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ABSTRACT

These lectures will review recent progress on the
connected problems of the motion of bodies in

general relativity, the gravitational radiation they
generate, and the reaction effects of this radiation
on the motion. After a general introduction to the
nature of the problem and to some useful theorems, I
will treat three separate problems in a unified manner.
The first is linearized theory and the post-linear
approximations, including a slow-motion expansion.
The second is the Newtonian limit, in which self-
gravitv is weak but not negligible. And the third
is the strong-field point-particle limit, in which
bodies with strong internal gravity interact by their
"Newtonian" gravitational field. I first calculate
the lowest-order equations of motion for each case,
and then after a review of some aspects of gravita-
tional radiation theory, I calculate the radiation
they generate and the reaction effects they exper-
ience. In each case, the so-called gquadrupole
formula is verified. The unified point of view I

adopt is based on constructing sequences of space-
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times from specified initial data, and calculating their
evolution in various limits. In addition to providing
more rigor than other methods, it leads naturally to the
introduction of certain geometrical structures, the near-
zone manifold NM and the far-zone manifold FM, which are
the arenas in which, respectively, the dynamics of motion
and the gravitational radiation dominate. In particular,
FM provides a rigorous treatment of the quadrupole for-
mula in the far zone free from worries about future null
infinity I'. The initial-value method includes a stat-
istical definition of radiation reaction, and I discuss
the implications of this for the "arrow of time" for
gravitational radiation. I review other approaches to
the same problems briefly, trying to show their relation
to the initial-value method, and I end by giving some
astrophysical applications and suggesting some areas

that require further research.
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1. INTRODUCTION

The grincipal aim of these lectures is to derive from the field
equations cf jeneral relativity both the quadrupcle formula for gravi-
tational radiation and an extra-strong version of the strong equiva-
lence principle, one that applies to the motion of bodies with arbitrary
self-gravitation. To do this we shall develop a systematic method of
studying the twin problems of motion and radiation in general relati-
vity.

These are two of the theory's oldest problems, and until the
1960s were two of the most actively investigated. But many early
results were eguivocal, partly because of the complexity of the theory,
and partly because of persistent confusion over the "reality" of gravi-
tational radiation, a confusion which was not resolved until the work

of Bondil), Sachsz), and PenroseB). By that time, new results from
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astrophysics focussed the attention of relativists on such questions as
black holes, neutron stars, collapse, cosmology, tests of gravitatiopal
theories, the generation of gravitational radiation and the possibility
of detecting gravitational waves. The general problem of motion
received little attention4); by contrast, the questions of the radia-
tion generated by systems and of the associated reaction effects saw
even more attention than before. Landau and Lifshitzs) had already

derived that "far-field guadrupole formula" for the gravitational wave

luminosity LGW of nearly-Newtonian systems,

1 ves '"jk
Low = 35 Ejk E (1)
in which
Ijk = J pxj xk d x (2)

F =1, -=&8_1I (3)

1

jk jk 3 3k T4’
dots denote derivatives, and ¢ = G = 1. (Particle physicists, more
accustomed to setting ¢ =4H# = 1, please note: in these units mass
has the dimension of length.) Following on from this, Mathews and
Peters6) calculated the secular evolution of binary star systems
on the assumption that the radiated energy and angular momentum is
compensated by changes in the corresponding Newtonian orbital quanti-
ties. The first correct direct derivation of the radiation-reaction
effects seems to have been by Peres7). But the most important work of
the 1960s on radiation reaction was that of Chandrasekhar and collea-
guesB) and of Burkeg), both of whom derived the following simple form

for the guadrupole radiation reaction force,

n 5 (S)i.
F©= - Sox, 3+, (4)
573
where the (5) denotes five time derivatives. This may be called the

"near-zone quadrupole formula", and the rate of work done by this force,

JV. Fl d3X ’
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when averaged over a periodic motion, gives a mean energy loss rate of

exactly accounting for the energy radiated. Chandrasekharlo) promptly
used this force to show a completely unexpected result, that gravita-
tional radiation can induce instabilities in rotating stars that are
stable in Newtonian theory.

The discovery of the binary pulsar system by Taylor and collea-

guesll) provided the first opportunity for a direct test of Eg. (4).

12) to look again at the mathematical founda-

It inspired Ehlers et al
tions of Eq.(4), and they found a number of deficiencies. The most
serious was that the methods of Chandrasekhar, Burke, and others

seemed always to give some divergent integrals which have to be ignored
in order to arrive at Eq. (4). This was not satisfactory in a theory
as regular as general relativity, and the result has been an explosion
of new work on the subject. This work has considerably deepened our

understanding of the problem of motion as well as of radiation, and in

particular of the approximation methods we must use.

One characteristic of the recent work has been that a number of
quite different techniques have been brought to bear on these questions:

3)

point-particle calculations using analytic continuation , methods of

. , 14-19 . , .
matched asymptotic expansions ), and slow-motion iteration schemes

using retarded potentialszo_zz) or characteristic initial data23) or

Cauchy initial data24—28). Each of these methcds has verified the
validity of the quadrupole formula under its own particular assump-
tions, so that we can safely assert that the "quadrupole controversy"
has died down. In these lectures I will develop the last-mentioned of
the above techniques, calculating motion and radiation from initial data
set on a spacelike hypersurface. Not only is this the method I know
best; it also offers the opportunity to be more rigorous than any of

the others except the characteristic-initial-value problem, to which it

is closely related. While concentrating on the Cauchy method, I will
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not ignore the others. Rather, at appropriate points, I will try to

show how the various approaches are related.

I will begin with the problem of motion. First I will try to
define it, which is not entirely elementary. Then I will prove a few
general thecrems about perturbation theory, for later use. In the
major part of the first section, to illustrate the versatility of our
techniques, I will address three separate kinds of motion: motion in
the post-linear approximation, in the Newtonian limit, and of strong-
field point particles in nearly-Newtonian fields. In each case we
will consider slow motion and stop before the order at which the effects
of the emission of gravitational radiation (radiation reaction,

radiation damping) manifest themselves.

Then I will go on to review some aspects of the theory of gravi-
tational radiation which are important for our study. Following that
I will review various definitions in the literature of an "isolated
body", by which is meant a body which is free to emit gravitational
radiation without being "driven" by an outside disturbance. These
definitions amount to setting asymptotic or initial conditions on the
radiation field in order to ensure that the system evolves by some
approximation of retarded (rather than advanced) potentials. In
particular I will develop the notion of a statistically isolated systen,

which is particularly appropriate for the Cauchy problem.

In the final section of these lectures I will calculate the
emitted radiation and the radiation-reaction effects in isolated systems
of the three types whose motion we studied earlier: the post-linear,
post-Newtonian, and point-particle limits. The point-particle limit
leads in particular to the strongest statement of the strong equiva-
lence principle yet established: that self-gravitational energy radi-
ates gravitational waves in exactly the same manner as any other form
of energy executing the same motion. In each type of system we will
find that the near-zone and far-zone quadrupole formulas give, respec-

tively, the leading-order reaction effects and radiated energy. I will

briefly describe some applications of these results, particularly to the




binary pulsar system. Finally I will suggest other limits for which

the present techniques might prove useful.

The work I describe here has been done jointly with T. Futamase,

who also helped me to plan these lectures.
2. MOTION IN GENERAIr RELATIVITY
2.1 Newtonian Motion: How to Calculate the Motion of the Planets

Calculating the motion of bodies is such a commonplace in
Newtonian physics that it is easy to overlook the fact that it almost
always involves approximation. A look at planetary motion will help

guide our expectations when we consider similar problems in general

relativity.

Each planet is subject to internal forces (pressure, gravitational
forces) and external forces (from otherplanets and the sun). Adding

these up gives the rate of change of its total momentum:

d
+ = =
Z§internal X Eexternal dt gtotal

By the equality of action and reaction, the internal forces cancel:

LF =
~internal 0

We can define the center of mass RCM by the vector integration

3
Meotal Bem © J ply)y dy
with
M = | otyy &°
total ~ | PY Y

and p the mass~-density of the body. By conservation of mass, our

original force equation reads

d
Z§external N Mtotal dt BCM
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This is generally called the equation of motion of the body. How good

is it in the problem of planetary motion?

As a first approximation, compute the motion of planet A, taking
(n)

the motion of all the other planets as'given and compute RCM (t) from
Eq. (6). The problem with this is that the motion of A affects the

motions of the other planets, so it is not possible to take them as
given in advance. A better approximation is to write down Egq.(6) for
all the planets and the Sun and solve them simultaneously, calculating
the forces on the assumption that each body is a point mass. This 1is
in fact good enough for most planetary problems, but it is still an
approximation because the planets are extended bodies and their forces
on each other depend upon their shapes. A still better approximation
might be to treat each planet as a rigid body and to solve simultan-
eously for the six dynamical degrees of freedom of each planet using
Eg. (6) and the analogous torque equation. If we want to study planet-
moon systems we must not stop there, for we have to allow for changes
of shape and internal dissipation in response to time-dependent tor-
ques. And if it is hard to model these with a few parameters (as in
the Earth-Moon system), one might have to abandon all approximations
and go to the "exact" equations: three-dimensional continuum-mechanical
dynamical equations for the internal structure and motion of each planet,
solved simultaneocusly for all the bodies. Naturally, this is only a
last resort, not only because of its complexity, but also because the
physics of planetary interiors is very uncertain, and we would like a
theory of planetary motion which is relatively independent of these
uncertainties. The center-of-mass approximation achieves this for us:
it is useful precisely because it reduces the number of dynamical

degrees of freedom from infinity down to three for each planet.
2.2 Complications Introduced by General Relativity

If we try to repeat the steps leading to Eg.(6) in general
relativity, we encounter obstacles:
{i) Nonlinearity. There is no clear separation of F,
~internal
since gravitational fields do not add linearly.

from F

~external’
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(1i) Curved geometry. The given definition of RCM has no

invariant meaning in general relativity. Any covariant generalization
will be rather complicated4).

(iii) Rigid bodies, point masses problematical. No body will
be rigid against time-dependent forces, although if the forces are weak
it may be approximately so. And if we shrink one our planets to a

spherical "point" of fixed mass M we get a black hole, not a
to

tal’
point mass.

(iv) Definition of a "body" obscure. In Newtonian theory, the
boundary between the interior and exterior of a body is clear, and in
particular the body's inertia resides inside. In general relativity,
the gravitational field of the body will have some energy and hence
inertia, however hard this may be to define covariantly. The distinc-
tion between inside and outside is therefore somewhat fuzzy in dynamical
problems.

(v) Dynamical freedom of the gravitational field. The problem
of the motion of bodies requires not only initial data for the bodies
but also initial data or other conditions to define the gravitational
wave freedom in the field. Moreover, retardation of the field also
means (here as in electromagnetism) that action and reaction do not
necessarily cancel internally: the radiation reaction effects come

precisely from this non-cancellation of the body's self-force (which,

as we noted above, is imprecisely defined as well).

These difficulties mean that the problem of motion will involve
even more approximations in general relativity than in Newtonian
gravity. In my view, the problem has only been satisfactorily solved
in the three cases which will be the subject of these lectures:

(i) The post-linear approximation, in which fields are weak
but velocities may be arbitrary.

(ii) The post-Newtonian approximation, which is a specialization
to slow motion of the post-linear approximation, where the field gets
weak as the square of the velocity.

(iii) The strong-field point particle limit, in which 'particles'

with arbitrarily strong internal fields interact with one another weakly,
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through their long-range Newtonian fields.

There have been attempts to extend certain concepts, like the
center of mass, to more general situations, but I am not optimistic
that useful definitions can be found except in some form of weak-field
limit. (My criterion for usefulness is, as mentioned before, that one
can reduce the problem of motion to one of a finite number of degrees
of freedom.) I will mention some likely extensions at the end of
these lectures, as well as suggesting ways in which our understanding

of the above three problems can be improved.
2.3 Asymptotic Approximations to Sequences of Spacetimes

Our aim is to develop approximations to general relativity which

are asymptotically valid as some parameter, say €, goes to zero. We

. . , 29 .
will see that these approximations are often not analytic ), in which
~

case there is no question of summing an infinite series even if one
could find the general term. Rather, we develop an approximation con-
sisting of a finite number of terms, which gets more accurate as £ > 0.
It is helpful to remind ourselves what this means in the case of a
function f(g). If f(e) € Cn+1 (i.e. if £ is differentiable n+1 times)

then Taylor's theorem

n
_ ' € .(n)
f(e) = f(o) + €f'(0) + ... + = £ (o) + Rn+1’ (7)
with 1
1 n 3  n+l _ n
Ro,1 = or Jo (1-2) ﬁ) f(x)dl = o(x ), (8)
is asymptotic to the function f(g). This is an approximation to the

function f for small €, not just to one value of the function, which
is what one might use an infinite analytic series for. So when we
approximate Einstein's equations asymptotically, we should define a

. . : . 18 .
sequence of solutions of Einstein's equations ), parametrized by €.

0)

. . . o,
That is, in some co-ordinate system {x } we have a sequence

{g V(Xafe)lTuv

" (xa;e), 0< € < 1}

satisfying
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oY) )

G [gaB(xY

7€)l = 8m T (xY;e) (9)

for each £, and we develop the approximations

o
g (x;e) =g

(e} o
" UV(X ; o) + Eaeguv(x ;0) + ..., {10a)

Tuv(xu;E) Tuv(xa;o) + EBETUV(xa;o) + oeee . (10b)

From these observations, a number of things become evident:

(i) We must have some way of defining each member
{guv(xa;e), Tuv(xa;e)} of the sequence and of ensuring that the members
exhibit the sort of limit we wish to have as € - 0. We shall do this

by choosing initial data that have the appropriate limiting behavior.

A method which only assumes that a sequence exists with the desired
properties cannot prove that the approximation scheme is genuinely
asymptotic. Worse, a method which requires that the field equations,
Eq.(9), are satisfied only for one member of the sequence, say € = 1,
will certainly not develop an asymptotic approximation through Egs.(10);
indeed, if it were careless it could obtain seriously misleading results
for small €,

(ii) The derivatives with respect to € in Eq. (10) hold the
co~-ordinates fixed, and therefore depend upon the co-ordinates adopted.
To see the impact of this, it is useful to view the sequence as a five-
dimensional manifold R4 X Rl, indeed as a (trivial) fiber bundle whose
base space is R1 (the parameter €£€) and whose fiber is M(®), the space-
time manifold for each €, which we shall assume is diffeomorphic to R4
(We shall actually only use some copen region of each M(€) and assume it
is diffeomorphic to some open set in R4.) This is illustrated in
Fig.(1). There is no natural map from one fiber to another, which
means there is no natural relation between the co-ordinates of one
manifold and those of another. An €-dependent co-ordinate trans -
formation will change the approximations in Eq.(10), and we will exploit
this fact to our advantage when we develop separate approximations to

the near zone and the far zone of a single sequence. Put in geomet-
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Figure (1). The sequence of spacetimes as a fiber bundle over
the base space (€). Only two of the four dimensions of each
manifold are drawn. We imagine that the fiber € = 1 is a fully

nonlinear solution of Einstein's equations, while that for = = O

is a simple limit (usually Minkowski spacetime).

rical language, we will define for each approximation a 1-1 sequence

of maps from € = 1 to any other €, which defines a congruence of curves
in the fiber bundle, parametrized by €. The derivatives with respect

to € in Eq.(10) are really Lie derivatives with respect to the tangent

1)

vector to this congruence
(iii) Since Eq.(10) dependsupon xa as well as &, the question
of the uniformity of the € * 0 limit arises, that is, is the error
Rn+1(xa;€) bounded for fixed £ and all xa? Physically, the answer is
usually obviously no. Consider the Newtonian limit. The lowest
order approximation is Newton's theory itself, in which two compact
spherical stars would orbit each other in a perfectly periodic orbit
for all time. The same orbit in general relativity will precess (the
shift of the periastron) and decay (due to the radiaticon of energy),
both of which effects will render the original Newtonian orbit a very
poor approximation after a finite time. Moreover, the radiation
emitted will radically change the Newtonian field far enough away.
Therefore we do not expect Eg.(10) to be uniform in either time or
space. For this reason we only develop approximations valid in open

regions of each M(g), and also for this reason we develop different

approximations for different regions of M(g€).
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(iv) We have said before that our sequences will often turn out
to be nonanalytic in €, so that the simple method of developing
asymptotic approximations given by Eq.(7) fails after a certain number
of terms. There are other ways of extending this expansion, since it

appears that the nonanalytic terms are no worse than logarithms of
E32,33)

These nonanalyticities arise only after the order at which
radiative effects manifest themselves, so we will not be concerned
with them in these lectures except to note that they do not destroy

the asymptotic nature of the lower-order terms.

2.4 General Theorems on Gauge Invariance and Conservation Laws in

Perturbation Theory

Another term to describe our asymptotic approximations is pertur-
bation theory. The system for € = 0 is the unperturbed solution and
the coefficients of ¢, 62, etc., in the asymptotic expansion are called
the first-, second-, etc., order perturbations. This language is most
often used when the limit € = 0 is a regular one, i.e. when the limit-
ing manifold £ = 0 fits the definition of a boundary of the five-
dimensional space M(g£), 0 < € < 1 given by Geroch34). In other cases
we are in the regime of singular perturbation theory, and most of the
limits we shall treat here are in that category. For example, the
Newtonian limit is singular because the field equations go from (quasi-)
hyperbolic to elliptic in the limit. Nonsingular perturbations are
much easier to treat3 )

Regardless of whether the limit is singular or not, there are a
number of useful results which we may derive for general sequences.

We shall see special cases of these as we go along. Consider, then a

sequence of linear operators L(g) and fields ¢(€) which solve the

sequence of equations
L(=) [($(e)] =0 (11)

a . .
where we have suppressed the dependence on x . An asymptotic expansion

of ¢(g) may be written
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d(e) = IR SR AR - [ S (123
4 OV 1’ 2"
where we have introduced the notation of a prefixed subscript,
-1 . .n -
¢ = (n! 9 P D)
ab (nt) E) AP (12
that we will use from now on. (We RPave assumed Icr simplicity that
only powers of i appear in the approximation Z3.:(12) up =c zhe
order considered.) Similarly, the explicit Z-decendence zI LiZ;

leads to a sequence of onerators,

Inserting Fgs.(12) and (14) into {l1) and collectinz terms 3zives

OL(O(DI + E{OL[ICI P B

O
o«
0O
33
( 1
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™
"
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For this to vanish for all # sufficiently near zer

must vanish separately. This gives the hierarchy of eguaticns

ol lp#l =0

Or.[lf‘»l : -1I.[OH.

0I,[‘:b] -IL[lfl - L[Oil, .o . (1s)
These may be solved in succession;  at each step the lower-crier

solutions generate inhomogeneous terms in the eguaticn

I
r
sy
1
w
o
m

correction to . Notice that at each level one solive

differential equations, OL{;] = f; whatever init:al Zata cr zoundary
conditions may be rogquired to Jdetermine a scluticn uniguely must te
given at cach order. [t may of course happen that at scme crier the

inhomogenecous terms are so badly behaved that no scliution 1s gessitle.

This may be a signal that one sheuld introduce noranalytic funcz:icns of

£ into the approximations given by Egs. (12) and (i4}.
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Now let us suppose that there is some sort of invariance group G
associated with the physical problem leading to Eg.(11). If the.solu-
tions ¢ are elements of a function space S, then G has a representa-
tion that acts in S, associating with any element g&G the operator gs
acting in S, so that ¢ and gs¢ are physically equivalent. We define

a gauge transformation to be a sequence g(e)eG for which g(o) = e, the

identity element of G. {We shall assume that g(€) is as smooth in €
as we require. The case where g(o) # e may be viewed as the gauge
transformation g(o)-lg(e) followed by the constant symmetry trans-
formation g(o).) The gauge transformation produces a new but equi-

valent sequence

I (EID(E) = b + £(,0 + 9. 9

(16)

2
FEP r gg 40+ b 595 o)

From this we see that if, for example, O¢ = 0, then 1¢ is gauge-

invariant; similarly, if O¢’ 1¢, e n—1¢ all vanish, then n¢ will be

gauge-invariant. This result was first pointed out in relativity by

6 . )
Sachs3 ). It applies not just to solutions ¢ of the fundamental equa-
tions, but also to any functional of them, such as the energy or its

time-derivative.

The generalization to a nonlinear system,

Fle; ¢(g)] =0,

is straightforward. The gauge results are unchanged, while the
approximation hierarchy can be written in terms of the linear first-
variation of the operator F

- OF ... d ]
=56 [0; O¢][f] = lim = F[O,O¢ + gf].

1F[f]
>0

We have then
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F[O;O¢] =0,
(FLO1 = H (9,
1F[2¢>] = H2 (O¢, 1¢), e (17)
where the Hns are nonlinear functionals. So we still find ourselves

solving linear equations for the hierarchy.

Our most important result in this section is on broken conserva-

tion laws. Suppose that the hierarchy of approximations through order
n admits a conservation law,

n

Qe;gd + ¢ 1¢+ ... + € _9) = const, (18)

n
but that at order n+l no extension of Q can be found: the conservation
law is broken. (Of course, Q may be any constant of the motion, not
necessarily a conservation law like energy or momentum. For example,
a Newtonian binary system has a fixed periastron, which moves in post-
Newtonian gravity. Therefore post-Newtonian effects break the peria-
stron "conservation lan.) How do we compute dQ/dt to its lowest non-
vanishing order? We proceed by distinguishing between Q's explicit
dependence on £ and its implicit dependence through the function ¢ (e).

Let OQ represent the lowest-order conservation law,

oW = (09, (19)

and AQ represent the rest

Q(e;v) = oQ(IP) + AQ(e;y) . (20)

Then it is clear that for any Y

Ao (e;y) = O(e,Q)) . (21)
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From the conservation law, Eqg.(18), we learn
d n _4a
— Q £; ¢ + ... + € n¢) > 3% oQ(Od> + o...)
—EAQ(ei O¢ + ---)'
_ 6Q [] n . _6—A_Q . n .
—39_[0¢>+ +€n¢>]+6¢ [O¢+.+€n¢>],
v
=0, (22)

where SOQ/SW and 8AQ/8Y are functional derivatives defined in the same
way OF/6¢ was. Now suppose that ¢(g€) is a solution of the full

hierarchy of approximations. Then we have

Qe;d(e)) = %%[é(s)] + %—%(e)]
_ 69 . _n+1 . n+2 GAQ +1
= (e ae® t 0T TN o™, (23)

the lower-order terms having cancelled by virtue of Eqg. (22).
Equation (21) tells us that the final term in Eq.(23) is 0(e™'?), so

we have

do _ n+l 6. n+2
at > _0~* +1¢] + O(€ ). (24)

Sy
This means that, no matter how high the order n+1 of conservation
breaking is, we only need the lowest-order conservation law OQ to
calculate it. The rule given by Eq.(24) is that one computes the
change of OQ using only the terms n+1¢ in the "equation of motion” at
the conservation-breaking order n+l, not any lower-order terms in ¢.
Even though lower-order terms are larger, they must cancel out to
leave Eq. (24). This result has been independently "“discovered" in the
context of the energy conservation law in the Newtonian limit by

20) 37) 38) 26)

Thorne , Breuer & Rudolph , Lapiedra et al., , and Futamase
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39
The formulation here is my own )

Combining this result with our earlier one on gauge-invariance,
we see that, if Q has a gauge group, then since dQ/dt vanishes up to
order n, its lowest non-vanishing part will be gauge invariant. For
example, the perihelion of a planet is constant at Newtonian order, so
its rate of change due to post-Newtonian effects is invariant under
post-Newtonian gauge (co-ordinate) transformations. The actual
position of the perihelion is not invariant, since it does not vanish

at Newtonian order.
2.5 Defining Sequences of Spacetimes by Initial Data

The most straightforward way to define a solution of Einstein's
equations is to give initial data for it on some Cauchy hypersurface,
to which we will assign the co-ordinate time t = 0. This will be our
method, but it has the disadvantage that it is not immediately clear
what data we should adopt for the free,dynamical part of the gravita-
tional field. It will turn out that the effects of gravitational
radiation occur at high order in the problems we shall treat in detail,
so for the purposes of this section (§2) we shall simply set the wave
data to zero, in a way made precise below40). The initial-value
approach takes advantage of the fact that the Cauchy problem in

relativity is well-studied and reasonably well understood41’42).

An alternative would be to try to define the wave degrees of
freedom asymptotically in each spacetime, by putting a zero-incoming-
radiation condition on I . (The symbols I+ and I refer, respectively,
to future and past null infinity, which we will discuss in §3.3) This
boundary condition has been favored, at least in principle, by a number
of relativists, notably Ehlers43). This approach is conceptually
appealing from the point of view of causality, but it has a number of
practical disadvantages. One is that we understand very little of how
to"tie" such a condition to sources, i.e. how to make an asymptotic
approximation covering all of spacetime and including such a wave con-

44)

dition. An essential first step has been made by Friedrichs , who

+
showed that the conventional definition of I~ is general enough to
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include a large class of radiative spacetimes, but much more is necess-
ary. Another problem is that we do not know what sort of data for
the matter is compatible with asymptotic data for the radiation.
Eder45), studying a simplified version of electromagnetism, has pro-
vided a partial answer, but an unsatisfying one, because it involves
the sources' behavior in the infinite past rather than at a particular
time. We have already pointed out that we do not expect our approxi-
mations to be uniform in the remote past. These problems make it
difficult to define spacetimes, let alone to calculate their metrics,
with asymptotic wave conditions. We will return to this point in §&4.

Returning to our initial-value formulation, we write Einstein's

1,46)

2
field equations in the Fock-Anderson-DeCanio form. We define

i I i (25)

and adopt the de Donder (harmonic, Lorentz, Lanczos) gauge,

Yo - o, (26)
y

Then we may write Einstein's equations as

ohtY = - 16m AMY, (27)
AV 2 oMY L em T EMVERR ﬁa“ﬁBv),as (28)
o*V = (—g) (™Y + Y (29)

LL

v 5
where tEL is the Landau-Lifshitz stress-energy pseudotensor ', expressed

in our gauge as

MY _ -1 aB-uA  =vo 1 uv -\ B0
tn = (C16m) gy (g ", BT, 0 4 597 gy R,
_ Alu=v)a  =~Bo 1 _uovB Ao TOT
29,09 T, R, ST TxopTh r b 'B}’ (30)
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oV o VB Vv a
o B _ gu g gu §]
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29 9
and where O represents the flat-space wave operator (d'Alembertian) in

s =V
our co-ordinates. The initial data for hLl are not all free, because

the gauge condition imposes the constraints

=l0 Ui
R, = - R, (31)
and the time-derivative of this condition can be used to eliminate
second time derivativesin Eq.(27) for v = 0, giving the remaining
constraints
o R
v2RHO -~ 1em AMO - h“l,io. (32)

We shall therefore take Elj and Hlj,o as our free wave initial data.
(This freedom contains a considerable amount of gauge freedom, of

i
course.) The data for the matter, p, p, and U, are also free.

We shall use the field equation, Egq.(27), in its formally solved

form, using the Kirchhoff formula47):
TS\ i Hv i, =13
h" " (t,x) = 4 A" (t-x,y ) "d7y
C(t,xJ)
£ ~HV -0 oI
S(t,xj)
1 9 .
T § 'V (e=0,yNyan } ., (33)
S(t,x”) Y
with
r = ‘X_Y|r

J) of the event

where the truncated retarded flat-space light cone C(t,x
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Figure 2. The initial-data problem for the operator O is

solved by (i) an inhomogeneous solution integrated over the flat

space light cone of the event (t,xj), truncated at t=0, and (ii)

a solution of the homogeneous equation determined by initial data

integrals [last two terms in Eq.(33)] over the intersection S of

C with t=0.
(t,xj) and its sphere of intersection S(t,xj) with the hypersurface
t=0 are illustrated in Fig.2. Equation (33) gives an implicit solu-
tion, since the unknown EUV appears on both sides. But it is an ideal

form for iterating in a weak-field approximation, since the "source"
terms on the right-hand-side are quadratic in HUV. It is important to
understand, also, that Eq.(33) involves no approximation even though it
involves an integration over flat-space light cones, which are not the
physical characteristics of the system. The solution of Eqg.(27) is

unique for the given data, and Eq. (33) represents this solution. Any
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"non-causal" behavior from the light-cone integral must be cancelled by

the sclution of the homogeneous equation (integrals over S). It would
21,22

be an approximation (frequently adopted, in fact™ ™' B to use a non-

truncated flat-space cone for the retarded integral and not to put in

the homogeneous solution. But ocur expression is exact.
2.6 Linearized Theory and the Post-Linear (pl) Expanéion

We are now in a position to construct a particular sequence for a

particular problem. We will begin with the simplest one, the weak-
. . : . =HV

field (post-linear) approximation. We want a sequence in which hu

approaches zero but the matter system is otherwise arbitrary. We

define an asymptotically linear sequence with parameter A by the

sequence of data

5(t=0,x5 1) = ha(x)

i i

p(t:OIx ;)\) = )\b(x )
(34)

vl (t=0,x";0) = o (xh

Rt (e=0,4" 0 = Eijro(t=0,xk,l) =0,
where

vl = UJ/UO. (35)

Note that at t = 0 the "speed of sound” (p/p)% is independent of X, as
is the velocity vi. The decrease in density p ensures that the field
gets weak. The dynamics of this system therefore will be dominated by
material stresses as A -~ 0. The lowest order of this approximation is
derived in all serious textbooks, but it will be instructive to test our
more rigorous approach on it first.

The constraint equations (31) and (32) for the case where Eij

and Ei] vanish at t = 0 imply

0

R I N T ST ISR BT T N

} T ——
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Elo, (t=olxj) = Or

0
PO e=0,x7;0)= 4 f‘Ao“(t=o,x3;x)r'1 a’y, (36)
HOO,O<t=o,x3;A) =-EOl,i<t=o,xJ:k)-

Because AOU is 0(A) at t= 0, we have that Eou will also be O(A), so the
contributions of Bou to AOU will be O(Az). To lowest order, therefore,

we can differentiate Eqg.(36) with respect to A at A = 0 to obtain

1EO“(t=o,xj) -4 J 1TO“(t=o,xj)r'1d3y,

G e=0,47) = 4 I (ta?) + by i/0t-c ey w1 - by i ey,
~0i ; ' ' i j ; -

T e=0,%0) = 4 j tatyh + by et v /e (v, (v7)0x a3y, 6

Both integrands are of compact support, which is significant in what

follows. We have here our first concrete example of how to use

. ol SAV I . .
Egs. (31) - (33) iteratively: 11'1u is determined bleUV and in turn
determines Zth’ which with 2TUV determines ZBUV, and so on.

We may now compute the evolution of the homogeneous solution,

1

HBUV, the last two terms of Eq.(33). For the case where the initial
data are of the form V_z (function of compact support), the evolution
is particularly simplezq). We divide spacetime into three regions as
in Fig. (3). In region I, we find

?ﬁoo(t,xjsl) = 4 flToo(t=O,yj)r_1d3y - 4t J 1T0i,i(t=0,yj)r—ld3y, (38)
HHOi(t,ijI) = 4 [ 1TOi(t=O,yj)r—1d3y.

Thus, in region I, where the inhomogeneous field vanishes to lowest

order because the cone C(t,x]) is truncated before it intersects the

support of T“v

1 , the homogeneous solution carries the Newtonian
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Figure (3). Spacetime is divided into three regions by the null
cones of the points of the boundary of the support of the matter
density inthe initial hypersurface. In regions I and II the

lowest-order homogeneous solution is particularly simple.

=00
("Coulomb") part of the field. Note that ?ho contains a term which

adjusts the field with time according to the motion (momentum) of the

. He j
source. In region II, by contrast, the homogeneous field 1h(t,x])
vanishes 1identically. In this region the inhomogeneous field is

found by integrating over a cone which intersects the whole of the
support of 1TU\), so it picks up all the Newtonian part. The field

Tﬁ is superfluous, and it obligingly vanishes. Region III is a
transition region, but it is small and we will not need to worry about
it.

The inhomogeneocus field ?Euv vanishes in I, as noted above, and
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has the usual retarded form in II:

1RUv(t,xJ€II) = J 1T“\)(t—r,yj)r_1d3y, (39)

G(t,xj)

where we have omitted the preceding superscript designation I for

inhomogeneous because this i1s also the total field in region II.

The gauge condition implies

|
1T“ "y = O (40)
which is the lowest-order equation of motion. It says that to lowest
order the system behaves as it would in special relativity. This is

consistent with our choice of initial data, which we arranged to be

dominated by material stresses. The gauge condition at the next order
implies
V)
M=o
2 N
or
v v 0
T, = - [(- ;o= At
25 'y L R LS SOy

This equation is equivalent to the usual covariant conservation law at
this order

S8V} _ U EAY) AV uo
2 V) 1 av 1 1" av 1 :

This is the first order at which self-gravitational effects appear.
These are called the first post-linear equations of motion. We could
v

calculate the next order in the metric, 25 , but this would not affect

the equations of motion until second post-linear order.
One sometimes hearsit said that because the lowest-order equations
- , . =iV . .
of motion do not involve h” ", linearized theory (the zero-order equa-
tions of motion and the linearized field eguation) is inconsistent:

the energy that goes into the waves is not lost from the system's
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motion. This is a misunderstanding of the nature of the approximation.
The energy in the waves, however it is measured, is quadratic in'ﬁuv
and therefore of order A2, so it is perfectly consistent to neglect-it
in the first-order equations of motion. It is accounted for in the

correct way in Eq. (41).

Linearized theory presents us with a well-known example of our
theorem on gauge invariance in perturbation theory. Since the zero~th

= 0. Therefore R will be

. 3 , h
order is flat spacetime, we have ORaBuv 1% aBuv

. . 36)
gauge-invariant .
2.7 The Slow-Motion Post-Linear Expansion

Many problems involve not only weak fields but also slow motion,
so an important modification of the pl approximation is obtained by

introducing an independent slowness parameter £ into the initial datas

o(t=0,xi;lia) = Aa(xi),
p(t=0,xi;x,e) = Aé%(xi), (42)
vj(t=O,xi;A,€) = €cj(xi).

The scaling of p ensures that bulk stresses (p) scale the same way as
kinetic ones (pvlvj), so that the dynamics will preserve the smallness
of the initial velocities. Equations(42) define a two-parameter

family of solutions, which may be approximated to any desired order in

both parameters. However, the slow-motion expansion in € must be
handled with care. Imagine we are dealing with a simple system like a
mechanical spring. As £ + 0, velocities slow down and the spring

oscillates with a longer period, proportional in the limit to €

We are not interested in the limit € - 0 at fixed time t, since less
and less happens then. Rather, we want a limit at fixed dynamical
state, 2.g. a limit to € -+ 0 for the system after one cycle of oscil-

lation. To accomplish this we define the dynamical time T

£t (43)

—
1}
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and take the slow motion limit holding T fixed. This has the effect

that the time derivative

3 3

_— = £ — 44

3¢ 3T (44)
scales with €, which is usually assumed as part of a slow-motion expan-
sion. As a matter of notation we use a tilde above a letter to denote

the new function of T generated by replacing t by T/€:
™(t/e,x i h,e) = TV r,x A e) (45)

Geometrically, the limit at fixed T is illustrated in Fig. (4). In
effect, we are adopting co-ordinates (T,xl) to fix the map from one

manifold to another. We must therefore also convert indices t to T.

For instance, we have

't e - el (46)
. gAY .
Let us see what the lowest-order terms in 1h look like. For
notation we write
F(T,xY) = = 2 1im 1im 00" )™ f(1.x i M,e) . (47)
(n,m) n! m! A €
e>0 A0

Then Eqg. (39) must be written

- - ) - 3
1h”V = 4 J 1Tuv(T—€r,y];€)r Ly, (48)
clt/e,x)
i
where here the indices u and Vv refer to T and x . Of course, the cone

C depends on £, getting bigger as € + 0 since the time t at its apex

increases, but this does not affect Eq.(48) for sufficiently small €

because ITUV is of compact support. To lowest order we have

=TT i j. -1 .3
= = - 4 49
(1,2)11 (T,x7) = 4 j (1,0)O(T,y )r ~ d’y ¢ (49)
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t=0
€ €=0
Figure(4). Taking the limit € » 0 at fixed T means following
the hyperbolae €t = const. The limit to € = 0 is not the fiber

defined by the initial data for € = 0, which is Minkowski space-
time. The nature of the slow-motion limiting manifold depends

upon how A behaves in the limit.

where ¢ is the Newtonian potential. Similarly we find
=Ti i, ) i j 3 .
(1’2)h (1,x7) =4 J (1,0)O(T'y ) 0,17 (T,y7) dy (50)
=1j kK, k i k j k
(1, " (Tex) =4 J L, 0P ¥ ) o, )Y (0¥ ) o,y V" [Ty
+ &% (r,y 1! &y (51)

(1,2)F

Recalling Eg. (46), we find that the lowest-order (in slowness) force in

the 2pl equation of motion is

I li
T I\) - (1,O)p¢ ’ (52)
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which is Newton's gravitational force. We shall go Beyond this order

in ¢ when we consider radiation reaction later.
2.8 The Newtonian Limit

All serious introductory textbooks on general relativity derive
Newton's equations from Einstein's by specializing to weak fields and
slow motions in such a way that the typical gravitational potential
M/R is of the same order as the typical squared velocity v2. This is
evidently a special case of the slow-motion pl expansion, in which we

set
A =", {53)

Why does this produce a Newtonian set of equations? The funda-
mental answer is that Newton's equations themselves have the following
48)

scale-invariance property . If the fields p(xl,t), p(xl,t),

vj(xl,t), and ¢(xl,t) satisfy the equations

V2¢ = 4Tp
Pre * Vi(ovl) =0 (54)
OVl:t + DVijvl + Vip + le¢ =0

5 . 4 , ..
then so do the fields ¢ p(xl,et), € p(xl,et), evj(xl,et), and

5 )
€ ¢(xl,€t) for any €.

This scaling is exactly what we would have for our initial data,
Eq. (42), and our time co-ordinate T, Eqg.(43), if we set A = 82. So if
we used Newtonfs equations (54) to evolve the initial data, the -
dependence of the data would be preserved exactly. Using Einstein's
equations instead produces only higher-order corrections in €. We call

the sequence of solutions definedby the data
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p(t=0,x";e) = e2a(x’)
p(t=0,x1;6) = e*b(xh) (55)
vJ(t=0,xl;€) = ecj(xl)

a regular, asymptotically Newtonian segquence.

We can obtain the asymptotic approximations to this sequence from
those of the slow-motion pl sequence by the following simple rule. If

g(T,xl;X,e) is a function in the slow- motion pl sequence, define

£(T,x ;€) = g(T,Xl;€2,€). Then we have
. [a/2] .
i' 1im(8€)qf(r,xl;e) = f(1,x) =% (p,q-2 )g(T,xl), (56)
q-: €+0 q p=0 b.q P
where [q/2] is the largest integer contained in q/2. This means that

any order g in the post-Newtonian expansion involves both slow-motion

terms and terms from the nonlinearity of Einstein's equations.

5)

The lowest order of the expansion is

T Ti i ij i3 ij
AT TP 4T E PV TN = PV VT b peTT (57
=TT i i iv i
R T A T N i (58)
where
2
V' = 4TT20 (59)

i, . . , , . ,
and V© is the three-dimensional Euclidean covariant derivative. These

are obviously the Newtonian equations of motion.

Notice that in the limit € -+ 0 we have (recall Eq. (46))

T

o9 =0, gl=687 o T=0, I _=-V%. (60)

0

This is precisely the geometry of the Cartan formulation of Newtonian
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Figure (5). As Fig.(4), but with the vertical cc-ordinate

rescaled to T. NM is the limit of the horizontal lines, while

the € = 0 spacetimes is the limit OM of the diagonal lines con-

verging on the corner.

4
mechanics 9). Since this limit at constant T takes us up the hyper-
bolae of Fig.(4), the limiting manifold is not the fiber € = 0. We
call it the near-zone limiting manifold, NM. It is better displayed in

Fig.(5), which is Fig.(4) with the time co-ordinate rescaled to T.

We may continue to differentiate the implicit solution Eqg. (33) ftor
—HV
hU and the equations of motion Guv,v = 0 with respect to €. The

resulting equations of motion are ordered as follows:

0(64): Newtonian, requiring only 4ETT.

0(86): post-Newtonian (pN), requiring 4Huv, 6HTT.

O(Ez): post~post-Newtonian (2pN), requiring 4ﬁuv, 6H“v, 85TT.
O(e”): 2%-post-Newtonian (2.5pN), radiation reaction order.

Because 4h J does not enter the Newtonian equations of motion, it is
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usually called a post-Newtonian term26) in spite of its being of order

4 )
€ The two lowest odd-order equations of motion have zero solutions,

i i uv
o (fe = ’ = = =O. . .
€.g. 4P 0 v 0, sP 0 all follow from 56 N This is not
surprising, since changing the sign of € is equivalent to solving the
original sequence for t < O. Only time-odd effects ought to appear

at odd orders, and these are the radiation-reaction terms. We will

discuss them below.
2.9 The Strong-Field Point-Particle Limit

Although the techniques of the last section enable one to approx-
imate nearly-Newtonian systems within general relativity, they do not
extend to all situations in which we expect Newtonian motion. One
important system of this type is the binary pulsarll). This seems to
consist of two neutron stars orbiting one another at a sufficient
distance that their orbits are well described by Newtonian theory with’
post-Newtonian correctionssc'go) But internally the stars may be poorly-
described by Newtonian theory. Is there a way of showing, therefore,
that bodies with strong internal gravity nevertheless interact in a

Newtonian manner if they are sufficiently far apart?

Naively, one might think of doing this by shrinking the size of a
body of fixed mass M, increasing its internal gravity while not dis-
turbing its external field at large distances. Unfortunately, before
the body shrinks to zero size, it forms a black hole, whose size is
then fixed by its mass. For this reason it is sometimes said that
there is no true point-particle limit in general relativity. This

conclusion, however, would be incorrect.

The key is to realize that one wants to keep the "strength" of the
internal field fixed as the radius shrinks. Since a measure of this
strength is M/R, one ought to allow M to go to zero in proportion to R.
This can be fitted into our previous approximation schemes very conven-
iently, because we already have the masses of our bodies going to zero
as 62(or A), since their densities behave this way. If we modify
these -schemes so that the densities do not go to zero, but rather the

, 2 L - -2
radii also scale as € or A (so that the densities go as ¢ 4 or A )
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then the internal gravity of the bodies will remain large but their
masses will behave as before, so their interaction will e as weak as
before. This strong-field point-particle limit was to my xnowledge
first devised by KateslG) and later incorporated by Futamaseze) into
the present framework, both authors being interested only in the New-
tonian limit of the motion of two interacting bodies. The more
general problem of incorporating point particles into the £l expansion
(i.e. without assuming small velocities) has noct yet been studied in

. 13)
this manner . In our treatment we follow Futamase. At the end of

this section we will discuss the relation of this work to cther work.

We begin by defining body-zone co-ordinates for each pody (bodies

arce labelled I and I1I1),

-2 i i

}%,II = =) (e
where xi is the usual co-ordinate and fii,iill are the co-ordinates
of the origin of the two body-zone co-ordinate systems, which gener-
ally may change with time. The scaling vy : ° means that as the body
shrinks with respect to xi it remains of fixed size in Ii . Body-
zone indices are always denoted by an underscore. We define the

body zones to be the regions

. -1

I x - < R (62)

! 1,11 ‘
for some tixed R. Since this boundary shrinks is [ wnile the body

b
shrinks as =7, this boundary actually expands in bedy-zone co-ordin-

ates, This leads to a clean separation of the body from the exterior
geometry in the limit - =~ O, We refer to x  frcm now i as the near-

zone co-ordinates,

We shall develop separate asymptotlc expansions in the different

. i
zones, keepinag {

\T II't) fixed in body zone I and II and Xeeping
. , :

O , . 1 L.
{(x ,7) fixed in the near zone, i.e. all x~ except the body zcnes.
Therefore we use [ as the time cc-ordinate everywhere. Is this

permissible In the body zones? After all, if M/R remains Zixed, then
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the typical internal velocity v v (M/R)‘/2 will be fixed as well, and
so the dynamical timescale R/v will scale as e relative to proper
time t in the near zone. By contrast, fixed T scales as e—l times
proper time. So in general it would be necessary to define a body-~
zone time ol =g °t = E—3T and develop asymptotic approximations for
fixed «%. This would be appropriate if we were trying to study the
internal dynamics of each body, say the radiation emitted by its
pulsations. But we are only interested in the orbital dynamics here,
so we shall choose initial data for stationary bodies in the body-zone
co-ordinates, i.e. solutions that would be independent of time if they
were isclated. Then any internal motions are due to tidal effects,

which we will consider below.

Therefore, suppose {T§¥ 1
’

i), gSI,II (yi)} are two stationary
solutions (denoted by the subscripts I or II) of Einstein's equations
for a perfect fluid, given in terms of some coordinate system {yl}.
We shall identify yi with al, so that as ¢ > 0 the solutions will
automatically shrink relative to near-zone coordinates. We cannot
ensure that the body-zone solutions are strictly stationary, but we
can come as close to that as possible by using these stationary

solutions as initial data.

To convert these to near-zone coordinates we need

A = axM/ax .

1R

From Eq. (61) we find

= i El l=21.
T i . ng,II/dT VI,II' Ai £ 63 (63)

-
~
1}
[
=
il
o
=
[
|

The velocities of the origins, defined here, have another inter

i
Vi, 11’
pretation. As ¢ - 0, the bodies shrink (in the near-zone picture) to

point particles whose positions are given by E% II(T), so v% II(T) are
N 1 ’
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point-particle velocities. The initial data include

i i ,
{EI,II’ VI,II}(O) and the following free data

A oA Tgﬁ- (oc5 ) in each body zone
a B S I, II
/— - I,II
™ (t=0,x1;¢) =\ (64)
0 else@here
i, pob k b
////Aa AB S (aI,II) ody zones
- - I,II
ntd(t=0,xi;e) =\ (65)
0 elsewhere
S I I I o) k body
¢ Aa AB VI,II dag [hS (aI,II)] zones
/// 1,11 LI
h'd (t=0,x";¢) =\ (66)
0 elsewhere
where A%— and v% 11 are evaluated at t = 0 in their appropriate body
zones, and where the components T%E are given in terms of the initial
stationary solutions T:V byidentifying yi with al and scaling with
I,I1

the following factors of €:

T 2 00 i s 0i ij _ -8 ij
Tg; = ¢ TS , TS = €”"Tg , TS =g T (67)

II I,II I,II I,II I,I1 I,II
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and similarly for Eﬂi-. The scaling of 'I‘—T—1 ensures that the phvsical
density in the body zone scales as e™", since T~ is obtained from
the physical Ttt by multiplying by two factors of 37/3t = <. the
other scalings in Eq. (67) are most easily found from the realization
that 1 is not the 'natural' time coordinate in the body zone, as we

3

discussed above, but its rather a factor of £ slower than the body-

zone dynamical time. Thus, whenever an index changes from * to a
spatial one in Eq. (67) we pick up a factor e’

Notice that our initial data include a non-zero Hij in the body
zone, by contrast with our earlier Newtonian calculations. This is
to ensure that the initial body-zone solution is as near to station-
arity as possible. Because the body zone shrinks to a point, this

will not substantially affect the subsequent h') field in the near

Zone.

The remaining initial data are determined by the constraints.
Of course, if there were only one body zone, the body zone solution
would remain strictly stationary, moving with uniform velocity
v2(0) in the near-zone coordinates. The following argument shows
the extent to which we may expect non-stationary behaviour in the

case of two bodies.

As £ » 0, the metric in each body zone remains a highly nonlinear
solution, approaching the stationary solution assumed in the initial
data. As ¢ - 0, the mass of the other body scales as €2, and since
the body shrinks as 62, the tidal force on one body due to the other
scales as c¢© relative to the internal forces. This is then the order
at which deviations from stationarity occur in the body-zone limit.

We will not need them in our calculation of the motion of the Loudies

at lowest order.

The motion is determined from the near-zone limit, i.e. the limit
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. i . . .
at fixed (T,x7). The metric in the near zone is given as an integral
over the light cone, as before, but in this case the integral is

dominated by the contribution of the body zones, as shown in Fig.(6).

Boundary of body zones

body I ., Near zone point (7,X*)
\ c

70

Figure (6). The integral over the truncated past light cone of
, i . . )

a near-zone point (T,x ) always includes body-~zone contributions

for small enough €, and these dominate the integrand at lowest

order.
The lowest order contribution in the near zone is

. M M
ETT(T,xl) -4 21 + 2711

4 r ) (68)
I ‘11
where
i i
rpop(™ o= |x~ - - y (69)

is the distance of the point x' from body I or II, and where the 'mass'

onstant M i
c ants M1 are defined by
. 6 j 3
My = lime” | 051 (t,0die)da,
N !
e~0 |u5¢<R/€
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L v
and similarly for Here we use QE— to denote the function

v Mg
derived from O (t,xj;e) by
2

odie) . (71)

o1, 0die) = M (e/e,Ed(r) + %

- I
I put a prefix 2 on 2MI because the mass is physically of order 62
3 1 2
if Ott is integrated over d x* the result is of order € . But the

constant _M_ has another meaning: from Eq.(67) it is clearly the

21
integral of Ogo : the ADM mass of the initial stationary solution
adopted for zo%e I. We therefore see that the near-zero field

4ETT is identical to that which would be, produced by two spherical

Newtonian bodies with masses equal to the total gravitational (ADM)

mass of the point particles.

One can calculate 4ﬁTland 4ﬁlj in the near zone as well. The
2
first is simple 8):
i i
. . M_v M__v
th(T,xJ) - 4(2 II + 211 II) . (72)
4 r r
I II

The integral for the second has contributions of the same order from

the integrals over the body zones and the near zones. Doing the
2
body-zone integrals gives 8)
i 3 i3
~i5 % MV V1 MirVirVn
g =4 + - )
I IT
k k-1 ij k., .3
+ - ' 7
J [x"=y |70 gy (Tyay (73)

N

where N is the near zone and

ij _ -1 ol 2TT o 1T _ leijgk £TT ¢ RTTy . (74)
4tLL = (64m) (V 4h v 4h - 56 v 4h % 4 )

Equations (68) and (72) automatically satisfy the gauge condition

-To

h ’o = 0, since are constants. The Newtonian motion of the

4 ZMI,II _ia
bodies follows from the gauge condition 4h "o = 0. The divergence

of the integral in Eq.(73) is easily calculated from the identity
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J ‘Xk _ yk|—1 _aT 3y - ({ |Xk _ ykl-lfj(yk)ndeSy

J J

where the second integral is over the boundary of the integration
i3

4tLL,j

of the integral in Eq.(73) reduced to surface integrals over the

region. Since the divergence vanishes in N, the divergence

boundaries of the two body zones. (The surface integral at infinity
vanishes.) The result is that the gauge condition implies 8)
i
d
VI - 2MII (gi _ gi ) (75)
dar [Ek _ gk 13 I '’
I II

and the companion equation with the indices I and II reversed. This
is the equation of motion for Newtonian gravity. It confirms the

strong equivalence principle as applied to bodies with strong internal
gravity: when they interact with external bodies the single integral
mass 2M defined by Eq. (70) serves as the active gravitational mass and
the inertial mass. Gravitational potential energy contributes to 2M
and therefore creates as much gravitational field as any other energy.

We will extend this to the emission of radiation in a later section.

These results were first obtained by Katesl6) by the technique of
matched asymptotic expansions. Futamase's treatment28) shows that
the results are genuinely asymptotic to well-defined sequences of
solutions. Many of the ideas involved, however, go back at least to
Einstein, 1Infeld, and Hoffmann51), who computed the motion of a 'point'
mass by assuming that its exterior field was characterized by a few
simple parameters (such as the mass). They obtained the equation of
motion from the vacuum Einstein equations outside the body, just as we
do here. A much more elegant modern point-mass calculation has been

3)

. 1 , . . .
carried out by Damour and collaborators , in which the singularity

i . . 52
of the point mass is regularized by a method of analytic continuation 1
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leaving an external field depending on parameters. Again the equations
of motion follow from Einstein's equations. The Damour approach is '
computationally efficient, but it does not attempt to prove that the
results are asymptotic to any sequence of regular solutions (i.e.
without point masses). Indeed, it is not at all clear how to prove
that the analytic continuation regularisation method turns a point mass
into a sensible continuum, except by comparing its results with those
derived for continuous bodies ab initio>>). The method of Katesl6)

has recently been adapted and extended beyond Newtonian order by

Thorne and Hartlesg), again using asymptotic matching.

3. GRAVITATIONAL RADIATION
3.1 Free Waves in Linearized Theory

We begin our review of the theory of gravitational-wave propaga-
tion by reminding ourselves of some properties of gravitational waves

in linearized theory. Most standard textbooks contain a treatment

0)

. 3 . . .
along these lines . In linearized theory we have the vacuum field

equation

We can remain in Lorentz gauge

1h ¥ov =0 (77)

with a change of gauge generated by a vector t¥ satisfying

Oe = 0. (78)

For any Fourler component of lh Y with frequency w # 0 one can choose
a corresponding Fourier component of £¥ to achieve the transverse-

traceless (TT) gauge, defined by Eq. (77) and

h OW = o, h¥ =o. (79)

The time index in Eq. (79) refers to a particular background Lorentz

frame, which may be chosen arbitrarily, but whose choice is part of the




definition of the TT gauge. The exclusion of w = 0 means that one
cannot put a stationary field into TT gauge. Since Eg.(79) implies
that the O-component of Eqg.(77) is satisfied identically, there are
eight independent restrictions on the ten components 1EUV' leaving

. . , 0
two degrees of freedom, which carry the polarization information ).

3.2 Fluxes of Energy and Angular Momentum

There is of course no covariant local prescription for calculating
the energy flux of a wave, but there are several useful measures which

are physically sensible in certain circumstances.

54 ) . .
The Isaacson ) stress—-energy "tensor" deals with the situation in
which the waves are of small amplitude and short wavelength (short by
comparison with the radius of curvature of the background metric, which
need not be &lat). In the case where the background is flat, so we
are 1in linearized theory, then in TT gauge the Isaacson measure is
WAV, 1 =TT, =TT,V
T = —— <  h] h,. > 80
I 32w 113 1713 BH (80)
where < >BH denotes the Brill-Hartle average, which is an average over
several wavelengths and periods of the wave. This measure of energy
and momentum is invariant under gauge transformations whose wavelength

is comparable to that of the gravitational wave's.
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There are a number of pseudotensor ) measures of energy and mom-

entum, the most popular of which is the Landau-Lifshitz pseudotensor,

given by Eqg. (30). For short wavelengths, this is consistent with the

Isaacson measure:

HY . (81)

t >
< LL BH I

Angular momentum fluxes may be defined formally from either of the
B o OB R _0a
=x T -x T -,

. : Y
but the result turns out to be very sensitive to which Tu one uses

. . (0}
two above measures by constructing some version of M

and how (if at all) it is averaged. I know of only one published

measure for short-wavelength linearized radiation, the DeWitt angular
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momentum fluxzo)

2 Xk 1m
= <
dsj/dtdﬂ r ejkl X© et oA > o (82)
where
n =x /r, r = ]xj’ . (83)
m m
In TT gauge this becomes
2 k ~TTlm -TT n
dtdfl = b h AR
de/ td (r /16 )Ejkl X < (1h 1 mn,o)
1 =TT,1 -TTmn
2 1%mn " 7o Bm (84)

I do not know whether this is gauge-invariant, but I suspect it is not,

even to short-wavelength gauge transformations.
+ -
3.3 Radiation at I (or I )

Historically, the question of the "reality" of gravitational radi-
ation was finally settled by the elegant work of Bondil), Sachs2), and
PenroseB) on radiation at null infinity. In contrast to the local
measures of energy and flux we have just seen, it is possible to define
26) invariant measures on future (past) null infinity, I+ (I-). In

particular, the Bondi news function N 1is a complex function giving the

energy flux of radiation. The relation of N to fields in spacetime
. 20,75)
is
8 bt TT ‘;‘u - - “2
3¢ Py = Real { T 0 mk} +0(xr ) (85)
where
— 1 > >
m = — (e. - ien) (86)
- 2.8 ¢
-> -»>
where e. and e. are unit polar basis vectors. The limit to large r

in Eq.(85) is,¢of course, toward I+. Equation (85) allows us to con-

vert between asymptotic measures (N) and 'local' measures far away.
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In particular, the Isaacson and Landau-Lifshitz energy fluxes asymptot-

ically approach the Bondi flux.
3.4 The Irrelevance of Energy Measures

Why do we spend so much effort calculating the energy carried by
waves leaving a source, and debating whether the far-zone quadrupole
formula gives this energy correctly? A number of possibilities suggest
themselves.

(1) In order to calculate the response of a wave detector to the
waves? The answer is no: it is simpler to use 533 far away for this,
without worrying about fluxes.

(ii) In order to calculate the behavior of the source as it loses
energy or angular momentum equal to that measured far away? No, again:
although our calculations show that there is global energy balance in
specific limits, the radiation-reaction forces are purely local (as we
shall see) and do not depend on properties of the radiation far away.
Knowledge of 553 far away gives us all the information we need to infer
these forces.

(iii) In order to feel good? Apparently, yes: we want to know
that general relativity fits into the rest of theoretical physics in
having global conservation laws. From this point of view, any of the
above energy measures will suffice. We will therefore spend most of
the section on the radiation produced by systems in approximating

hTT . After that, energy calculations are simple (and secondary).

uv
4. ISOLATED SYSTEMS

+
4.1 Definitions Using I~ (Exactly or Approximately)

In studying the radiation emitted by systems, one wants to take
care to exclude agencies that might force oscillations of the system.
This means that any derivation of radiation from a system begins with a

definition of an isolated system. We will discuss three such defini-

tions, and then digress a bit to consider the "arrow of time" for radia-

tion. The first of the definitions is that a system is isolated if

there 1is no radiation incident on it from [ , i.e. if the news function

vanishes there,



This definition serves as an "initial condition" for the radiative

degrees of freedom of the gravitational field. As such it plays the
same role as the adoption of retarded potentials does in a linear field
theory: to"freeze out"” the wave freedom in such a way as to allow no
incoming radiation. This condition has been advocated most strongly
by Ehlers43) and his associates. A somewhat easier asymptotic condi-
tion to apply in some situations is that near I+ the radiation should
be purely outgoing. This is not quite equivalent to a no-incoming-
radiation condition because some outgoing radiation will backscatter
off the spacetime curvature and produce incoming radiation; in order
to cancel this, some radiation from I is required. This is a small
effect, however, and may be neglected in most cases. This condition

is used in the matched-asymptotic-expansion approachesls'18)'

Both of these criteria are sometimes implemented in an approxi-
mate form by using the retarded Green's function of flat spacetime in
deDonder co-ordinates to solve Eg, (27). Mathematically, this consists

of ignoring the homogeneous field in Eq.(33) and extending the light

cone C(t,xj) infinitely far to the past. But this light cone does not

in fact reach I when so extended, because the lines t * r = const are
57

not null. Such approximations, therefore, are suspect ).

Even if one adopts the "best" of these asymptotic wave conditions,
namely that the news function on I~ should vanish, there are, as we
have remarked before, a number of drawback524). First, it is very hard
to implement this approach in a practical calculation. Second, the
real spacetime in which an astrophysical system finds itself may not
have I_, which might be replaced by the big-bang singularity. Third,
real systems are not perfectly isolated, so even if the problem could
be solved for an isclated system, ome would have to show that the result
was stable against the random amounts of incoming radiation a real
system is subject to. And fourth, the mixed-data problem - initial
data at some finite time for the matter, asymptotic wave conditions on

I +- may not be solveable or even well-posed. The alternative is to

5)

4
set the matter data in the infinite past , and as we remarked before

this data may be very contrived indeed. For example, carried to the
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infinite past, a nearly-Newtonian binary system with quadrupole radia-

tion reaction started out as two separate stars in a marginally hyper-

bolic orbit, which capture each other by giving off gravitational radia-
58)

tion on their first encounter .
4.2 Thorne's Definition of an Isolated System

The second, third, and fourth difficulties posed above come about
from insisting that the asymptotic definitions of isolation be applied
rigorously. Thornezo), however, makes the point that most real systems
will be "almost" isolated even though they do not have a rigorous I :

they will be separated from other matter by large but not infinite dis-

tances. Suppose there is a zone around a system of size r>>X (where A

is the typical wavelength of the gravitational waves), and in which the
UV

waves are weak (|hU ’<< 1) and the background curvature is negligible.

Thorne calls this the local wave zone, and defines a source to be iso-

lated if it has such a zone. The local wave zone has an outer boun-
dary set by other matter: nearby stars that can deflect the radiation,
etc. Such effects have nothing to do with generating waves, so they

are ignored.

Thorne's definition is of course approximate. No realistic wave
emission can be expected to be exactly zero for all sufficiently long
wavelengths, so the local wave zone's inner boundary has to be chosen
according to the longest wavelength at which there is significant rad-
iation. But this approximate character of the definition is a practi-
cal blessing: it allows one to make other approximations in the same
spirit. For example, it is clear that in the local wave zone the
waves obey linearized theory, and so their wave fluxes may be calcu-
lated by the Isaacson or Landau-Lifshitz expressions, and their pro-

pagation 1is on flat-space light cones.

In this connection, let us compare the "true” light cones with the
false flat-space cones in the local wave zone. If the source has mass

M, the false ccne obeys

u = t-r = const
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and the true cone

H

u, = t<r, = const, r, r-2Mln(r/2M-1} . - (87)

If we adjust the constants so that u = u, at the inner edge r, of the

wave zone, then at the outer edge r, they will differ by a time interval

S Y 2Mln(r9/r1), (88)
since both r, and r, are much greater than M. Taking waves of wave-
length } and £, = 10\, then the time At represents a phase m/2 of the
wave when r, is given by

A/4 = 2M 1n (rz/IOA), r, = 10X exp()/8M)

Taking \ = 8><109 km and M = 3M_ ~ 4.5 km (appropriate to the binary

(10%)

pulsar) gives r2 10 km, certainly bigger than any distance we

might wish to know about! On the other hand, if we consider waves

from a supernova, then we should take A = 300 km and M = IOM(D = 15 km,
4

giving £, = 3.6x10° km, very close to the system. So the wisdom of

using flat-space cones depends very much on how relativistic the source
of waves is.

Thorne's approach, therefore has much to recommend itself in the
weak-field limit, which is where he uses it%o’s%%fortunately, when
carried to high enough order in the post-Newtonian radiation problem,
it will share the same drawback as many calculations using It have

12,21,22)

encountered: divergent integrals in the approximation We

will show how they may be avoided below.
4.3 Statistically Isolated Systems

Any criterion based on excluding incoming radiation is clearly an

idealization, since real systems sit in a "bath" of gravitational radi-

ation generated elsewhere in the universe. All that we really want to
do is to exclude radiation that is correlated with our system's motions,

radiation that can build up a cumulative effect over a period of time
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that will rival radiation-reaction effects. Only if the incoming rad-

iation is matched in frequency and phase with the system's own motions

can this happen. If such radiation is absent, or present in negligible
amounts, then the incoming radiation is random. We define a system to
be statistically isolated if the incoming radiation is random. This

definition has the great advantage that it may be imposed at any finite
time, not Jjust in the remote past. One can therefore study statisti-

cally isolated systems in terms of the initial-value problem, which is

much more regular than methods invelving I”, and which incidentally

allows us to apply the methods of 8§82 to the radiation problem.

For definiteness, we will define our initial free-wave data ﬁlj

and Elj,o to be randomly drawn from a suitable function space equipped

with a probability measure P having the following property.

ph?, a*? ) = p(-nt?, - R ) . (89)
,0 ,0

This is essentially a random phase approximation. If we denote by

angle brackets <f> the expectation value of a function f over the pro-
bability measure P, then Eq.(89) implies that
=13 th

< h >=<h >=0 at t =0 . {30)

,0
In a linear theory, the expectation value of the field would evolve from
the expectation of the initial data; 1in particular in linearized theory

the homogeneous field ﬁgj would have zero expectation value at all

1
times. This is then the soclution that we have already studied. But
in full general relativity this will not be true: the expected evolu-
tion of a system is the ensemble average < > of its evolution from ran-
dom initial data, not the evolution from the expected initial data.
That is, we must average after evolving, not before. The expected

evolution is generally not even a solution of Einstein's equations, but

it nevertheless has a clear and acceptable physical interpretation.

As a consequence of these considerations, we must also specify

the amplitude of the random initial data, since the quadratic terms
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will not average to zero. We shall only need to do this on the New-

tonian and point-particle limits, where we shall take

L PP
B (e=0,x%) = e* a* (xS

. N A
hlJT(t=O,x )

r

I
M
tHh
[ d
.
x

where the functions dlJ and £J obey the following asymptotic regularity

conditions on the hypersurface t = 026):

atd 2 oie™h, &t - oY,

-2 i3 -2 i3 -3
X £ £

= O0(r 7). (92)

These suffice to guarantee the unique existence of solutions of the

constraint equations (31) and (32).

In the pN hierarchy, initial data for ﬁij of order 64 is as large
as the first post-Newtonian field, much larger than the radiation-
reaction terms, and much larger as well than realistic estimates of the
random radiation in the binary pulsar system. Nevertheless, we will
see that these data do not affect the radiation reaction behavior when
averaged, in the sense that the expected evolution has radiation-
reaction effects equal to those we would obtain if we simply set the
initial data for Eij and Eij 0 to zero. Thus, a nearly-Newtonian
system may be bathed in very,strong gravitational waves, but will still

evolve by the standard radiation-reaction terms if the incoming waves

have random phases.

The statistical definition of isolation has two principal advan-
tages. First, it is "local" and therefore easy to calculate. And
second, we will see that it eliminates all the divergent integrals at
higher orders: the asymptotic approximation it produces is finite at

any order.
4.4 The Arrow of Time for Radiation

Radiation phenomena of all kinds share a common property: radia-

tion spreads out away from its source in the forward direction of our
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"psychological" sense of time5 . For water waves on a pond, generated
by dropping a rock in it, this can be explained from the point of view
of molecular statistics. The time-reversed phenomenon, in which waves
travel inwards to meet the rock and the pond is still after the rock
hits it, would require very unlikely correlations among molecular velo-
cities on the edge of the pond. But the coincidence between the water-
wave arrow of time and the similar arrow for electromagnetism has not
tempted most physicists to look for a statistical explanation for the
electromagnetic one as well. Instead, the standard view seems to be
that put forward by Ritz60), that one must solve the electromagnetic
field equations using retarded potentials, essentially on grounds of
causality. Modern quantum field theory has continued this point of
view. Interestingly, Einstein himself objected to this, at least in
his early years:

... one can no more conclude from the fact that we

have not observed [advanced potentials] that the

elementary processes of electromagnetism are

irreversible than one can infer the irreversiblity

of the elementary atomic processes from the second
law of thermodynamicsel).

Einstein objected most strongly to the removal of the dynamical free-
dom of electromagnetism in Ritz's view, and pointed out that conserva-
tion laws for energy and momentum are awkward and nonlocal if the field
is removed in favor of particle variables at earlier times. As the
above quotation would suggest, Einstein tried to deduce the electro-
magnetic arrow from the statistics of the molecules which are the source

of the radiation, but he was unsuccessful.

Progress on these lines was made by Wheeler and Feynman6 , who
showed that if the universe contained perfect absorbers of radiation but
the electromagnetic interaction uses half-advanced and half-retarded
potentials, then particles could behave as if they were interacting
with fully retarded potentials. Here the time asymmetry is intro-
duced by the postulation of absorbers (rather than emitters), which
presumably can be justified in terms of molecular statistics. Many

physicists object to the Wheeler-Feynman picture on aesthetic grounds,
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but it also has two more concrete drawbacks: (1) in an open expanding
universe the absorbers cannot absorb everything; and (ii) perfect

absorption of gravitational radiation is impossible in any spacetime.

Therefore, one would have to come up with another explanation of why
the gravitational arrow of time (which has now been observed in the
binary pulsar) matches the electromagnetic one, and why they both match

the one for water waves.

The statistical picture24) I have described above is the only one
I know which works for any radiation field in any spacetime. If we
simply take the point of view that at some "initial" moment a physical
system is uncorrelated with the ambient radiation field, then we find
that its expected evolution shows outoing radiation and the associated

reation effects. It has in addition further advantageous features:

(i) Because the retarded integral is truncated at t = 0, there is
no radiation reaction at t = 0, so the initial-value problem is well-

posed. In particular, there are no runaway solutions in this formu-

lation.

(ii) Radiation reaction is calculated locally, so one need not
worry about whether the energy lost really becomes radiation or is
swallowed by a black hole or something. Radiation reaction occurs
instantly, and this derivation of it frees it from distant radiation

conditions.

(1ii) The structure of spacetime in the distant past does not

affect radiation reaction.

By averaging over the initial radiation field, which is not some-
thing we have much information about or control over in most radiation
problems, this approach is closer to the modern view that physics
should deal only with what it can measure, and should treat uncontrol-
lables statistically. Interestingly in this context, Einstein objectec
to Ritz's view that a body "cannot receive energy from infinity unless
another body loses a corresponding quantum of energy"GO) on the grounds
that this is not in principle a testable assertion: "we cannot speak

- o ) . . 61}
of infinity but only of regions that lie outside of observed regions"




Moreover, it is hard to use "causality" as an argument for the Ritz

view; the initial-value problem is nothing if not causal.

The statistical argument links all the radiative arrows of time
with that of thermodynamics and the second law, because they are both
derivable statistically. But neither derivation says where either of
them really comes from: Why does the universe show arrows in the first
place? Why is it not in perfect equilibrium? The answers to these
questions presumably come from cosmology, but they would ‘take us
further afield than our interest here in gravitational radiation

59)

permits .
5. RADIATION FROM ISOLATED SYSTEMS
5.1 Radiation Reaction in Slow-Motion Linearized Theory

The slow-motion post-linear approximation may be carried out
recursively to higher orders in A and € than we considered in §2.
Eventually one reaches terms which are generally called radiation-
reaction effects because they introduce nonconserxvative terms into the
equations of motion, which cause the energy, momentum, and angular
momentum of the system to change in a way that balances (at least in
simple theories like electromagnetism) the amounts of these quantities
that appear in the radiation field. It is important, however, to
understand that these terms may be derived locally (as we shall show),
without reference to the radiation produced63). In a conservative
theory one expects the local decrease in energy to be balanced by that
in the radiation, but if one had a nonconservative field theory this
would not happen, and one would not describe these terms as radiation-
reaction terms. These terms originate63) in the self-interaction of
the system: the retardation delay in the interaction between different
parts of the system means that "action" and "reaction" do not neces-
sarily balance each other. The net residual sum of these "internal”
or "self-" forces is called the radiation-reaction force. (It is
absent in Newtonian mechanics with its instantaneous interactions.)

So a better term for this force would probably be simply to call it the

net self-interaction.




From this discussion it is clear that in order to calculate radia-
tion reaction one has to separate the total field into a self—fielé and
an "external" field. A system with no external field is an isolated
system, and so we can take the self-field to be the total field of an
isolated system. In linear theories this is done by using retarded
potentials to compute the self-field. (Choosing advanced potentials
instead would change the sign of the force, leading to radiation anti-
damping.) As we discussed in the previous section, a possible but
difficult choice of the self-field is to define it by the asymptotic
condition that the radiation vanishes in I . Our approach is to define

the self~field statistically.

We have defined radiation reaction to be the part of the force
which does not give zero when integrated over the whole system, but of
course the local force density will contain many terms that do give
zero when integrated and are therefore not of interest to us. The
simplest way to separate out the radiation-reaction terms is to exploit
their link with retardation: they change sign if advanced interactions
replace retarded ones. Now, in our initial-value picture we get
retarded potentials naturally for t > 0. But if we solve for the

behavior for t < O from the same initial data, we would find that

advanced potentials arise just as naturally. (Turn Fig. (2) upside-
down.) Moreover, examination of the slow-motion initial data in

Egs. (42) and (55) shows that solving our problem for t < 0 is the same
as solving the problem posed with € changed to -€ for t > 0. There-

fore the radiation-reaction terms in the equations of motion are those

which are of odd power in €. (In the g-reversed problem we would
define T = lelt, so that T does not depend on the sign of €.)

We begin by examining radiation reaction in linearized theory.

J

As £ approaches zero for fixed T, any point at fixed x° eventually

enters region II of Fig.(3), in which ?EUV = 0, so we may expand Eq.
(48) in € at fixed x~ and T:

=Hv ~ j -1 3

1hu = 4 J 1TUV (T-Er,yj;e)r dy . (48)

C(T/E,Xi)
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There are three places where € enters the expression:

(1) The intersection of the cone C with the hypersurface t = 0
. P VAV
gets larger as £ - 0, but since 1TU is of compact support, we may set

yll to © if ¢ is sufficiently small.

the upper limit of integration on

So there is no £-dependence here.

~ UV
(ii) How does 1Tu (T,yj;s) depend on € (ignoring the explicit

retardation terms for the moment)? In the initial data for
~TT ~T1 ~13
T T T

1 | r

evolution,

only even powers of € appear. The equation of

. o ~ UV j .
contains no explic¢it factors of €, so, T (T,y ;€) contains only even

powers of €.

(iii) As we anticipated earlier, odd powers of £ arise only from

the explicit retardation terms. Let us examine the successive odd
derivatives. For 1TTT, which begins at order 62, the first odd term
is
=TT ~TT i .3 a [ ~t73
h = -—4 = - —— =
(1,3) [ (1,297 Ty dy =g T ody =0,
(93)
which vanishes by conservation of energy. The next term is
-TT STT j. 2 3 ( ~TT i, .3
h = -4 -
(1,5) J (1,27 p Ty dy =4y )T LTyt dy
d3 TT j 3
=-4-——3j 1.2t y.y? d’y . (94)
dat ! J
~TT

The second term vanishes by conservation of energy (i.e. 1T is

conserved at all orders in €). This iterative evaluation of integrals
HV

24)

has to be carried to order (1,7) in each component of h The terms

are catalogued, in somewhat different notation,by Schutz

These terms affect the 2pl equation of motion, so that we have the

energy loss at second order in A



d ~TT 3
Esz-fz 4
1 ~0B .3 d T ~TO 1 o ~TT 3
= - = - = = h
2 J 1,7 17 4F T J Rttt ) s (93)

~ =MV
If, TUV is periodic in time then so will be 1hu , S0 that if we average
Eq.(95) over one period of motion the second term will go away. The

6
first term turns out to contribute first at order €

(3) (35
d _ 1 k
(E? (2,6)E)avg =-< ( zjk 2 )avg ' (96)
where
3k (1,207 Y39 ¢ Y

. =I -=4_ I (98)

1
ik jk 3 T3k 1’
and where (3) above ¥ means three T-derivatives.

Equation (96) is the near-zone quadrupocle formula for linearized

theory, and seems first to have been obtained by Eddington64). It is
gauge—invariant24). This fits with our earlier discussion: this is
the lowest order at which dE/dt fails to vanish,
The radiation-reaction force density may be defined by
i 1 d,.5 ~T1i
(2,5)F react = 51 @& Y ,tle=0 - (99)

This is not gauge-invariant, because the non-reactive force density is

of course non-zero at lower orders. The expression in our gauge is

24) 9)

rather complicated , but Chandrasekhars) and Burke found that there

exists a gauge in which it is particularly simple:
(S)ik ~TT

2
T3 R E O T (100)

i
(2,5)F react

There might in principle be radiation-reaction terms in F' at
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order X3€3 (in fact, there are such terms), so that if we are to use
3
Eq. (95) and (100) we have to assume that, roughly, A €3 << A2€5, or

2 .
A << £, which means

M/R << V2 . (101)

This certainly applies in the laboratory, but it of course does not

apply to Newtonian systems, which we will have to treat separately.
5.2 The Radiation Generated by Sourcesin Slow-Motion LinearizedTheory

Here we look for the first time at what happens far from the
system, where the radiation is. In discussing the equations of motion
one naturally solves for the metric inside the system. To study the
radiation, we want to be in the £§£ zone, which means several wave-
lengths from the system. Now, as € * 0 the typical wavelength of
radiation goes to ®, so any fixed point xi eventually enters the near
zone. That is why we called the Newtconian manifold NM the near-zone
manifold. In order to stay a fixed number of wavelengths from the

source we define

nt o= ex?t, (102)

, , . i'
and we approximate the metric at fixed n and T as € » O, We call
it . . .
(T,n ) the far-zone or characteristic co-ordinates. We put primes

on indices that refer to the far-zone co-ordinates.

The linear metric follows from Eq.(48) again, which we write as

AT, e = 1ﬁ“v(r,xl = n' /e;e) (103)

N o103
4 J 1Tuv(T—€r,ny€)r 3y . (104)
ctt/e,n® /e

#e do not scale the integration co-ordinate yJ here because the source

. . i' i
remains in the near zone. Now, however, we have r = ‘n /€ -y |, so
F=uv

hU

1 as ¢ > 0. The resulting

~1
that r contributes a factor of £ to
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metric is derived in a number of standard sources65). In our notation
5 !
we have, with n = fnl !:
F=TT oo _3
= M = T 4 ; (105)
(1, nt T j (1,0) Y
F=TT i i, 2 i it
= = n ., = T-1 ’
(1,4) 4Pin /n + 4Di(u)n /n, n n- /n u n (106)
00 3 00 3
= ’ D, = T d H
Py j (,0T 0¥ Y P T a,ef Y9y
(2) .. (1 .. L
-1 2 i 3
FhLT =2 I,,(u)nlnj/n + 6 E.,nlnj/n + 6%, . (u)n n]/h ; (107)
(1,5) 1] 1J 1]
F=Ti' i
h = 4P /n; (108)
(1,4) "
erir s TELY
h =21 wn./m+ w7+ 1 Hn M,
(1,5) ] J
(109)
i3 00 i joi 3y
= - d i
" J 07 Yo,nVY T oo,nVY ey
F=i'j' (2ij
h = . 110
(1,5) 21 (u) /n ( )
Note that the conservation laws in the near zone ensure that M, Pl,
and MlJ are constants, while Dl changes at most linearly in time. A
choice of the zero-order Lorentz frame can eliminate Pl and Dl. The
quantity u, the retarded time, is the only variable upon which 19 and
: IRTEEYL
pt depend. These expressions for (1 n?hu v are exact: the fact that

the 1/r expansion is linked to the ¢-expansion means that there are no

-1
higher-order terms in n in Eq. (105) - (110).

. . , . F-u'v' .
It is clear that the radiative terms contribute to 1hU first

5
at order ¢. This must be compared with the limiting flat metric it-

self,

AV o g2y (111)

because of the co-ordinate scaling. We therefore remove a conformal
[} [} 2
factor of 62 from the metric gU v and define 7 the far-zone manifold
. ]
FM to be the € -+ 0 limit of the manifold of the congruence xu = const
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‘ . : SRRVA -2 unu! .
equipped with the metric gﬁ =2 g .. Therefore FM is a flat

. . . . . i’ . .
Minkowski manifold with co-ordinates (T, ). We shall denote tensors

. [SRRYE A ‘
on FM by an underline, e.g. g . From the point of view of FM, the
necar-zone manifold NM with co-ordinates t and x has shrunk to the line
n = 0: the near zone for any T is a singular point in the far-zone

manifold. This is i1llustrated in Fig. (7).

NM
T
M
—— t=0
oM
M4
———-o-nl
Figure (7). In the far-zone manifold FM, the near-zone manifold
, 4 . i
NM is the singular line n = 0.
N ORIV '

The terms in lh in Eq. (105)-(110) can be viewed as perturka-

ti1ong of the metric of FM, provided we likewlse remove the confcrmal
)

<

factor of o7, This means that the lowest-order terms in the far zone
having non-vanishing second time Jderivatives are of order QB. These
may he put into TT—qauqoBO) and the various measures of erneray £flux
loulated. The result, after integrating over a sphere of radius N
rolarge v, ig

ae 1 oo 3 Oy 7

4t 5§ ¢ ( ijk 3 )avg + 0(Z ), (112)
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exactly compensating Eqg.(96). This is called the far-zone quadrupole
66) '

formula. It was first derived in this context by Einstein , and

64)

Einstein's factor-of-two error was corrected by Eddington . Note

that, in principle, there could be time-dependent far-zone terms of
order A2€3 in FETT, which.might then contribute to the TT part of the
metric. Until we examine these terms, therefore, we can only use

Eq.(112) if A << 82, the same restriction as we had in Eq. (101).

5.3 Radiation Reaction in the Newtonian Limit

Let us recall the order-counting we have just mentioned for the
near-zone quadrupole formula. In linearized theory Fieact was of
order A2€5. In the post-Newtonian approximation, where A = €7, this
is of order 89. Terms of the same order will come from those slow-
motion post-linear terms of order k3€3 and A4€. (Since we have no
inverse powers of €, we need not go higher in A than this.) This
means that to calculate radiation-reaction in the Newtonian limit we

have to calculate the metric two orders of A beyond linearized theory:

this is called the third iteration of Einstein's equations. This fact

was first pointed out13) by Eddington64), but it was often ignored by
his successors, with the result that the history of the calculation of
radiation reaction is peppered with incomplete calculations which

served to confuse relativists and to make them further doubt the reality

of gravitational radiation13’67), and which also led to distrustlz) of

9) 10)

the initial Burke and Chandrasekhar calculations until their mathe-
. . ... 68 . C s
matical shortcomings had been rectified ). (In principle, radiation
. ) 3 .
reaction terms could arise at order A e, making them stronger than those

6)

in linearized theory, but these terms do not in fact contribute .

Another complication over the linearized theory calculation is the
treatment of the random radiation field. In the linear theory it
averages to zero, but hére it will not vanish at order Xz, so it can in
principle contribute to the subsequent motion. If we put in random
data of order 84, as in Eqg.(91), then these will affect the 1pN equa-
tions of motion linearly. After averaging they will not contribute to

these equations but they might affect the 2pN equations of motion.
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However, Futamase has shown that, in fact, they do not influence the
1
equations of motion until 3pN order (e 0)), safely beyond radiation

9
raction order (g£7).

The first complete calculation of the metric through radiation
reaction order was by Chandrasekhar and colleaguesg). The calculation
was repeated and simplified by Anderson and DeCanioZl), whose choice of
gauge and manner of iterating the field equations have been the standard
method ever since. Kerlick22) managed to show that some of the
apparently divergent light-cone integrals in Anderson & DeCanio (and
Chandrasekhar) were well-defined, and Breuer and Rudolph37’69) and
Futamase26) removed all the remaining apparent divergences up to and
including radiation-reaction order. We shall return to the subject of
diverent integrals in detail below.

As in linearized theory, the radiation-reaction force is gauge

2)

dependent, and various expressions for it may be found in Kerlick ’
Breuer and Rudolph37), and Futamase26). The simplest form30) is
identical to the one we gave in linearized theory, Eq.(100), with the
same definition of Eij, Egs. (97) and (98), and with the understanding
(I’Z)TTT is the near-zone 4TTT here, i.e. the lowest-order New-
tonian mass-density 2p:

that

i

9Freact b (113)

2
T T35 % 2
At first sight it is surprising that the extra A3€3 and A4€ terms in
the pN approximation seem to make no contribution to the radiation-
reaction force. Closer examination shows that they make a contribution
in other gauges, but in the simple gauge leading to Eq.(113), there is
no room for them: higher terms make no contribution to 2p or Iij,
which depend on Newtonian-order quantities. There is, however, a
hidden contribution in Eq.(113), because the time derivatives assume
the Newtonian equation of motion rather than the linearized one, so

the field enters here.

The force, of course, is not directly observable in systems like

the binary pulsar, so its calculation is only an intermediate step in
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the calculation of observable effects. The quantity usually calculated
is the rate of loss of energy, but this is also not directly observable
in the near zone. Many authors have shown that the linearized theory
near-zone quadrupole formula applies here also, in that the rate of

change of the Newtonian energy EN is

dpy =L w2k (114)

1
(dT N' avg 5 jk avg

but there has been some confusion over the interpretation of this.

Since energy can only be defined globally in general relativity, it is
hard to decide what relation the "local" energy EN has to the total.
Evidently its rate of change is the same as that of the total (we will
show this in the next section), but does this really mean that energy

is conserved? What about the rates of change of the pN and 2pN energies,

which may also contribute?

I think it is helpful to break this problem into two parts.
First, how do we understand conservation of energy? And second, what
is it that is observable about the loss of energy? The first problem
is easy to settle inthe light of our results on breaking conservation
laws in §2.4. Energy is conserved exactly through 2pN order, but the
near-zone equations of motion incorporate energy-changing terms at
order 89 (2.5pN) . The lowest-order rate of energy change is then
calculated by using these nonconservative terms in the lowest-order
energy functional EN. Thus, although Eg.(114) uses only EN, it
should be interpreted as the rate of change of the total energy through
2pN order. This still does not explain why this energy turns up in
the radiation far away. For this we would have to invoke a global
conservation law, an argument which to my knowledge has never been
satisfactorily made. More important from the observer's point of
view is not what energy the waves have far away, but what effect the
change in the 2pN energy will have on the dynamics of the system.

This is the second part of our problem.

In the binary pulsar system, the direct observable is the period
6)

’ . 2 .
of the orbit of the two stars . Now, the period is another example
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of a broken conservation law. Through 2pN order the binary orbit will
be strictly periodic, so the period may be considered to be a constant
function of the dynamical variables. Only the lowest-order period
functiocnal is required to calculate the lowest-order period change, so
we need only the Newtonian period PN' As is well known, this is_a
function only of the energy EN, so that the near-zone gquadrupole formula

immediately predicts the rate of change of the period:

a

-1 3 _-1
PN dPN/dT =-3 E

N dEN/dT . (115)

But how is the period defined? After all, the real system is
fully relativistic and strictly speaking has no period at all. To
answer this we have to look at the way the observers calculate the
periodso). They take observations over a limited amount of time, say
a month, and fit them within observational errors to a 2pN orbit, which

gives them a value for the periocd of that orbit. (In fact, observa-

tional errors allow them to determine only some of the 1pN orbital

characteristicsand none -- yet -- at 2pN order. So in practice
they use only the 1pN orbit eguaticns. This does not change our argu-
ment) . This fit to the period changes from month to moath, and this

rate cf change is what the observers report. Observers with ideally
accurate information could refine this procedure further, taking shorter
2nd shorter fitting times, until they reached a continuously varying
period; this Psz(T) would be interpretable as the period the system
would have if it evolved from its configuration at time T according to
the 2pN equations of motion rather than the fully relativistic ones.
“dathematically, we say that the period is the period of the osculating
ZpN approximation to the orbit. The idea of using osculating orbital

0)

. . . . . . .7

2pproximations is standard in celestial mechanics , but to my know-
Y v - . . . : .., 58
-¢tage 1t was first introduced into our subject by Walker and Will ).
It removes any remaining ambiguity in the interpretation of the near-

<one guadrupole formula.

Let us return now to the question of divergent integrals. The

“onlinearities of the field contribute to the inhomogeneous solution
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as one integrates over the light cone C. In "global" approaches to

the problem, the light cone extends an infinite distance to the past,
and it can happen that when the gravitational waves themselves enter

the integrand, the integrand will not fall off rapidly enough to give

a finite integral at some order. This is bound to happen at some order
in a slow-motion expansion, because as we have seen in Eq.(93) and (94),
this expansion introduces higher and higher powers of r into the inte-
grands, which arise from expanding the T-£r argument of Eq. (33)

reformulated to look like the argument in Eqg. (48):

™ir-er,ylie) = Mir,ylie) + XY L(Tylie)r

14

i T(T,yj;s)r2 + ... . (116)

' T

+

, , . e ., 22)
A number of such divergent expressions were identified by Kerlick .
All of those below radiation-reaction order are in fact not diverent:

26,69) But

angular integration removes the apparently diverent terms
some divergences at 3pN order and beyond do seem un-removable in this

picture.

The divergences can be removed, however, in other approaches, and
this is one of the principal advantages of both the matched asymptotic
expansions method and the initial-value method. It is easy to see that
the divergences have a clear origin in an initial-value framework. As
£ - 0, our light-cone C(T/g, xk) in Fig.(2) grows infinitely large, so
the divergences will still be present. Here, however, the upper limit
of integration is €-dependent, so what we will find is that for suffic-

iently small €, the nth derivative of some field quantity f behaves like

3"%¢/9e™ = alne + 0(1) (117)

where we have chosen to illustrate the weakest type of divergence, a
. . . . n ., .
logarithmic one. This means that £ is not C in € at € = 0, but it

does not prevent one from developing the asymptotic approximation beyond

33,71)

this.order We conclude from Eq.(117) that
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_ a n n
o) = pil) "—1"!—‘ : t

(118

,‘_
=
-
C
—
—
-~

where ¢i7) 15 1 polynomial of order n-l 1n .. There ts 1n principle
33

ey extending this approximation to order noand beyond .

therefors, that the diverjences of the "global™ approaches

L52 these approaches assume an analytic, power-ot -+ bhehavior

rax il orders, 50 that the «“l::» terms with pertectly tinite coettic-
rents a4 ntoare forced to appear at the higher order of ,n, whioere they
musT make an Lnfinite contribution, [t the "global™ methods gaive worse
divertences, 53y those that lead to 2 terms rather than Ine in Eg.o o040

sten toese will have to be stuntrted down by a tull order. No such

crms o oare wnown, and they would be o unlikely to aritse inoa projerly-

[l

(rrLedi-s ot Lot ral=value formulation, where all terms at o each opder
croo caloulared o whnen thoat order s reached, They might arirne at gl
cier o oLnotnhe plonal o apprroach, however, say oas oa disgurse tor (lne)
i el N . - E “e . . 1L - s P
i Tre e i of marched anymptot 1o expansilons cah alno remoeve e
coverent merms ooy owntradioiny expliort lojarithmic terms on fhe
mrtLomLo oexpaniion o the near cone and showing that theese matol
/ . : .
Denlonlonar-soner terms., This 15 how, th tact, the removal wan
0“\.
oo ownoLmy Lranend , o with termn oantroduced by oanalorys with termn an

SRR

- + 1 . e ’ v’ .
Lrrocer medel naloilations by Anderson and others . HE I O
Tt S, S Lwet ey, W Yl an e made ag Stemat po s the antiiag-
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- ey, sne can say with confildence now that the near -cone
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quadrupole formula does provide an asymptotic approximation to a well-

defined sequence of solutions in general relativity.
5.4 The Radiation Generated by Newtonian Sources

As in linearized theory, here also we examine the field produced
at a point a fixed number of wavelengths away from the source as € + O.
But here, as in the previous section, we need to take account of the
nonlinearities of the field equations. The outgoing radiation in
linearized theory in FM was of order X€3 (after remcoving the 82 con-
formal factor), but the dominant far-field term was of order Ae. When
we set A = €2 we see that we might expect far-zone terms of order X2a
to be of the same order as the radiation. This means we have to con-
sider the second iteration of the field equations far from the source,
as has been pointed out by Walker and Will67>. In our gauge it will
turn out that these extra terms are non-radiative, so that the far field

will look much like that of linearized theory, and in particular the

far-zone quadrupole formula will be unchanged.

Because our integrands are not necessarily of compact support,
we divide space into two regions: the near zone, defined by n < R (or
i, . .
lx | < R/¢)} and the far zone outside it. In the near zone we will

, ) i . , ,
approximate our integrands at fixed x and T, while outside we will

. . 1 . .
approximate at fixed n and T. We can expect these approximations to
be uniform in their respective domains. The situation is illustrated
in Fig.(8). Note that the near-zone integral includes part of the

vacuum outside the source, where the 'Newtonian' energy density domin-
Y y

ates. In the far zone the wave energy dominates. It is possible to
27
show ) that the integral over the far zone does not begin to contribute
F-u'v' 8 )
to hU until order £ , one order beyond that which we shall need to

calculate radiation. The calculation reduces, therefore, to an inte-
gration over the near zone, and this makes it very similar to that in
linearized theory. There are only two differences. One is that the
integrand Kij is not of compact support; but the Newtonian near-zone
equations of motion nevertheless allow the appropriate integral to be

expressed in terms of I'? in the same way as in Eqg.(110). The other
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-0
Boundary of

|
near zone, || :
Ini=R= v Far zone point (1,n)

constant

. F-u'v' ,
Figure (8) When evaluating the field hLl at a far-zone point
i
(T,nl ~ the integral over the light cone C includes contributions
from the near zone (n < R) and the far zone (n > R), where we make

separate approximations.

difference is that the post-Newtonian mass,

_ T 3
M2—J67§ a’y , (119)

2 time-independent near-zone integral, contributes a 'Coulomb' term to
SHTT; this is the only explicitly nonlinear term in this gauge, and

it is non-radiative. Apart from this, the far-zone metric is identical
to that in Egs.(105) - (110), with orders in A combined with those in €
according to the rule A = 62.

It follows that the far-zone manifold FM may be constructed just

1s before, and the energy flux in it will give the far-zone gquadrupole

formula, Eq.(112), unchanged. It is here in the Newtonian limit that
the utility of FM is most striking. As we remarked before, the dis-

-ussion of radiation in a manifold with mass is much more complicated

:nd delicate than in linearized theory. Since Newtonian systems have
‘1ass, it seems to have been universally assumed until recently that

H

- + . . .
proper treatment of I was necessary to obtain a rigorous descrip-



“..h 2f the energy radiated, even in the Newtonian limit. Our formula-
L.%n marzes it clear that this is not true: 1in FM we have a flat mani-
..i with linear radiation. The linking of the limits * - 0 and ¢ -+ O,
~r. 7auses the Newtonian mass to vanish inthe limit, and the linking

N . . . 1 o
e limits £ » 0 and r »~ @ by introducing the co-ordinate n~ , which

rwiuzeg the radiation to that of linearized theory, literally makes

©ze anticipated complications disappear.

Here 1t 1s appropriate to mention three calculations which in fact
“ase care to treat I+ in the Newtonian limit. The calculation of
flieeroon, oo a[.,17) in the frame work of matched asymptotic expansions,
trne method of " strained co-ordinates" to make sure that the far-
scnc zolution is matched on the correct light cones (ratner than on the
sracteristics of the flat-space wave operator in our co-ordinates).
U qmadrupole formula emerges unscathed. The second calculation is
‘reat of Winicour and collaborators23), which begins by setting initial
“ata not on a spacelike hypersurface but on a truenull hypersurface.
[z, many respects this is a very similar approach to ours, and we have
€

27
AN ) that if we were to apply the conformal transformation by ¢

b©» ~ur whole sequence of manifolds and not just to FM, the resulting

werpience (still solutions of Einstein's equations since £ = const)

weild be the one to which Winicour, 't ., construct asymptotic approxi-
mations. The map from [+ in the Winicour picture to I+ of our FM is
reqgular, However, where we have completely free initial data for

radiation, which we remove by averaging, Winicour has no freedom

‘ C C 23 . . .
In the radiative initial data ). This difference is as yet un-

cxplained. Not surprisingly, but gratifyingly, the far-field guadru-
pole formula emerges from the Winicour work as well.

The third calculation is a semi-heuristic argument devised by
Walker and w11174) to show that the use of the "wrong", flat-space
light cones to compute the outgoing energy flux makes a negligible
vrror {rom using the correct light cones. Their calculation may be
viewed as showing that if one uses the flat-space cones in Thorne's

>

intermediate wave zone‘O) (which I described in 34.2) and then uses

the correct null cones from there to infinity, then the energy flux



calculated in the intermediate wave zone and at null infinity are

essentially equal.
5.5 Radiation Reaction for Strong-Field Point Particles

This is a further development of the near-zone expansion of the

6.76) strongly resembles

. ) .1
metric between the bodies. The calculation
the post-linear one, in which certain constants in the near-zone metric
are given as integrals over the body zones. At each order,the gauge

condition EUV ve 0 constrains the motion of the centers of the body

! .
zones. The radiation-reaction order expressions are identical to the

. 76 . . . . .
post-linear form ), in which the particle masses are again given by
the ADM masses of the body zones. Therefore, we find the same

reaction force: the near-zone quadrupole formula is still valid here.

This is a particularly important result. In the first place, it
gives us complete assurance that Einstein's equations do predict the
observed change of period of the binary pulsar, despite the fact that
the neutron stars are strong-field sources. And in the second place,
it extends the strong equivalence principle to the radiative effects in

bodies with significant self-gravitation.
5.6 The Radiation Generated by Strong-Field Point Particles

The results of §2.9 imply that the near-zone metric of the point-
mass problem is the same as that of the ordinary Newtonian limit suffic-
iently far from the bodies, so it follows by continuity of solutions of

Einstein's equations that the dominant far-zone metric in the point

particle case will be the same as in the Newtonian case. One has to
. , =TT .
check that the only post-Newtonian term, 7h , also comes out in the
28
same way. It does ), so we may then conclude that the far-zone metric

is the same as in Newtonian (or linearized) theory, provided the mass,
©tc., is defined appropriately as an integral over the body zone. In
particular, the mass felt far away is the sum of the ADM masses minus

+ small contribution giving the relative Newtonian gravitational poten-
“lal energy of the two bodies, calculated as if they were Newtonian
foint masses. This is a further extension of the strong equivalence

trinciple.

"
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5.7 Implications for Numerical Calculations

Thorne201 Schumaker and Thorne77, and Futamase28) have suggested
that there may be some strong-field situations (besides the point-
particle limit) in which the far-zone metric may reasonably be approxi-
mated by the quadrupole terms that we have calculated. In particular,
if there are strong-field regions in which for some reason the veloci-
ties are abnormally small, then there will be a near zone outside the
bodies and inside a sphere of one wavelength's radius. The metric
there will be dominated by Newtonian terms, just as it is for the
point-particle calculation, and by continuity these will lead to a
far-zone metric with the standard quadrupole terms. In any such
situation it may be hard to calculate the near-zone metric in terms of
the source, which is fully nonlinear, but if this can be done then the

radiation calculation is easy.

7)

Schumaker and Thorne7 applied this idea to the calculation of the
torsional oscillations of a neutron star, which are very slow compared
to, say, the orbital time at the star's surface. One can also imagine
using this to simplify certain numerical collapse problems. If an
axisymmetric collapse with angular momentum is "delayed" by "centrifugal"
effects,then its external field may change relatively slowly. A num-
merical calculation would only have to use a grid large enough to extend

into the near zone, after which the radiation could be calculated analy-

tically. This might represent a significant savings of storage and

computing time over present methods, in which the grids extend into the
. . 78 20

wave zone, computing the radiation numerically ). As Thorne ) has

suggested, further savings might be made by eliminating the (now use-
less) dynamical degrees of freedom of the field inside the collapsing
body. This amounts to using a "Coulomb-plus-magnetostatic"” approxi-
mation inside. It would be interesting to see comparisons of such
approximate calculations with more complete ones. Note also that the
problem in which collapse is delayed by rotation is not simply an
artificial test problem, Slowly-~rotating collapse will be nearly

spherical and may be poor emitters of gravitational radiation despite
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their high velocities. The most energetic emissions of gravitational

waves may indeed come from systems to which these approximations apply.
5.8 Astrophysical Applications

Once one accepts that general relativity predicts radiation reac-
tion effects,then the universality of gravitational fields in astro-
physics means there will almost inevitably be important applications.
We have no room to discuss these in detail, but we will mention three:
the binary pulsar, cataclysmic variables, and the unexpected gravita-

tional-wave induced instability of rotating stars.

We have mentioned the binary pulsar system before, so here we will

descrite wny 1t has become such an important test of gencral relativity.

9)

7
mcre complete discussion is given by Will . The system appears to

7]

£ Of two neutron stars; the pulsar (PSR 1913+16) is certainly a

)
8]

bl
u

cn star, while its companion must be small e¢nough to avoid being

03
4]
(B
L

stripred of its outer envelope by the pulsar's gravitational ficld and
iim 2ncugh not to be seen optically, which lecads to its being o ncutron
star as well. (Whether it is a pulsar beaming in some other direcction
cr 3 radic-qulet star is not known.) The mean pulse period 1g intrin-

1cally 30 stable (varying by less than one part in 1017 per pulse)
~rxt very preclise measurements of the orbit may be made from obscr-
wvatiins I tne Doppler shift of the pulse period. Fitting a Newton-
rolt to such a "spectroscopic” binary does not yield enough datn
=z Iix tne masses of the stars uniquely; rather it provides the value
=i the "mass function", a relation between the masses and the inclin-
xZizn I the orbit. But two post-Newtonian effects are observable in

“niz 3ystem: the periastron shift (4° per year, rather larger than for

Mercury's orbit!), and a combined transverse-Doppler/gravitational red-
:r.2IT measurement. When combined with the mass function, these two
s#tra nurzers allow all the physical qguantities to be determined. The
=¥
rusulez ar:jJ): pulsar mass 1.42 MO' companion mass 1.41 M@, orbital
writd 27307 s, orbital eccentricity 0.61714, relative semimajor axis

s cn. With these values cne can calculate the expected change
o)

" , o .8 o
roital period due to radiation reaction , and this 1is
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dr/dt = -2.4OX10_12. The observed period change agrees with this to
within observational errors of about five percent81). The fact that
the system is so clean, so that non-gravitational interactions between
the stars (such as mass flow) may be ruled out, and the confidence we
now have in the quadrupole formula in the near zone, means that this

agreement may be regarded as another successful test of general rela-
tivity.

Although the binary pulsar's stars are relatively close (never
separated by more than three times our Sun's diameter), there are many
other binary systems of comparable or smaller size. In some of themn,
one star is relatively normal and the other is a white dwarf, whose
tidal effects on its companion lead to mass transfer onto the dwarf.
These systems are irregular variables called cataclysmic variables,
and it may be that gravitational radiation plays a major role in con-
trolling the variability of at least some of them82). When mass
transfer occurs, the change in the relative masses may push the stars
further apart, reducing the tidal effects and turning off mass trans-
fer. But after a while the effects of radiation reaction will bring

the stars closer together again, and a new phase of mass transfer (and

observed activity) will begin.

The third application is the discovery by Chandrasekharlo) that

rotating stars that are stable in Newtonian gravity may become unstable

when gravitational radiation reaction effects are included. He

studied the simplest rotating models: rigidly rotating, uniform-
. . . , .. 83

density axisymmetric models called Maclaurinspheroids ). They

radiate no waves in their equilibrium state, but a small nonaxisym-
metric perturbation will do so. One might expect that since the waves
carry energy away, the perturbation would be damped out. This 1is
indeed what happens if the unperturbed star is rotating sufficiently
slowly. But if it rotates faster than a certain amount (at which it
would still be stable in Newtonian gravity), the reverse happens: the
perturbation begins to grow by converting the rotational energy of the
star into gravitational wave energy. The effect is presumably to spin

the star down to the point of marginal instability.
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Chandrasekhar investigated only the modes with symmetry exp(2i¢),
where ¢ is the angle about the axis of symmetry of the unperturbed star.
Friedman and Schutz84), investigating the same instability for general
exp(im¢) modes in more realistic, compressible, differentially-rotating
stars, made the remarkable discovery that it was easier to destabilize
modes for high values of m, and that in fact every rotating star is
unstable to this instability for sufficiently large m. Fortunately
for the persistence of such stars, CominsSS) showed that such instab-
ilities have growth times that increase exponentially with m, so that
only the lowest few modes (m < S) in very relativistic stars have any
practical importance to astronomy. It now seems that this may indeed
determine the rotational velocity of some pulsar586). Moreover, a
neutron star that accretes angular momentum from an accretion disc will
be spun up to an instability point, at which it may then remain, radiat-

7)

8
ing away further accreted angular momentum . Such a star can be a

strong source of gravitational radiation.

6. LOOKING AHEAD

We have studied those problems which have had the most attention,
but there are a number of unanswered questions and new problems which
might yield to these techniques. I will list somehere, beginning with

questions that would increase our understanding of the present work:

(1) Because the Newtonian approximation can be uniformly
valid only for a finite time, each separate time-interval so approxi-
mated generates its own aysmptotic manifoldsNM and FM. can these be
pieced together so that there is a single, complete NM and FM for
the sequence? If we adopt the attractive notion that the Newtonian

limit is an osculating one, what happens to NM and FM then?

(ii) Is there a geometrical, co-ordinate-free definition of,
say NM? Such a definition would have to include a characterization of
what kinds of sequences have Newtonian limits. Similar considerations

of interest for FM.

-(iid) Can cone resolve the "paradox" that we have complete free-

dom to specify initial gravitational waves while in the characteristic-
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initial-value problem there seems to be none?

{iv) Look into the near-zone logarithmic term in €. There -
seems to be disagreement between different methods about the order at
which these first appear17’28) Which is correct? Futamase28) noticed
that if a system is giving off no quadrupole radiation then the appear-
ance of logarithmic terms is delayed until after octupole-radiation-
reaction order. Does this reflect some fundamental (and simple)

property of all wave equations?

(v) What are the next terms beyond the lowest radiation order in
the far zone and beyond the lowest radiation-reaction order in the near

zone? Can they be used to bound errors in the approximation?
+
(vi) What are the peeling properties of radiation near IFM?

The next group of problems are "new" research problems on which

the same techniques might be brought to bear.

(vii) What gravitational radiation reaction does a bedy falling
freely in an external gravitational field experience? The electro-
magnetic problem has been solved for slow motion of a charge in an
everywhere-weak gravitational field by DeWitt and DeWitt88), and the
formula has recently been extended using initial value methods to slow
motion in arbitrarily strong stationary fields by Nuala O'Donnell,
Clifford Will and myself (paper in preparation). The gravitational

case has not, to my knowledge, been staitsfactorily solved, and we plan

to look at that next.

(viii) One can study spinning bodies in the point-particle limit,
keeping the rotational velocity constant as € —~. Does the Papapetrou

.30
equation ) result? What other effects are there?

(ix) Is there a satisfactory method of using global (pesudoten-
sorial) conservation laws to derive the energy balance implied by the
equality of the near- and far-zone quadrupole formulas for energy?

The heart of such a demonstration would be to give a clear reason why
the decrease in the integral of the pseudotensorial energy density

should be given by the rate of change of the Newtonian energy. This
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might be a variant on our theorem about exact conservation laws of

approximation equations.

(x) We have developed the general weak-field, slow-motion approxi-
mation for initial data in which p v A and v Vv €. Then we saw that the
case A = 62 was "well-conditioned" in the sense that if p 82, v Vvoe,
etc.,.at t = 0, then the dynamical equations preserve this ordering:
no terms of order € in p, say, are created for t > O. This would not
be the case, if, say, we took p €2 and v v 62, for then the gravita-
tional fields created by p would induce accelerations that would make v
of order £ for t > O. Is the Newtonian limit the only one-dimensional
curve through (A,g) space which is well-conditioned in this sense?

If other such limits exist they might be instructive. If they do not,

what property of Einstein's equations precludes them?

(xi) In the strong-field point-particle limit without small velo-
cities, do the point particles still interact as in linearized theory,

or are there extra effects from their internal structure?
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