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ABSTRACT

The author has previously given an Eulerian velocity-potential variational principle for relativ-
istic perfect-fluid hydrodynamics. The second variation of the principle is here used as the Lagrangian
density governing the evolution of small perturbations of fully relativistic, differentially rotating stel-
lar models. Noether's theorem is used to construct a globally conserved angular-momentum density,
whose integral over a spacelike hypersurface is the second-order correction to the star’s total angular
momentum, From the Hamiltonian is constructed a globally conserved energy density, whose integral
is the second-order correction to the star’s active gravitational mass. By Liapunov’s second theorem,
positive-definiteness of the energy density guarantees stability of the star, In the Newtonian limit and
in the special case of relativistic radial pulsations, this is equivalent to stability criteria already known,
Means are discussed whereby the general criterion might be made more suitable for practical applications.

1. INTRODUCTION AND SUMMARY

The importance of general relativity to so many astrophysical problems makes an
analysis of the stability of relativistic systems very desirable. In the Newtonian regime
the theory of the stability of perfect-fluid stellar models against small dynamical per-
turbations is well established (cf. Schutz 1972 [preceding paper], hereafter referred to
as Paper I; see also the references cited therein). The corresponding relativistic analysis,
however, is complicated by two factors: the existence of 10 components of the gravita-
tional field, and the emission of gravitational radiation by the pulsating star.

Only for radial pulsations of spherical systems has a fully relativistic dynamical
stability analysis been performed: by Chandrasekhar (1964) for relativistic stars; and
by Ipser and Thorne (1968), Ipser (1969), and Fackerell (1970) for relativistic clusters
of stars. In addition, Chandrasekhar (1965a, b) has analyzed the nonradial pulsations
of stars in the post-Newtonian approximation, which excludes gravitational radiation.
Chandraselhar and Friedman (1971) have also recently investigated criteria for the
existence of zero-frequency modes in rigidly rotating stars, where radiation is also negligi-
ble. Their work should prove applicable to stellar models that become unstable through
zero-frequency oscillations. The equations governing arbitrary nonradial pulsations of
fully relativistic nonrotating stars were derived by Thorne and Campolattaro (1967)
(see also Ipser and Thorne 1972). They are so complicated, however, that—although
they have yielded information about convection (Islam 1970) and about the emission
of and damping by gravitational radiation (Thorne 1969; Ipser 1971)—they have so
far given us no information about dynamical stability.

The existence of 10 perturbed metric functions instead of just one perturbed gravita-
tional potential is an algebraic complication. It means that in general there will be
many coupled equations, which will rarely possess a solution in closed form. It means

* Supported in part by the National Science Foundation (GP-27304, GP-28027, GP-19887).

t Present address: Department of Applied Mathematics and Theoretical Physics, University of
Cambridge, England.

343

Kopie bereitgestellt durch Nds. Staats- und Universitaetsbibliothek Goettingen



344 BERNARD F. SCHUTZ, JR.

that relativistic stability analyses will probably have to rely more heavily upon numer-
ical calculations than the corresponding Newtonian analyses do.

The complication of gravitational radiation is more fundamental. It means that
realistic pulsations will always have complex frequencies; that normal modes will be
replaced by “resonances” of finite width; that self-adjoint equations (standing-wave
boundary conditions) will not describe realistic systems; and that a single stability
criterion that is both necessary and sufficient is probably not to be hoped for. It is
possible to look for necessary conditions for stability by examining standing-wave
modes in the zero-frequency limit. This is the approach of Chandrasekhar and Friedman
(1971). But such approaches neglect damping by gravitational radiation, so they may
not pinpoint the onset of instability accurately. It is therefore useful to have sufficient
conditions for stability as well.

In Paper I we showed that all known Newtonian dynamical stability criteria could
be derived from the velocity-potential variational principle of Seliger and Whitham
(1968). That variational principle can be extended to general relativity (Schutz 1970; see
also Schmid 1970¢, b for an independent derivation of the special relativistic version).
In this paper we show that methods similar to those we used in Paper I lead us in
general relativity to a sufficient condition for the stability of arbitrary pulsations of
fully relativistic, differentially rotating stellar models. :

We could presumably also derive our criterion from the variational principle of
Taub (1954), or from any of the many other relativistic perfect-fluid variational prin-
ciples. Taub (1969) in fact derived Chandrasekhar’s (1964) stability criterion for radial
pulsations using a method very similar to the one we use here, but starting from a dif-
ferent variational principle. We have elected to start with the velocity-potential varia-
tional principle because it is an Eulerian principle: it does not require us to deal ex-
plicitly with “fluid elements” or ‘“‘particle paths.”

The plan of the paper is as follows. In § II we derive the Lagrangian governing ar-
bitrary perturbations of arbitrary flows of a relativistic perfect fluid. This Lagrangian
is the second variation of the Lagrangian for the velocity-potential variational principle
of Schutz (1970). In § III we specialize the unperturbed state to that of an axially sym-
metric, differentially rotating star. From Noether’s theorem we construct the conserved
angular-momentum density of the perturbations (including the gravitational waves),
and from the Hamiltonian we construct the conserved energy density. Both are quad-
ratic in the perturbations.

We obtain the following results: (i) The total angular momentum and energy (inte-
grals of the densities over a spacelike hypersurface of the unperturbed spacetime) are
unique and gauge-invariant. (i) If the star is stable, and if the “unperturbed” star is
defined to be the star that is left behind after the pulsations have damped out, then all
first-order contributions to the total angular momentum and energy vanish. (iii) If
the star is stable, the total angular momentum and energy are the second-order correc-
tions to the total angular momentum and active gravitational mass of the star. (iv) The
gravitational-wave parts of the densities of energy and angular momentum become, in
the short-wavelength approximation, the appropriate components of the Isaacson (1968)
stress-energy tensor for gravitational radiation. (v) In the case of the nonrotating un-
perturbed star, the energy density reduces in the Newtonian limit to the energy density
derived in Paper I.

TIn § IV we prove that a sufficient condition for stability is that the total energy be
positive-definite. Unfortunately, as the energy contains contributions from gravitational
radiation, it is not yet in its most practical form for astrophysical applications. A more
practical form would be an integral of purely fluid quantities over just the star’s in-
terior. We therefore discuss what procedures are most likely to succeed in reducing the
stability criterion to such a form. We conclude § IV by demonstrating that our sufficient
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condition for stability reduces for the case of radial pulsations to the necessary and
sufficient condition of Chandrasekhar (1964).

II. PERTURBATIONS OF AN ARBITRARY FLOW
a) The Velocity-Potential V ariational Principle

As in Paper I, we begin from the Eulerian velocity-potential variational principle,
the general-relativistic version of which was obtained by Schutz (1970). (We follow the
notation and conventions of Schutz 1970 throughout. In particular, Greek indices run
from 0 to 3, while Latin indices run from 1 to 3. The metric signature is +2.)

The four-velocity has the representation
U, = :Uf_l(‘l’.v + af., — Sﬂ,..) . (1)

(We find it convenient to deal with ¢ = ¢ -+ 0S rather than with ¢, which was used by
Schutz 1970. This is the only way in which our conventions differ from those of that
paper.) In equation (1), S is the specific entropy and 4 the specific enthalpy (including

t )
rest mass) pu=1+T+p/p=(p+p)/m; @

I1is the specific internal energy, p the pressure, p the density of total mass-energy, and
po the rest-mass density (number density of baryons times rest mass of one baryon), all
as measured in a locally comoving inertial frame.

The velocity potentials obey the equations of evolution

Uy, = —u+TS, (3a)
Ua, =0, (3b)
Uug,=0, (3c)
Us, =0, (3d)
ve,=T, (3e)

where T is the temperature. Note that equations (1), (3a), (3c), and (3e) imply
vu, = —1. 4

Supplemented by an equation of state,

and the equation of continuity, p =0 5), ©
(pU");» =20, ' ©)

equations (1) and (3) are completely equivalent to the usual hydrodynamical equations:
equations (4), (5), (6), and D 0 (7)
!‘V;, = y

with
Tw = pouUPU” + pg* . ®

Equations (3) and (6) plus the Einstein field equations follow from a
principle whose action is

variational

I= S (R+ 16mp)(—g)id'z, ©
G = 1). Thecurvature is varied

where R is the scalar curvature of spacetime (wesetc= i
is taken to be a function of u

with respect to g” in the usual manner. The pressure
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and S through the equation of state; its variation is found from the first law of thermo-
dynamics:

dp = podu — poTdS . (10)

The independent variables of the principle are ¥, a, 8, 6, S, and g=*. Equations (1) and
(4) combine to give u as a function of these variables:

W= __gw('p" + af, — S8,,) Wy + aB, ~ S9.,) . (11)

Varying ¥, @, B, 6, S, and g gives, respectively, equations (6), (3c), (3b), (3d), (3e),
and the field equations
Rn - '%ng = SWTﬂ, (12)

with T, from equation (8). Equation (3a) follows from the rest of equations (3) and
equation (11); it is not an independent Euler-Lagrange equation.

b) Gauge Freedom in the Perturbations

A perturbation in the fluid’s motion perturbs the geometry of spacetime. If the per-
turbation is small, it is reasonable to separate it from the “background” unperturbed
spacetime and to treat it as a field on the background geometry. We therefore define

k7 to be the (Eulerian) perturbation in g7, and g5 to be the background unperturbed
metric:
¢” (perturbed spacetime) = g + h°*. (13)

Now A is a tensor on the background spacetime. We can therefore raise and lower its
indices with gz ; e.g.,
o\ = R @myn

Our definition of A" is at slight variance with the usual usage, where %, is taken to
be the perturbation in g,,. Here we have

Boev = h*PgByaclmrsy = —0gs + O(H2) . (14)

The “background” geometry is a fiction, however. Because the real spacetime
possesses fine structure that is absent from the “background,” there is no unique way
to identify points in real spacetime with points in the background; thus, there is no
unique way to define k* from equation (13). If % generates a point transformation in
the perturbed spacetime that is small (i.e., a change in the identification of points
between the fictitious background and the real perturbed spacetime that is on the order
of the scale of the “fine structure” of the real spacetime), then 4 undergoes the change

hav — hdv + £ﬂg(8)av = hvv —_— ,,)a;v — .nv;a . (15)

Here £, is the Lie derivative along %7, and semicolons (throughout this paper) denote
derivatives covariant with respect to the unperturbed spacetime.

Under the same point transformation the perturbations in the velocity potentials
must also change. For example, we define 8y, the Eulerian change in ¢, by the equation

¥ (perturbed spacetime) = ¥z + 8¢ . (16)
Then 8¢ changes by
N+ Eym =0+ Y. an
Similarly, all functions of the perturbed velocity potentials change: eg.,
U, — 48U, + £nU(B)v = 8U, + Uyno® + U™y - (18)

Equations (15) and (17) together are called a gauge transformation. Most of our
expressions—such as the energy density in the pulsations—will not be gauge-invariant.
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Nevertheless, we will see that physically measurable quantities, such as the lotal energy,

are gauge-invariant.
In the remainder of this paper we will drop the “(B)” on the background quantities.
Quantities such as gm, U, ¥, ... are understood to take their unperturbed values.

¢) The Second Variation

In the Newtonian case (Paper I) we constructed the Lagrangian density for the per-
turbations from the second variation of the action, equation (9). The analogous calcula-
tions in the relativistic case are complicated by the perturbation in the geometry, so
the details have been left to Appendix A. We treat the pressure and curvature parts of

the action separately.
1) Second Variation of the Fluid Lagrangian
The fluid Lagrangian density is p(—g)*/2 Its second variation is

Fp(— 9 = (8%p)(—g)V2 + 26p3[(— 9] + p&*(—g)"] - (19)
In Appendix A we show that
8p = dpody — % (61)? — 8(poT)8S — 200U, 178V,

— P s V5V, — 2p0U(8a 08, — 8S 86,) , (20)
I

where we let V, denote the Taub (1959) current vector
V,=pU,=¢,+ aB, — Sb.,. (21)
In equation (20) it is understood that épo is a function (through the equation of state)

of 8u and 45, and that 8 is a function of the independent perturbations (8¢, ba, 6B,
56, 55, k) through the perturbed version of equation (11):

S = —3uhe U, U, — UV, . (22)
From Appendix A we also have
[(—g) = —h(—g)'"* (232)
and
Pl(—)] = GR + §ho) (— 9, (23b)
where % is the trace of #*:
b= g . (24)

If we assemble all these terms and define
¢ = (= p(—g)",
we have the fluid perturbations’ Lagrangian density

® = 8podu — —'—:-‘9 (Bu)? — 6(peT)8S — % g8 V,8V, — 2pU* (088, — 85 96,,)

— 20U 78V, — Sph + ikt + 3Py - (25)

This is perfectly general: no assumptions have yet been made about the unperturbed
spacetime.
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ii) Second Variation of the Curvature Lagrangian

The Lagrangian density for the curvature is R(—g)"/% It is simplest to treat it the
Palatini way: R, is a function only of the Christoffel symbols,

Rop = Thog — Trayp -+ T80 — T¥a100, . (26)
We define the perturbation in I'%,s to be $#44:
I'*qs(perturbed) = I g(background) + $4p . @n

It is well known that 84,5, being the difference between two affine connections, is a
tensor on the background spacetire.
The second variation of R(—g)/? is

FR(—g)'*] = g™ Rap(T) ()]
= 2h*65Rp(— )" + 2h*PR.p8[(—g)**] + g6 Rap(—g)V/?
+ 2g*%0Rap8[(—g)"/*] + g Rasd’{(—g)"*] . (28)
In Appendix A we show that
® = (—g) " P[R(—g)'"]
= 2h8(8apiu — Sauip) + 28°°(8"S%ap — $158an)
~ b Rog + RO + $hogh®) (29)
where we have used the conventional abbreviation
hob = pof — Lgebpy (30)

Again, we have not yet made any assumption about the background.

iii) Varying the Perturbed Lagrangian
The action for the perturbations is

I = S L(-pYd'x = S (® + 1620)(—g)?d* . (31)
Extremizing it with respect to 8#.g gives the equation
oL,

0= 3o

= ,[g"8% + b, + g908% — 89,870 — $Pug® — kP, (32)

This is equivalent to
Skap = ""%(h"a:ﬂ + Mg — haﬂ”‘) (33)

which is of course the correct expression for the perturbation of the Christoffel symbol.
(Recall that eq. [14] is responsible for the overall minus sign in eq. [33).)
Extremizing I, with respect to #*# gives the perturbed field equations:

R
2] = 2(8%up;n — $*ap) — Lab(8*niu — u)
— R (Qaphus — hapgu) — M(Rap — 3Rgas) (34a)
= 2(—g)*[Gas(— g)*] ; (34b)
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5_‘;% = —uU.Usbpo + peUaUsiis — poUad Vs — poUsd Ve
~ 8p8ap + Phas + $(poUalUs + pgas)tt (35a)
= —(—g) % [Tus(— )" ; (35b)
5L
SLt — 2(— ) 8((Gus — 7Tes) ()] = 0. (36)

Extremizing /, with respect to 8y, de, 88, 69, and &5 gives, respectively, the perturbed
versions of equations (6), (3¢), (3b), (3d), and (3e). The perturbed version of equation
(3a) follows from these and equation (22).

1II. PERTURBATIONS OF DIFFERENTIALLY ROTATING STELLAR MODELS

In this section we specialize the Lagrangian density of § II to the case where the
background is an axially symmetric, stationary stellar model. For the purpose of a
stability analysis, this is hardly any restriction at all. A stability analysis would be
very difficult if the unperturbed state were not stationary, and in general relativity—
by contrast with Newtonian theory—it is very unlikely that nonaxially symmetric
stationary configurations of perfect fluid can exist. (They would either emit gravitational
waves or require anisotropic stresses for their support.)

Up to this point our analysis has followed closely that of Paper I. From now on it
will be quite different, however, because of the complications introduced by gravita-
tional radiation. In Newtonian theory, where the gravitational field has no dynamical
freedom, we had little difficulty in reducing L. to a function only of &, the Lagrangian
displacement of the fluid. We then derived the stability criterion directly from the
reduced Lagrangian.

In the relativistic case there are two dynamical degrees of freedom in the gravitational
field. In principle it would be possible to choose a gauge, to solve the perturbed initial
value equations, and to be left with two dynamical gravitational variables (e.g., 4,7,
by analogy with Arnowitt, Deser, and Misner 1962, hereafter referred to as ADaM).
Then L, could be expressed in terms of & and these two gravitational variables. Such a
program would be very interesting, and it may well be necessary before a definitive
solution of the stability problem is reached. We will discuss this in more detail later,
However, there is a simpler way to obtain a stability criterion, and it requires no prior
specialization of gauge. In this section we construct the conserved energy density and
angular-momentum density of the pulsations and discuss some of their properties. In
§ IV we use the energy density as a Liapunov function whose positive-definiteness
guarantees stability.

a) The Unperturbed Differentially Rotating Star

The asymptotically flat spacetime in which the star sits is characterized by two Killing

vectors, £ and £(,). The four-velocity of the fluid is some timelike normalized linear
combination of these:

U = [E + %)/ |Eio - + 2080 E + Bep-E ] 37

This equation defines ©: it is the angular velocity as seen from infinity.

We can introduce coordinates ¢ and ¢ such that E(,) = 9/t and ?(;,, = d/dp, and
two other coordinates y4 (4 = 1, 2) such that the line element takes the form (cf.
Carter 1969 or review by Thorne 1971)

ds® = goodf® + 2g0,dlde + gopde® + gandyidy® . (38)
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However, we will not always want to specialize our coordinates this far; in this section
we will usually work with three arbitrary spatial coordinates x‘ and with the line element

ds* = goodt? + 2go:didx’ + giidxidxi . 39

It is understood, of course, that all g.s and all other physically measurable unperturbed
quantities are independent of £ and ¢. (The velocity potentials are #of all independent of
tand ¢, but their physically measurable combinations, such as U,, are independent of ¢
and ¢.)

The relativistic velocity potentials for this case are similar to the Newtonian po-
tentials:

S = arbitrary function independent of £ and ¢, (40a)

{2 = arbitrary function independent of ¢ and ¢, (40b)
a=pulU, = /‘?(0)' [_f’ (40c)

B=o—Q, (4Od)

8 = TH/U° = Tt[Ew Ew + 20 Ep + PEpEen |12, (40¢)
¥ = (—u+TS/U°. (40f)

That these are the correct velocity potentials is most easily demonstrated in the
coordinates of equation (38), where the generating equation for U,,

Uv = #—l(w.v + aﬂ.v - Sav) ) (41)

reduces to an identity for » = 1, . Demanding that Us = 0 (4 = 1, 2) in those same
coordinates gives the equation of hydrostatic equilibrium,

1
E;P'A - (ln UO),A + UOU,,,Q,A =0. (4:2)

The velocity potentials are scalars, so they keep their same values in the more general
coordinates of equation (39). There one ought to regard ¢ as a scalar field geometrically
defined by E(,,) .

b) The Conserved Angular Momentum of Pulsation

1) Noether's Theorem

The existence of a Killing vector £, in the background spacetime makes it possible
to define a conserved quantity if the Lagrangian density L, is invariant under transla-
tions along £, during which the variables g, = {8%45, 48, 8y, b, 8B, 86, 6S} are held
fixed.! Under such conditions Noether’s theorem (cf. Trautman 1962; Taub 1971)
implies the following conservation law:

P(o)a:v =0, (43)
aL
P’ = 3, (£§(.,)(Ir) (‘(‘9‘(}’—2) — Lok’ . (44)

We now show that L, is invariant under translations along £(,, but not along £,.
Though the unperturbed spacetime is invariant under both, the unperturbed velocity

with

! More precisely, they are “Lie-dragged” along e, as opposed to being parallel-transported (cf.
Yano 1955).
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potentials are not. One must look carefully at the way they enter Ls in order to deter-
mine if L, is invariant.
The unperturbed velocity potentials enter L, only through the term

oV, =&, + a B, + Brba — S 80, — 0,85, (45)

which contributes to L, both implicitly (through 8x) and explicitly. Consider how it
changes in ¢ and ¢ if the perturbations are held fixed:

9 T
(B“z W")«z, - —Q,00 — (—U—O)vuas =0 (46)

(%w,)% - (gg) bee = 0. (47)

So Ls is p-invoriant but not t-invariant. Note, however, from equation (22) that g is
{-invariant as well.

This result can be understood as follows: Even if the perturbation eventually dies
out completely, 38, &, and 30 may continue to change linearly in time at rates that vary
across the star, just as 8, ¢, and 8 do in the unperturbed state. Therefore, holding
8y, 88, 80 fixed during a translation in time is not the same as holding the physical
perturbation fixed. It is not surprising that Noether’s theorem fails in our context.
Later we will construct the real conserved energy [which must exist because £ exists]
in a different manner. First, however, we use the g-invariance of L; to construct the
angular momentum.

i) The Angular Momentum Density
The conservation law (43) can be written in the following form when £q) is ¢ :

2| Z Vo aiqL—Z—O] + [ N %‘{‘5 - NL#,] = 0. (48)

4

From now on we use the ADaM notation appropriate to a three-plus-one-dimensional
split of spacetime. In particular, we define the lapse function N = (—g%)~¥2; we denote
the determinant of the three-dimensional metric by g and that of the four-dimensional
metric by * [which are related by the identity (—*g)"* = Ng'?]; and we use a vertical
rule or a boldface v to denote differentiation covariant with respect to the three-
dimensional metric. Equation (48) implies that if we define

1 AL,
! TR e — PR———
3 - 3r Xr: N‘h,w 6(]r;0 ’ (49&)

then the integral of g’ over the entire hypersurface
J= [ gltdx (49b)

is constant in time. Note that any density differing from g’ by a spatial divergence will
likewise be conserved, and will give the same value for J provided the perturbed region
of space is of finite extent.

From L, as given in § IT we find

1 1 -
L 0 v —_ v a0
=1 N8%, k7" + Tor V&0

+ g 25(p UPNg2) 8V, — ba) + NpUP(de 88, — 5S88,) . (50)
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To cast this in a more familiar form we add the divergence

._i __.1__. 0 Jov _. Qv Jo0
39 |77 V&l = 570 |
We define the result as the angular-momentum density:
where J=go+ gr, (51a)
9o = Tg7 WVE". o = NI iy, — LNE (51b)
and
Jr = g8(pUNg ™) 8V, — ba) + NpoU'(8cx 88, — 85 86,,,) . (51c)

To obtain this form for g we have expressed the §’s in terms of A’s from equation (33).
The split between g and g is arbitrary. Only their sum is conserved.
The flux associated with g is

ko= k k
with N RNe* + Nrt, (52a)

Nt = = o N5t — Sl + o= N30 — 2 (1, — sk?) | (52b)

and

Nk = g1 (pUENg) (8 V, — da) + NpU*(dax 88,, — 85 66,,) + iN®s*, . (52¢)
Then equation (48) becomes

(—%(50 + gr) + (N6* + MNr*) i = 0. (53)

Note that since g differs from g’ by a divergence, the flux 3% differs from —1/32x
times the flux in equation (48) by the time-derivative

___Q_ _1_ 0 av . Qv Lo\ Sk
6t[167rN(S"ﬁ Sk, |

ili) Heuristic Inter pretation of 9

The terms in § may be interpreted heuristically (and incompletely) as follows:

1. The terms called go may be defined as the angular momentum in the gravitational
waves. The reasonableness of this definition becomes apparent in the short-wavelength
limit (wavelength small compared to the radius of curvature of the background space-
time). There the average of g over a few wavelengths in the hypersurface and over a
few cycles of time is just the angular-momentum component of the Isaacson (1968)
stress-energy tensor for gravitational radiation, TWW"9,, (More precisely, the average
is the “Brill-Hartle” average [cf. Isaacson 1968] of gg/N.) The short-wavelength limit
is most easily compared with the expressions for T¢¢"),, given by Misner, Thorne, and
Wheeler (1972):

(tgG'/N>BH = Té:r(%hwwﬁwzo - hn:vkoo:v - %kvwﬁ'())BH = T(GW)% ) (54)

independent of any gauge.

We emphasize, however, that the dominant radiation from a pulsating relativistic
star may not be of short wavelength near the star. If most of the radiation from a star
of mass M has frequency greater than some wy, then the short-wavelength approximation
is good only in the region

r> (drM/w)? = (4rGM/wec)'? . (55)
For a typical neutron star in quadrupole oscillation as studied by Thorne (1969)
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(M =07 Mg, wo==2 X 10* 53}, R~ 9 km) this becomes
r> 14 km,

which puts r well outside the star.

Our expression for g is only one of many that reduce to the Isaacson tensor in the
short-wavelength limit. Only in the radiation zone far from the star can we relate
Je to the density of angular momentum being lost by the star, because only there is
that density truly well defined and measurable.

2. The angular momentum in the fluid per unit coordinate volume, 7°, (—4)
can be written as poU°V ,Ng'/%, Now V, is the angular momentum per particle per unit

rest mass:
v, =ul, =222y,
Po

2
3

Thus, the angular-momentum density is the product:
(angular-momentum density) = (rest-mass density) X (angular momentum
per particle per unit rest mass),
T (—*)"? = (poU°Ng"®) X (V) -

When the fluid is perturbed, part of the second-order change in this is, from equation
(51), 8(polU°Ng!?) (3V, — de). The term 8(pyU°Ng"?) is easy to understand. The term
8V, — 8a can be related to the Lagrangian change in the angular momentum per par-
ticle per unit rest mass as follows. If j is the angular momentum per particle per unit
rest mass, if A denotes a Lagrangian change, and if £ is defined as the Lagrangian dis-
placement vector of the fluid element (not to be confused with the Killing vectors}), then

we have
Aj=08+EVi=8V,+¥EVa (56)

because in the unperturbed state j = V, = . But in Appendix B we show that éa =
—£-va + (5a)o, where (8a)o is the “initial value’ of da: its value when¥ is zero. There-
fore we have

Aj — (ba)e = 6V, — ba. ' (57

3. The final term in g is NpoU® (8a 88 , — 85 86,,). This is the same as $NpaU%V ,
the contribution from the second-order change in V,. Because we lack an explicit ex-
pression for 89,, in terms of £ we have been unable to express this term entirely in
terms of &.

¢) The Conserved Energy of Pulsation
i) Calculating the Energy Density

Although Noether’s theorem does not give us a conserved energy, we can construct
one from the Hamiltonian. The calculations required to do this appear in Appendix C.
The essential steps are summarized here:

First, define the Hamiltonian density,

d
B=3 z\rq,,og-q‘lf—0 ~ NI, (59)

where g, = {8%45, 15, 80, 6a, 88, 80, 8S}. It is degenerate: not all the momenta AL,/ 3¢r.0

are independent.
Second, find the time-derivative of H, by using the method of Dirac (1958a¢) for
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degenerate theories. Find that

ﬂH—@=[}:q am]”_N Ly | (59)

7,0 ,
ot v 9g-11 0t /holding all g, ¢, tixed

~fiu — 32aN 2 3V i[9.0a + (%) s (60)

Thus, the Hamiltonian is not conserved. We should expect this from the failure of
Noether’s theorem.

Third, express the last term in equation (60) in terms of £. Define the redshifted
temperature,

a=T1/0°, (61a)
and a symmetric (for proof see Appendix C) tensor
M= af;+ 5:3,;.
Find that 1= @il 540 (61b)

-327rN% SViQ 6 + 565

= :9%[161eroU°MijS‘£j — 32eNpoU'Q :£¥(0ex)o]

+ [16aN p UM %87 — 327N poU'Q £ (8 )ol11 , (62)

where (da)o is the “initial value” of the perturbation in a. The time derivative can be
brought over to the left-hand side of equation (60) and the divergence absorbed into
the divergence of fi. This defines a conservation law,

a8’
5 =0, (63)
for a globally conserved energy density,
1 " )
g = Tow H2 = NooU'M g% + 2N Ui (Ba)o, (64)
and its flux, .
= 2= ' = NoUMigt + 2N mU'2, () - (65)

Fourth, the energy density is defined only to within a spatial divergence. Subtract a
divergence from &’ and the appropriate time derivative from ¥ to arrive at a form of
the energy density tlat is quadratic in derivatives of A%f. Write the result as

ad
5 &+ 80 + Gt +Frh) 1 = 0, (66)
with 1
SG = _g;; N[gaﬂ(sﬂvusyaﬂ - s“vﬂsvm&) - haﬁ.osoaﬂ + Euo.osl‘a#] ] (67)
&p = — 2 V2(pUN ) (3 Vo + Qe + 35S) + % NgsV,8V, + 2N pU ho*8V,
~ Népodu + Nil’f (61)? + N&(poT)8S + 2N peU(5cx 88,s — 85 86..)
— NooUa,iQ,; + S,:3.)E8 + 2NpU'Q £ (8ax)o

+ Nisp + 1o NbioRey — N (1= R+ 9) (4 + $ihes), (68)
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Fe* = 31— N(—Fk* o8*u5 + B** o8%4) (69)
T
and
Fpt = — 2125 UEN g2) (5 Vo + Qo + 355) — 2NpoU*(dax 88,0 — 85 88 o)
— NpoUk(, Q.5 + S.3,) 6 + 2N p UM, £ (3 cx)o . (70)

The split between &g and &r (and between F¢* and F#¥) is arbitrary: only their sum,
8 = &g + &, is conserved. As we shall see in the next subsection, & is really twice what
one would normally call the energy density.

ii) Heuristic Interpretation of & and F*

Because of the great number of terms in § it is difficult to identify different kinds of
energy. We have split off ¢ because it is the only nonvanishing part in vacuum, and
because it contains all the terms that have derivatives of %A,

1. In the short-wavelength limit in the vacuum region outside the star, the Brill-
Hartle average of §g/N is proportional to the Isaacson energy density. Outside the star
the wave equation is (cf. eq. [34a])

Sagiy — 8¥aup = 0. (71)
Then by the identity mentioned in Appendix C (eq. [C15]) we have
8o (84S ap — 84458%ay) = 3 (8%, — Rreg )iee +

This divergence does not contribute to the Brill-Hartle average of &g/N, so we obtain
in the short-wavelength limit

(8¢/N)pu = —2T@W0, . (72)

This is in accord with our previous remark that & is twice the energy density.
2. The interpretation of & is made difficult by the presence of the term

ZNan'.(aa 53,; — 45 50,.’) = ZV;‘:N)U‘B2 V.' . (73)

As with a similar term in g, we have not been able to express this in terms of & There-
fore we will not be able to make a comparison of the Newtonian limit of & with the
Newtonian energy density derived in Paper 1.2 However, this term is not present if
the unperturbed star is nonrotating, so in that case there is no problem showing that &
reduces to the Newtonian expression derived in Paper I. We will do that later (§ ITIe
[ii]). For now we simply note that the similarity between this term and one in gr per-
mits us to rewrite §f in the form

8r = —2g125(p UPN g 2) (U8 V, + T85)/U° + 29gp + remainder,  (74)

where “remainder” means all but the term (73) and the first term of & in equation
(68). So the kinetic energy associated with the fluid’s angular momentum makes an
explicit contribution to the total energy density.

3. We can get some feeling for the nature of & by looking at its flux, which tells us
how energy leaves a volume. The flux of gravitational energy, F¢*, can be averaged over
a few wavelengths and cycles of time to give (in the short-wavelength limit)

(EYok/N)BH = —-ZT(GW)"() . (75)

2 This is a Newtonian term and even prevents a direct comparison of the Newtonian energy density
derived by analogy with the present procedure with that derived in Paper L. It is difficult to see how they
could be different, considering especially that in the nonrotating case one can show that they are equal,
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Therefore, far from the star this is twice the physically measurable flux of energy in the
gravitational waves.
4. The flow of fluid energy across some surface is

3transport of fluid energy in the hypersurface across% = [ Frtnudo
a two-surface £ with unit normal n; Tk

If the surface = is parallel to the unperturbed streamlines (U*ng = 0), this becomes

;transport of fluid energy across

= - k
the unperturbed streamlines % 22‘/‘ N@Vo + Do + 53S)pobr*mde,  (76)

where by ¢ we mean the coordinate velocity U*/U° (not to be confused with V* =
wU®). It can be shown that

1
~ (Vo + Qo + 335) = —7 8 + E"fﬁ U Ush®® + QBV, —da) . (17

Thus the energy carried by the perturbations across the unperturbed streamlines is
heuristically of three types: (@) work done (or gained) because of local changes in pres-
sure; (b) “gravitational potential energy” (note that in the Newtonian limit, 3U,U gh*? —
4400 — 5&, the change in the Newtonian potential); and (¢) rotational kinetic energy
(recall that 6V, — 8a is related to the Lagrangian change in 7 by eq. [57]).

iit) The Outgoing-Energy Boundary Condition

Far from the star, where the short-wavelength approximation is valid for all but a
negligible part of the gravitational energy, it is possible to formulate a physically mean-
ingful condition that the net flux of energy be away from the star. On a closed surface
Z in the short-wavelength region, the net flux of energy will not be inward if

STy ds > 0. (78)

b
By equation (75) this is equivalent to
S (e*/N)panrdoe > 0. (79)
P

From this and equation (66) follows the important result: The lotal energy of pulsation
(S €g*%dx) inside Z never increases if the radiation satisfies the outgoing-energy boundary
condition on Z.

Note that this is a very weak condition compared to the usual outgoing-wave bound-
ary condition, which requires that the flux be outward at every point of Z. For our pur-
poses we will need only the weak condition, equation (79).

d) The Tolal Energy and Angular Momentum

Three conclusions help us understand the physical meaning of the total energy,
E = [8g4%d%, and the total angular momentum, J = S gg"/*d%.

1. E and J are gauge-independent. This follows from reasoning similar to that used to
prove the coordinate-independence of pseudo-tensor energies (cf. Landau and Lifshitz
1962). Briefly, assume that E or J is different in two different gauges. Choose a third
gauge that matches the first on one hypersurface and goes smoothly into the second on 2
later hypersurface. Then conservation of E and J in every gauge contradicts the assump-
tion. This does not imply that the densities & and g are gauge-invariant. Conservation
of E and J is fundamental to the argument, and the conservation law is valid only if
the perturbations satisfy the initial-value equations on every hypersurface. Therefore

A
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the argument implies only that under a gauge transformation & and g change by terms
that become spatial divergences after the initial-value equations are applied.

2. Suppose that a distant observer (outside the furthest wave front) measures the
active gravitational mass M* and total angular momentum L* of the pulsating star.
Suppose also that the star is stable, so that the pulsations eventually die out and leave
behind a star of mass M and angular momentum L. For a stable star, the differences
M* — M and L* — L are at most second order in the perturbations.

The difference M* — M is conserved at all orders. If there were a first-order piece
in M* — M, it would have to be radiated away as the stable star’s pulsations damp out.
I't could not remain localized inside or near the star because by assumption M is the mass
left behind. On the other hand, the work of Isaacson (1968) shows that there can be no
first-order radiation of physically measurable energy on the stationary background far
from the star. Therefore the first-order contribution to M* — M must vanish. The same
argument applies to L' — L.

This result is similar to the theorem of Bardeen (1970) that the equilibrium configura-
tion of a rotating star extremizes the active gravitational mass of all nearby momentarily
stationary configurations with the same total baryon number, angular momentum, and
entropy that satisfy the initial-value equations. (This was proved for nonrotating stars
by Cocke 1965 and Harrison et al. 1965.) Where Bardeen compares momentarily sta-
tionary configurations with different masses but identical angular momenta, we com-
pare momentarily stationary configurations whose masses and angular momenta are
related by the requirement that one configuration can be obtained from another by the
emission or absorption of gravitational radiation. (The configuration with mass M~ can
be considered to be momentarily stationary at the moment the perturbation is applied,
just before it begins to emit gravitational waves.)

3. In the nolation of conclusion 2, the following equations are correct to second order in

the perturbations:
M =M +3E (80a)
L'=L+7, (80b)

where the background star is the star of mass M and angular momentum L that is left behind.
This result follows from three properties of E and J: (¢) They are unique apart from ad-
ditive and multiplicative constants because they depend only on the Killing vectors £«
and £,. (b) They vanish when the perturbation vanishes. (¢) The change in Jegiidx
and f* gg'?d®x inside any fixed surface surrounding the star and far from it is determined
solely by the physically measurable fluxes TX9%%; and TGk,

If there were any other second-order contribution to M* or L, it would have to be
globally conserved. By (c) it would also have to be confined forever within a closed sur-
face at some large but finite distance from the star. The use of (5) and of arguments simi-
lar to those of conclusion 2 above then implies equations (80).

e) The Spherically Symmetric, Nonrotating Siar
i) Expressions for the Energy and Flux

We turn now to a special case in which our expressions simplify considerably: the
nonrotating star. In curvature coordinates the background metric is

ds? = —evdf? 4 edr? 4 r2(d9? + sin? ddo?) . (81)
Then we have in the background
= ~Upy=1/U" = ¢l?, g2=pgin? M, Ui=0=0. (82)

In Appendix D we simplify & for this case as much as possible by substituting for the
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perturbed fluid quantities their expressions in terms of £ (cf. Appendix B). The result is
%8 p = poueE0 E 0+ YH(VE? + p (€ V p0) (§- VD)
+ 2(V-O(E VD) — 30T (€ VS)(EVY) — V- (pok)
+ pofdp + op(h3; — €) + 3(p + 3p)8 + (o + 3p)K;
— 3(p + 3p)ksk) — 1(p — PYH*hj + §(o — p — 29p) (W) . (83)

In this expression we have defined

£= ehy (84a)
and
kj= ehy; ; (84b)
and we mean by &y and &p
b= =2 wog— ) - eva, (852)
§p = —yp(V-E — 3h%) — £V (85b)

The flux F¢* is especially simple in this case. Equation (76) applies because all sur-
faces are orthogonal to the unperturbed streamlines:

e ’Fpt = e?(3p + Fpoul)Er 0. (86)

The energy density and flux of gravitational waves do not simplify very much from
their full form (egs. [67] and [69]) so we will not reproduce them here.

Our previous remark that § is really twice the energy density is again verified by the
“kinetic energy” term in equation (83), which has the form mo2.

i) The Newlonian Limit

The Newtonian limit of & for the nonrotating star is obtained by neglecting p and
p® compared to p (2 is the Newtonian gravitational potential). In equation (83), the
fifth, seventh, and subsequent terms are all of post-Newtonian order or higher. In the
Newtonian limit we have £ = 2§®, so that §7 becomes

Ernewr = pEo &+ ¥p(V-E)? + o1 (E-V)(E: VD)
+ 2V E(E-Vp) — 260V (oF) . 8n

The perturbed source equation for 6% (analog of relativistic initial-value equation) is
(cf. Paper 1)
V%P = 4dndp = — 4wV - (p¥) . (88)

Therefore the last term in (§¢)yewr becomes
— 200V« (pE) = — ZZ; vob-vP + (divergence) . (89)

We will discard the divergence. By comparison with equation (27) of Paper I, we see
that & differs from the Newtonian energy density only in that the term in equation
(89) is twice as large as it should be. We therefore expect the Newtonian limit of &
to be (4m)~1vib. vod.

Rather than find the Newtonian limit of 8¢ for arbitrary nonradial pulsations, we
will restrict ourselves at first to the case of radial pulsations, for which we have ex-
plicitly calculated the relativistic expressions (Appendix D). We will then argue that
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the nonradial Newtonian limit differs from the radial limit in no important respects.
For relativistic radial pulsations we can choose a gauge such that the only two non-
zero metric perturbations are

o = —h, (90a)
N = —Wr. (90b)
In terms of the fluid perturbations these are
S\ = —8wre*pout , (91a)
1
o' = 8w 0p — o (v + el (91b)
7
where primes denote differentiation with respect to 7. The Newtonian limits of these
expressions are
o\ = —8wrpt, (92a)
&' = —8mpt. (92b)

From equation (88) applied to the radial case we see that indeed dv = 26%. Moreover,
it is clear that 6\ is of the same order as é».
The energy & for radial pulsations is
evli—k

—_— 1.7
(86) RADIAL. RELATIVISTIC = ~g— [z" (6v

— (@ — o) + %ax(ax + 5v’)] . (93)

The first term is post-Newtonian compared to the second (»' & 1/7). From equations

(92) we find the Newtonian limit to be
1
(80)RADIAL. NEWT = ‘gr {2(51")2 + %’[(51”)2]'} . (94)

If we add the divergence

Y (s, = — s(s.1\21 05
167l' [g 1'(311 ) ] - 161!"'2 [f (51" ) ] ’ ( )
we obtain . .

(Ba)rADIAL, NEWT = e O') = 4 89’69 . (96)

This is exactly what we require to make & = &p + 8¢ reduce to the Newtonian energy
density for radial pulsations. . .

We should expect the same result for nonradial pulsations. The nonradial case 1s
made difficult because the appropriate limiting values of h*# depend upon the gauge.
Even in the radial case we saw that 8\ was comparable in size to 8». Nevertheless, the
Newtonian limit of & cannot depend upon the gauge. It should be possible to construct
a gauge in which the only two metric perturbations that have nonzero Newtonian limits
will be %% and 47, Dragging of inertial frames (given by k%) and the nonexistence of
intrinsically spherical two-surfaces (due to %%, and k% — h#,) are physically of post-
Newtonian order. Moreover, gauge freedom can be used to made k?s, h%., and k¢, of
post-Newtonian order, leaving only 4% and &7, at the Newtonian level. In such a gauge
8¢ will have a Newtonian limit substantially like equation (94), only with three-dimen-
sional gradients replacing r-derivatives. Then & will limit to the correct Newtonian energy

density.
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IV. STABILITY
a) The Sufficient Condition

The energy density & has three properties that qualify it as a Liapunov function
(see, e.g., La Salle and Lefschetz 1961): (i) it is homogeneous and quadratic in the per-
turbation variables; (ii) it is globally conserved; and (iii) its integral over the interior
of a large but finite sphere surrounding the star must decrease if the radiation satisfies a
physically meaningful outgoing wave boundary condition on the sphere. Therefore a
sufficient condition for stability is that & be positive-definite, i.e., that the integral of &
over the interior of the large sphere be positive for all nontrivial physically acceptable
perturbations.

By “physically acceptable” we mean that the perturbation and ils time-derivative must
be consistent with the perturbed initial-value equations. If one specifies £ and €4 on the
hypersurface, one is not free to specify all ten #%# and their derivatives. The initial-
value equations (perturbed versions of G#, — 8xT#, = 0) set four restrictions on the
20 functions %% and 4*# o. In addition, the choice of a gauge sets twelve more restrictions:
The gauge completely determines four of the A*# throughout spacetime (four conditions
on #** and four conditions on 4% ; on the hypersurface), plus it permits solving for the
four perturbed lapse and shift functions in terms of the remaining variables (cf. ADaM
1962 or Wheeler 1964). Another way to do this counting is to realize that the perturbed
geomelry is completely specified by giving the 12 functions #,; and %i;,0 on the hyper-
surface, though coordinate (gauge) arbitrariness off the hypersurface leaves some
indeterminacy in A*# off the hypersurface. Then imposing a gauge in the hypersurface
(four conditions) and solving the four initial-value equations in the hypersurface reduce
the number of free functions to four. Thus, & must be positive-definile for arbilrary values
of the six functions £ and &'y plus the four independent functions among h*® and h*#
(Unfortunately one is not likely to be able to prove & positive-definite without imposing
the initial-value equations, as we show in the next paragraph.)

b) Obstacles to the Application of This Condition

Both the solution of the initial-value equations and the imposition of a gauge appear
to be crucial before the sufficient condition can be used. In Newtonian theory the analog
of the initial-value equations is the source equation for the gravitational potential,
v*® = 4urp. The contribution of the perturbed potential, §®, to the energy of pulsation
is negative-definite (cf. Paper I). Only by solving for & as a Green’s function integral
over &, or in terms of the longitudinal part of p¥ (as was done in Paper I), can the entire
pulsation energy by shown to be positive-definite.

The imposition of a gauge is important because § is not gauge-invariant (though its
integral over the hypersurface is). It may happen that even after solving the initial-
value equations one may be able to prove the positive-definiteness of the energy density
easily only in some gauges. Thus part of the problem is to find a gauge in which &
{or & plus some of the terms in & that are quadratic in %#°#) is manifestly positive-
definite in the four free gravitational variables that remain. If such a gauge can be
found, then the contribution to & from &g can be discarded, and the sufficient condition
reduced to an integral just over the interior of the star (plus possible surface integrals,
as in Paper I). In that form, with the remaining energy a function only of £, the condi-
tion will be tractable and ready for application to realistic stellar models.

We should remark that the gauge problem can probably be solved without going to a
specific stellar model. The purpose of the gauge is to prove that the “free” gravitational
waves—those that can be specified on the hypersurface independently of the star’s
perturbation &—have positive energy. We should also remember that the gauge that
solves the radiation problem may not be the same gauge that makes the dynamical
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equations simple (e.g., the Regge-Wheeler gauge used by Thorne and Campolattaro
1967 for the nonradial pulsations of spherical stars). Generally, one might expect the
dynamical fluid equations to be simplest in the “near zone” or “Coulomb”-type gauge,
which might be poorly behaved at spatial infinity. The gauge that proves the gravita-
tional wave energy to be positive-definite, on the other hand, is likely to be a “‘radiation”
or “Lorentz”-type gauge. This conflict may pose no problem since one need never solve
the dynamical fluid equations to use the criterion: one need only prove that a certain

functional of £ is positive-definite.

¢) An Example: Radial Pulsation

To illustrate the procedure outlined above on a problem whose solution is known, we

evaluate & for the radial pulsations of a spherical star. We will find that & reduces to the

same functional whose positive-definiteness Chandrasekhar (1964) proved was neces-

sary and sufficient for stability.® The details of the calculations are contained in Ap-

pendix D.
i) Choice of a Gauge

The unperturbed metric is given by equation (81). For radial pulsations it is possible
to choose a gauge in which the only nonzero metric perturbations are dv = —h% and
8\ = —K", (see, for example, Landau and Lifshitz 1962). Both can be made to vanish

outside the star.
ii) Eliminating Non-dynamical Graviletional Variables

Since there are no gravitational waves, both 32 and 6v are determined completely
by the fluid perturbations. The two “initial-value equations” that are relevant are

r~2(re) — —rl; = 8&rTY% (97a)

and
o G v+ L) - L = e, (97b)

7 72

(where primes denote 3/dr). Following Chandrasekhar (1964), the perturbed versions

of these equations can be solved to give

S\ = — 8wre*pout (98a)
and .
o = 81rre"[6p — o (y' + 7) z] . (98b)
We will not need the last equation for 6 because & will contain only 6A.
iii) Calculating the Energy Density
ity, equa-

In Appendix D we show that the two parts of the gravitational energy dens

tion (67), are )
B85, 8ap — S pSa) = VMO — (B — )+ 2 ~NAEN + &) (99)

and '—ﬁaﬂ.osoaﬁ + hao.os“au =0.
Adding to the energy density the divergence

!
[gmNu’e—"(&v — )2 + 442N % e“"é)@] ,

from the second variation of a yariational principle
7 the second variation to stability problems in rela-

_1
647rg

3 Taub (1969) derived Chandrasekhar’s criterion
of his own. This appears to be the first application o
tivistic astrophysics.
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we obtain

e—vl2(SG)RADIAL = '8*:;; e\ — _6_;:—# e Moy? (V“ - %)\lll’ -+ %1/2 -+ %V')

! 2
+ 3%x e v\ (V" o A = 1//)

1 . 4, 2., 4
it '64—6'—)‘5)\2(11 - !2‘)\,1" + %1/2 “+ ;V’ - ;)\’ +—1'E) . (100)

™
In Appendix D we also show that &7 becomes
e Er)rapiar = —}(p — p + 29p)5A2 — 1(p + 3p)oNy + 1(p -+ 3p)ov®
— 0pON 4 poT858y — udvV « (pot) + porse™*(£,0)?
T p(VE: + 2V -t + o o't — 2T SVE . (101)

When &¢ is added to &p, and a convenient divergence added as well, the coefficients
of all terms containing 8 vanish by virtue of equation (98a) and the unperturbed field
equations. When &) is expressed in terms of ¢ from equation (98a) and another divergence
added, the resultant expression can be simplified to

ev/?
(B)rapraL = poue2(£0)2 + pyerix® — o (p')

-+ ge"”p’éz 4 87re}.+v/2poupsz , (102)
where x stands for

X = rle(rtgritg)! | (103)
Then positive-definiteness of the total energy,

Eraprar = ,0/' 8dwrieMidy (104)

for all possible £ and £, guarantees stability.

Chandrasekhar (1964) proved that the positive-definiteness of this & integrated from
r =0 tor = R (surface of the star) is necessary and sufficient for stability. Since & is
zero forr > R and contains no delta-functions at » = R, we see that our results demon-

strate the sufficiency of Chandrasekhar’s criterion. In the next section we use our meth-
ods to show that his criterion is also necessary.

iv) Lagrangion for Radial Pulsation
The radial pulsations of a relativistic star are very similar to Newtonian pulsations:
there is no gravitational radiation, and the perturbed gravitational field (6X and &»)
can be expressed entirely in terms of £ on a given hypersurface, without reference to
the dynamics on previous hypersurfaces (cf. egs. [98]). It is therefore possible to follow
the procedure of Paper I here: one can substitute £ directly into the Lagrangian density,
equation (31), and use the resultant expression as the reduced Lagrangian density for

the radial pulsations. The calculations are very similar to those required to reduce &.
The result is

(Lomamuas, = =™ (E0)? + ot = —— (9% + 2 90 + 8o, (105)

where x was defined by equation (103). Clearly the energy density § is the Hamiltonian
density associated with this Lagrangian density.
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The theorem of Laval, Mercier, and Pellat (1965) applies to this case and implies
that the positive-definiteness of Erapiar (eq. [104]) is necessary and sufficient for
stability. This demonstrates how Chandrasekhar’s theorem can be obtained with our
approach. Needless to say, Chandrasekhar’s own methods are much better for such a
simple case. We used ours only to illustrate the more general procedure.

V. OUTLOOK

The stability criterion derived in this paper is only the first step in what promises
to be a difficult but rewarding search for a useful stability criterion for relativistic stars.
I have already discussed what steps may be needed before the goal is achieved., The most
promising approach seems to me to be the analogue of the ADaM approach to the full
field equations: choose a transverse-traceless gauge and solve the initial-value equations.
There may be other workable approaches, however. In Appendix C the rate of transfer
of energy from & to &g is derived; it may happen that with the “outgoing energy”’
boundary condition and a careful choice of gauge, the initial-value equations imply
that this rate is positive. Then 8¢ itself must decrease in time and so #fs positive-definite-
ness alone would guarantee stability. Both these approaches are under investigation.

Moreover, the Lagrangian, equation (31), has applications beyond the derivation of
the sufficient criterion of this paper. It should be possible to derive from it the results
of Chandrasekhar and Friedman (1971) in the zero-frequency approximation. It should
also be possible to derive from it general criteria for the stability of standing-wave
maodes. Such criteria might well be less complicated than the one presented in this paper,
and might serve as reasonably good indicators of the stability of realistic, outgoing-
wave pulsations. The Lagrangian may prove to be an even more useful tool than the
sufficient criterion for stability.

I would like to thank Sandor Kovacs and especially James Bardeen for many helpful
conversations. T am also deeply grateful to Kip S. Thorne for his remarks on this paper
and for his continued advice and support during the past three years.

APPENDIX A
THE SECOND VARIATION OF THE VELOCITY-POTENTIAL LAGRANGIAN
The full velocity potential Lagrangian is (Schutz 1970)
£ = (R+ 16mp)(—g)"*. (A1)

Its second variation is the part that is quadratic in the perturbations when the full
perturbed values of the independent variables (Palatini style: g%, T, ¥, @, B, 6, 5)
are substituted into equation (A1). By definition, the second variation of any of the
independent variables themselves is zero. We treat the two parts of £ separately.

a) Second Variation of the Fluid Lagrangion
The fluid Lagrangian is p(— g)"/2. Its second variation is

p(—g) = dp(—g) + 26p8[(— )" + p&(—)"] . (A2)
Now, the middle term is easy:
(=) = —3(—V2guh™ = —4(—g)'"h, (A3)
and
. 8p = podu — pol8S, (A4)
with
b = B[(— g7V, V] = — 51; VY. = ,%g”"” Ve (45)
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where 8V, stands for

8V, = oy, + adf., + daB.,, — 580, — 558, . (A6)
The second variation of (—g)"? is also not hard to find:
F(—g) ) = 8[o(—g)V] = (=G + 34 h) . (A7)
The second variation of p comes from equation (A4):
8p = 8(podu — poT8S) = Spodp + pod®u — 8(poT)dS (A8)

(recall that 825 = 0). From equation (A5) we can compute §u:
1 2 1 1

02 = — = (du)2 — ~hV AV, — = gsV, 6V, — — g V8V, . A9

M " ) — = o8 8 (a9

Finally, we can find 8*V, from equation (A6):
8V, = 2088, — 265 6., . (A10)

Equations (A8)-(A10) combine to give

#p = Spodu — 8(mT)S — %"- Gw)? — 20k UAV,

- ‘;i VSV, — 20073008, — 85 60,,) . (A11)
This equation plus equations (A3), (A4), and (A7), when substituted into equation (Al),
give equation (25) in the body of this paper.

b) Second Variation of the Curvature Lagrangian

In the Palatini method, the curvature Lagrangian is g*¥R.s(I)(—g)V% Its second
variation is

S[R(— )] = 2h**oR ()" + 2h**Rapd[(—g)'*] + g60*(Rap) (—g)'"*
+ 2g°85Rup0[(— )*"] + g R (—g)'/?] . (A12)
The only terms here that we have not yet computed are
and 0Rog = 8[T¥ugy — Trapp + ThuTap — Thpl70] = Stapiy — SFaus,  (A13)
#Rap = 28%,8%p — 2895870y - (Al4)

It is straightforward to plug equations (A3), (A7), (A13), and (Al4) into (A12) to
obtain equation (29) in the body of this paper.

APPENDIX B
EULERIAN PERTURBATIONS

In this paper we often have occasion to convert from 8¢, de, . . . to the fluid displace-
ment, £. We shall write down the necessary expressions. More details can be found in
Lebovitz (1961) or Lynden-Bell and Ostriker (1967). We use the language of the 3 +1
split of the background spacetime: ¥ is the displacement of the fluid in the hypersurface
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of constant time, whose metrie is g;;. The determinant of g;; is g. Covariant derivatives
in the hypersurface are denoted by v or by a subscripted vertical rule, |.
Becatse baryons are conserved, the change in rest mass inside a coordinate volume

equals the transport of rest mass across its surface:
B(UTN ) = — g9 - (puU°NE) (B1)

Because entropy per baryon is conserved, poS obeys the same equation as po. Together
with equation (B1) this implies

8§ = —&VS. (B2)

The velocity potentials « and 8 obey the same equation as S, so their perturbations are
ba = —E:Va+ (da), (B3a)

8 = —£-VB+ (8B, (B3b)

where (3a)o and (88) are the values of da and 68 when £ = 0, They represent an initial
velocity perturbation. They are “constants” of integration in the following sense:

U150y = U(88)ol» = 0. (B4)

Note that for 85 the constant of integration is zero (cf. Paper I). The potentials é¢ and
50 do not have equations as nice as equations (B3) because they are not “conserved”

in the way a, 8, and S are.
The changes in p, p, p, T, ... can be computed from equations (B1) and (B2) and

the equation of state. We obtain

3 = —vp(V-E+ g ogh) — EVp — TEBWUN) + VO, (B3

(gt gisgit) — v — —22 :
= = L (v + g — Vi = S W) + BV, (5O

aT aT
oT = _3_;5)3 5+ 33),, 55, B7)
with the Maxwell identity
oT 1 (61) 1 (dpo
) = —(=%) =5l53) - B8
( ap/s  popy \9S/,, e\ 35/p ®8)
If we define the three-dimensional coordinate velocity, v, by the equation
ot = U/ U° , (Bg)
then we have . ‘ /
bt = o+ £, (B10a)
= £+ £l — ot (B10b)

“This equation and equation (B2) render the perturbed entropy equation,

6(7}-0 Uvs,,) = 550+ 80 + 085, = 0, ®11)

an identity, and similarly for the o, 8, and po equations.
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APPENDIX C
THE ENERGY OF PULSATION

a) The Hamiltonian

The generalized momenta of the problem, dLs/d¢,,0, are not all independent, so one
cannot solve for the velocities in terms of the momenta. Dirac (1958a, b) has developed
an algorithm for expressing the equations of motion in Hamiltonian form in such situa-
tions, and Schutz (1971) has applied the method to the relativistic perfect fluid, starting
from the full velocity-potential Lagrangian, equation (9). The only result we will need
here is a result demonstrated in the appendix to Schutz (1971) for the time derivative
of the Hamiltonian.

The Hamiltonian is

L,
ng Zqu'oﬁ—NLz, (Cl)

where g» = {84, 4%, 8y, da, 88, 69, 35}. The overall factor of N = (—g°)~ V% in H,
arises from our abandoning general covariance: The action is to be expressed in the form

Iy = f(Z Pqr0 — Hg) gHd3xdt . (C2)
In order that this should be the same as

I = S L(—%)"d% = Jf L,Ng’d%dt , (C3)
4

we need to include the factor of NV in H; and in the generalized momenta, ",
By the theorem from Schutz (1971), the time derivative of H; is

oH dH )
—5}3 = [}; gr.0 :92:]%]1; 3 (N Le)nolding o 7, fixed (C4)

This is the same as for a nondegenerate Hamiltonian.
If L, did not depend explicitly on time, then H; would be globally conserved. However,
L» does depend upon time. From the remarks in § 115 (i) we find that

S NL = —32eN B (g7, + wUnh)(@, 50 + 5.0 . ©s)

Here we have defined the “redshifted” temperature,
3= T/U°. (Co)
The first expression in parentheses in equation (CS5) is just §V*. In terms of the co-
ordinate velocity, v* = Ui/U? equation (CS) becomes

% NLy = — 322N poU%0 (2,80 + 5.:35) . )

In obtaining this we used the fact that @ and 3 are independent of ¢ and ¢.

We can express 6v%, 8o, and 85 in terms of £ by using equations (B10), (B2), and (B3a).
Then manipulations similar to those of Appendix A of Paper I can simplify equation
(CT7) considerably. The crucial idea in the manipulations is that the quantity

M= a;+ 5,0,; (C8)
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is symmetric; its antisymmetric part is
0 d
5 Ve = 5 (et — Sth.4) = Mg,

which must vanish because the unperturbed flow is stationary. The final result of the
manipulations is

—327eroU05'l)i(Q,i5OL -+ 'JJ'BS)
= S 16N UM — 320N U0 it )
+ [16xNpo UM ig'tint — 32xN mU°Q, £ (5e)ov!ln (C9)

Notice that the initial perturbation in o appears explicitly. )
From this equation we see that the term that prevents H; from being conserved is
itself a time-derivative plus a divergence! We can therefore rewrite equation (C4) in

the form

-é"—t (Hs — 167N o UM 889 + 327N o U, (52)o]
=[S a2 + 165N UM e = 32N U EGurt| . (C10)
r 71

b) The Energy and Iis Flux
We may tentatively identify the energy density of the pulsations as
¢ = Hy — 16w NpoUMi&%7 + 32mN poU°Q,:E¥ (G ax)o - (c1)
Its uniqueness and gauge properties are discussed in § I11d. Here we are interested in

evaluating &' and its flux.
From the Lagrangian L, = ® + 1670 given in equations (25) and (29) we find

N oL, = NP, — AINEE, (C12a)
08#48.0
oL, _ C12b
N ohE, 0, ( )
N oLy _ —32rg 125 (po U'N g1) (Cl2c)
&Y 0
dLy ci2d
dda =0, ( )
dL 12 0 12 12
N 222 = —32xg23(poU'aN g ), (Ci2e)
3580
oL, C12f
N 38S o =0 ( )
N ;Blaaz = 4-32ng 1 28(po U'SNg?) . (C12g)
0

These imply that H; is
Hy = 2NEo8805,0 — 2Nh840y 0 — 327 126(poUON ) (80 + xdfio — 580 0)

— 322N U388, — 8588,) — N® — 167N@ . (C13)
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Consider the gravitational part first:
Hz(g) = ZNEaﬂsoaﬂ,o —_ ZNI';/“OS”““,D - N(R . (C14)

This would appear to contain second time-derivatives of £*8. Actually it does not, as
we can see with the help of an identity that follows from the definition of $#,4 in terms of
ke (eq. [33)):

7B (Sagiy — Staup) = () 7V (—4) 2 (h8% — B7°8%),))
— Zg“ﬁ(S“wS”,x,s — 88,887 o) - (C15)
This identity converts ® (eq. [29]) to
R = _Zgaﬂ(s"msyaﬁ - & VHsyau) + Z(kaﬂ‘soaﬁ - };"05" au),o
+ %[Nﬁ""s",w — NRS]1 — hhRe + RGH + $hh®®) . (C16)

With this, Hs (g becomes
Hygy = '—ZN}_t"‘B,ogoag + ZNE"O,OS“““ + 2N (8#,,8%a — 8#158"ay)
+ Nhh**Rog — NR(EH? + Lhash®®) + 2[Nhw$%,, — Nhise ). (C17)

This is quadratic in derivatives of k*f after we throw away the divergence (we must
remember to discard the appropriate time derivative from the flux to compensate this
divergence).

We make no modification of the rest of H; except to note that

o+ adBo— S0, =0Vy— Boda 4+ 0,665 =6V, 4+ QWa 4+ 30S5. (C18)
When all terms are assembled and divided by 16, the result is equations (67) and (68).
The energy flux (Poynting vector) is, from equation (C10),
Fl= = guo gq—f? — 16w Npo UM 67t 70* + 320N poU'Q, i (8a)or® . (C19)
T ril

From expressions similar to equations (C12) we find that

- Z Qr,oggﬁ = Z N¢o :qlifz
= 2Nh8t g0 — INE!8ay0 — 32mg/%5(po UNg2) (8,0 + B0 — S86.0)
— 32xNpoU(8adB o — 8.506.0)
— 2Nk (8t + 2N Bt 84, — 32 Ng=125(poUNgl2) (8 Vo + Qba + 35.5)
— 32nNpoU(dadB,0 — 8580,0) + (2NA#8!,5 — 2NE*844,) 0 . (C20)

The last term in this equation is exactly the one required to cancel the divergence in
equation (C12)! So when we discard it and divide by 16r we get equations (69) and
(70) for the flux.

For completeness we write down what the first three terms of Hse) (eq. [C17))
become if we substitute for the $#,4’s their expressions in terms of k8, This is what in
the body of the paper we call 16r 8¢:

167&g = —%Nﬁaﬂ,oh,,g;o + %Nﬁ"ﬁ;iﬁap;i - Nh“ﬂ; ihia;ﬂ + Nﬁaﬁ,ohoa;g

+ NEoh® + 3Nkh,; + 3N (T8 + T8,05%) (hagi® — 2M045) . (C21)

Kopie bereitgestellt durch Nds. Staats- und Universitaetsbibliothek Goettingen



LINEAR PULSATIONS 369

Similarly, the gravitational part of the flux (first two terms of eq. [C20]) becomes
167Fg' = — Nk ohosit + 2NEB ghtas + 5Nh ok . (C22)

¢) Transfer of Energy between Fluid and Radiation

The Hamiltonian formalism permits us to calculate not only the rate of change of
the total energy density &, but also the rate at which different parts of & change. In the
body of this paper we define

& =8 — &g

1 - ) 1
= —— Hymy — NpUMsit8 + 2N po U, (8a)o + 7= Nhh** Rog
16 167

1 NRGI + Lh*Phyg) (C23)
167

where Hyp is the Hamiltonian obtained just from the Lagrangian ®:

%{ Hyry = —2¢25(poUNg2) (8Vo + Qb + 385)

— 2p0U°N (3ctdB.0 — 8580,0) — @ . (C24)

The time-derivative of & can be found in this manner: )

The time-derivative of Ha, is of three parts: a part due to the time-derivatives of
the fluid variables, a part due to the time-derivatives of the gravitational variables,
and a part due to its explicit time dependence. The last part is canceled by the time-
derivative of the second and third terms in equation (C23) (by the construction of the
previous section!). The first part is just a divergence because Hyw) is the Hamiltonian
that governs the time-derivatives of the fluid variables. Thus we have

ar.1 "y )
D[k Hyr, — Nl Mg + 2N 0™,

dHyr) 1 dHyr (C25)

1
= —Frt + 15, 100 her T 16x T 3

where ¢, which is defined in the body of this paper (eq. [70]), represents the energy
carried out of some volume by the fluid itself. Now Har) does not depend upon 8.5;
from equation (35) we find

1 0Hawm) _ 90

T6r anet = ~ N g = €= 9, (C262)
(C26b)

= N[uU.Usdpo + polUaUsdt + 200uU@dUsy + 8pgas — Dhas = 3 aph] -

[From eq. (C24) one might conclude that Hacr) depends on I?"ﬂ not only through 1(/5:£
but through the first term, which includes 8(poU°N, g/?). This is not true: —2¢"
3(poU®Ng'/%) is the momentum conjugate to &y, 9:L/08y 0. It is a fluid variable, and its
time rate of change is included in F#*.]

Since the last two terms in & also depend only on
immediately:

ke, we can write down 08r/02

_'35_;* + Frtix = Nt o[uUoUsdpo + poUaUsbp + 2000 Us8Us + 8p8as
— 3(p — PVhas + 3oougas VU] . (C27)
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Since the divergence of F#* represents transport of energy by the fluid, the total rate
of transfer of energy from &z to 8¢ is negative of the integral of the right-hand side of
equation (C27) over the entire star.

APPENDIX D
THE NONROTATING STAR

a) Arbitrary Pulsations
The nonrotating star has the background metric

ds® = —erdtt + &dr® + r2(d 9 + sin? Sde?) . (D1)
From the equation U*U, = —1 we find
SU° = —dei2hy (D2a)
and
Uy = —3e 2y . (D2b)
From Appendix B we learn
88 = ~E-VS = —£S, (D3a)
g5 (pUON ') = g7125(pog?) = —V +(pok) (D3b)
St = E,, (D3c¢)

In order to put & in terms only of £ and 4*# it is convenient to treat separately the
following pieces of &p:

A = —2g5(pUNg %) (5 Vo + 38S) , (D4a)
B= %Ng”‘s V8V, + 2NpU b8V, + N% (6w)?, (D4b)
C = —Népdp + N&(poT)sS — NpoU°S 3, ;tE7 (D4c)

1 {
D = Nitp + - Nhlo#Reg — N (mR + p) GI + i) . (D4d)

i) 4. From the above equations and Appendix B, we find
3(poU'Ng'?) = — g% + (pok) ,
Vo + 38S = —e'®u — Jue?hy 4 12165,
4 = =21+ (po&)[ps~8p + Fue"hao] . (Ds)
ii) B. This term contains the kinetic energy of the fluid:
8V, = Udp + wdU, = Udu + ud(g,,U?)
= Usdu + pged U + nU%%cidv* — pU%e,
— 8?8 + Juehw) + 8ue2(gid — hio) . (D6)

and

It

From this we find
g8V V, = —(8u + Ruehu)? + ple[git ot 0 — 2h0itt 0 + ho'hj)
Uh78V, = e_y(‘s/"' + %Me""hoo)hoo + ue“"hoié‘".o - #3_yh0ih0j .

and
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These combine to give A
B = poue™E0 o+ poe~Phoodn — pope™*ho’hoj + % poue" oo’ . (D7)

iii) C. If we add to C the first term of 4 from equation (D5) and call the result E,

we get o
E = Npy g 2%5(pog"9)8p + NpodT8S — NS, T ¢

4 Nopgra(e) — Nl (75) TS (D8)
"

The first three terms of this can be written as

Ng25(g)5p + Npg'0podp + Noo(AT)SS, (D9)
where AT is the Lagrangian change in T,
oT 1 6p0>

=== = —— (=) Ap. D10
AT 35)s A i(%s), 22 (D10)

By writing the second term in expression (D9) as
Npi8poAp — Npi (2 V p)dpo (D11)

and using equation (D10), we find that £ becomes
E=Np™ (%‘,’) Apdp — Npi8po(E-V p) + 2Ng™%8(g")op
s

~ 3NpT(E-V ) (£ V) . (D12)

But Appendix B tells us that
Ap = —vp[V-E+ g (g . (D13a)

Moreover, the definition of v is
_ (22 (D13b)
YT \op/s”
Therefore, E becomes

B = ety p(V-EE + 203V -H)(E V) + ¢ (£ V)V po)

— 3Rl (E-VS)(E V) — deyp(h)? (D14)
iv) D. Using the unperturbed Einstein equations, we obtain

D = elthsp + ke phook + &0 — PIBF — 1e%(p — P)hoBhag . (D15)

1f we assemble all these terms we obtain equation (83).

b) Radial Pulsations

If Nature is reasonable, the stability criterion proved in this paper ought to reduce
to Chandrasekhar’s (1964) necessary and sufficient condition for stability against radial
pulsations. In this section we show that & does indeed reduce to Chandrasekhar’s varia-

tional function.

We can choose a gauge such that the only two nonzero metric perturbations are
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(see, e.g., Landau and Lifshitz 1962)

O = ¢hy = —hY% (D163)
and
A= — My = — (D 16b)
In this gauge we have (£ has only an 7-component)
==L (weg 400 - £V (D17)
op = —yp(V-E+ 360\) — E-Vp. (D17b)

Since there is no dynamical freedom in the gravitational field (no spherical gravitational
waves), we ought to be able to express é» and o\ in terms of £&. We use the (g) and (:)
Einstein equations: . .
= (reN) — == 8xT% (D18a)
and | i .
e (; Vb ) = oy = 8a T, (D18b)
(where primes denote d/37). Their perturbed versions can be solved to give (cf. Chandra-

sekhar 1964
' ) O\ = —8wre*pout , (D19a)
& = 81rre)‘[6p — pot (;/ + %) g] . (D19b)

We will never need v itself; will only need to substitute for 8A.
To calculate & we need the following 8’s (which can be read off the table of Christoffel
symbols in Landau and Lifshitz 1962, § 97)

S'% = 30v0, Sw = e Mo + (v — )],
8% = 30", 80 = L6No, Sss = re"M\,
8, = 378N o, ST = 3N, §,, = rsin? de N, (D20)

All others that cannot be obtained from these by the symmetry 8.3 = 83, are zero.
With these we find

EP(89,8%as — $p8%) = e (B — SN (8 — ON) + 7le (BN + &), (D21)
and — %8 s + B0 48Bas = 0. (D22)

Then from equation (67) &¢ is
7
= e 2Ny — Y I S ' ’
Ba = 5= @M (oy — AN — ON) + g ¢EIBANGN + &) . (D23)
By adding the divergence
1 4 !
— —— 1/2 1/2,v/2—N| 47 — 2 = 2
s {g ¢ [V(Bv 5\ +r5x]§ , (D24)

we can eliminate almost all terms that have derivatives of A and ér. (Note that the
factors of g% in eq. [D24] ensure that the expression will be a divergence when inte-
grated over proper volume in the hypersurface, g'/%d®x.) The result is equation (100).
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To calculate &5 we begin with equation (83). We shall need the following field equa-
tions:

1 1 2
Reo e[V = N+ 30+ 2/ =106 +3), (D)

167 = 3r

1 1 1 4 A 2

TR = o [ BN = 40P V] =26 - ), (D20)
._1- ___1__ o1zt 17,12 21_;
161rR— 167r[v WV A+ 30 +r(v N)

+ 20— =36-3. (D27)
Eqguation (83) becomes .
8 = poue (¢ 0)? + ¥p(VE? + 2(V-Dp'E + i 08
— LTSV — pdvV «(pok) -+ poT8Sy — SO
+ 1(p + 3p)8? — 1(p + 3p)owoh — k(p — p + 2vp)0N*. (D28)
By adding to & the divergence
g (uer'*g  pokdv)’ (D29)

and by adding &r to &g, we obtain for &

evig = 172 eM1 4 v’ 4 drrlyp)oN — NP + poue" (£.0)*

16m
F yp(VER 4 2V-D)PE+ po P o E — 30 TSVE . (D30)

All terms containing 8» have canceled out by virtue of equations (D19a), (D25)-(D27),
and the equation of hydrostatic equilibrium,

P = — Lo’ . (D31)
Now we define
x = r2e2(reE) = V£ + 36N (D32)

The last step follows from equation (D19a) and the equation
v+ N = 8wrpue . (D33)

This equation and the useful identity

v+ % = %e"(l + 8nr2p) (D34)

both follow from the unperturbed Einstein equations. From the definition of x and
equations (D31) and (D34) we obtain for &

A
e18 = poue(E o) + vOX* + 20'Ex — 1o (;2— + SWP) o\
+ 2 'plE = I TSVE (D35)

If we now substitute equation (D19a) for 8, add to & the divergence
— g (g PplelE) (D36)
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and use the unperturbed Tolman-Oppenheimer-Volkoff equation, p’ = poue* (m+
47r3p)/r?, we find that & simplifies to

"2 ’
1% = puer(£.0)® + p¥xX* — %‘)7 &+ é—f* £ + 8wetpoupt’ . (D37)

This is exactly the function whose positive-definiteness Chandrasekhar (1964) proved
was necessary and sufficient for stability. Our “energy density” & differs from Chandra-
sekhar’s function by the “redshift” factor ¢/, which arises from our 3 -+ 1 split of
spacetime. Our “‘total energy” is the same as his: his is the integral of equation (D37)
over (—4g)V?dix = 4retVIEdy, while ours is the integral of & over g/%d% = 4weM*dy.
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