating twice over the
star to find the effect of the perturbed gravitational field.

I. INTRODUCTION AND SUMMARY

There is usually a very close connection between variational principles and stability
criteria. If one has a variational principle that gives the dynamical equations for small
perturbations of some equilibrium state, he usually can obtain directly a criterion that
tells him whether those perturbations will remain small. In fact, Cotsaftis (1968) has
shown that it is in principle always possible to derive at least a sufficient condition for
stability from the Lagrangian. The most familiar example of this is the use of the
Hamiltonian as a Liapunov function in cases where energy is conserved or dissipated
by the perturbations: then positive-definiteness of the Hamiltonian guarantees stability.

In the theory of small pulsations of stellar models made of perfect tluid, the problem
of finding a Lagrangian for the pulsational equations has been solved only in the past
decade (Chandrasekhar 1964; Chandrasekhar and Lebovitz 1964; Clement 1964;
Lynden-Bell and Ostriker 1967; Chandrasekhar and Lebovitz 1968). The Lagrangian
for the nonradial pulsations of a nonrotating star was deduced directly from the per-
turbed equations of motion by Chandrasekhar (1964) and by Chandrasekhar and
Lebovitz (1964). Using these same techniques, Lynden-Bell and Ostriker (1967) ob-
tained the Lagrangian for small perturbations of any stationary equilibrium configura-
tion of perfect fluid; and they derived from their Lagrangian a sufficient condition for
stability, which is essentially that the conserved Hamiltonian be positive-definite. In
principle this nearly solves the stability problem, though in practice the criterion is
still very difficult to use.

The purpose of this paper is to show that the Lagrangian can also be deduced in a
potentially more powerful way from the general perfect-fluid variational principle of
Seliger and Whitham (1968); and to show that the resulting stability criterion can be
simplified greatly for the purpose of testing realistic models. The method introduced
here is potentially more powerful for two reasons. First, it provides a straightforward,

* Supported in part by the National Science Foundation (GP-27304, GP-19887, GP-28027).
t Present address: Department of Applied Mathematics and Theoretical Physics, University of
Cambridge, England.
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320 BERNARD F. SCHUTZ, JR.

conceptually simple procedure for deducing the Lagrangian for perturbations of any
initial flow (not necessarily stationary) with arbitrary boundary conditions on the
perturbations (boundary conditions have required special considerations in previous
work). Second, it is easily generalized to general-relativistic stellar models, where the
pulsational equations (cf. Thorne and Campolattaro 1967) are so complicated that thev
have defied the earlier techniques. In the second paper in this series (Paper II, Schutz
1972), we will apply the method illustrated here to fully relativistic, differentially
rotating stellar models, starting from the relativistic version of the Seliger-Whitham
variational principle obtained by Schutz (1970) (and obtained independently for special
relativity by Schmid 1970g, ). In the present paper we confine ourselves to the New-
tonian regime.

The general plan of the paper is as follows. In § IT we present the general Lagrangian
for the perturbations of any motion of a self-gravitating perfect fluid (not restricted to
stationary motions). It is the second variation of the Seliger-Whitham Lagrangian. In
§ IIT we specialize to the case where the unperturbed flow is a differentially rotating
stellar model. We reduce the Lagrangian to a function only of the fluid displacement
vector, §; and we express the action as an integral over the interior of the star plus an
integral over the surface of the star (the surface integral permits the perturbation to
obey any boundary condition).

In § IV we write down the sufficient condition for stability, first discovered by
Lynden-Bell and Ostriker (1967). We then show that a considerable simplification of
the criterion can be effected by dealing not with £ but with three scalar fields from which
£ can be obtained (in complete generality) by the following construction:

p§=V>\+VX(xur+VX‘)’ur).

Finally, in § V we examine the special cases of (i) axially symmetric perturbations of a
rotating star (as treated by Chandrasekhar and Lebovitz 1968) and (ii) perturbations
of a nonrotating star (treated by Chandrasekhar and Lebovitz 1964). We find that the
stability criteria for those cases can also be simplified by using the above expression for
£. In order to preserve the continuity of the discussion, details of the longer calculations

have been placed in appendices.
II. PERTURBATIONS OF AN ARBITRARY FLOW
a) The Velocity- Potential Variational Principle

The starting point for our analysis is the variational principle discovered by Seliger
and Whitham (1968). It is by no means the only variational principle for perfect fluids,
but it is especially well suited for examining perturbations because it is an Eulerian
variational principle. That is, all fluid quantities are expressed in terms of five scalar
fields (the velocity potentials ¢, «, 8, 8, S); one never needs to deal explicitly with
“fuid elements” or ‘‘particle paths.” Perturbations in the flow come from simple
Eulerian perturbations of the velocity potentials, and are much easier to deal with than

perturbations in particle paths. ) )
The basis of the variational principle is the representation of the velocity field of the

pericct fluid in terms of the five velocity potentials:
v= V¢ + avp — Sv4, (1)

where S is the entropy per unit mass. The notation follows that of Schutz (1970), with
the definition
¢ =¢+06S, (2)

where ¢ was used by Schutz (1970) but will not be used here. It turns out to be more
convenient in this paper and especially in Paper II to use the set (¥, a, 8, 6, S), rather
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than (¢, a, 8, 8,.5). To convert from this notation to that of Seliger and Whitham (1968),
make the replacements ¢ — ¢, § & —n. (These are changes in name only: Seliger and
Whitham'’s ¢ is the same as our .)

Each velocity potential obeys a simple “equation of evolution’:

‘2_";’+v.v¢=—h+TS—<I>+%v-v, (3a)
da
—57+v-Va—0, (3b)
ég-f-v'W3=0, (3c)
at
6—S+ vvS =0, (3d)
at
O vve=T, (3e)
a!
Here T is the temperature; ® is the gravitational potential,
VP = 4nGp ; (4)
and 4 is the specific enthalpy,
h=(E+p)/e, (5)

where E is the internal thermodynamic energy density, p is the pressure, and p is the
mass density. The evolution of the velocity potentials fixes the evolution of v through
equation (1). In order to make this a well-determined set of equations one must add an
equation of state,

p =S, (6)

and the continuity equation

%§+v-<pv)=o. )

Equations (3), (4), and (7) constitute seven equations for the seven functions ®, /, S,
¥, a, 8, 8. They are completely equivalent to the Euler equation,

duv 1
—(‘97+(U'V)U—- —-;VP—V‘I’y (8)

supplemented by equations (3d), (4), and (7). A rigorous proof of this equivalence has
been given by Schutz (1970) for the relativistic version, but it applies equally well here.
Equations (3), (4), and (7) follow from extremizing the action

I = fS(v®-vd — 8rGp)dtdV , 9)

where the integral is over all space and time (dV is an element of volume). The pressure
is taken to be a function of # and S through equation (6), and the enthalpy in turn is
defined formally as a function of ® and of the velocity potentials:

h=—®—y,— af.+ S8..— 3(VY + aVB — SVI)?. (10)

Variations in the pressure with respect to the independent variables (®, ¥, a, 8, 6, 5)
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are accomplished through the first law of thermodynamics:
dp = pdh — pTdS . (11)
The vanishing of the “first variation”
S 2v®-vsd — 8xGop)didV
S (2vd-vid — 8xGpdh + 8nGpTsS)dtdV (12)

—when 8k is expressed in terms of the independent variations &%, &y, da, 68, 36, 65—
gives equations (4), (7), and (3b)~(3e). Equation (3a) follows from the rest of equations
(3) and equation (10), so it is not an independent Euler-Lagrange equation.

In this paper it is often convenient to use the notation of differential geometry
because we wish our expressions to be valid in any curvilinear coordinate system. Thus,
we denote partial differentiation by a subscripted comma (as in eq. [10]) and covariant
differentiation by a subscripted semicolon. We understand the gradient ¥ to be a co-
variant derivative. We distinguish contravariant components v‘ from covariant compo-
nents z;,; and we raise and lower indices with the metric tensor g;; {which for spherical
polar coordinates is just diag (1, 72, r* sin® #)]. We always integrate over proper volume,
dV = g¥%%, where g*—the root of the determinant of the matrix g;;—is the Jacobian
of the transformation from Cartesian coordinates to the general curvilinear coordinate
system. We are able to integrate by parts because of the identity for any vector 4 that

VAl = A7, g7 = (LAigh?) )
b) The Second Variation

It is well known that the second variation of a Lagrangian serves itself as a Lagrangian
for the small perturbations of whatever state of motion causes the first variation to
vanish (cf. Taub 1969 for a recent application to the stability of relativistic stars against
radial pulsations). The second variation of equation (9) is just the part of I that is
quadratic in the variations 6P, 8¢, da, 68, 86, 55. Thus, starting from equation (12), we
find!

81

I

8 = f[26% 5P gt — 8xGopsh — BuGps*h + 8xGd(p T)8S|dtdV . (13)

Now, the second variation in /i comes from equation (10):

2h = — 2680, + 20580, — 6v-6v — 28088 i + 2651580 . (14)

Thus, the Lagrangian density for the perturbations is (dividing eq. [13] by 8xG)
L~ .4715 g i8b 30, — dpdh -+ 6(pT)6S + pbv-dv

+ 2p6a(36.. + v*8B8,x) — 2p85(80,, + v<30 ;) . (15)

This Lagrangian is perfectly general and makes no assumpltion about the wnperturbed state
except that it satisfy the unperturbed velocily-polential equations. In the case of the differen-
tially rotating star, the unperturbed motion is steady, so the coefficients of the quadratic
perturbation terms in L, will be independent of time; this will enable us to obtain
stability criteria.

In using L» as the Lagrangian density for the perturbed fluid, we have changed the
meaning of 6@, 8¢, da, 88, 88, 8S. In the first variation, 6% was a “virtual” change in the
gravitational field. Here, §® is the real Eulerian change in ® produced by the perturbed

1 Note that we are looking for second-order changes in functions of the potentials when the potentials
are perturbed. By definition, then, the second variation of a potential itself is zero; e.g., 5% = 0
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state of the fluid. Extremizing /" L,dVdt with respect to virtual changes in §& gives the

perturbed source equation,
V%P = 4xGop .

Similarly, extremizing /"L,dVdt with respect to virtual changes in the other perturba-
tions gives the Eulerian perturbations of equations (3b)-(3e) and (7). These equations
are completely equivalent to the perturbed Euler equation (eq. [8]), which we write
down for future reference:

égti’ + @Gv-v)v+ (vV)bv = — %V&p + 71,.—:6pvp — Vb, (16)

¢) Discussion

For two reasons the Lagrangian density L, is not in a form suitable for a stability
analysis.

First, the Lagrangian is degenerate. That is, the momenta dLy/35® ., dL./36¢ o, . . .
are not all independent; in fact, three of them are zero and only one of the remaining
three is independent. This is partly a reflection of the fact that not all the six variables
are dynamical (cf. Schutz 1971 for further discussion of this point).

Second, the usual criterion for stability is that the perturbations not grow without
bound. But even the unperturbed potentials ¥, 8, and 6 grow in time at any given point
(cf. eq. [3] or [18]), so we can expect that even for a stable, physically bounded perturba-
tion the perturbations 8¢, 68, and 66 will grow without limit. This presents no physical
difficulty because the potentials themselves are not physically observable. But it
presents a mathematical difficulty in that the boundedness of the perturbed velocity
potentials is neither necessary nor sufficient for stability.

For these reasons we prefer to express L, as a function only of the dynamical variable
£ (the displacement vector of a fluid element).? This is accomplished in § III for the case
of the differentially rotating star.

It is important to understand that the perturbed action,

I, = [ LdVdt, (17)

is an integral over all space between two arbitrary moments of time. The reason for this
is that the Euler-Lagrange equations extremize I, only under the condition that the
variables 3@, 8y, . . . be held fixed at the boundary of the region of integration. The
only way to ensure that this represents no physical constraint on the perturbations is to
put the spatial boundary at infinity, where all the perturbations must vanish anyway.?
(Only 8® is observable outside the star, and it must approach zero at infinity at least
as fast as 1/7%. The velocity potentials have no physical significance outside the tluid
because p and p are zero there, but it is convenient to think of them as existing in the
exterior and going smoothly to zero at infinity.) In § I, after we have introduced &,
we will bring the boundary of the region of integration in to just inside the surface of the
star, expressing the contribution from the rest of space as a surface integral at the star’s
surface. In this manner we will ensure that I, be an extremum among all perturbations
that obey any physically permissible boundary conditions at the star’s surface.

2 An alternative procedure is followed in Paper IT: We find the (nonconserved) Hamiltonian from L,
and construct from it a conserved energy density, whose positive-definiteness ensures stability by
Liapunov’s second theorem (La Salle and Lefschetz 1961). The complexity of the relativistic equations
makes that the easier procedure; but in the Newtonian case the procedure we follow here is less difficult
and physically more satisfying.

3 By contrast, requiring the perturbations to vanish at the endpoints in ‘ime is not a physical restric-
tion: it is a direct carry-over from particle mechanics, where it is the heart of Hamilton’s principle. In
continuum mechanics one cannot demand as well that the variation vanish at some point in space for all
time, for that would be a physical constraint.
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" III. PERTURBATIONS OF DIFFERENTIALLY ROTATING STARS
a) The Unperturbed Equilibrium

From now on we will consider the Lagrangian, equation (15), only in the context of
rotating stars. In this section and the next we make no assumptions about the initial
equilibrium except that it be axially symmetric, stationary, and, of course, composed
of perfect fluid (no heat flux, no viscosity). In § V we specialize the equilibrium con-
figuration further.

The general stationary axially symmetric flow can be represented by the following set
of velocity potentials (r, &, ¢ are the usual spherical polar coordinates, and 7 is time):

S = arbitrary function of r and &, (18a)
Q = arbitrary function of r and ¢, (18b)
a = Qfsin? ¢ = Qg,,, (18¢c)
B=¢—NU, (18d)
§=1T1¢, (18¢)
v=(—h+TS— &+ 1 sin? 902 . (18f)
From equation (1) we find
vy = a = Uggy, (19)
which means that @ i1s the angular velocity,
Q = = dp/dt. (20)
Setting 15 and z, to zero in equation (1) gives the equation of structure
ppi+ Dy — PR (rtsin? §),;, = 0, (21a)
. PP+ 2, — e, + Jo; = 0. (21b)

The source equation for ¢, equation {4), has of course the formal solution

B(x) = — S _Ge(x') av’. (22)

lx — x|

Note that although the velocity potentials are conveniently expressed in terms of the
spherical polar coordinates, they are scalars and keep the same values in other coordinate
systems.

b) Reduction of Ly

We now eliminate the variables §P, 8¢, da, 68, 66, and &S from L, {eq. [13]), replacing
them with £ The details of the reduction are given in Appendix A. The essential steps
are:
i) Solve the perturbed velocity-potential equations for 45, éa, and 68 in terrs of &:

88 = —¢(-vS; (23a)
ja = —§Va;, (23b)
03 = —&-Vg3. (23¢)
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il) Express év and 8p in terms of £:

0
b=+ (V) — @ V)o; (24)
ép = —V-(pk) . (23)
iii) Formally solve the perturbed source equation for §&:
7 ’ / 1
3(x) = =G S dV'p(x)E(x)V I’k (26)

iv) Plug all these expressions into L;. Perform some integrations by parts so that
explicit expressions for 6y and 86 are never needed. Discard all divergences because the
integral extends to spatial infinity. Obtain the result

1

L, = e 30 ,:60 ;g% — vp(V-§)? — 2(V-E)(E-Vp)

B 117 (E-Vp)(E- VD) + 3p(aQ e — Qor,ji)EEF

+ pgixv vt g+ 2pginkl kR 0t - pgindl EF e (27)
where 8® is given by equation (26), v is the adiabatic index
— P (92
v=2(3)..

and all quantities except 6® and £ have their unperturbed values. This is equivalent to
the Lagrangian of Lyden-Bell and Ostriker (1967), specialized to the case of the differen-
tially rotating star.

One ought to wonder if L,() is really still the Lagrangian: might not the substitutions
of step (iv) fundamentally alter its character? The proof that they don’t is, of course,
that they don’t: it is not hard to show that varying L, with respect to & gives just the
perturbed Euler equation, equation (16), when all perturbed quantities are expressed in
terms of &.

This is reasonable on general grounds: the action 7, is an extremum for motions
obeying the perturbed versions of equations (3), (4), and (7). If we solve some of these
equations for some of the variables in terms of the others and then substitute the
solutions back into L,, then I, must still be an extremum for the solution of the rest of
the equations. That this is what we have done is evident from equations (23). In the
general case, ¥, Va, and v are linearly independent vectors. We have simply re-
labeled some of the variables by defining & to be a vector whose component on ¢S is
—5S, whose component on Ve i1s —é8a, and whose component on v3 is —§6. We then
eliminated 66, 8¢, and 6& in terms of these three components of £ The quantity I,
ought still to be an extremum for whatever 85, éa, 68 made it an extremum before.

What about uniqueness? It is still possible that our procedure could introduce
spurious solutions that extremize the reduced I» but not the original. This will in fact
happen if one reduces the number of variables in a Lagrangian below the number of
true degrees of freedom the system has, because then one has implicitly assumed some
relation between one or more degrees of freedom that isn’t generally true. As a simple
example, consider the free-particle Lagrangian, £ = #? 4 %% whose Euler-Lagrange
equations have the solution £ = const., ¥ = const. Assume that £ = ky. Substitute
this into £: £ = k*y? 4+ y2. The Euler-Lagrange equations still have as one solution
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y = 0 (=% = y = 0), but they also have the spurious solution y = exp (k+/2). So in
general one must exercise care not to infringe on a system’s dynamical freedom. In our
case we have not introduced spurious solutions: the three components of € are the only
dynamical variables the pulsating star has.

¢) Surface Boundary Conditions: Expressing the Action as an Integral
over the Interior of the Star Plus a Surface Integral

One generally prefers to express the action as an integral over the interior of the star,
where all the dynamics occurs. Our action I, = fL,dVdt, with L, from equation (27),
includes an integral over all of space. The only contribution outside the star is from the
term in §&. We shall see that it can be expressed as a divergence plus a term that is zero
outside the star; thus the integral of L, outside the star can be expressed as a surface
integral evaluated just above the surface of the star.

The star’s surface is defined as that place where p = 0. For some equations of state
this does not imply p = 0. Outside the surface we must of course have p = 0, so that p
may be discontinuous and the terms in L, that contain gradients of p may be delta-
functions at the surface. Therefore, bringing the limit of integration in I, to just inside
the star’s surface will bring in a surface integral.

We consider separately the two steps: first bringing the limit in to =+, a surface just
outside the star’s surface T; and second, bringing the limit into =7, a surface just
inside Z.

1) The Integral over the Exterior Region

The only nonzero term in [, outside the star comes from §. Ignoring for the moment

the integral on time, we have

S Vi vsbdV

S 1w - (30V D) — sDVP|dV
— 412G S 6b5pdV + SV (3dVsD)dV . (28)

If the region of integration is all space, the second term in the right-hand side vanishes.
But if the region of integration is from Z* outward, then the first term is zero and the
second term is a surface integral (n is the unit eutward normal to =):

i

S Vb vibdV = — fsdVib-ndo .
exterior =t
With this, 7, becomes
L= f LdVdt — 1 S odVed- ndodt . (29)
out to T* 4rG T

it) The Surface Integral

If we integrate the first term on the right-hand side in equation (29) only out to =7,
we omit only an infinitesimal volume of space. Only if L, has delta-functions at the
surface will this region contribute to /.. As we mentioned previously, a discontinuity in
p would give such a delta-function. We need not worry about discontinuities in £ or Q:
we can perfectly well define fields & and 2 outside the star that are continuous at its
surface. They don’t affect /> because p and p are zero outside. Moreover, there can
be no discontinuities in p and ¥ at X.

One contribution to the integral of L, between X~ and Z* might come from the
term véd-wsd. This has no delta-functions, so its net contribution is zero. However,
from equation (28) we see that this means

+

z
147G S 8®6pdV = J5dVéd-nde — S 5dVid-ndo . (30)
=" z* -
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If p is discontinuous, the term dp = — V- (pf) contributes to the left-hand side, and the
result is

S50vsd-nde = JsdVid-nde + 4G S 6BpE-nds

=t z" ="

S 60(v6d + 47Gp¥)- ndo . (31)
Z

This enables us to move the surface integral in equation (29) from =% to Z7.
The only contribution to the integral of L, between 2~ and Z* comes from the fourth

term in equation (27):
. . —pHEVp)(E VD).
Its integral is
E+

—/ P EV)(E VPV = F:[(E°Vl?)(£"!)d<f- (32)

Note that because Z is a surface of constant pressure, vp and n are parallel there. With
equations (29), (31), and (32), the action becomes

1
L= S LdVit+ S E&9p)En)ded z_faqa(,;z + s v5<1>> ‘ndodt , (33)

interior

where by “interior” we mean the region inside 2.

We should mention that these same surface integrals can be obtained if, instead of
integrating L, over all space and then bringing the limit of integration in, one always
integrates L, just over the interior but adds surface terms in order to make = a free
boundary. This procedure is examined in detail by Courant and Hilbert (1953) under
the name ‘“natural boundary conditions.” The procedure followed in this section was
first suggested to me by Professor Kip Thorne.

1V. STABILITY OF DIFFERENTIALLY ROTATING STARS
a) The Stability Criterion
The Lagrangian density, equation (27), has the form
L, = pE. &, + G[§7 Et] + e[i) ‘E] ’ (34‘)

where @ and @ are homogeneous quadratic time-independent operators. Moreover, @
is antisymmetric and € is symmetric when L, is integrated over all space. Note that €
includes all except the last two terms of equation (27). It is easy to show (cf. Kulsrud
1968) that a sufficient condition for stability is (for all £ bounded everywhere and zero

at infinity)
- Jelggdv >o0. (335)

all space

This is sufficient for stability because it guarantees that the “kinetic energy,”

K= S ptEdV, (36)

all space

will remain bounded for all time for all perturbations. o
Another way of obtaining the same result is to construct the Hamiltonian density

X = pE. ¥, — €Cl§ & . (37

Because the operator € is time-independent, the total energy
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J 3xdv, (38)

all space

&

is constant, so that JC is a Liapunov function whose positive-definiteness guarantees
stability. Clearly inequality (35) guarantees the positive-definiteness of 3C. It is this
Liapunov criterion to which we will appeal in Paper II in order to obtain a sufficient
condition for the stability of relativistic stars.

For the realistic Newtonian star, inequality (35) is more than just a sufficient condi-
tion for stability. According to Lynden-Bell and Ostriker (1967), it is also the condition
for secular stability: if friction is introduced, stable modes of pulsation will remain
stable if and only if equation (35) is satisfied. It is therefore of great importance to cast
the criterion in a form that is easy to test realistic models with. That is the subject of
the remainder of this paper. Although the criterion (35) is not new, our way of handling
it is.

b) The Transverse and Longitudinal Parts of pE

The typical procedure for testing a stellar model for stability is to choose a trial
function for &, which might have some arbitrary parameters in it, and then to plug it
into the operator € and see if inequality (35) is satisfied for all values of the parameters.
This procedure is made very difficult by the term vé®-vé®. In order to find 6 at any
point inside the star one mlght integrate pf over the entire star (cf. eq. [26]). This 1s
impractical for all but the simplest stellar models and trial functions.

Fortunately we can overcome this difficulty. The source equation for é® is

V. (ViP) = —47GV - (pE) .

This can be integrated to give

Vb = —4rGnl | (39)
where nl is the longitudinal (curl-free) part of the vector field*
_ 3;){ inside the star
"= outside the star. (40)

Any piecewise differentiable vector field A that approaches zero at infinity at least
as fast as 1/r% can be decomposed into unique longitudinal and transverse parts,

A= AL 4 AT, (41a)
where (cf. Phillips 1933)
1 , , 1
AL=Vf=V[:1; fA(I)'V F——

g dV'] (41b)

and
AT=VXF:VX[%r‘fA(I’)XV’F—:‘WdV']. (41¢)

The function f and the vector F are the unique continuous scalar and divergence-free
vector potentials of the field 4. Note that F is unique only if we demand that it be
divergence-free: we can—and later we will—add a gradient to F without changing
AT,
From equation (26) we see that the scalar potential for n is just — (47G)7'6®, which
proves equation (39). Thus, the gravitational term in € becomes
1

ﬁ véPb-véd = 4xGnl- . (42)

4 A good introduction to longitudinal and transverse parts of vector fields can be found in Phiilips
(1933).
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We can achieve a considerable savings of effort in testing a stellar model for stability
if instead of choosing a trial function for £ we choose one for n* and one for n?. The
search for a suitable curl-free vector for n’ and a suitable divergence-free vector for n?
might still prove difficult, so in the next subsection we will simplifv the task even more
by introducing three arbitrary scalar functions in place of n? and nf. But first it is
convenient to reexpress the stability criterion (35) in terms of n.

Inequality (35) has € integrated over all space. If we bring the limits of integration
in to =7, we pick up the identical surface terms as in equation (33). We can therefore
write inequality (35) in the form

— S Cln,nldV — S Dn, n]-ndoc > 0, (43)

interior z"

where Cn, n] = €[§, £], and where (cf. eq. [33])
Din, n] = p2(n:Vp)n — bnT . (44)

It is understood in equation (44) that & is —4#G times the scalar potential of n.

The operator Cln, n} has covariant derivatives of n in it. When doing calculations one
must replace covariant derivatives with ordinary partial derivatives and Christoffel
symbols. When one does this in spherical polar coordinates, one finds (now indices j, &

run over 7, ¢, ¢)
Cln, n] = 47Ggjn' L% + %92gjkn’.¢n",w
1., « ) ) 1 -,
+ PRt (®.0 — 107 ) + 2, (aQjx — Qa )0y
W7

+ i(ﬁ[(n’)2 + 2r sin 29997 + 7% cos 28(n?)?]

Y (g 4 ;— (n-¥ p)(n+S) — j— (V- n)(n+S) . (45)

2

Here we have defined

SEVp—j;ng,

which is the vector Schwarzschild discriminant. For nonrotating stars, 8, > 0 is neces-
sary for stability against convection. Components 77, #?, 7* in equation (45) are com-
ponents of n on the unnormalized coordinate basis vectors e,, es, €,.

For future reference it is convenient to write down the entire Lagrangian L, from
equation (27) in terms of n. It is

1 . 2 . 1 : .
L, = ;gjkﬂ’.m".t + —pngkn’.m".¢ + ;Q<g) (7. — n*n’.) + Cln, n] . (46)
-7

¢) Scalar Polential for p¥

We have seen that it is possible to reduce the number of integrations necessary to
test for stability by replacing ¥ by n. We now show that it is possible to express n in
terms of three scalars in such a way that the two pieces n’ and n” separate automatically.
Then trial functions may be chosen for the scalars without losing the advantage ob-
tained by separating n into n’ and n7.

Our procedure rests on the following theorem: For any vector fields 4 and i (i-i # 0)
whose Cartesian components are analytic functions of position in the neighborhood of
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some point, there exist functions «, x, v also analytic in that neighborhood such that
A=Ve+xi+V X vi. 47

The existence of «, x, v follows from the Cauchy-Kowalewski existence theorem for
svstems of first-order partial differential equations (cf. Courant and Hilbert 1962). The
restriction to analytic functions is probably not important. In practice one can choose i
to be analytic almost everywhere. Moreover, the functions «, x, v probably exist for
most well-behaved but nonanalytic A as well. Even if they do not exist for some 4, it
will usually be possible to approximate 4 as closely as one wishes with analytic functions,
except at isolated points. Note that one might need several “patches” to represent 4
in a finite region.
In the previous subsection we showed that there exist A and 4 such that

n=VA+V XA4.

If we now replace A by equation (47), we obtain

n=VAN+V X (Kxi+V X~i. (48a)

Thus, there always exist N, x and v suck that for any analytic, nowhere-zero vector field i
7l = VA, (48b)
27T=v X {xi+ v X vi). (48¢)

We are still free to choose i in any way we might wish. In this paper we will choose
i = e,, which is analytic evervwhere but at r = 0; this will allow our results to assume
a convenient form in the nonrotating, spherical case, where the #- and ¢-directions are
equivalent. One would therefore expect our results to be well-adapted to the study of
modes that have analogues in the nonrotating star; they might do less well on other
modes. A variant on this is to choose i = vp/|vp!| (at the surface, i is the normal),
which might do slightly better {or isentropic models, where surfaces of p and p coincide.
On the other hand, for investigations of highly flattened, rapidlv rotating models, it
might be better to choose i = e, where @ is the radius in cylindrical polar coordinates
(&, 9, 2).

d) Testing for Stability

We define the trial functions g, b, ¢ by

“L = va , (493.)
w=v X4, (49b)
A= —rice, + V X (ribe,) . (49¢)

Since the star has azimuthal symmetry, we expand
a= Y latyulr, 8, 1) sin Mo + a=y(r, &, 1) cos Mo}, (50)
M=0

and similarly for & and ¢. Modes corresponding to different M are orthogonal, but plus
and minus modes of the same M are mixed by the equations of motion and variational
principle. Appendix B contains the details of the reduction of the stability criterion to
a condition on a*, b*, ¢* for each M. The expressions are very complicated ; we will deal
only with special cases from now on.
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V. SPECIAL CASES
a) Axially Symmetric Perturbations

Axially symmetric perturbations were examined by Lynden-Bell and Ostriker (1967)
and in great detail for uniformly rotating stars by Chandrasekhar and Lebovitz (1968).
We do not need the restriction to uniform rotation.

Requiring n to be independent of ¢ is equivalent to setting M = 0 (cf. eq. [B1] of
Appendix B). Thus, there is no distinction between plus and minus modes. Representa-
tion (B1) for n becomes

nl = a,u, 4 a.sus (51a)

T = — L%u, + %5"; b osus + r¢ou, (51b)

where u,, us, and u, are unit vectors, and where

9 n gl _ M
03 99 sin? 9

2=
sin ¢

is the angular part of the Laplacian.

Notice that the scalar ¢ separates from the other two: its sole function is to determine
the p-component of n. This separation shows up in the equations of motion. The equation
for ¢ can be obtained by varying the Lagrangian, equation (46), with respect to »¢
after setting derivatives with respect to ¢ to zero:

— 272 sin? 9%, — gQ(g> 7, =0. (52)
P p \Q&/;

This is just the equation for the Coriolis acceleration in the azimuthal direction of the
displaced fluid element as it is carried around the star. We can integrate this equation:

(7* sin® 8) w7 + f(r, 3) , (33)

P, = e ——
sin ¢, C.ot et g
where f(r, #) is an arbitrary function that represents an “initial” (i.e., when n = 0)
azimuthal velocity perturbation.

Suppose that we take f = 0. Then for this restricted class of perturbations we can
substitute equation (53) into the Lagrangian density (46), which remains a Lagrangian
for 17 and »?, and in which there are no terms linear in time derivatives of n. From the
theorem of Laval, Mercier, and Pellat (1965) we obtain the following necessary and
sufficient condition for the stability of the star against our restricted class of perturba-
tions (f = 0):

g__m__ [ sin® 9) ] ~ Cln, nl}dV — f Din, nl-ndo > 0. (54)
interior prz sin® ¢ 1 ’ =" ’ ’
Here C and D are the same as in equation (43), reduced to the axially symmetric case.

This condition—as was indicated by Chandrasekhar and Lebovitz (1968)—is only
necessary for stability against all axially symmetric perturbations. However, Lynden-
Bell and Ostriker (1967) point out that it is nearly sufficient as-well, in the following
sense: If all the stellar models that can be obtained from the one we are testing by
changing Q slightly satisfy inequality (54), then the model we are testing is stable
against all axially symmetric perturbations. The reason is that a nonzero f in equation
(53) means physically that when n = 0 the fluid is given an extra angular velocity of
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f/p sin @, If this mode is unstable for some f, then a stellar model differing from the one
we are testing by an angular velocity f/p sin ¢ should be unstable against perturbations
with f = 0. This argument ignores the effect of the additional angular velocity on the
structure (p, p) of the equilibrium model, so it is not completely rigorous. Nevertheless,
it suggests that inequality (54) ought to be an accurate stability criterion, especially
for sequences of models. Note that inequality (43) is still a sufficient condition for
stability-.

By specializing the calculations of Appendix B to M = 0, inequality (54) can also be
put in a form that makes testing models easier. This is done in Appendix C.

The special choice of trial function made in § IIT of Chandrasekhar and Lebovitz
(1968) corresponds here to setting b = 0. They apparently saw the advantage of using
scalars and decomposing n into transverse and longitudinal parts, but their trial function
with & = 0 lacked the generality of our equation (51): its transverse part vanished.

b) The Nonrotating Star

Expressions suitable for analyzing the pulsations of nonrotating stars can be obtained
by setting Q to zero in previous results and expanding a, b, and ¢ in spherical harmonics
Y M. Then the representation (49) of n becomes®

1 ; )
nt = ?‘:7 (aLM" Vollu + 7 o Vilous + ;—:iLrTwz_? YLM'wuv) , (55a)
E (r*bry) - rCLM ]
T = M Ny T/ M M
v T ;bLMYL u [rL(L + 1) Vito = Gno Yelwuw
(r2b[u'l'l),r
+ M M

[L<L T Dy sng [ee T et o Juld (55b)

We should note that one can obtain exactly this expression by expanding n in Regge-
Wheeler (1937) vector spherical harmonics, and then separating n’ from n7. That
procedure avoids questions of analyticity raised by the theorem proved in § TVec.

Because the underlying star is spherically symmetric, modes belonging to the same L
but different Af are degenerate, so it suffices to consider the case M = 0. Then the action,
from equations (46) and (33), becomes

L= f [% n,.n,+ danlonl — % (Vven)(n-$)

interior

+ 35 (e o) (ne8) — LY (9w ]av
P p

+ S iz 0. ()R sin dddde — S 6BpDR? sin Sddde , (56)
=P b

where R is the radius of the star.

Inspection of I shows that ¢ will enter it only in the n ,-n , term. This is because ¢
generates the “odd parity” (cf. Regge and Wheeler 1957; Thorne and Campolattaro
1967) part of the perturbation, which is a zero-frequency rotational mode. It does not
couple to other modes and does not affect the star’s stability.

This Lagrangian is equivalent to the variational principle contained in the appendix
to Chandrasekhar and Lebovitz (1964). It is interesting that if one varies it with respect

8 The b in this section is really L(L + 1) times the one in equation (49). Consequentiy one must set
b =0when L =0.
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to a, one gets the divergence of the dynamical equation for n, while if one varies it with
respect to & and ¢, one gets the two independent parts of the curl of that equation. Since
a vector field is zero if and only if its divergence and curl are zero, the Euler-Lagrange
equations of a, 8, and ¢ are equivalent to that of n. Thus, the potentials a, &, and ¢ are
also good variables for the variational principle! This presumably also holds for the
general variational principle for differentially rotating stars.

The theorem of Laval et al. (1963) applies to the Lagrangian for the nonrotating star
and gives a necessary and sufficient condition for stability against pulsations of order L:

f% ‘41r[0.r2 + é(—l—:—ﬁiﬁ a*] + %? (e, + b)[Vﬁd - ————L(Lrj- 1) a]

2
_ ;la_p' Slan + 82 + % [Wa _ &’Ll_) a} },2,,,

2
+ T P (R)[a(R) + BT + 4eGRa(RIB(R) > 0, 57
where $ = 8§, = p,, — (vp/p)p .- and where we have defined the operator
19,9
T 2 9r 9r’

which is the radial part of the Laplacian. The terms evaluated at R are to be evaluated
just 1nside the star’s surface if there are any discontinuities there.

VI. CONCLUSIONS

We have presented a general method for finding the Lagrangian for arbitrary pertur-
bations of arbitrary flows of a perfect fluid; and we have illustrated the method for the
case of differentially rotating stars. It enabled us to reproduce the stability criteria of
Lynden-Bell and Ostriker (1967), as well as those obtained by other authors for less

general cases.
We also showed that the testing of realistic stellar models with these criteria can be

greatly simplified by the introduction of three scalar functions in place of the three
components of ¥ in such a manner that one need never perform a Green’s function
integration to determine the perturbed gravitational field. We hope that this will prove
to be a useful technique in the future.

In Paper IT we will extend these results so far as possible to the general-relativistic

case.

I am very grateful to Professor Kip S. Thorne for his continued advice and encourage-
ment, and for his many helpful suggestions during the writing of this paper.

APPENDIX A
REDUCTION OF L,

We wish to transform L, from the form

Ly = 1 g0 50, — bpoh + 5(oT)3S -+ pbu-sv
4G

+ 2p5a(88,, + v*88.x) — 2p065(50., + v*50 i) (A1)
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into an expression involving only the unperturbed state of the fluid and &, which is
defined as the difference between the position of a fluid element in the perturbed state
and the position it would have occupied at exactly the same time in the unperturbed
flow. As a first step we will express the perturbations themselves in terms of £. Then we
will substitute them into equation (Al),

a) Expression of the Eulerian Perturbations in Terms of &

As mentioned in § 11, the perturbations are Eulerian perturbations, taken at fixed
coordinate and time. The vector £, on the other hand, is the Lagrangian displacement
of the fluid. The relations among & and the Eulerian perturbations are well known and
need not be derived here. One can consult Lynden-Bell and Ostriker (1967) or Lebovitz
(1961). The relevant ones are

5p = —v'(PE) ’ (AZ)
88 = ~¢-vS, (A3)
6p = —yp(V-& — & Vp, (A4)

and
6T=( )ap+( )55 (AS)

supplemented by the Maxwell identity

aT 1 ap (
-—) = = — — A6
(BP obY (A6)

In equations (A4) and (A6), v is the adiabatic index,
p (0P -
= — —_— . A

» ( 30/ (A7)

Moreover, since da and 88 obey the same equation as 4S5, we have
ba = ~(Va+ (ba), (A8a)
88 = —& v+ (88) - (A8b)

Here (8a)o and (68)o are “initial values” of da and 88: their values when & = 0. They
are constants of integration in the following sense:

'a (5&)0 + v-V(rSa)o =0 ,

and similarly for (88)o. There were no such initial values in equations (A2)-(A3) be-
cause we assume that the perturbation is an initial velocity perturbation that does not
affect the initial distribution of p, p, and .S. This does not restrict the generality of our
result: changes in the initial perturbed values of p, p, and S are equivalent to changes
in the unperturbed p, p, and S. Instabilities due to such initial conditions will show up in
nearby models whose unperturbed p, p, and S are the same as those of the original
model plus the initial perturbations.
It is not possible to solve explicitly for & and 6. We shall need only the equation for
§6:
80, + vVl + dv-vl = T, (A9)
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where the perturbed velocity, sv, is (also from Lynden-Bell and Ostriker [1967])
Sv=E&,+ (vv)f — (E:V)v (A10)
=E.+ £5. (A11)

(Here £, is the Lie derivative with respect to v.)

With the definition (A10), equation (A2), (A3), (A8a), and (A8b) are equivalent to
the perturbed versions of equations (7), (3d), (3b), and (3c), respectively. The last
remaining perturbation is 6®, which has the formal solution

1

b= —G LAV p(x)E(x) -V’

b) Expression of Ly in Terms of &

In what follows we will often integrate by parts, using the identity mentioned at the
end of § Ila; and we will throw away the resulting divergences, since they become
surface integrals at infinity. We will also discard total time derivatives (cf. n. 3).

It is convenient to treat separately the following pieces of L, (eq. [A1]):

A = 2p6a(88,. + v*88.;) , (A13a)
B = —2p65(80,, + v%80.;) , (A13b)
C = pév-dv, (A13c)

= —3ph + 5(pT)sS . (A13d)

i) 4. By the perturbed version of equation (3c) we have
A = —2p6af i0v% .
This is the only term in L, that explicitly contains (8a) or (58)o. Because the equations

derived from L, are linear in the perturbations, one should not expect initial values to
appear in the Lagrangian. One can in fact show explicitly that

A" = —2p(da)oB rdv*

is zero to within divergences and time derivatives, The procedure is much the same as
that which follows, so we won’t go into it explicitly. The remainder of 4 is

A" = +2p(Ha )B.alEE + £,
= 2plap B + aciBwlEEE . + 2pa B 18LE,
. a j
2y ettt . — oo (e iB.0]EE% + 2pa ;8487 L EF .
This implies
A = 2papB.abt . + pa Rutt + 2pa B8 EEr . (A14)

Here and throughout, brackets around indices denote antisymmetrization, while
parentheses denote symmetrization:

ap By = 3{a B — auiBi},

aciBur = 3{aBi+ aiBi} .
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i) B. Equation (A9) converts B to

B = —2p8S6T + 2p85(6 x6v%) -
The second term can be handled just as A was to give
B = —2p880T + 200.;S mEE . + 0S.iT e — 2pS 0.:E8L E" . (A13)
iii) 4 + B. Before adding 4 and B, consider the term
2pa Bt £ = 2pa B abi(ER Wt — TR -
Manipulations similar to those in (i) convert this to
= 2papB.mEEr 0t — 2el(acB )i’ + 2a,8.104 k£

with a similar expression for the Lie-derivative term in B. Then by adding A and B we

get

A+ B = 2pQ87 (8 + £ wl) — 2p8S8T + p(T S, + Qra,)EE
— pl(a B — 0.8kt + 2B — S.8.0v g, (A16)
where we have introduced the vorticity tensor (not to be confused with the angular
velocity)
Q; = v = opaB + 00iSm - (A17)
Finally, extensive manipulation of the last bracketed term in equation (A16) gives
4+ B = 2pQuEiEk .+ Et) — 2p8S8T + oT 4S84 — 20t . (A18)
iv) C. From equation (A11) we have
povedv = pgie(E + £E)E . F £,6)
= pE. oK.+ 2pgil (850 — ok ) 4 pg(Eiwt — Vi) e = vEmE™) -
We treat the last two terms one-by-one:
2pgikd (B0t — TR ED) = 2pgskt gt — 2pQuibE
pgi(E 0t — v (FFme™ ¥, mE™)
= pgi v kR — 2T 0 T PV ikET + pur vh kEER -
Assembling terms, we get
pdv-dv = pE.n & — 20,7 (EE  + £ ")
+ 2pgskt, £F 00+ pgVE w4 p(uki0t + v ) EE (A19)
v) Adding C to 4 + B gives
A+ B+ C= —208T + oT 1S EE + pE &
+ 2pgndl gr !+ pgied v E i m T plve )88 . (A20)
In spherical polar coordinates, part of the last term becomes
Tt = Tea¥t — Digvlo; = —3voigas = — 3% 0.k

—10%(a/Q) .k = 1(aQ — Qay) -

I

A
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If we differentiate this with respect to7 and symmetrize on j and %, we obtain
p(vi;1v') 878% = plyaQ kj — FQous|EE" . (A21)
vi) D. We add to D two thermodynamic terms from equation (A20) and define
' E = —6poh + 6(pT)8S — 2p8S586T + pT 1S .;E7E%,
- - %apap — pOT6S 4 pT kS 75" . (A22)

Upon using equations (A2) through (A7), we find that this reduces to
= —1p(V-8)! — p7 (& Vp)(E-Vp) — 2V-E)(E VD). (A23)

vil) The complete Lagrangian is obtained by substituting equations (A20), (A21),
and (A23) into equation (A1l). Equation (27) is the result.

APPENDIX B
TESTING FOR STABILITY

a) The Stability Criterion in Terms of the Scalars a, b, ¢

From the definitions of the scalar trial functions, equations (49) and (50), we find
(sum on M > O implied)

nl = (aty.,sin Mo + a a., cos Mo)u,
‘ + (1/r)(a*y.s sin Mo + @ a5 cos Me)us
4+ (M/rsin 9)(a*y cos Mo — a~y sin Mo)u, ; (Bla)
A= —r(ctasin Mo + ¢ 3 cos Mo)u,
4+ (rM/sin #)(b*y cos Mo — b~ sin Mo)uys
— 7(bty.s sin Mo + b y,5 cos Mo)u, ; (B1b)

. M? 1 3 . .
nt = [(sin2 0 btar = sin 999 " "b“ﬂw,.;) sin Mo

M 1 8 .
+ (Gara b = a5 a5 o0 W) cos Mo u

rM .
sin ¢

190 .
+ [(;5; 2ty + —M) sin Me

+ 13725_3{,0— M

r or sin ¢

M 9 .
+ - — p2h-
+ [(rc Mo T e b .w) sin Mo

c*‘M) cos M<p] ug

M 3
+ (rc—,w,‘, + e r2b+M) cos Mqo]ll‘, . (Blc)

Here u,, ug, u, are unit vectors.
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When these expressions are used in the stability criterion, equation (43), and the
integration on ¢ is performed, modes corresponding to different values of M separate,
and we get a separate criterion for each M. In what follows we will accordingly drop the
subscript M on the scalars. We will also adopt the notation

(@ + b)) = (et + (@ )2+ drct 4+ b, (B2a)
(ab)H) = atb~ — a bt . (B2b)
Note that these are not the conventional symmetry and antisymmetry symbols: the

plus and minus modes are antisymmetrically coupled by the {+ —] operation, but they

are not coupled at all by the (4 —) operation.

A long but straightforward calculation reduces the stability criterion, equations (43),
(44), and (45), to this form: A sufficient condition for stability of the modes of order M
is that for any g, b, ¢ {with appropriate boundary conditions—see below)

~ S S Cyr? sin ddrdd — fDM‘n.dcr >0, (B3)

interior

where in both terms we have already integrated on ¢, and where Cy and Dy * are:

—Cy = ;_47"G[a,r2 + ld R e Sarars M 2]

r? sin? &

+2, - L?b)[ QM sin 8 (a +2 r?b) + s,vﬂa]
P or

+%<1ag+———r2b ) M29251n20<a+——r2b)+ S.;Vz]

2 4
+ 2 2M*Q%r® cos dec,g — L oM ( + = 72[,) + £ 'YP (Va)?
0 pr? 7 sin? ¢

1 [822M2 — 20Q .r sin* & + Q% cos? & + iz p,,s,] (a, — L)?
P o

-1 [——QQ,J sin 2¢ — 2QQ 4 sin? ¢

or
+ = (s + 0.5 (@ = L) (a + 2 )
i'p2 [ aes . T K or ¥

17 . 1 1
—_ ; [Q"MZ — {1 s sin 24 + ;2? p|.9§,)][< ay + -——-72b )

MZ (+—)
2
T smza‘H
i 2002 oin? — 2 2 2
+ ;erQ sin? &(a , Lb)c"’+psm t95-9(V0)€

2 2 2
—-QM( M a+rc,.;>

p 7 sin ¢

M

S Sn g [-—QQ,J sin 289 — 2QQ, sin? ¢



LINEAR PULSATIONS 339

1
+ r—pz(P.oSr + p,,&y)](a, — L%*)¢

-~ ifnld [92M2 — QQ., sin 28
1 9 (1
+ Py P.o&a] (d.o + 3 1’217.0) C; ; (B4)
— Dy = 347rGaL2b — L an — Iy
_ 1 _ oy (1 19 , =
rpzp"’(a" Lb)( a.;+—(—9;rb.;>$
M (+—1
+ ;— Fsin 9 p.o(a, — L2b)€% ; (BS)

and
1 4 1 1 19
_— 4 = — —_ _— 2 —_—— — 2 - 2
Dy 3 47G 205,7 b s ro s p.(ar — L) (r as + prwis b,,;)

1 ) M2 2(+—)
r22p')< a.;—i———rb) psm2z9p"’6€
M M

—_— —_ —_ 2
+ 3 4rG sin 9 %¢ p?sin ¢ prlar — Lb)e
__M <1a +—— 25, ) H_ (B6)
rp° sin 01’ ¢ ¢ r
and where we have used the notation
ad 1 a2 1 d d M2
? = 9 9 9 _ o A
L sz’wsma st o2  smsas " %35 " s o)

vp Yp
S =pPr——"pr; Ss=po— —"ps.
P, ? p

While this expression is complicated, it should be reasonably adaptable to computer
calculations.
b) Boundary Conditions on a, b, ¢

Though we have not restricted the perturbation £ to have any particular value at the
star’s surface, there are nevertheless some weak boundary conditions on g, b, and ¢ that
arise from the vanishing of n (and ¥) at the star’s center and from the vanishing of n
(but not &) at the star’s surface (£~) if p vanishes there.

The demand that n vanish at the star’s center requires that n* = —n”, but »not that
each vanish separately. This implies

at, = L%t

d M
+ = 9oy —
@ 3 S sin g at the star’s center (B7)
d r? sin ¢
+ = — 9 opt _ -
a arrb TR

plus the conjugate equations (plus and minus interchanged).




340 BERNARD F. SCHUTZ, JR.

At the surface of the star (actually at =, where the surface integral is evaluated)
we demand only that a, b, and ¢ be finite with finite derivatives, except if p = 0 there.
Then again we must have nt = —n” + O(p); that is, n must vanish at least as fast as ¢
near Z~. So the same equations (B7) must hold at the surface, to order p. (This is also
true, of course, anywhere else that p vanishes.)

¢) Eigenfrequencies of Stable Modes

If condition (B3) is satisfied, the star is stable. In that case the eigenfrequencies of
oscillation are the stationary values of the roots of the following quadratic expression
(cf. Lynden-Bell and Ostriker 1967):

with GVt aVe+ Vs = 0; (B8)

Vy = 1 S —1-n-nr"’ sin ddrdidde

T interior @
= ./‘\/'ir2 sin 0drd0§(a,, — L) 4 (% a9 + =2 2b )

interior 2
’ZMZ ( (+--
- et — r‘*’b)
+ sin? ¢ + r sm2 ¢ +

o+ rc,,,)2§ " (B9

+ SS ~r~ sin 0drd0% (a, — L*)c +(

interior @

Vo=t S Bty +(§) v ]t sin sdrdsde
= SS ——r*’sm 1?drd0 0((1 P + — rzb 0) ¢+ 2rsin #(a, — L*¥)c.s
interior £
2 (+—
+ 2cos & (a,o + g; rzb,.,) .y — ZMS::;?;,( + — r2b)
2
+~ SS 20 72 sin zMrdz?; (e, — L) + —1; (a,o + 9 r2b,0>
interior P r ar
M 9 )2 2, 2 2 —J2 ( 9 )
—r2sin20(a+6r’b + r%c s r(a,, L) a+arrb
__ cos & m_? )( __2) r2cos ¥ =
r2sin ¢ a0+ ,b” @t 3T + sin ¢ ‘00} ; (B1O)
and

V= S S Cyr*sin ddrdd + fDMndu, (B11)

interior
where Cy and Dy are given by equations (B4), (B5), and (B6). Thus the trial functions
permit estimation of eigenfrequencies for the stable case. Unfortunately one cannot
estimate e-folding times for the unstable modes in this manner (see Lynden-Bell and

Ostriker 1967).
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APPENDIX C

STABILITY OF AXIALLY SYMMETRIC PERTURBATIONS

The necessary condition for stability of axially symmetric perturbations obtained by
Chandrasekhar and Lebovitz (1968) and by Lynden-Bell and Ostriker (1967) can be
expressed In terms of scalars with the method of Appendix B.

The condition is (eq. [54])

2 . :

A ;m [(7% sin? 8) it — Cln, n]}dv ~ S D[, nlende > 0. (CY)

We can obtain C and D from Appendix B by setting M = 0 in equations (B4), (B3),

and (B6). We can then expand the first term in inequality (C1) in terms of q, b, and ¢,

and add it to C. The result is that a necessary condition for stability of a differentially

rotating star against axially symmetric perturbations is that, for all q, b, ¢ satisfying the
boundary conditions described in Appendix B,

— S S Cartsin ddrd® — f Dainido>0, (C2)

interior z7

2:?' (e, — Lb)Va

where

—Cs = —47G (a,,.2 + —1'17 a,.;"’) +

+ % (a,.; + % rzb_.;) Via + %g (V?a)?
- % [ —200.7 sin® 9 + (1 + 3 sin? 9) + ,,_12 oS, | (a0 — 20"
- ;1; (—QQ,7 sin 28 — 200, sin® ¢

+ 4Q2 sin 24) <a,., + % r'*’b,.;) (a., — L%)

2
1 (—QQ_,, sin 28 + 492 cos? ¢ + —21~2 p,oSo) (a.o + i7'219.0) ; (C3)
pir ar

_;_2

. .1 1 F) .
—Du = 4nGoLb = — p.(0., = I = =5 p.a(a. — L) (M + 5;r2b,.,> . (CH)

and
4G 3 1 d
—Dy? = — 72 a o7 b 5 — _p272 p.r(a,— L%) (a,o + ar 72b.v))

1 (1 19, )2 5
p21‘2 j ) (T as + ; ar ?bs ) . (CD)
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