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ABSTRACT

Gravitational wave detectors in space, particularly
the LISA project, can study a rich variety of astro-
nomical systems whose gravitational radiation is not
detectable from the ground, because it is emitted in
the low-frequency gravitational wave band (0.1 mHz
to 1 Hz) that is inaccessible to ground-based detec-
tors. Sources include binary systems in our Galaxy
and massive black holes in distant galaxies. The ra-
diation from many of these sources will be so strong
that it will be possible to make remarkably detailed
studies of the physics of the systems. These stud-
ies will have importance both for astrophysics (most
notably in binary evolution theory and models for
active galaxies) and for fundamental physics. In par-
ticular, it should be possible to make decisive mea-
surements to confirm the existence of black holes and
to test, with accuracies better than 1%, general rela-
tivity’s description of them. Other observations can
have fundamental implications for cosmology and for
physical theories of the unification of forces. In order
to understand these conclusions, one must know how
to estimate the gravitational radiation produced by
different sources. In the first part of this lecture I re-
view the dynamics of gravitational wave sources, and
I derive simple formulas for estimating wave ampli-
tudes and the reaction effects on sources of producing
this radiation. With these formulas one can estimate,
usually to much better than an order of magnitude,
the physics of most of the interesting low-frequency
sources. In the second part of the lecture I use these
estimates to discuss, in the context of the expected
sensitivity of LISA, what we can learn by from obser-
vations of binary systems, massive black holes, and
the early Universe itself.
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1. INTRODUCTION

The LISA project, currently identified as a future
European Space Agency Cornerstone mission in the

∗To be published in the Proceedings of the 1997 Alpbach
Summer School on Fundamental Physics in Space, ed. A Wil-
son, ESA (1997).

next century, is one of the most ambitious scientific
observatory missions ever contemplated. To detect
gravitational waves one needs to build an instrument
capable of measuring picometre-scale changes in the
distances between spacecraft separated by millions of
kilometres. The fascinating and challenging technol-
ogy to do this will be explored in other lectures at this
school, and reviews can also be found in the litera-
ture (Danzmann 1997; Bender et al. 1996). The mo-
tivation to build LISA, or for that matter any other
space-based detector of gravitational radiation, lies
in its scientific return: what will LISA learn?

Any astronomical observation is partly a “lucky dip”,
the game where one puts one’s hand into a sack and
pulls out an object at random. One never knows
for sure what an instrument will reveal about a part
of the Universe that one has never looked at before.
This is especially true for the first observations in
a new waveband, and it will surely be as true for
gravitational wave detectors as it has been for radio
antennas, X-ray satellites, and underground neutrino
detectors. Nevertheless, large projects like LISA can-
not be justified on serendipity — on our ignorance!
— alone. We must try to estimate as carefully as pos-
sible the kinds of gravitational wave sources LISA
might see and what information is likely to be de-
ducible from their observation.

LISA will operate in what we call the low-frequency
band of gravitational waves, between 1 × 10−4 Hz
and 1 Hz. We will see that this is an interesting band,
where we expect radiation from binary stars, massive
black holes, and possibly the Big Bang. The sources
that radiate strongly in this band are very different
from those that radiate in the higher-frequency band
from about 1 Hz to 104 Hz, which Earth-based de-
tectors have targeted since the early 1960’s. Most of
them do not radiate at the higher frequencies, and
so much of the physics and astrophysics that LISA
can explore will be totally new, even if (as we hope)
ground-based instruments are successful soon in mak-
ing the first detections of gravtational waves.

Importantly, the low-frequency band cannot be ob-
served from the ground. Any gravitational wave
detector is a sensitive recorder of time-dependent
changes in the gravitational field, and it will respond
as well to changes in the local Newtonian gravita-
tional field induced by the motion of a terrestrial
mass (a person or a truck) as to a gravitational wave.
Because gravitational fields cannot be screened out,
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it is impossible to avoid terrestrial interference.

In the higher-frequency band from about 1 Hz to
104 Hz, terrestrial gravitational noise is smaller than
the signals from astronomical sources, and detectors
can be built on the ground. In the LISA band, the
reverse is true: gravitational interference from local
mass movements, from density perturbations carried
by seismic activity, and even from the passage of at-
mospheric masses is much stronger than extrater-
restrial waves, and Earth-based detection is hope-
less. By putting a detector in space, far enough from
Earth, one escapes this interference: terrestrial noise
falls off in strength moving away from Earth, while
the amplitude of the incoming gravitational waves is
essentially the same everywhere in the solar system,
since they come from so far away.

In space, the natural method of detecting gravita-
tional waves is interferometry. Once one leaves the
near-Earth environment to build such a detector, one
can take advantage of a great bonus: the vacuum sys-
tem is free. Gravitational waves act by tidal forces,
so the displacements they make in a detector are pro-
portional to the size of the detector. Ground-based
interferometers are limited in size to a few kilome-
tres simply by the cost of building a vacuum sys-
tem of that size; ideally they should be several hun-
dred kilometres in length. In space one can make
as large a detector as one likes, within technological
constraints.

The result is that detectors need not be designed to
have only barely enough sensitivity to detect some-
thing: LISA will be so sensitive that its signal-to-
noise ratio when it detects the collision of two mas-
sive black holes in a distant galaxy could well be bet-
ter than that of an optical observation of the same
galaxy. It will have enough signal to pin down direc-
tions to sources, to measure their masses and other
properties, and especially to look for the small details
in the signal that will test our understanding of as-
pects of fundamental physics. When thinking about
LISA, one must forget the impression that one has
from ground-based gravitational wave projects, that
gravitational wave detectors operate at the margins
of detection. LISA will be a robust observatory.

Since this is a summer school, it is important that
students learn more than what the experts think
about LISA and its capabilities. Students should be
able to do their own source calculations, making their
own assessment of the capabilities of the instrument
and the interest of the physics in this wave band. It
is not in fact difficult to give rough (factor of two)
estimates of the radiation amplitudes expected from
sources and of the back-reaction on the sources of
losing energy to gravitational radiation. I will show
in this lecture how to derive such estimates from the
fundamentals of Newtonian gravity and general rel-
ativity. These include some simple approximations,
such as Equation (10) and Equation (16), that have
been known for some time but deserve to be more
widely used. I assemble a number of these estimates
into a single diagram, Figure 1, that shows the dy-
namics of sources as a function of their mass and
size: what their radiation frequency will be, which
ones will be strongly affected by radiation-reaction
effects within a one-year observation, and which ones
will be affected less strongly but still measurably by
such effects. Most of this section is equally applicable

to sources that radiate in the high-frequency band as
well as to those detectable at lower frequencies.

After this introduction to the physics of sources, I
will connect what we have learned about the physics
of sources to the capabilities of the LISA instrument.
I will discuss what we can learn about binaries, mas-
sive black holes, cosmology, and fundamental physics
by making observations in the LISA band. The rich
nature of the information we expect to receive pro-
vides the underpinning motivation for LISA. This lec-
ture is the companion to my second lecture at this
school, which reviews methods of data analysis for
gravitational radiation and uses them to deduce the
performance of LISA in deducing information about
the sources discussed here.

Students wanting further discussions of ground- and
space-based sources can turn to a number of refer-
ences: Thorne 1987; Thorne 1995; Schutz 1997.

2. PHYSICS OF GRAVITATIONAL WAVE
SOURCES

The gravitational wave spectrum of space- and ground-
based detection spans 8 orders of magnitude in fre-
quency, from 10−4 Hz to 104 Hz. This is simi-
lar to the range from high-frequency radio waves
(10 GHz) to X-rays (1018 Hz). In this range, there-
fore, we should expect considerable variety. But there
is also a lot that is systematic. The dynamics of
most sources are dominated by their self-gravity, and
their gravitational-wave amplitudes will usually be
given to a good approximation by the lowest-order
quadrupole approximation for radiation.

2.1. Internal dynamics: the natural frequency

For self-gravitating Newtonian systems, it is well-
known that there is a natural dynamical frequency
associated with the mean mass density ρ of the sys-
tem:

fdyn =
1

2π
(πGρ)

1/2 ∼
(

GM

16πR3

)1/2

, (1)

where M is the system’s mass and R its typical size.
Wherever I use the symbol ∼ instead of =, I mean
to indicate that there are factors of order 2 or pi left
out.1 (In this case, the factor is π/3.) Moreover, I
will always use proper frequencies (measured in Hz),
not angular frequencies (radians/s) in my formulas.

It is interesting to put some numbers into this for-
mula. Selecting values relevant to LISA’s sources, it
is easy to show that:

fdyn = 1 × 10−3

[

M

2.8M⊙

]1/2 [

R

2 × 108 m

]3/2

Hz.

(2)

1I am grateful to Prof. W. Kummer for telling me at this
meeting that such a factor of order one that is omitted from
an expression is sometimes called a Weisskopfian, after Victor
Weisskopf, who perfected this style of calculation!
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Similarly, solving Equation (1) for the density, we get

ρ ∼ 2 × 106

[

f

3 mHz

]2

kg m−3. (3)

Notice that, for frequencies in the range 10−4 –
104 Hz, the density ranges from nuclear-matter den-
sity at the high end down to the density of water at
the low end. This illustrates the enormous range of
physics in these sources.

This formula for the relation between frequency and
density is valid to a first approximation in general rel-
ativity as well. It governs the orbits of binary stars,
the orbital and escape velocity near self-gravitating
masses, the frequency of the fundamental mode of vi-
bration of a self-gravitating mass, and essentially all
other processes where self-gravitation determines the
structure and dynamics of the system. If we change
the frequency into a velocity,

vdyn = 2πfdynR, (4)

and then we set this to the speed of light, we deduce:

vdyn = c =⇒ R ∼ GM/c2. (5)

This is, to within a factor of 2 (the Weisskopfian
again) the equation for an object whose gravitational
escape speed is the speed of light: a black hole.

2.2. Radiation: the quadrupole formula

Radiation of gravitational waves is, to a first approxi-
mation, given by the quadrupole formula, which gives
the metric hjk of the wave at a distance r from its
source in terms of an integral over the source, which
is assumed to be described well enough by Newtonian
gravity:

hjk = [Transverse projection of:]
2G

c4r

d2

dt2
Qjk, (6)

where the reduced or trace-free quadrupole tensor
Qjk (sometimes also called I–jk) was defined in G Schä-
fer’s first lecture at this meeting:

Qjk =

∫

ρ

(

xjxk − 1

3
x2δjk

)

d3x. (7)

The operation called “transverse projection” in Equa-
tion (6) means that only the components of the inte-
gral are passed through, and the rest are set to zero.
This enforces the property that gravitational waves
act only in the plane transverse to the direction the
wave is travelling.

For estimation purposes we shall use a simpler ver-
sion of this formula which ignores all the indices and
makes order-of-magnitude estimates of the integrand
in Equation (7). Ignoring the indices means that we
get upper limits on the amplitude of the waves, since
the projections and the removal of the trace (the term
containing the 1/3 term in Equation (7)) can elimi-
nate components that our estimate will include. The
simpler estimator is:

∣

∣

∣
Q̈jk

∣

∣

∣
≤ d2

dt2

∫

ρx2d3x ∼
∫

ρv2
dynd3x ∼ Mv2, (8)

where M is the total mass of the source and vdyn is
given by Equation (4).

Of course, this is an upper limit because not all the
mass needs to move in such a way that it gives off
gravitational radiation. Spherical motions, for ex-
ample, radiate nothing. One way of approximating
Equation (6), then, would be to take only the non-

spherical part of the kinetic energy Mv2/2 in Equa-
tion (8), which leads to

h ∼ 4G

c4r
Knonspherical, (9)

where Knonspherical is the non-spherical part of the

system’s kinetic energy. This is a good generally-
applicable estimate (Thorne 1995).

If all the mass of the system is involved in the motion,
and the velocity is determined by self-gravity (this
excludes radiation from a small lump on a spinning
neutron star, where only the mass of the eccentric-
ity radiates and the relevant velocity is the rotation
speed of the star, which could be much smaller than
the dynamical speed), then we can use the virial the-
orem to simplify this even further, giving us an upper
bound that is usually fairly close to the correct value
for sources in the LISA band:

h ≤ 2G2M2

c4rR
∼ 2

GM

Rc2

GM

rc2
. (10)

This is a very simple formula that was first derived in
the context of a scalar approximation to relativistic
gravity (Schutz 1984). It gives an upper limit on the
gravitational wave amplitude in terms of the product
of two (dimensionless) Newtonian gravitational po-
tentials: the typical internal potential of the system,
GM/Rc2, and the external potential at the observer’s
location, GM/rc2. Since the internal potential must
be smaller than about 1 (or the system would form
a black hole), we see that the gravitational wave am-
plitude must be smaller than the dimensionless New-
tonian potential of the system: waves are a small dis-
turbance in the Newtonian field, not a replacement
of it.

This formula only gives an upper bound on the wave
amplitude, but this is not as bad as it might seem.
The real amplitude can fall below this only if the
source has some kind of symmetry that does not al-
low it to radiate fully (such as a nearly-spherical sys-
tem), or if the frequency is not given by the natural
frequency but by a smaller internal frequency, such
as the rotational frequency of a spinning star. But
for highly asymmetric source, and especially for the
binary systems that are important sources for LISA,
this formula is not an upper bound: it is a realistic
estimate.

Normally, the frequency of the radiation is twice the
natural frequency of the system, essentially because if
v depends on time as exp 2πift in Equation (8), then
the factor of v2 in the integrand has time-dependence
exp 4πift. It is not always the case that gravita-
tional waves come off at twice the natural dynamical
frequency, but these exceptions need not concern us
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here. Accordingly, we will take

fgw = 2fdyn ∼
(

GM

4πR3

)1/2

. (11)

With some interesting values for LISA sources, Equa-
tion (10) becomes

h ≤ 2.6 × 10−22

[

M

2M⊙

]2 [

R

2 × 108 m

]−1

×
[

r

10 kpc

]−1

(103 s compact binary at galactic centre). (12)

h ≤ 2 × 10−20z

[

M

2 × 106M⊙

]2 [

R

6 × 109 m

]−1

(massive bh-binary at redshift z = 1), (13)

where I have assumed a value for the Hubble param-
eter of H0 = 60 km s−1 Mpc−1.

2.3. Energy loss to radiation

Waves carry off energy, and this is important for some
of the systems we will discuss. One might think that
this would be a hard thing to estimate, but this is not
really the case. Relativists argued for decades over
whether gravitational waves really did carry energy,
because when one looks at the question in the full
nonlinear theory of general relativity it becomes a
difficult one. But work in the 1950s and 1960s by
H. Bondi, R. Penrose, R. Isaacson, S. Chandrasekhar,
and others put the arguments to rest by showing that
general relativity does indeed transmit energy from
one place to another via gravitational radiation, and
in fact that the formula for the amount of energy is
very similar to those in other classical field theories
of physics — electromagnetism and scalar fields, for
example.

In particular, the energy flux carried by a wave is
proportional to the square of the time-derivative of
the amplitude2 h:

F ∝ ḣ2.

The constant of proportionality must get the dimen-
sions right, and it can only be made up of pure num-
bers and the fundamental constants G and c. Re-
membering that h is dimensionless, the dimensions
of F (energy per unit time per unit area) determine
the way it depends on G and c:

F ∝ c3

G
ḣ2.

The remaining constant is not something that can be
deduced by analogy with other theories: it is the only

2In electromagnetism, for example, the relevant field is
the vector potential, and its time-derivative is proportional
to the electric field in the wave, ~E. Then the rule given here
would make the flux proportional to ~E ·

~E, which is the mag-
nitude of the Poynting flux for a wave, up to constants of
proportionality.

part of this formula that comes from the full tensor
theory. I simply quote it here without proof:

Fgw =
1

32π

c3

G
ḣ2 for each polarisation. (14)

Because the constant c3/G has a large value in SI
units, this flux can be surprisingly large. For ex-
ample, for the weakest burst of radiation that the
ground-based detectors anticipate detecting in the near
future, we use h = 1 × 10−22 and f = 1 kHz. Then
the flux is (allowing for two equally strong polarisa-
tions)

Fgw = 3 mW m−2c

[

h

1 × 10−22

]2 [

f

1 kHz

]2

,

which is twice than the energy flux on Earth from the
full Moon. So for the roughly 1 ms that this source is
radiating, it is the brightest object in the night sky!
Unfortunately, all that energy goes right through the
detector, and so the detector’s response is woefully
small.

Assuming two equally strong polarisations generally
(this is still within our factor-of-two uncertainties),

using ḣ = 2πfh, taking f = fgw = 2fdyn [from Equa-
tion (1))], and getting h from Equation (10), we find

Fgw ≤ c5

4Gr2

(

GM

Rc2

)5

. (15)

If we again approximate the radiation as being iso-
tropic, we can integrate this over a sphere of radius
r to get the total luminosity of the source,

Lgw ≤ πc5

G

(

GM

Rc2

)5

. (16)

Notice that this is a very strong function of the
internal compactness of the source: a source with
GM/Rc2 ∼ 0.2 (as a neutron star) would radiate
1025 times the power of one with the compactness of
the Sun (GM/Rc2 ∼ 2 × 10−6)! The natural lumi-
nosity in this equation of

Lnatural =
c5

G
= 3.6 × 1052 W

is enormously large, and Equation (16) shows that it
is an upper limit on the luminosity of any gravitational
wave source.

For many purposes, the important consideration re-
garding energy radiated is the time-scale: how long
does it take for the gravitational energy loss to man-
ifest itself in a significant way? The energy is typi-
cally lost from the gravitational potential energy of
the source Egrav = GM2/R (or from its kinetic en-
ergy: to within our factors of two — Weisskopfians
— these are the same, by the virial theorem). So the
timescale on which observable changes occur is

Tgw =
Egrav

Lgw

≥ R

πc

(

GM

Rc2

)−3

. (17)

≥ 2.4 × 106

[

M

2.8M⊙

]−3 [

R

2 × 108 m

]−2

yr

(for a 1000 s compact binary). (18)
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This gives the timescale as a mulitple of the light-
crossing time, R/c. The dynamical timescale 1/fdyn

might be a more relevant comparison, which leads us
to the dimensionless product

Tgwfgw ≥ 1

(4π3)1/2

(

GM

Rc2

)−5/2

. (19)

This has an interesting consequence. We will see
in my second lecture on data analysis that the de-
tectability of a long-duration gravitational wave im-
proves with essentially the number N of observed cy-
cles of the wave, in such a way that the effective am-
plitude is h

√
N . Now, if a source can be observed

for as long as the gravitational-wave timescale Tgw,
then N is given by Equation (19), and we have [using
Equation (10)]

heff ∼
(

GM

Rc2

)−1/4
GM

rc2
. (20)

This has a very weak dependence on the compactness
GM/Rc2 of the source. Somewhat remarkably, then,
provided a source can be observed for as long as the grav-
itational wave timescale, its detectability does not depend
strongly on how highly relativistic it is.

2.4. Dynamics in a nutshell

The most important formulas above can be sum-
marised in a single diagram, which shows a number
of relevant lines as a function of the mass M and size
R of a the source. Figure 1 shows lines of constant
frequency fgw = 2fdyn in the mass-radius plane for 3
important frequencies: 10−4 Hz, the lowest frequency
accessible to LISA; 1 Hz, roughly the boundary be-
tween what can be detected from the ground and
from space; and 104 Hz, the upper limit to what can
in practice be observed from the ground. The upper
part of the diagram is therefore the space-accessible
region; the lower part, the domain of ground-based
detectors.

In the diagram we place a number of interesting pos-
sible gravitational-wave sources. At the low-mass
end, the natural vibrations of a typical neutron star
and stellar-mass black hole radiate in the ground-
based band; these should be excited when the objects
are formed. The Sun lies in the space band, and
indeed its natural vibrations could be detected by
a space detector, through the near-zone Newtonian
gravitational oscillations they produce rather than
through their gravitational waves. Binaries in this
mass range are discussed below. At the high-mass
end, a 106M⊙ black hole would radiate in the space
band. These vibrations could be excited by the for-
mation of the hole or by a neutron star falling into
such a hole.

There are other useful lines in this diagram, as de-
scribed in the next sections.

2.4.1. The black-hole line

The most important is the black-hole line, drawn for

R =
2GM

c2
= 3 × 109

[

M

106M⊙

]

m. (21)

(Compare this with Equation (4)). The region of
the diagram below this line does not contain any
physically realisable systems: a system forms a black
hole when it reaches this line from above. The
space-accessible frequency region contains black holes
above about 104M⊙ up to 108M⊙, which means that
space detectors can in principle confirm the present
astrophysical consensus that most galaxies contain
one or more giant black holes. Conversely, ground-
based detectors cannot see massive black holes, being
limited to observing the kind we expect to form from
normal massive stars.

2.4.2. Binary lifetime line

Two other lines in the diagram refer to the chirping of
a binary system, as discussed above. The line called
“binary lifetime = 1 yr” is the line along which the
characteristic timescale for the frequency to change,
as inferred from Equation (17), is one year. Binary
systems below this line are systems which can be fol-
lowed right to coalescence during a reasonable obser-
vation period, and whose detectability is therefore
not strongly dependent on how compact they are
when they are first observed. From Equation (18),
we see that this is a line on which R4/M3 is con-
stant. Notice that all solar-mass binary systems ob-
servable from the ground will coalesce within a year.
A typical coalescing neutron-star binary is illustrated
in the diagram. A compact binary that is observed
from the time it reaches about 1 Hz will coalesce
within a year. At present, no detectors are planned
which can operate well at this frequency. If one were
available, it could give advance warning to existing
detectors about coalescence events. From space, we
can expect only binaries of massive black holes, above
M ∼ 106M⊙, to coalesce during an observation, as
shown.

2.4.3. Binary chirp line

Just as important, but less dramatic, is just seeing
a binary system “chirp”, i.e. change its orbital fre-
quency. Here the criterion is not that its coales-
cence time-scale be the observation time, but rather
that its frequency should change by an observable
amount during the same one-year observation Tobs.
This means that its frequency change need only be
as large as the frequency resolution of a 1-year obser-
vation, ∆fgw = 1/Tobs = 3× 10−8 Hz. If we take the
frequency change to be the same ∆f , and assume
that this occurs because of gravitational radiation,
then we have

∆fgw =
fgw

Tgw

Tobs.

The formulas above can be used to show that the
resulting “chirp line” is a line of constant R11/M7.
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Figure 1. This diagram shows the wide range of masses and radii of sources whose natural dynamical frequency is in the
band detectable from space or the ground. The three heavy lines delineate the outer limits of the space band at gravitational
wave frequencies of 0.1 mHz, 1 Hz, and 10 kHz. The “black hole line” limits possible systems: there are none below it if
general relativity is correct. The “chirp line” shows the upper limit on binary systems whose orbital frequencies change
(due to gravitational-wave energy emission) by a measurable amount (30 pHz) in one year: any circular binary of total
mass M and orbital separation R that lies below this line will “chirp” in a 1-year observation, allowing its distance to
be determined. The curve labelled “binary lifetime = 1 yr” is the upper limit on binaries that chirp so strongly that they
coalesce during a 1-year observation. These lines and the indicated sources are discussed more fully in the text.

For a separation and mass appropriate to a compact
binary with a 1000 s period, we have

[

R

2 × 108 m

]11 [

M

2.8M⊙

]−7

=

[

Tobs

3.7 yr

]4

. (22)

The diagram shows the chirp line appropriate to a
1-year observation, essentially the same as Equa-
tion (22).. It shows that chirping without coalescence
is important for space-based detectors; ground-based
detectors will be able to follow any chirping system
right to coalescence. It is clear that a good fraction of
binaries that LISA will observe will chirp during an
observation. As we show below, this allows LISA to
determine the distance to the binary. A space detec-
tor should also detect chirping in binaries consisting
of massive black holes. The resulting distances will
be particularly interesting for LISA, as we describe
below.

2.4.4. Distance to a chirping binary

The key to determining the distance is to show that
there are enough observables in the signal from a bi-
nary system to make the measurement. The mass
and radius of the system, which are convenient axes
for the diagram in Figure 1, are not directly observ-
able. What we can determine from the response of
the detector are the frequency fgw, rate of change of

frequency ḟgw = fgw/Tgw (if the system chirps) and
amplitude h of the signal. Equations 11, 17, and 10
(taken as an equality, which is okay for a binary sys-
tem) together allow us to eliminate all the unknowns
and solve for the distance r to the binary. This gives
the remarkably simple formula

r =
c

2π2
ḟgwf−3

gw h−1. (23)

This equation, first derived in a somewhat different
form by Schutz 1986, is actually more robust than
our simple derivation might suggest. We have used
a single mass M to characterise the system, but of
course a binary has two masses. Which combination
of them is appropriate here? More importantly, can
we really eliminate the mass at all from these equa-
tions: maybe we have to eliminate two masses, and
we don’t have enough equations.

The answer is that there is only one mass that mat-
ters, which is the combination

M = µ3/5M2/5, (24)

where µ is the reduced mass of the binary and M
its total mass. Our analysis here was not detailed
enough to distinguish these two masses, but if we
had done so then we would have found that this is
the way the masses of the individual stars enter the
radiation timescale equation, Eqrefeqn:timescale, if
we eliminate the unknown radius R in favour of the
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measureable frequency fdyn. This gives a relation
between the measured timescale and frequency and
the mass of the system, which then can be used to
determine the chirp mass M.

What is remarkable about binaries is that the same
chirp mass also enters the equation for the amplitude
of the radiation, again obtained by eliminating R in
favour of fdyn in Equation (10). Then one can go
through the same procedure, only using M in place
of M in all our equations, and arriving finally at the
distance r to the binary given by Equation (23), with
M replaced by M.

For cosmological sources, this distance turns out to
be what cosmologists call the luminosity distance.
The ability to treat chirping binaries as standard can-
dles is one of the most interesting aspects of gravi-
tational wave observations. It opens the possibility
of using observations of chirping systems to measure
the Hubble parameter H0 (Schutz 1986) and even the
deceleration parameter of the universe q0.

3. LOW-FREQUENCY SOURCES
DETECTABLE BY LISA

3.1. LISA’s capabilities

Sources of gravitational waves that emit in the low-
frequency regime accessible from space are mainly ei-
ther stellar-mass binary systems with relatively large
separations and therefore weak gravitational fields
(far from the black-hole line in Figure 1), or massive
systems that are highly relativistic and therefore al-
most inevitably contain black holes. The exceptions
are the Sun (which influences a detector through
its time-dependent near-zone Newtonian field) and
a random (stochastic) background of gravitational
waves that merely appears like an extra noise in the
detector.

All of these sources tend to be long-lived. Even a
black-hole coalescence has a natural timescale of sev-
eral months, and nonrelativistic binaries in the low-
frequency window live for thousands or millions of
years. Therefore the appropriate way to display the
strength of a source compared to the sensitivity of a
detector is to assume, say, a 1 yr observation time,
and show the intrinsic amplitude of the source against
the noise of the detector after integrating for a year
(see the data-analysis section below). We draw such
a diagram for the LISA detector in Figure 2. Shorter-
duration events are shown at an amplitude that cor-
rectly represents their signal-to-noise ratio if they are
extracted by optimal pattern-matching. Most long-
lived sources have a fixed frequency; those that do
not are shown at the highest frequency they reach.

In this diagram we show the LISA noise curve in two
ways: the lower, lightly drawn curve is the actual
noise in a 1 yr integration. The upper, bolder curve
is a fairer representation of LISA’s sensitivity. It is
set at a threshold of a S/N ratio of 5, taking into ac-
count antenna-pattern effects as LISA rotates during
its orbit of the Sun: any source above this threshold
will be detectable with confidence over almost the en-
tire sky. Sources below this line will be detectable if

there is independent information about them (such as
their exact frequency) that will allow one to lower the
confidence threshold. And when we discuss the cos-
mological stochastic background, the lightly-drawn
1σ noise curve is the appropriate comparator.

3.2. Signal reconstruction

Figure 2 shows LISA’s sensitivity in terms of the am-
plitude h of gravitational waves, but what does h
mean? What LISA directly records is a strain dif-
ference between any two arms, say (δℓ/ℓ)1 − (δℓ/ℓ)2.
This is related to h by a set of projections: first, the
projection of the plane of the gravitational wave onto
the plane of the detector (this depends on the posi-
tion of the source in the sky) and second the projec-
tion of the intrinsic polarisation of the wave onto the
polarisation of the particular detector. This latter
depends on the orientation of the source relative to
the line of sight to it: a binary system seen down
its orbital axis radiates circularly polarised waves,
while a binary seen in its orbital plane radiates plane-
polarised waves.

For the purpose of inferring the distance to a chirp-
ing binary, as described above, we must know the
intrinsic amplitude of the wave, as radiated by its
source. This means having certain information about
the projections: we must know the direction to the
source and the angle of inclination and orientation of
the plane of its orbit. To get this information, LISA
must use more than just a single number h character-
ising its response in some average way, even though
that is all we have shown in Figure 2.

LISA makes use of the phase and amplitude modu-
lation of signals to return directional and polarisa-
tion information. For weak sources, phase modula-
tion provides no resolution below about 1 mHz, where
the gravitational wavelength becomes comparable to
the orbital radius of 1 AU. Accuracy should be at
the level of a few tens of degrees or better above this
(Peterseim et al. 1997). Binaries in our galaxy could
be located to within tens of arc minutes, depending
on signal-to-noise ratios. A recent detailed study by
Cutler and Vecchio (Cutler & Vecchio 1997) shows
that LISA will attain angular accuracies of order one
degree on the most interesting massive-black-hole bi-
nary sources, but it may not be able to reach much
below that. Amplitude modulation can always be
used to determine not only the polarisation of the
signal.

The second LISA interferometer provides indepen-
dent information about the signal. If the signal is
strong, then even if there is common noise between
the two interferometers, the information will not be
lost, and we can treat the two interferometers as gen-
uinely independent. In this case, there is direct polar-
isation information in the two different signals, and
this can be combined with the amplitude modula-
tion to improve the polarisation sensitivity and the
directional information (Jennrich et al. 1997).

I will discuss the way this is done in my second lec-
ture at this school, on data analysis for low-frequency
gravitational waves.
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Figure 2. Strength of various sources and the sensitivity curve of LISA: plot of the intrinsic amplitude of likely gravitational
waves against their frequency. Most LISA sources will be approximately monochromatic. The bold curve is the 1-year
sensitivity curve, the amplitude that could be detected by a single (2-arm) LISA interferometer in a 1-year observation
with confidence, i.e. with a signal-to-noise ratio of 5, allowing for the rotation of LISA during an observation. Below it,
drawn faintly, is the actual r.m.s. noise level for a 1-year integration. The gravitational wave amplitude h is shown for
different types of periodic and quasiperiodic sources. The strongest sources in the diagram are coalescences of binaries
of massive black holes at cosmological distances. They have been placed in the diagram at their coalescence frequency,
at an amplitude that correctly shows their signal-to-noise ratio in relation to the LISA sensitivity curve, for a distance
z = 1 with H0 = 75 km s−1Mpc−1. The expected signals from some known binaries are indicated by circles and boxes, as
identified in the text. The nearest neutron-star and white-dwarf binaries at any frequency should lie in the band labelled
“nearest compact binaries”; the band below that shows the amplitudes expected from “typical” white-dwarf binaries near
the galactic centre. A possible cosmological background left from the Big Bang is shown here at an energy density per
decade of frequency today that is 10−8 of the total needed to close the Universe, again for H0 = 75 km s−1Mpc−1. A
possible upper limit to that generated by inflation is also shown. If there is a confusion limit due to galactic binaries,
as discussed in the text, then it might appear as shown. The band labelled “Sun (max)” is where solar g-modes might
produce strong near-zone (Newtonian) gravitational perturbations observable by LISA. (Figure reproduced from (Bender
et al. 1996).)

3.3. Binary systems in the Galaxy

One of LISA’s main targets will be galactic binary
systems, particularly those containing neutron stars
and/or white dwarfs. This subject has been reviewed
recently by Verbunt (Verbunt 1997). Although all 3
known Hulse-Taylor-type pulsar systems emit orbital
gravitational radiation at frequencies somewhat too
low for LISA, LISA has much greater range than ra-
dio pulsar surveys. The statistical analyses of pulsar
binary observations (Lorimer & van den Heuvel 1996)
suggest that there should be of order 100 neutron-star
binaries in the Galaxy within the LISA frequency
range, and LISA would be able to see them all. If
rather larger estimates based on evolution calcula-
tions (Lipunov et al. 1997) are right, then there may
be thousands, and one or two may even lie below the
“chirp line” in Figure 1. LISA will be able to deter-
mine their distance directly from the chirp informa-
tion. Equation (12) shows the amplitude expected

from a neutron-star binary at the galactic centre. It
falls in the indicated band in the diagram.

With so many neutron-star binaries visible, there
should accordingly also be tens or hundreds of neutron-
star/black-hole binaries and perhaps a similar num-
ber of black-hole/black-hole systems, which will be
stronger and therefore even more easily detectable.
In fact, it is likely that there will be of order one
black-hole/black-hole binary at a high-enough fre-
quency to be visible from the Virgo cluster, which
is shown in the diagram.

There are other binaries that ought to be even more
plentiful. Some known X-ray binaries and cata-
clysmic variables are in the range of LISA; in fact.
if they were not detected by LISA, it would be dis-
astrous for general relativity. Many of the Thorne-
Zytkow stars in which ordinary pulsars may be spun
up to millisecond periods could also radiate in the
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LISA band as the neutron star orbits the core of a
giant star inside the envelope of the giant (Postnov
& Nazin 1997).

Importantly, there should be a large number of white-
dwarf binaries, which are very difficult to detect by
optical observations. Our present observational lim-
its on their population are weak, and it is possible (or
even likely) that they will be so plentiful that they
will provide a confusion-limited background at low
frequencies (Hils et al. 1990; Bender & Hils 1997).

The information we would get from observing these
systems would have some relevance to fundamental
physics, but not as much as the black-hole systems
we will discuss below. One interesting possibility is
the detection of a scalar component to the gravita-
tional field, which might arise in a superstring-unified
field theory in which gravitation is just one aspect of
the interaction of elementary particles. Scalar com-
ponents are radiated away when black holes form, so
they have no effects on two-black-hole systems. Sim-
ilarly, scalar radiation is suppressed on grounds of
symmetry if the two stars in a binary are of similar
mass and compactness, as in the Hulse-Taylor pulsar
system. However, a binary consisting of a neutron
star and a lighter white dwarf might well show the
effects of scalar radiation, both in the detailed dy-
namics of the evolution of its orbit (due to modifica-
tions in Equation (16)) and in the directly detected
polarisation pattern of the radiation. The system
would have to be relatively nearby to give LISA a
good signal-to-noise ratio, but this is not highly im-
probable.

LISA observations of binaries would provide a rich
harvest of astrophysical returns. One of the most
interesting pieces of information would be the po-
larisation of the signal. This will tell us the three-
dimensional inclination of the orbital plane. For a
known binary, whose mass function is known from
spectroscopic observations. and whose primary mass
is estimated from models, knowing the inclination de-
termines the mass of the secondary. Then the intrin-
sic amplitude of the gravitational waves from the sys-
tem will determine the distance to the binary. This
extra information will be crucial for modelling such
systems.

3.4. Massive black holes

The model that active galactic nuclei contain su-
permassive black holes has gained wide acceptance
among astronomers in the last decade. These holes
may have masses up to 109M⊙ or more. But active
nuclei are rare, and most galaxies may have seen only
modest amounts of activity in their past. However,
there is growing evidence that ordinary galaxies and
perhaps even dwarf galaxies commonly contain more
modest black holes in the mass range 105–107 M⊙

(which we shall refer to as simply massive black holes,
in contrast with supermassive black holes). As Fig-
ure 1 shows, this is the mass range that a space-based
detector would be sensitive to. The supermassive
holes radiate at too low a frequency, but the mas-
sive black-hole range can radiate at LISA frequencies
in at least 3 ways: as binary systems that coalesce, as
large black holes that accrete smaller-mass compact

stars and holes, or in the process of formation of the
holes themselves. In a later lecture, G Schäfer will
review the evidence for these holes. There is also a
recent published discussion of the gravitational radi-
ation from them in the LISA context (Rees 1997).

As an example, Equation (13) shows what amplitude
might be expected from a massive black hole binary
at the distance corresponding to a redshift of 1. This
rough amplitude does not take into account any cos-
mological effects, such as the redshifting of the fre-
quency. Nor does it take into account signal enhance-
ment by matched filering (see below). Therefore it is
only indicative of the level at which we might see such
binaries.

3.4.1. Binary merger of massive black holes

A binary merger of two massive black holes is the
strongest source we anticipate for LISA, and one of
the most interesting. A merger at a redshift of 1
of holes with a mass 106M⊙ would have an ampli-
tude signal-to-noise ratio of perhaps 104, depending
on how much background there was from galactic bi-
naries (see below). This is the signal-to-noise ratio
that could be obtained by matched filtering of the
data stream, looking for a signal with the expected
waveform, as described in my second lecture at this
meeting. The position in Figure 2 where this event
is shown is not meant to be exact. The actual wave-
form scans through a range of frequencies, and the
signal builds up as we follow this. So the points plot-
ted for such events in the figures only show the final
detection signal-to-noise, and are plotted at the coa-
lescence frequency.

Such signals are so strong that LISA will be able to
locate their sources with errors less than 1 degree
(Cutler & Vecchio 1997). Combined with the appar-
ent amplitude of the signal and its polarisation as
measured by the amplitude modulation and the in-
dependent data in the two LISA detectors, this will
give the true intrinsic amplitude to accuracies per-
haps as good as 1%.

Such events are not necessarily rare. If most galaxies
have moderate-mass black holes, then maybe some
have more than one, either because they form in bi-
naries like stars typically do, or because they are
brought together by the merger of their original host
galaxies, an event that was probably common early
in the Universe. The statistics are difficult to esti-
mate (Rees 1997; Vecchio 1997), but it seems likely
to me that the event rate will be either one every few
years or several per year. Only observations will tell.

At a redshift z = 1, the angular accuracy of LISA
corresponds to an error box containing only a few
rich clusters of galaxies, and perhaps fewer active/-
interacting/peculiar galaxies that would be candidate
hosts for this event. The combination of the redshift
obtained from even a tentative optical identification
and the distance to the source provided by LISA itself
from the chirp-rate of this signal would allow a deter-
mination not only of the Hubble constant — which
ought by then to be known by other means — but
even more importantly of the deceleration parame-
ter q0 of the Universe. In principle it could get both
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of them to the unprecedented accuracy of perhaps
1%. From this one can infer the mass density of the
Universe or decide whether there must be a cosmo-
logical constant. This is certainly one of the most
fundamental observations that LISA could make.

Moreover, with such good signal-to-noise ratios, LISA
could compare the details of the merger phase of two
black holes with the results of numerical simulations
of black-hole coalescence. These would test both the
numerical codes and the correctness of general rel-
ativity as a descriptor of strong-field gravity. With
good signals, one could test such theorems as the
Hawking area theorem, which says that the total area
of the horizons of a system of black holes cannot de-
crease. This is the classical manifestation of the fact
that quantum effects give black holes an entropy.

3.4.2. Compact stars falling into massive black
holes

Massive black holes in galactic centres should also
occasionally swallow up stars. While main-sequence
stars and giants are so large that they will be torn
apart by tidal forces before they reach the horizon,
neutron stars and stellar-mass black holes will re-
main essentially point particles that follow very com-
plex orbits until they finally fall into the hole. These
are not easy to model exactly, but with approximate
matched filters that follow portions of the orbit, it
should be possible to see these event at redshifts of
1 or so. They should be more plentiful than black-
hole mergers, and event rates of several per year seem
likely (Sigurdsson 1997).

One can calculate an approximate signal strength by
the formulas we derived earlier, but one should in
this case be careful to keep the mass of the radiating
star separate from that of the hole:

h ≤ 2
GMbh

c2R

GMstar

c2r
.

These events are particularly interesting because they
can also test strong-field gravity near black holes.
The orbit of a compact mass near a large black
hole is a good approximation to a geodesic, and the
geodesics near a black hole are good probes of its
geometry. In order even to detect these events, the
signals must be fit to a model of the orbit that in-
cludes all the physical influences of the black hole,
such as the dragging effect of its spin. Gravitational
spin-orbit and spin-spin coupling should be observ-
able. Such observations can determine if the massive
hole is well-described by the Kerr metric, which in
general relativity is the unique solution for a spin-
ning vacuum black hole. These fundamental tests
will provide the most stringent examination of clas-
sical general relativity imaginable.

3.4.3. Gravitational collapse to massive black holes

If massive black holes form in one go, from the col-
lapse of a cloud of gas or small stars, and if that col-
lapse is highly non-symmetrical, then there could be

significant events of limitied duration in LISA data.
At present, the astrophysical evidence leads one to
think that such event occur but that their asymme-
try may be very small (Rees 1997). But if there are
many such events per galaxy, for example if galax-
ies are made of mergers of smaller clouds of gas of
10∗M⊙ or so, and if each such cloud has its own
black hole, then there may be an observable fraction
of such events. I have plotted them on the diagram,
since they represent such a strong and unmistakable
signal, even at cosmological distance.

3.5. Stochastic Background: Our Earliest View of
the Big Bang

Just as the Big Bang left us the cosmic microwave
background radiation, so too is it likely to have left a
background of gravitational radiation. Because grav-
itational waves interact so weakly with other matter,
this radiation is genuinely primordial: apart from a
cosmological redshift, it is unchanged since it was
produced. This is an important difference from the
microwave background, which was thermalized and
strongly coupled to matter until the epoch of recom-
bination. While the microwave background comes to
us from about 105 years after the Big Bang, any grav-
itational wave background will come directly from a
much earlier time, possibly only 10−25 s after the Big
Bang.

The radiation is stochastic, consisting of many indi-
vidual components superimposed on one another in
a random way. It can be adequately characterised
by its energy density as a function of frequency. The
conventional way of doing this is:

• First, define ρgw(f) to be the contribution to
the cosmological energy density from gravita-
tional waves up to frequency f .

• Second, define an energy density per unit loga-
rithmic frequency (i.e. between any frequency
f and e times that frequency) by taking the
logarithmic derivative of this density.

• Third, normalise this to the energy density
that is required to close the Universe, ρc =
2 × 10−43 J m−3 (for a Hubble constant of
100 km s−1 Mpc−1).

This gives

Ωgw =
f

ρc

dρgw

df
. (25)

This definition is a natural one for radiation that is
produced by physical processes that have no natural
length-scale, so that ρgw depends only on a power
of f . For such scale-free radiation, the energy den-
sity Ωgw will depend on the same power of the fre-
quency. Most models of Inflation produce approxi-
mately a constant-Ωgw spectrum, which is called a
Harrison-Zel’dovich spectrum, but some models pro-
duce much more complicated spectra. Recent models
based on string theories (Brustein et al. 1995; Allen
et al. 1997; Buonanno et al. 1996) suggest a spectrum
for which Ωgw(f) ∝ f3 over a certain spectral range
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that depends on the details of the physics generating
the waves. In this case, the amplitude h rather than
the logarithmic energy density is independent of fre-
quency. Such a spectrum could favour detections by
ground-based detectors if they are fortunate enough
to have the rising part of the spectrum in their sen-
sitivity range, but it could equally well favour LISA.

Inflation produces gravitational radiation by para-
metric amplification of quantum fluctuations that
are assumed to exist at the Big Bang. As was first
shown by Grishchuk (Grishchuk 1977) and Starobin-
sky (Starobinsky 1979), while inflation — if it oc-
curred — was redshifting any thermal background
away, it was simultaneously amplifying a much lower-
frequency background due to quantum fluctuations.

COBE observations of the microwave background
fluctuations can be adapted to provide upper limits
on the amount of radiation that could have been pro-
duced by parametric amplification of quantum fluc-
tuations by inflation. This is shown in the figure,
and it cuts close to but below the LISA noise curve.
However, as mentioned above, there is very likely to
be a background due to white-dwarf binaries at this
frequency that will overwhelm this cosmological one,
in which case no detector would be able to see a
cosmological background this weak. Grishchuk has
more optimistically estimated that COBE’s observed
spectrum, when extrapolated to LISA’s band, could
be very detectable, even as large as 10−8 (Grishchuk
1997).

An alternative to inflation is the possibility that topo-
logical defects were produced by the spontaneous
symmetry breaking that produced the low-energy
physics (separation of forces, masses of particles, etc)
that we observe today. If the symmetry breaking fol-
lowed the rules we understand for gauge theories like
the electroweak interactions, then it is possible (de-
pending on the symmetry group being broken) that
this process has left behind some remnants, or de-
fects, that contain a memory of the unbroken state.
These defects may be regions of high mass concen-
tration, and they may give off gravitational waves. If
the defects were common enough, such waves would
form a random background today.

At a frequency of 10−3 Hz today, in the LISA band,
the radiation would have been emitted at the time the
Universe was going through the electroweak phase
transition, when the typical energy was about 100 GeV
(Allen 1996). Theorists do not believe that this tran-
sition was strong enough to produce radiation by it-
self, but other physics at the time might have led to
defects like cosmic strings, domain walls, or textures
(Allen 1996). Currently, it is felt that such defects
cannot explain the structure seen by COBE in the
microwave background, and that inflation is the best
model for this. This does not, however, exclude de-
fects as a source of cosmic gravitational radiation at
a weak level that would still be detectable by LISA,
or indeed by the ground-based detectors.

A background of gravitational waves appears in a sin-
gle detector, like LISA, as simply another source of
noise. It is not possible to gain significantly in sen-
sitivity by correlating the two “independent” LISA
interferometers, because they possess a common arm
and therefore a common source of instrumental noise.

Provided it is above other noise sources, and provided
we have confidence in identifying or limiting other
noise sources, then LISA could make deep searches,
particularly in the frequency range above 1 mHz.

The impact on theoretical physics of the discovery
of a cosmic background of gravitational waves would
be enormous. It would be likely to confirm the exis-
tence of inflation or of some topological defect. The
observed spectrum in turn would give definite param-
eters (energies, symmetries) that would guide the de-
velopment of models for high-energy physics. Prob-
ably no observation by LISA could have a greater
impact on fundamental physics.

4. CONCLUSIONS

LISA or another similar space-based gravitational
wave detector will open the low-frequency gravita-
tional wave window. It can explore a variety of sys-
tems, from binary systems of compact stars to black
holes to the Big Bang itself. The observations will
have profound consequences for fundamental physics,
confirming (or otherwise!) the Einstein field equa-
tions, discovering or constraining scalar gravitational
fields, and possibly providing insight into the earliest
moments of the Universe. LISA is potentially one of
the most rewarding space missions for basic physics
that has ever been proposed.
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