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Abstract

We look in detail at those effects which slow down black holes of mass ~101% g and affect
their spatial distribution today. In particular we treat effects caused by the charge fluctua-
tions of the hole which result from quantum-mechanical processes. The dominant energy-
loss mechanism for the holes is the expansion of the universe, which leaves them virtually
at rest at the time of galaxy formation. The resultant violent relaxation should concentrate
roughly half of them in present-day galaxies and their halos.

§(1): Introduction

Primordial black holes (pbh’s) have attracted considerable attention ever
since Hawking suggested that density fluctuations in the early universe should
lead to their formation [1]. In a series of papers [2-4], Carr has examined
their formation and likely mass spectrum, with many interesting conclusions.
Any limits we can set today on the number of pbh’s gives us important informa-
tion about the big bang. One class of pbh—those with masses of order 105 g—
have attracted particular attention lately because they should be evaporating in
the modern epoch due to their quantum mechanical emission of photons,
neutrinos, and massive particles (the Hawking radiation [5-9]). These are
doubly interesting: not only does their radiation make them easier to observe,
but observing them would confirm the Hawking radiation itself. Many authors
have studied the quantum mechanical aspects of these pbh’s and many others
have discussed the likelihood of our observing them [10-16] . This latter group
typically is forced to make some assumption about their properties today,
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particularly their velocity and their spatial distribution, but there does not
appear to be any thorough discussion of what spatial and velocity distributions
may be expected. In particular, the detailed quantum mechanical behavior of
pbh’s of this size—especially their spontaneous charge fluctuations and their
very different capture cross sections for protons and electrons—suggest effects
on their motion that do not seem to have been considered. It is our purpose in
this paper to study all these effects systematically. The study reveals several
interesting points; that the capture of protons may slow a pbh down more
rapidly in the early universe than the expansion of the universe itself does; that
the rms charge on a pbh causes it to lose energy through Coulomb scattering as
efficiently as through Newtonian gravitational scattering, but that neither effect
is ever important; and that a naive application of the usual derivation of the
Coulomb energy loss rate to the Newtonian gravitational problem leads—wrongly
but instructively—to the conclusion that the expansion of the universe acceler-
ates the pbh. But the main result of the study is to reinforce the usual picture
of pbh’s: the expansion of the universe red-shifts their velocities considerably,
so that by the time of galaxy formation they are essentially at rest; then the
formation of galaxies causes pbh’s to cluster about the galaxies. We conclude
that roughly half of all pbh’s are within present day galaxies (or their massive
halos). In an appendix we give a more rigorous derivation than we can find
elsewhere of the energy loss rate of a massive particle due to gravitational
scattering from the particles of whatever medium it is passing through.

Our main interest is in pbh’s of mass about 10'° g, but many of our results
apply to other masses as well. We are—except in the section on galaxy formation
—mainly concerned with pbh’s moving in homogeneous media, although again
many of our formulas apply to pbh’s in the galaxy today. We assume that the
universe is the “standard” Friedmann model (Weinberg [17]); whether it is open
or closed generally does not matter. We should also point out that most of the
interactions of a pbh of this size with a surrounding medium do not depend on
whether the medium is ionized or not; this is clear for gravitational scattering,
but it is also true for its ability to capture electrons and protons, since its size
(about 107!3 cm) is much smaller than that of an atom. In those sections in
which we discuss the slowing down of a pbh by its interaction with a surround-
ing medium, we shall concentrate on pbh’s moving supersonically. Not only is
this case more straightforward to treat than the subsonic one; it is also more
interesting, for a pbh that is traveling subsonically by the time of galaxy forma-
tion will be far more affected by galaxy formation than one which still has a
considerable velocity. We shall always assume the pbh is nonrotating.

§(2): Velocity “Red-Shift”

The most obvious and, as it happens, the most important influence on the
velocity of a pbh is its slowing down due to the expansion of the universe. The
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equation governing this, (2.1) below, can be derived from the geodesic equa-
tions, but it is easier to use the homogeneity and isotropy of the universe di-
rectly. In a local inertial frame (indices &, B) at rest with respect to the homoge-
neous hypersurfaces, the four-momentum of a particle can without loss of
generality be chosen to have only the components p°, p!, where the x! direc-
tion is a translation Killing vector £, and the dot product p - ¢ = p' £! is constant
along the particle’s geodesic. But, because the spatial metric tensor is propor-
tional to R? () (the square of the radial scale factor of the universe), the magni-
tude of the Killing vector ¢ must be proportional to R: £! ~R (#). We conclude
that

pf ~R71(1) |

Since the velocity of the particle is ¥ = cpf /p6 , and since p' determines p°
from the equation (p°)? - (p')? =m?2c?, it is easy to show that

R ¥
= 24+(c?-V,? 2.1
V() CVO/{VO (c* -V, )[R(to)] } (2.1)
where Vy = V(ty), and that
‘fK=-V(1 -V H (2.2)
dt
where
1 dR
H=— —
R dt

is the Hubble “constant” of whatever epoch is being considered. Supposing that
a pbh has a velocity ¢/3 at a time ¢ = 10723 s (that is, a typical sound speed at a
time well after it will have formed if it has a mass ~10*5 g) and that the uni-
verse from £ = 10723 to £ = 1073 sec had a relativistic equation of state (p = i),
we find that the pbh should have a velocity of order 107!8 ¢ at the time of
recombination. Only a pbh with an original velocity differing from ¢ by one

part in 10°¢ could have a substantial velocity at the time of recombination.
Moreover, since the speed of sound stays at % ¢ for a very long time, it is reason-
able to conclude that once a pbh’s velocity is subsonic, it remains subsonic at
least until the epoch of galaxy formation, which we shall discuss later. But first

we shall compare the other influences on a pbh’s motion with the cosmological
red shift.

§(3): Gravitational “Coulomb” Scattering

It is usually supposed that, by analogy with the results for energy loss by a
charged particle passing through matter, a pbh of mass M and velocity V will
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lose energy at a rate
dE _ 4nG*M?

dt Vi Pm (3.1)

in passing through matter of uniform rest-mass density p,,, . This is, in fact,
extremely small in any realistic situation [1]. However, the usual derivations of
the charged particle analog of (3.1) are not adequate when the particle is in an
expanding universe; in fact, a naive application of them could lead to the con-
clusion that the interactions of the pbh with the expanding gas around it ac-
celerates the pbh. If this result were correct it would radically affect the pbh
velocity spectrum today. We give this naive argument, show its flaw, and present
a more careful justification of (3.1) in the Appendix. The result is that (3.1)
should be multiplied by a logarithm, whose value in a homogeneous universe is

In (Vi [2GMH) (3.2)

where H is Hubble’s “‘constant” again. Like the analogous factor in the charged-
particle case, this cannot get very large. For a 10*5-g pbh with speed ¢, and for
H =10% km sec™! Mpc™! (a considerable underestimate for early epochs) this
factor is about 100. This does not, of course, make the energy loss for such a
pbh significant.

8(4): Effects Due to the Fluctuating Charge of the pbh

The charge on a pbh whose mass is of the order of 10!® g fluctuates as it
emits (by the Hawking process) and absorbs charged particles [9] . Any charge
contributes to the pbh’s energy loss rate. The energy loss rate due to the pbh’s
charge Ze' in the plasma era (before recombination) is

Zc3 (4mp,, )2

4.1

dt VHmemp ( )
where m, and m,, are the masses of the electron and proton. The most opti-
mistic value of the logarithm (p,,, /m, = 10%° cm™,Z =1, Vg = ¢) is about 40.
So energy loss due to charge becomes comparable to that from gravitational
scattering only for charges

GM
Z216 = (memp)'? (4.2)

the factor 1.6 coming from the ratio of the logarithms in (4.1) and (3.2). This
can be written

#
7208 e—fRH(xexp)““ =~ 9(My/10'* g) (4.3)
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where Ry, is the pbh’s radius, A, and A, are the Compton wavelengths of the
electron and proton, and e? ffic is the fine-structure constant. We shall now con-
sider the likely magnitude of the charge on a pbh.

4.1. Fluctuations Due to the Emission of Charged Particles. Page [9] has
calculated detailed emission rates for charged leptons from a pbh. A neutral
hole emits positrons and electrons with equal probability, but a positively
charged hole will emit positrons more frequently than electrons. This leads to
an rms charge on the hole which depends on the ratio Ry/A,. Fora 10'° ¢
hole this ratio is 4 X 1073, and the rms charge is about Z = 8. So the effects of
charge-particle scattering on the slowing down of a pbh of this size will be
comparable to but no greater than those of gravitational scattering.

4.2. Fluctuations Due to Selective Absorption of Protons. Because, for
a 10'°-g pbh, Ry/X, ~ 3.5 but Ryy/A, ~ 2 X 1073, quantum mechanical effects
strongly discriminate against the absorption of electrons. The cross section for
the absorption of protons will be the classical one,

_4mR}Y
T VE/c?

Op (Vy <<c) 4.4)
While that for electrons will be less than this by a factor of roughly %RH/Ae

[9, 13]. If the pbh’s charge could change only by this mechanism, this would
lead to an “equilibrium” charge on the hole of order 2eX./Ry ~ 500e, far

larger than one expects from Hawking fluctuations. But this can only happen

if the rate of absorption far exceeds the rate of spontaneous emission. In fact,
the reverse is true; a pbh of this size will change its charge by emission of leptons
much more rapidly than by absorption of protons. Page’s calculations [9) show
that any excess charge on the pbh will be neutralized in a time 10* GMy/c. The
mean time to absorb a proton from the surrounding plasma of proton number
density /V, is, from (4.4),

1 Vy
=

= ~ 4.5
ophpVy 41rR}1c2np 4.5

For a pbh moving at speed ¥ ~ ¢, absorption dominates emission if n,R% 2

2 X 1075 . For a pbh of mass 10'3 g this requires a proton number density of
10 ¢m™3! The universe had densities of this order only when protons and anti-
protons were in equilibrium, in which situation absorption would not have led
to a build up of charge anyway.

8(5): Effects of Accretion on pbh’s

We have already considered accretion in relation to the charge on the pbh in
the previous section. But accretion can also slow the pbh down and increase its
mass. If the pbh moves supersonically, as we have assumed all along, it will
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accrete mainly by direct capture of protons, with the cross section (4.4) above.
From the discussion in the previous section, it is clear that the pbh will lose
mass through emission of leptons much faster than it will gain mass through
accretion of protons if the number density of protons is less than about 103°

" em™3. Accretion will slow the hole down at the rate

My VH =- (Upr Vi) (mp Vi)
= -47R ;% pc? (5.1)
where p is the mass density of the medium through which the pbh passes. (Note

that the reemission of protons will not slow the pbh down because it is on
average isotropic in the pbh’s rest frame.) Comparison with (2.2) shows that

accretion is important if
V
c 4RH

Using the relation H? = % nGp., where p, is the density needed to close the
universe, and denoting p/p, by £ and 2GMy;/c? by Ry, we obtain

2

Vi
4nGp > 5.2
e > R i (5.2)

For a hole of mass 10'® g and speed ¥ ~ ¢ in a nearly closed universe (2 ~ 1)
this gives o > 5 X 107° g cm™ which, in the standard model of the universe,
holds for¢t S 2 X 10% sec, T2 3 X 108°K, z 2 10®, where z is the red shift.

So in the early history of a supersonic pbh the dominant mechanism for its
deceleration is accretion, at least until it becomes subsonic.

8(6): Relaxation of the pbh Velocity Spectrum
Produced by Galaxy Formation

All the above calculations indicate that a pbh will reach the epoch of re-
combination essentially at rest in the cosmological frame. During the era of
galaxy formation, pbh’s will behave like a collisionless gas of free particles. They
will be strongly affected by the time-dependent gravitational fields associated
with the gravitational condensations, and can be expected to be concentrated in
galactic halos [14] . It is not difficult to obtain an estimate of the degree of this
concentration. We shall idealize the formation of a galaxy by considering the
pressure-free collapse of a spherical cloud of initial radius R, and initial uniform
density pg. It is assumed that the cloud begins at rest and with its pbh’s uni-
formly distributed throughout. At some radius R pressure is assumed suddenly
to halt the cloud’s collapse. The collapsing cloud obeys the parametric equations

R=Ro Sil’l2 %@
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31/2

= - sin® (6.1
327G (© - sin ©) (6.1)

t

where the collapse begins at ©® = . Pressure halts the collapse of the cloud at
= @1 s

Rf=R0 Siﬂ-é—@l (62)
but pressure does not affect the pbh’s. They therefore have at this time a velocity
V(e) = aRo(§ 1Gpo)'/? cot 1 O, (6.3)

where « is the ratio of the pbh’s initial radial position to R,. With this initial
speed, all pbh’s with a smaller than a critical value o, will remain within the new
radius Ry. A short calculation gives

@ =(2+c0s ©) 2 =(3- 2R3 /R?) 2 (6.4)
If the collapse proceeds reasonably far before halting, we will have
o, =372 (6.5)

In other words, a fraction a,> = 20% of the original pbh’s in the cloud will be
permanently trapped within the collapsed cloud. The remaining pbh’s will all
spend some time inside the cloud, and so at any one time probably 40-50% of
the original pbh’s will be inside the collapsed cloud. Now, a more realistic
collapse will be halted by pressure only gradually, and nonspherical effects,
particularly violent relaxation, will be very important. But it may be expected
that these will mainly affect the distribution of pbh’s inside the collapsed cloud
(turning it from uniform density into something more like isothermal), but the
basic conclusion that a quarter to half of the pbh’s are present within the cloud
will not be changed.

The main problem in drawing any conclusions for our galaxy is that we do
not know the final radius of the collapsing cloud. It is certainly at least as large
as the radius of the visible disk of our galaxy, R=> 15 kpc. But if the galaxy has
a massive halo extending to 30 kpc or beyond, the pbh’s would also be distributed
over such a volume. If we adopt the conservative view, that the galaxy has a
mass of about 10'' M, concentrated within 15 kpc of its center, and if we accept
Carr’s limit [4] that the universe’s average density of pbh’s of mass ~10'° g
cannot exceed 1072 of the closure density, we find that the density of pbh’s
near our galaxy should be less than 10® Q! pc™?, where £ is the ratio of the
true mass density of the universe to the closure density. These pbh’s should
have velocities comparable to the rotational speeds of stars in orbit about the
galactic center, ¥ ~ 200 km sec™!.

Any observation which gives a limit on the density of pbh’s within the disk
of our galaxy (e.g., [15, 16]) sets a limit on the mean density of pbh’s in the
universe if one accepts the above estimates of the size and mass of our galaxy:
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the mean density should be about 2 X (15 kpc/0.5 Mpc)® ~ 5 X 1075 times
the local density, in close agreement with the estimate of Page and Hawking
[14].
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Appendix: Energy Loss by Gravitational Scattering

The usual method of deriving the energy loss rate of a charged particle is
to consider its interaction with each particle of the medium separately and then
to integrate over all particles. (See Jackson [18], for example.) If the encounter
is rapid, the impulse approximation can be used. For the gravitational case, in
which a pbh of mass My and velocity Vy interacts via its Newtonian gravita-
tional field with a “field” particle of mass m and impact parameter b, the reason-
ing is as follows. The encounter lasts a characteristic time ¢, = 2b/V 4, during
which time the field particle experiences a force F = -GMym/b* . Its momentum
changes by ¢, F = Ap, and its kinetic energy by (Ap)?/2m. This produces a
change in the pbh’s kinetic energy of

_(Ap)® _ 2G*My*m
2m Vb2

Ey (A.1)

This equation is in fact exact for large b if the field particle starts out at rest
and if m is negligible compared to My . (The overestimation of F' above and the
underestimation of £, compensate one another.) But the argument is somewhat
naive if one takes into account the initial velocity, V,, of the field particle. For
then the change in its kinetic energy is

1
AE,=V,-Ap+— |Ap|? .
r=Vo - Ap 2ml pi (A.2)

and the first term can overwhelm the second when | V| >> | AV |. The reason
that the first term can be neglected in the Coulomb case is the overall charge
neutrality of the plasma: in the impulse approximation Ap has the same
magnitude and opposite sign for particles of opposite charge, so the first term in
(A.2) drops out when one averages over the pbh’s interactions with several
plasma particles. This leaves only (A.1). But in the gravitational case, Ap has the
same sign for all particles. If the plasma is static in the mean, so that V, is just

a random thermal velocity, then the first term again averages to zero. But if,

as in an expanding cosmology, there is a systematic V, shared by all field
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particles, this term cannot be neglected. It would seem, then, that (A.1) should
not apply to gravitational scattering in cosmologies.

Before showing its flaw, let us carry this interesting argument a little further.
In an expanding cosmology, V, - Ap will be negative, because the field particle
is attracted toward the pbh while its velocity is directed away from it. By
conservation of energy, the pbh will gain energy: far from being slowed down by
the collision, it will be accelerated!

This is easy to understand physically. Consider the two “halves” of the
collision, before and after the pbh arrives at the point of closest approach.
During the first half the pbh is accelerated and during the second decelerated. If
the field particle is moving away during the collision, the force during the second
half will be weaker than during the first half, so a net acceleration will result.

This physical picture contains both the key to the flaw in this argument and
a pointer to a better derivation of (A.1) for the gravitational case. The accelera-
tion of the pbh by the expanding gas is real, but it does not depend on any
effect the pbh has on the gas: it is produced by the unperturbed motion of the
gas. 1t should not be thought of as a *‘scattering” effect at all: if the zeroth-
order motion of the pbh has been correctly calculated for the background
gravitational field (i.e., if the pbh follows a geodesic in the cosmology) then
this acceleration will already be included in its motion and should not be added
in again. The only effects one should include in a scattering calculation are those
effects on the pbh due directly to the changes in the motion of the field particle
caused by the pbh: those effects which result from the fact the pbh is not a
test particle but has an influence on its surroundings. It is safer, then, to avoid
the energy-conservation argument of the standard Coulomb derivation and to
look directly at the forces on the pbh. The situation is defined in Figure 1. We
use subscript A to denote the pbh and f the field particle. The change in the
energy of the pbh will be the line integral [F - dry along the path. The force F
has two pieces:

F=F, +F,
/s
v
Ve
.M"
7
s
/ . m

Fig. 1. Interaction of a pbh with a plasma particle. The origin of coordinates is taken to be
the point of closest approach of the two bodies, which occurs at ¢ = 0. The pbh (mass Mg)
has, to this order of approximation, constant velocity Vp and position Ip = th (path
indicated by dashed line). The plasma particle has position Iy and mass m.
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where F, is the force on the pbh due to the field particle in its unperturbed state
of motion and F, is the change in the force on the pbh dueto the change in the
position of the field particle produced by its interaction with the pbh. We will
identify the change in the pbh’s energy caused by Newtonian scattering as

AE =jFl ~dry (A.3)

We suppose that the field particle does not move very far during the collision,
ie., that | Vg| >> | V/]; that the collision makes a small change in the pbh’s
motion; and that the interaction is negligible at times ¢ outside the range -#.,; <
t <teon, Where tcoy = |17l/ 1 V| is a typical collision time. In order to find F,
one must find Ary, the change in the fluid particle’s position. This one can find
from the force on the plasma particle due to the unperturbed motion of the pbh;
corrections to the motion of the pbh give higher-order changes in Argand F, .
On the impulse approximation, the field particle accelerates at the rate

AYp = -GMy —L—H
I l'f - l'Hl
where in the right-hand side ry= (r)o = const and ry = V. Denoting the im-
pact parameter by

b =1(rs)ol

we have approximately

GMy
b3

Aty =- [(rp) - Vyi] (A4)

(The replacement of |ry - ry| by b in this expression overestimates the force
and compensates the error introduced by underestimating the collision time,
which is really infinite.) The solution to (A.4) for which Ary; =0 and AV, =0 at
t=-teon is

GM
Arp = “2b—3H(f +teo)? [(Xp)o ~ 5 (- 2tcon) Vil (A.5)
We find F, by using

|l’f‘ l'H|3

replacing ry by (r7)o + Ary, and keeping terms first order in Ary. This gives

_ GMHm

F1 = T [Al‘f" 3(l'f‘ !'H) M] (A6)

|l'f"' l’H|2
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where now on the right-hand side ry is (rs)o . Rather than use (A.5) immediately
in this, we note that we only want the component F; - Vg, which is slightly
simpler to calculate since Vi * (rp)o = 0. We get

GMy\? 3 1 32
F, Vyg=-mVy® ( b3H> (t + teon)? [‘2‘” '6‘(f - 2tcon) (,‘ 2 " )J (A.7)
coll

where for consistency we have set |1, - 1z | to b in the denominator of the
second term in (A.6). This is readily integrated. The second term in (A.7) gives
zero [no contribution from the sideways motion of the plasma particle in equa-
tion (A.5)] and the first term gives

2G2MH2mV].]2tcou4 _ ZG2MH2m

AEg =- -8 aT (A.8)

This is identical to (A.1).

The significance of this derivation is that it shows that (A.1) is correct as
long as the particles of the medium do not move much during the collision,
independently of whether their velocities are random or systematic, provided
that the zero-order motion of the pbh (that due to Fy) is correctly calculated.
It is easy to convert (A.8) into an expression for the energy loss per unit time
in a plasma with rest-mass density p,,,

dEy  2G Myt

Pm
= —- 2nb db A9
dt Vy sz g (A-9)

where the integral represents a sum over all particles in a plane perpendicular
to the pbh’s velocity. (Naturally, one sums only over particles whose thermal
speeds are less than Vi, or over fluids whose sound speed is less than V. This
excludes photons.) If p,,, is constant at small or large b the integral diverges
logarithmically, and cutoffs are necessary. We shall now discuss the cutoffs.
An inner cutoff can be justified by an argument similar to one used in the
Coulomb case [18].

The impulse approximation fails when, as seen in the frame comoving with
the pbh, the field particle’s maximum potential energy (GMym/b) becomes as
large as its incident kinetic energy (1 mVy?). This gives

Brmin = 2GMy/ V2. (A.10)

Another inner cutoff is the effective radius of the capture cross section, but on
dimensional grounds this must be of the order of (A.10). In fact, inspection of
equation (4.4) in the body of the paper in the nonrelativistic limit gives a cutoff
just twice equation (A.10). Since this cutoff affects the value of the integral
only logarithmically, we shall use (A.10).

The outer cutoff is different from the ones used in the Coulomb case,
essentially because of the equivalence principle. Since all particles at a given
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point in the field experience the same acceleration due to the pbh, there is no
““polarization” and no Debye-type screening. Moreover, it does not matter
whether individual particles in the field are truly independent or are bound into
atoms, since their response to the pbh is independent of this. So the two princi-
pal Coulomb outer cutoffs [18] —(1) screening of the charge and (2) the colli-
sion time exceeding the orbital period of an electron bound in an atom—do not
apply here. The only outer cutoff in the gravitational problem is the failure of
the impulse approximation at large distances due to the expansion of the uni-
verse. If the Hubble rate is A, then the expansion speed reaches the pbh’s speed

at a distance
bmax = Vu/H (A.11)

This is always inside the cosmological horizon (~c¢/H) and so justifies our using
Newtonian gravity in these calculations.
For a pbh in a homogeneous and isotropic cosmology, we obtain from (A.9)

dE 4G*My? Vi’
H _ H Pm ln( H ) (A.12)

dr Ve 2GMyH

The logarithm factor, which is usually left out of these discussions, cannot be
too large: for Vy ~c,.M ~10'® g and H ~ 10®> km sec™* Mpc™?,

3
In ( 4: ) ~ 10?
2GMyH

Note that only the density p,, enters equation (A.9); no other characteristic
of the medium is important. Therefore (A.9) applies also in the present universe,
Pm is taken to be the mean mass density of the universe despite the fact that the
gas is clumped into stars and galaxies. As long as the pbh has a faster speed than
the random stellar and galactic velocities, the impulse approximation will still
apply.

[t is interesting to ask what velocity a pbh would have to have in order to
slow down due to gravitational scattering alone, in say, a Hubble time. For a
nonrelativistic pbh, for which £y is just its kinetic energy, we obtain from
equations (A.10)-(A.12) the fractional energy loss rate, in units of the Hubble
expansion rate:

1 d 4GPy Omin bmax
— —In(AMyVy?)=- = In A.13
H dt n(2 HH ) H? bmax bmin ( )
When the right-hand side of (A.13) is of order 1 the hole will slow down signifi-
cantly. Since 3H?/(87G) = p,. = the critical density for closing the universe,

and since it appears that our universe has p,. > p,,, (during the radiation-
dominated era, p, >> p,,,), the right-hand side of (A.13) can never in fact
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