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A precise definition of the Newtonian and post-Newtonian hierarchy of approximations to general
relativity is given by studying a C = sequence of solutions to Einstein’s equations that is defined by
initial data having the Newtonian scaling property: vi~¢, p~€2, p ~€*, where € is the parameter
along the sequence. We map one solution in the sequence to another by identifying them at constant
spatial position x’ and Newtonian dynamical time 7=e€t. This mapping defines a congruence
parametrized by ¢, and the various post-Newtonian approximations emerge as derivatives of the re-
lativistic solutions along this congruence. We thereby show for the first time that the approxima-
tions are genuine asymptotic approximations to general relativity. The proof is given in detail up to
first post-Newtonian order, but is easily extended. The results will be applied in the following paper
to radiation reaction in binary star systems, to give a proof of the validity of the “quadrupole formu-

l1a” free from any divergences.

I. INTRODUCTION

Einstein' built the Newtonian limit into general relativi-
ty, and every serious text on the subject contains a heuris-
tic extraction of Newton’s equations from Einstein’s. Ein-
stein also computed the first of the post-Newtonian ef-
fects, the precession of the perihelion, but a systematic at-
tempt to build higher-order approximations in the
Newtonian spirit was not made until the series of papers
by Chandrasekhar and associates.’~* Such a post-
Newtonian hierarchy of approximations is important in
analyzing a number of relativistic problems, such as the
orbits of close binary stars,? solar-system tests of general
relativity,® and gravitational radiation reaction.*

The Newtonian limit may be thought of as two limits
tied together. One limit is that the gravitational field gets
weaker. The other limit is that all velocities and forces
characteristic of the material system also get smaller, in
order to permit the weakening gravity to remain an impor-
tant effect on the system’s dynamics. The limit is thus a
limit involving two dynamical systems, matter and gravi-
ty: there is no pure vacuum Newtonian limit. Moreover,
the time scale of interest in the limit is that of the material
system—in the solar system, Earth years rather than the
gravitational-wave crossing time. Mathematically, this
means that in the limit one tries to preserve the hyperbolic
form of the material system’s dynamical equations. Rela-
tive to the material system’s time scales, gravitational-
wave propagation gets faster and faster, so that in the lim-
it the hyperbolic field equations of general relativity go
over to the elliptic field equation of Newton. This is a
singular limit. What distinguishes this problem from the
similarly singular slow-motion (“dipole”) approximation
to electromagnetism is the nonlinearity of the equations, a
point we will return to in a moment.

Such a singular limit cannot be uniform everywhere for
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all time. Any binary pair of stars, no matter how weak its
gravity and slow its orbital motion, will eventually spiral
together due to gravitational radiation, and the effects of
its Newtonian gravitational field will always be swamped
by those of its gravitational waves far enough away along
an outgoing null world line. Therefore, if the post-
Newtonian development is not done carefully, this singu-
larity can lead to many formal problems, such as diver-
gent integrals. Ehlers et al.” catalogued the difficulties
with the then-existing derivations and argued that, unless
these difficulties were removed, the “quadrupole formula”
prediction for radiation reaction in the binary pulsar
system—now reasonably well confirmed by
observations®—could not be regarded as a firm conse-
quence of general relativity. Since then, considerable im-
provements have been made in the post-Newtonian deriva-
tions, such as the work by Ehlers,’ Kerlick,!%!! and Walk-
er and Will,’? but some divergent integrals remain and
what seems to us the most fundamental question has not
even been addressed: Is there some formulation of the
post-Newtonian hierarchy which actually can be shown to
provide an asymptotic approximation to general relativity?
Our aim in this paper is to provide such a formulation.
As a consequence of our having defined the problem so
carefully, Futamase (following paper: paper II) will show
that all the divergences of earlier schemes disappear in
this one. He will therefore be able to apply this formula-
tion to the question of radiation reaction to prove that the
quadrupole formula does indeed give an asymptotic ap-
proximation to the behavior of relativistic systems.

The new feature of the present formulation is that it is
based on the initial-value problem for gravity as well as
matter. Most previous formulations have attempted to
determine the dynamical degrees of freedom of the gravi-
tational field by an asymptotic wave condition: either that
gravitational waves were purely outgoing or that there was
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no incoming radiation. The mathematical difficulty with
such wave conditions is that general relativity is nonlinear
in such a way that the characteristics of the hyperbolic
equations—the light cones—depend on the strength of the
gravitational field and therefore upon the expansion pa-
rameter. As Ehlers et al.” noted, it is very difficult to for-
mulate a global radiation condition when the global
behavior of the light cones is not known. On the other
hand, one of us'® strongly criticized the use of such global
conditions in the radiation-reaction problems, and showed
that one could obtain the standard radiation-reaction for-
mulas in linearized gravity (i.e., weak gravity but not weak
material forces) and in electromagnetism from an initial-
value approach that made few global assumptions. The
formulation of the Newtonian limit in this paper provides
the framework for the extension of this point of view to
Newtonian systems in paper II.

The history of this problem is so full of controversy and
of rather subtle differences between various approaches
that we have decided to make the logical development of
this exposition relatively self-contained, so that the reader
need not refer to earlier papers in order to understand the
present one except for details of calculations. The reader
should bear in mind that, in a chain of ideas going back to
Einstein, the original contributions we claim here are (i)
the initial-value approach, and (ii) the use of one-
parameter sequences of solutions to Einstein’s equations to
show the asymptotic nature of the hierarchy of approxi-
mations. For comparisons among various previous ap-
proaches see Anderson and Decanio,'* Kerlick,'®!! and
Walker and Will.!?

II. SCALING THE NEWTONIAN EQUATIONS

Extracting the Newtonian equations from general rela-
tivity begins with an understanding of a scaling property
of the Newtonian equations which permits one to change
the time scale of any solution in a simple way. We shall
concentrate on perfect fluids in this paper, although analo-
gous results may be found for more realistic systems. The
Newtonian equations involve the six variables, density (p),
pressure (p), gravitational field (®), and velocity (v°,
i=1,2,3):

VP —4mp=0, 2.1)
3,p+Vi(pr)=0, 2.2)
P30 +pv/Vv'+ Vip +pVid =0, (2.3)
p—f(p)=0, (2.4)

where we have set G =1. Equation (2.4) is the equation of
state.

Newtonian scaling theorem

If the set of functions {p(x’t),p (x’t),®(x%,1),0(x%,1))
satisfies Egs. (2.1)—(2.3), then the replacements
2 (j 4 (i
e“p(x/ et), (x7,et) ,
peplehet, peplali) 29
P—e*D(x),et), visevi(x/er)

also satisfy the same equations.
The proof is trivial algebra. The scaling of the time
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variable means that the system for e=1 is doing at time ¢
what the system for any other € is during at time ¢ /¢: the
weaker the gravity (e—0) the longer the time scale.

Notice that the equation of state, Eq. (2.4), which is
necessary for a well-determined set of equations, does not
scale automatically, so that solutions of Newton’s equa-
tions are scale invariant only if we write an explicit €
dependence into the equation of state as

p—€*fle p)=0. (2.6)

Realistic equations of state do not scale this way, which
simply means that, say, along the “main sequence” (i.e.,
the relation between luminosity and mass obeyed by ordi-
nary stars) the density does not change as p(x/)—€’p(x7),
but rather the spatial distribution of density changes as
well. Of course, it is possible to find simple equations of
state that do scale. For example, an ideal gas obeys the
equation p =bpT, where b is a constant. Then if we take
T—€*T, we will have (2.6). This is reasonable on grounds
of kinetic theory: T ~(v?). A very familiar example is
the polytrope, p =Kp'*!/", where the replacement
K —€*~%/"K ensures the proper scaling.!’

III. REGULAR, ASYMPTOTICALLY NEWTONIAN
SEQUENCES

We wish to develop an asymptotic approximation to
general relativity, asymptotic as the scaling variable € ap-
proaches zero. It is an elementary observation, but one
that has not been sufficiently stressed before in this con-
text, that an asymptotic approximation is fundamentally
an approximation to a function, not to the function’s value
for some €. That is, g (€) approximates f(€) to order €? if
| f(e)—g(e)| /e? goes to zero as €é—0. This definition
uses f in a neighborhood of €é=0 and not just f at one
value of €. To approximate general relativity, therefore,
we need a sequence of solutions of general relativity which
has the Newtonian character as e—0.

Einstein’s equations are nonlinear in the field variables,
however, so it will not be possible to enforce the scaling of
Eq. (2.5)—with @ replaced by some suitably scaled
metric—everywhere in spacetime. We shall therefore im-
pose it only on the initial data for the solutions in the se-
quence. We shall see later that at later times p will con-
tain higher-order terms in €, but of course none of lower
order than €? arise. The failure to allow explicitly higher-
order terms in p and v’ characterizes most previous formu-
lations of the post-Newtonian hierarchy.

The initial data must determine solutions of the follow-
ing equations, which we write in the form used by Ander-
son and Decanio.!* We define the gravitational field vari-

able!®
}Tpvzn;w_(_g)l/zgﬂ" ) (3.1

where 7*¥ is the metric of Minkowski spacetime, and
adopt the Lorentz (= harmonic, de Donder) gauge,

" =0 (3.2
In this gauge the field equations are
R = —16mA%P (3.3)

where
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Aaﬂ= eaﬁ+XaBI‘V,Mv , (3.4)
XOBY = (167)~ W R*RP* —RoBRH) | (3.5)
0B =(—g)TB+1$8), (3.6)

and where TP is the perfect-fluid stress-energy tensor
3.7
(3.8

T*=(p+4p)u®uP+pg°?,
u®u 3gaﬁ= -1,

and t¢¢ is the Landau-Lifshitz pseudotensor.'*!? Equa-
tions (3.2) and (3.3) together imply the conservation law

A% 5=0 . (3.9)

We shall take as our basic variables the set {p,p,v’,hi%},
with the definition

vi=ui/u®. (3.10)
The final component of #* can be found from Eq. (3.8).
To make a well-determined system of equations we must
add the conservation law for particles, whose number den-
sity n is some function of p and p:

(nu®),,=0.

Equations (3.9) and (3.11) imply that the flow is adiabatic.
The role of the equation of state is played by the arbitrary
function n (p,p).

_ The dynamical equations require initial data for
h*,h* o,p,p, and v’, but not all these data are indepen-
dent. In particular, Egs. (3.2) and (3.3) imply the four
constraint equations

IR* ;; + 16T AR — 17

(3.11)

Up¥; °=0, (3.12)

which are relations only among the initial data. We shall
take the point of view that one gives 7" and 7Y, indepen-
dently and then solves Eq. (3.12) for A*° (u=0,...,3)
and Eq. (3.2) for h*° o- Note that these solutions cannot
be obtained exp11c1tly, since A*0 contains £*°, but they can
be obtained iteratively in the manner we shall describe.

Our interest in this paper is to define the Newtonian
hierarchy, not directly to study radiation reaction. Gravi-
tational waves only complicate matters, so we will confine
our attention here to the simplest situation, namely, where
the 1n1t1al data for hY and AY ,0 are zero. One can
show!® that such initial data satlsfy the O Murchadha and
York! criterion for the absence of radiation far away
from the matter. The case where there is more general ra-
diation present initially will be considered in paper II in
the context of the radiation-reaction problem. According-
ly we adopt the following definition.

Definition. A regular, asymptotically Newtonian se-
quence is a sequence of solutions of Einstein’s equations
for a perfect fluid defined by the following sequence of
Cauchy data:

p(t =0,x7,€)=€%a (x7) ,
p(t=0,x),e)=€*h(x7) ,
vi(t =0,x7,e)=ec(x’) ,

B9t =0,x7,€)=0

(3.13)

RY o(t =0,x7,€)=0
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where the functions a, b, and ¢ are C* functions that
have compact support contained entirely within a sphere
of radius R around the origin. If one wishes to relate p
and p by an equation of state, then one should adopt the
Newtonian scaling of it in Sec. II.

It may be helpful to visualize the sequence as a fiber
bundle whose base space is the real line (parameter €) and
whose fibers are diffeomorphic to R*, each being space-
time?® for a particular value of €. The fiber e=1 may be a
relativistic system we are particularly interested in. The
fiber €=0 is Minkowksi spacetime. The use of the word
“asymptotic” in the definition is justified by the theorem
in Sec. IV below.

Of course, if, as we shall see, the material systems have
a Newtonian behavior as €é—0, then the dynamics will be
slower and slower in this limit. As we stressed in Sec. I,
we are interested in a map between fibers which preserves
the dynamics of the material system, and such a map is
obtained by defining the dynamical time

T=¢t . (3.14)

As we saw in Sec. II, a map between fibers at constant 7
and x’ is natural to the problem: If the system for €=0.1
is a binary system which has completed its first orbit after
a certain dynamical time 7, then the system for €=0.01
will have completed its first orbit after roughly the same
dynamical time 7,. (We say “roughly” rather than “exact-
ly” because the system is not perfectly Newtonian.) The
dynamical-time map is illustrated in Fig. 1. This map
never reaches the fiber e=0; we shall see that in the limit
€=0 the map defines the Newtonian and post-Newtonian
approximations.

In order to do the calculations in the next section we
must make some assumptions about regular, asymptotical-
ly Newtonian sequences. All of these are in principle
provable, but proofs depend mainly upon a much better
understanding than we now possess of the existence and
uniqueness of solutions to the Cauchy problem for perfect
fluids of compact support.

t=0
€ €=0

FIG. 1. Structure of the sequence of solutions. Vertical lines
are the ¢t dimension of spacetime manifolds that solve Einstein’s
equations for initial data posed on the horizontal line ¢ =0 on
the bottom. Dashed horizontal lines are constant z. The
dynamical-time map (see text) follows the hyperbolas.
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Assumptions. Recall that the initial data are C* func-
tions of x’ and . We assume that regular, asymptotically
Newtonian sequences have the following properties.

(i) The solutions for t=£0 are C® in x’, €, and 7 for
O<e<1,0<7<7, and all x’. The important assumption
here is that the validity of the solution in time is limited
by some fixed dynamical time 7, rather than a proper time
t, for € near zero. ’

(ii) We shall see that the different post-Newtonian ap-
proximations appear as €—0 limits of the derivatives of
different orders with respect to € of functions defined on
the relativistic sequence. In our ignorance of the relativis-
tic initial-value problem for this sort of system, we cannot
prove that such limits exist. Instead, we will assume that
these limits exist unless this assumption leads to contra-
dictions. In other words, we shall derive relations among
the limits and assume they exist until, for example, the re-
lations show that the (n + 1)st derivative of a function
cannot have a limit if its derivatives up to order rn do. In
such a case we will assume that the first n derivatives do
exist and the next does not.

(iii) We require one technical assumption which makes
it possible to calculate the approximations for e=0
without knowing details of the relativistic solutions for
€0, which is that for any metric component or its €
derivative of any order, say f(7,x%,€), the e—0 limit is
weakly uniform in the following sense when it exists:
3R,a, such that

lin'éf(‘r,xj,e)/f(T,xj,O)=1+0(6")0(r5) ,
€—>

a>B,a>0
forall |x/|=r>R.

(iv) Just as we need assumptions about the relativistic
solutions, we also assume that the Newtonian and post-
Newtonian hierarchy are well-behaved initial-value prob-
lems, whose solutions are C* in x/ and 7 for C* initial
data.

IV. THE POST-NEWTONIAN HIERARCHY

Any C" function f(e€) whose (n + 1)st derivative exists
has the asymptotic expansion about €e=0 given by Taylor’s
theorem:

2
f(e)=f(0)+ef’(0)+%f"(0)+ e
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where the remainder term R, ; is

€n+l 1 ntl dn+1
Royi=¢y Jo -0t —=r el

=o0(€") . 4.2)
If we want to obtain an asymptotic approximation to our
sequence of relativistic systems, expressed as a sum of
Newtonian, post-Newtonian, post—post-Newtonian, etc.,
contributions, then clearly we should try to identify these
approximations with derivatives of the relativistic se-
quence with respect to € at e=0. The key point is that the
derivatives must be taken along the dynamical-time map,
i.e., with 7 fixed.

Post-Newtonian hierarchy theorem

Consider a regular, asymptotically Newtonian sequence
with the properties defined and assumed in Sec. III. Let €
be the vector field d /de along the congruence {r=const,
x'=const} in the fiber bundle of the sequence. Then the
Newtonian limit of the sequence is its fourth Lie deriva-
tive?! with respect to € at €=0, and the post-Newtonian
correction is the sixth Lie derivative. The post-Newtonian
correction so obtained is essentially equivalent to that ob-
tained by earlier workers.>!%!* Although there are subtle
differences, which we shall point out, the sequence is at
least C7 in this sense at €=0, so the post-Newtonian ap-
proximation (up to sixth order) is asymptotic to the rela-
tivistic sequence as €—0.

Proof. The remainder of this section gives the main
steps of the proof while omitting the considerable amount
of straightforward algebra, much of which is of course
identical to that of previous authors. Because of the com-
plexity of the algebra we are stating and proving the
theorem only to post-Newtonian order. Its extension
beyond is straightforward and will be discussed in the next
section and paper II. Because we take limits at fixed 7,
the material equations remain causal while, as discussed in
Sec. 1, the gravitational field equations become singular.
We therefore follow Anderson and Decanio'# and express
the gravitational field equations in the integral form given

e"
+ _n—'f "(0)+Rp 41 5 @.1) by Kirchhoff's formula?:
J
A Je)= BY( J -173 T v — j
h*(7,x),e)=4 C(mj’e)A (r—er,y’,e)r dy+4ﬂ fS('r,xj,e)h A7=0,y7,€)dQ,
_1._..6_ TRV () v J
+9-30 [T¢s<f,xf,s>h (r=0,y%,€)dQ, |, 4.3)

where

F= |yi-—-xj| s (4.4)
and C(7,x/,€) is the past flat-space light cone of the event
{7,x’} in the spacetime given by ¢, truncated where it in-
tersects the initial hypersurface 7=0—see Fig. 2—on the
sphere S(7,x7,¢). Equation (4.3) expresses #** as a func-

'tional of its initial data (angular integrals over S) and its
source A*Y. This is not an explicit expression, of course,
since A contains #*”, but in the iteration it will always
give the nth derivative of #*" with respect to € in terms of
derivatives of order less than n only. The use of the re-
tarded integrand APY(r—er,y/,€) does not reflect some ar-
bitrary choice of retarded versus advanced interactions: it
arises simply because we are asking for A** for 7>0.
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FIG. 2. The solution of the wave equation at any event (r,x°)
for fixed € has two pieces: a homogeneous solution which
evolves from data at 7=0, and an inhomogeneous solution
which is an integral over the past light cone C(7,x) truncated at
7=0. The dashed lines enclose the support of the fluid. If the
integrand of the retarded integral has compact support, then the
truncated retarded integral for P, is equivalent to the usual fully
retarded integral, but that for P, is not.

Equation (4.3) is the unique formal solution to Eq. (3.3)
for given initial data.

Notice that the domains of integration are finite as long
as €540, their diameter increasing as €~! as e—0. This
linkage of the region of integration with the “weakness”
parameter € turns out to be crucial in eliminating the
divergences that others have encountered.

Equations (4.3), (3.9), and (3.11) are the starting point
for the construction of the approximations. The Lie
derivatives of our theorem are simply partial derivatives
with respect to € holding fixed the coordinates 7 and x/,
provided we express tensor indices with respect to 7 rather
than ¢t. So from now on we shall deal with, for example,
T™™=€>T*, which we shall see is of order €*. Similarly the
other components T™ and TY are O (&*) as well. We shall
adopt the notation
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fir,xie) . (4.5)

de

1 . [0
of (1, x%)= o 21_131 ‘

Before developing the approximations, it is useful to
prove three lemmas about the behavior of terms in Eq.
(4.3) as e—0.

Lemma 1. Let a function g(x/,€) in the hypersurface
7=0 be C* in € at €=0, with its first N >0 derivatives
vanishing there, and let |xj| ~Mg (x4 €) be C* in x/ at
| x/| = oo for some M <N. Consider the angular integral
over the solid-angle element d(),:

J €)= J
Jxheo=F  gphede,, 4.6)
where S is the sphere introduced in Eq. (4.3). Then

»J (1,x7) exists for k >0, vanishes for k < N —M, and has
contributions from ,g(x/) for N <n <M +k. [The expli-
cit expression is Eq. (4.7) below.]

Proof of Lemma 1. Write the integrand g(y/,€) as
g(ri+4+x7,€), where r/=yJ—xJ is the radius from the center
of the sphere S, so that |r/| =r=7/c. Writing g as a
function of spherical coordinates, we define a function A
by g(r/+x7,e)=h(x),e,r,Q), where Q stands for the an-
gular dependence. This is integrated out, giving

J(r,xle)=Ph (x),e,7/€,0)dQ .

The € dependence of J is now entirely in its integrand, and
the conditions of the lemma guarantee it is regular: Al-
though €—0 sends r =7/€ to «, causing A to blow up as
r™, the explicit € dependence of / causes it to decay as €”,
giving a net €'~ behavior. Some algebra gives for
k>N-—-M

J( j) k+M-—-N 1 ¢ ak—m +M am o . )

7,xl)= h(x,e,n™',Q _ 4.7

“ m2=0 M ="mm\(k —m +M)! dek —m+M gym (k% e6m " ;=g “n
|

and J(7,x/)=0 for other non-negative k. (In this equa-  I(7,x/,0)= lim e~! fT f flr,xI+Eni/e,0)dEdQ, .

. . . 1 . €—0 0 4

tion, 7 is just » ~'.) This completes the proof of the lem- 4.10)

ma.
Lemma 2. Consider the retarded integral
Je)=
I(r,x%€) fC(-r,xj,e)
where C is the truncated past light cone of (r,x%) as in Eq.
(4.3), and r is the radius |y/—x/|. (i) Unless special as-
sumptions about f are made, the limit as €—0 of I is the
retarded integral

I(T,xj,0)=£i_l’2’6“1 fo f41rf(7'——§,xj+§nj/e,0)d§d17,,,

flr—eryle)drdQ, , (4.8)

(4.9)

where n/ is a radial unit vector and d(), integrates it over
the unit sphere. (ii) Suppose

| fo(T,x5,0) | <4 |x7| 71| frp,x7,0) |

for |x/| >R, 4 and R some constants, and 7,7, arbitrary.
Suppose also that I(7,x/,0) is not “unusually” small, i.e.,
that lim,_,o| I/ f | f |drdQ, | is not zero. Then we need
not retard the integral in (4.9):

Proof. The algebra is straightforward, replacing r by
&/€ in (4.8) to get (4.9). We need assumption (iii) of Sec.
III to set the final € to zero inside f in (4.9). To prove (ii)
we suppress the dependence of f on x/ and n/ and write

flr—ExI+Eni/e0)=h(r—E,E/€) .
Then we have
h(t—&E/€)=h(1,E/€)— f(fh,,w—n,g/e)dn,
[ na—ggrede= [ niresede

_ fo’ f:h,f(‘r—n,g/e)dn dE .

Denote the second term by I,. Then we have

L= [ [Chr—ng/odnde+1,

n=[ fogh,,(r—n,g/e)dndg.

As €0, I,—I, as long as & , is bounded. Then the limit
of I, is bounded by

(4.11)
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T £
|1, | gAefER £ [ | h(r—n.g/€) | dndE .

By the mean-value theorem there is some 7y, 0<79<§&,
for which

|I,| <Ae feR |h(r—mo,E/€) |dE

and this makes a vanishingly small contribution compared
to the term that survives in Eq. (4.10). This proves the
lemma.

Remark 1. The fact that one cannot in general ignore
retardation even in the limit €é—0 is crucial: It will be
shown in paper II that ignoring this fact leads to some of
the divergent integrals at high order found by Kerlick!!
and others. Although the integrand in Eq. (4.8) contains
T—é€r, this does not go over to 7 in the limit, since the
range of integration expands in such a way that 7—er al-
ways ranges from 7 to 0. Earlier authors all expanded the
integrand in (4.8) about 7:

flr—er,..)=f(r,..)—erf (r,.. )+ "

and assigned the second term to a higher order because of
its explicit € in front. This is incorrect in our scheme, be-
cause er is not uniformly small. If we were to factor € out
and integrate, say, rf .(7,...) over C(7,x%,€), we would in
general find it diverging as e€~! relative to that of
f(r,...), because the integral of erf, is in fact of the
same order as that of f itself. This is indeed the character
of Kerlick’s most strongly divergent integrals. Only if the
integrand has some special property, as in part (ii) of the
lemma, can retardation be ignored. This happens in the
lower-order post-Newtonian terms, as we shall see, and
makes the formal slow-motion approximation sensible.
But at some point the nonlinearity of Einstein’s equations
creates terms which do not satisfy (ii), and then retarda-
tion may be necessary at that order.

(4.12)

(4.13)

. T/ . .
T (r,x0) = lim [fo [ Femtf Ar—eryl0)dr dy —7e~ f4ﬂf(0,y1,0)dﬂy} .

Proof. The angular integral multiplied by €~2 in (4.14)
exists by the hypotheses, and further derivatives of it may
be taken by Lemma 1. We do not have a general proof
that f .—rf , will be integrable for the f’s we encounter,
so one can only proceed step-by-step, algorithmically
showing that each order of differentiation is finite. We
have again used assumption (iii) of Sec. III. This com-
pletes the proof of the lemma.

We now return to the proof of the post-Newtonian
hierarchy theorem. Since the initial data imply , 77", ,T",
2T all vanish for n <3 at 7=0, the initial-value con-
straints also give that all the data for ,A"" likewise vanish
for n < 3. Because the evolution equations for each order
are linear, with inhomogeneous terms involving only lower
orders, they imply that for 7> O the solution for ,4#** and
2 T* will vanish for n <3. Therefore, the first interesting
dynamical effects occur at n =4. However, first we ought
to inquire about the geometry of the limiting manifold,
€=0 of our dynamical-time map. We have a degenerate
contravariant metric: 7" =e*7®—0 while 7Y=8Y, unaf-
fected by €. Similarly, the covariant metric is singular,
N+—> 0. On the other hand, the Christoffel symbols are
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Why should some integrands obey (ii)? Not because of
the slow-motion assumption: that relates to the €
behavior, not the » behavior. Rather, it occurs because of
conservation laws. For example, the Newtonian gravita-
tional field has the asymptotic behavior
O~Mr~'4Dr—24Qr—3+ - - -, but conservation of mass
and momentum ensure that M ,=D,=0, so that
®,~r~3. Conversely, an integrand fails to satisfy the
conditions of part (ii) when its leading terms are dictated
by time-dependent quantities, like the quadrupole mo-
ment, and this is where gravitational waves can be expect-
ed. So when waves become sources of higher-order correc-
tions, retardation cannot be ignored, and the formal
“slow-motion” iteration procedure—which neglects all re-
tardation effects at any order—breaks down.

Remark 2. The criterion given in condition (ii) of Lem-
ma 2 is sufficient for neglecting retardation, but not neces-
sary. In fact, in paper II weaker conditions will be shown
to suffice in particular cases. We believe, in fact, that con-
dition (ii) could be replaced by the much weaker require-
ment that if

[ &f Ar—ExI+Eni/e,0)dEdQ

exists in the limit e—0, then retardation may be neglected
in Eq. (4.9). We have no general proof of this, but in the
Appendix we give arguments we find compelling.

The retarded integral may be differentiated in the fol-
lowing circumstances.

Lemma 3. Assume the integral I of Eq. (4.8) exists.
Suppose f(7,y%,€) |y/|?is C* inr at =0, C' in 7, and
C'in € at e=0. Then

. T/ .
1I(T,x’):£in})~‘;i—e fo ¢ f47rf(r—er,y’,e)dﬂydr

exists provided (f —rf ,)(T—er,...) is integrable over C
as e—0. Then we have

(4.14)

—
well behaved: to lowest order

Fi‘rf= ——2l—h—1'1"i+ %I;aa’inﬂ_’_%’vid:‘—” ’ (4.15)
which turns out to be the Newtonian connection, since we
shall shortly see that — 442" /4 is the Newtonian potential.
See Misner, Thorne, and Wheeler!® and Ehlers® for dis-
cussions of this Newtonian spacetime.

At fourth order the initial-value equations give us

AP (r=0,x))= — 167V [, T*(r=0)], (4.16)
where we use the shorthand
—2 ; 1 .
VA== [ fohr =y 4.17)

For 75£0 we determine 44" from Eq. (4.3). Consider first
4. The integrals over S make no contribution to 44"
since 477 (r=0) is of compact spatial support.!*> The in-
tegral over C gives (since the integrand is of compact spa-
tial support)

2P(’7',,Vj) d3

e iy
S T(r,x))=4 aly) p Y, (4.18)
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which is —4 times the Newtonian potential of ,p. (This
confirms our earlier conclusion about the Christoffel sym-
bol.) For h™ the same reasoning leads to
(r,y)wi(r,y7)
2Py Iy s
all pJ r

T xd)=4 (4.19)

For h” the calculation is similar, but there are two contri-
butions to

WAy T=5pp' )+, pn¥
and
4t¥L =( 1/647)(4}7"".4"7"'1— %’7]’74’;”’,‘4}?",]‘ ) .

The first contribution is of compact support, and the
second satisfies the condition of Lemma 2(ii), since [using
Eq. (4.21) below]

4h_",f=4 f 2P, s T

*1d3y=—4 f (2p1vj),jr_1d3y

=—4 [2pwhyr—dly .
Outside some radius R, 442" falls off as  ~! while 42"
bounded by Ar ~3 from some constant 4. We therefore do
not need retardation in this, the Newtonian approxima-
tion.
We thus get

4Tij(79yk) +4t§{L(T’yk) 3
d’y

S, x*)=4
all yk r

(4.20)

The 7 component of the conservation law (3.9) also has
its first nonvanishing derivative at this order, which is

200790 14 G p(r ) wir,p))); =0 4.21)

Similarly, the i component is obtained from the above ex-
pression for 42AY:

G+ Gpw'w!) j+4pi—ph ™ /4=0.  (4.22)

This, in view of Egs. (4.18) and (4.21), is equivalent to
Euler’s equation. So all the equations of Newton’s theory
come out at fourth order in this approach. This is in con-
trast to the usual ordering, where the Newtonian approxi-
mation uses terms of second, third, and fourth order.'*

Our expressions for, say ,p and 4™, are the limits for
€—0 of the derivatives +3%0/d€* and (1/403°F ™ /3€*.
assumption (ii) of Sec. III thme limits exist. From the ex-
istence of the next order’s derivatives as well, which we es-
tablish below, we conclude that a solution {, p,lv',,,p] of
Newton’s equations is in an asymptotic approxzmatton to a
regular, asymptotically Newtonian sequence {T°P,h°P} in
the sense that when Egs. (4.18)—(4.22) are satisfied,

7 —
ATT— T
6 287 "k

. 1 — —r
AT = —— (T hr[k,x]_
6 gy W ks

AT ptaplwR o+ 5 0T,

. 1 — s —, . —rr i i
61\”:E—[l‘.“h"["k]4}17[,"1]_._44},"'( 4h1>k)k+

— TR R ’j)+4il-rk’l4’7[k,l]’7ij—

TR )+ apv 2o o p Rk 4+ 3 T+ 4p /2p)
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TTT—E42sz(€5),
T —e*,ppwi=0(€),
) 42’)1 o ) (4.23)
—e'Gp'p/+ipn)=0() ,

AT +16me (V2" 1(,p)=0(€%)

Jfor any fixed T, O<T<7’1 provided that at 7=0, p=€?,p,
p=¢*4p, and u'/u’=ep'.

At the next order, fifth order in ¢, the constraint equa-
tions (3.12) are easily shown to imply that sA#"=0 at
7=0, so the integrands for the initial-data integrals for
A" in Eq. (4.3) vanish at this order. The retarded-integral
part of A*" also vanishes at this order, for a variety of
reasons. It is related to the fourth-order integral by Eq.
(4.14) of Lemma 3. The three pieces are treated separate-
ly: The surface integral vanishes because 4A**=0 (r %),
the integral over 4A¥” . is zero because of the conservation
law 4A¥T .= —,A" ;, and in the remaining piece st{] van-
ishes. Therefore, we have

sh¥T=4 fa“ykr“lsT‘"(f,y")d3y .

The equations of motion follow from (3.9), and may be
taken to determine ;p and ,v’. But these functions deter-
mine ;7" as well, so a self-consistent solution for our zero

initial data for 3p and ,v’ is that they all vanish:
3p:2vi=5i1—‘”-=0 (4.24)

For sh' Y the situation is different, because there is no

conservation law to wipe out the integral over 4AY .. We
have therefore
shi=—a [ AV (1,y%)d% . (4.25)

We can ignore the retardation here because 4A¥ satisfies
the conditions of Lemma 2(ii), essentially because 42"
does, as we showed earlier. So at %—PN order there is
one nonzero contribution, which is a function only of 7
and which turns out to contribute to radiation reaction.
The existence of all the limits at this order guarantees the
asymptotic nature of the Newtonian approximation.

At €® order, where the post-Newtonian approximation
turns up, we obtain the following metric:

A (r,x*)=4 f AP,y —1d%y

+2 [ WA (r,y0r diy (4.26)

The first term is obvious; the second contains retardation
effects from fourth order. The integrals in (4.26) are not
retarded, and there are no contributions from the initial-
data integrals in (4.3) at this order (paper II).

We know 4A¥Y from the Newtonian step: 4A™=,p,
AT =pv", JAT=;pwwi+4pn+4{L [see after Eq.
(4.19) above]. The new source terms are

4.27)

% 4;77‘1"("4;1_Ik lk,j)+_;_ 4}7w,(i6};|"!,j)

TR P B g B )

+apw'w/+2,2pw %0 6 pnU 4o pw v (wEg 4+ 5 sh 4D /op)+ + ap sh Y .
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Note that to compute ¢A”, which will enter the first post-
Newtonian equation of motion, one needs to compute ¢h "
using Eq. (4.26) with ¢A™" as source. This happens at each
order: The equations to be solved simultaneously deter-
mine the motions and fields. The dynamical equations are
just

AT r+6AT =0, A™ +6AY ;=0 (4.28)

They determine the new variables at this order: 4p, 0%,
and associated fields. Apart from the explicit separation
of p into its various orders ,p, 4p, etc., and similarly for v*
and p, these equations are equivalent to those in Kerlick.!°

In Eq. (4.26) we neglected retardation, but the terms in-
volving A7 in ¢AY above and many of the terms in 4AY .
do not satisfy condition (ii) of Lemma 2. It turns out that
retardation can be neglected anyway, but we have reserved
a discussion of this point to paper II, where similar terms
at higher orders will be examined.

Again, these equations govern the €é—0 limits of the
various fields, and as we assume that these equations are
well-posed initial-value equations, for which we have here
given the initial data ,p=30'=h"Y=0, it follows that these
limits exist. It is easy to check also that the derivatives at
the next order exist as well. Equations (4.26)—(4.28) con-
stitute the first post-Newtonian corrections. Taken together
with Eq. (4.25) and the Newtonian equations, it gives an
asymptotic approximation of order € to the regular, asymp-
totically Newtonian sequence:

R (r,x),e)=€e* i ™ (1, x)) + b h (1, x)) + O(€7) ,
etc.
This completes the proof of our theorem.

V. DISCUSSION

We have shown that the Newtonian and post-
Newtonian approximations derived by previous authors in
a formal iteration on € (or on ¢ ') are in fact derivatives
with respect to € of a sequence of fully relativistic solu-
tions, and therefore asymptotic approximations to the se-
quence. This proof may be extended to higher orders in a
straightforward way. At each step one should, following
Kerlick,'®!! “reduce” the equations by using information
about lower-order terms from previous steps. We did this,
for example, twice at order €*: once when we used the
fourth-order conservation law 4A*Y, to eliminate some
terms and once when we showed that retardation can be
neglected in (4.25). Up to order €, the resulting equations
are essentially the same®* as one obtains by the formal
slow-motion iteration on €, but after that point paper II
will show that the formal iterates no longer give the actual
derivatives of the relativistic solution, because of the
above-mentioned retardation problem. Carried to high
enough order, our scheme shows that the asymptotic ap-
proximation must contain terms of the type €"lne, which
were also found by Anderson et al?® in the matched-
asymptotic expansion approach. The formal slow-motion
iteration assumes that all terms in the approximation will
be powers of €, so at some point it inevitably finds loga-
rithmically divergent coefficients of these powers.
Kerlick’s logarithmic divergences become, in our ap-
proach, merely finite coefficients of the functions €"ln€ in
the asymptotic approximation.

It follows that the approximations generated by Ker-
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lick,'®!! Anderson and Decanio,!* and Chandrasekhar
et al?>~* are also asymptotic, provided they are treated as
Kerlick treats them. But here one must be cautious, since
none of these authors separates out different orders in p, p,
and v’. Therefore, there are two interpretations one can
put on their formalisms. One is to say that, at post-
Newtonian order, say, the formal function p is to be iden-
tified with €*,p+€*,p, so that Kerlick’s function
U= f pr"ld 3y, which looks like the Newtonian potential,
is actually more complex. (One could in fact be less char-
itable and take p to be the full p with all orders involved,
in which case even the older definition of the Newtonian
approximation contains terms that the present formulation
assigns to higher orders. It would still be asymptotic, of
course.) The second interpretation is perhaps closer to the
view the previous authors had, though they did not make
it explicit. That is to ignore the relativistic sequence and
to regard the various approximations as terms in a power
series in € (or ¢ ') which one hopes converges to a particu-
lar relativistic solution for e=1, whose density is p. Then
p has no € dependence, but at the same time the sequence
of metrics to which the various approximate A*"’s is
asymptotic is not a sequence of solutions of Einstein’s
equations except at e=1. This view is unsatisfactory, not
least of all because the remainder terms, which one in
principle wants to know in order to judge one’s accuracy,
are not the differences between the approximations and
exact solutions, but rather between the approximations
and an artificial sequence, only one of whose members is a
solution.

It is important to note that the limits €é—0 and 7—0 in
our sequence do not necessarily commute (J. Ehlers,
private communication). In this paper we have always
taken € to zero before 7, thereby showing that the post-
Newtonian hierarchy is asymptotic at fixed 7>0. The
only place we set 7=0 is in the surface integrals at £ =0 in
Kirchhoff’s formula, which is used for €s£0. In fact, for
certain functions, such as, 42" the limits commute, but
for 44" they do not. This is because for our initial data
some functions that are nonzero for large ¢ become zero as
t decreases into the domain of dependence of the vacuum
region of the initial hypersurface. This does not affect the
asymptotic convergence of the post-Newtonian equations
for 7> 0, since this region shrinks to zero in 7 time.

Is our approach to the problem unique? Certainly not.
There are many ways one can vary our definitions and ex-
pect a satisfactory result. It may of course be possible to
abandon the initial-value viewpoint in favor of some
asymptotic wave condition, but this is not clear. But
within the initial-value approach many variants are possi-
ble.

(1) The coordinate maps involved (charts ¢,x/ and the
definition 7=e€?) are unique (modulo Lorentz transforma-
tions) only in the é—0 limit, where we have flat space and
a Lorentz coordinate system. Any variations that vanish
in this limit will turn up as changes of gauge in the vari-
ous orders of approximation.

(2) There is nothing unique about €. If we defined
another parameter =€+ €2, the the u Newtonian approx-
imation would be the same as the ¢ Newtonian one, but
higher-order corrections would differ in the two schemes.
There can be no unique definition of a post-Newtonian
correction unless the Newtonian quantity vanishes. (This
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was emphasized in another context by Stewart and Walk-
er.?®) The full approximation (Newtonian plus. post-
Newtonian) is, of course, invariant.

(3) Our choice of initial data was convenient but not
necessary. We could also have allowed more freedom in
hY, as paper II will discuss.

Such variants deserve more study, because the present
definition can lead to the following curious circumstance.
Suppose we wish to approximate a relativistic neutron star
in small-amplitude nonradial pulsation by a Newtonian
one, whose pulsations are easier to study. We must fit the
relativistic solution into a sequence, each member of
which at £ =0 has the same (scaled) density distribution.
But as €—0 the initial density distribution becomes far-
ther and farther from an equilibrium from that €, so that
time dependence of €1 solutions may be dominated by
this spherical disequilibrium, rather than by the small
nonradial pulsation. The usefulness of the Newtonian ap-
proximation is not clear in this circumstance. This “para-
dox” arises because, although for general initial data the
velocities that result will be of order (typical
radius)/(dynamical time), and therefore scale with €, in
this particular example there is a cancellation of gravity
and pressure for one member of the sequence which allows
it to have unusually small velocities. This condition of
equilibrium does not scale with the initial data for all or-
ders in e. This question is important in view of the
demonstration by Balbinski and Schutz?’ that the quadru-
pole radiation-reaction formula may not estimate damping
times of nonradially pulsating neutron stars well.

A related question is whether the post-Newtonian
hierarchy can be applied to the binary pulsar, which is
generally regarded as a test of the radiation-reaction pre-
dictions of general relativity.® Paper II will discuss this in
detail, but the matter of principle which we raise here is
the strong internal gravity of these stars. We subscribe to
what seems to be the general view, that because of the
equivalence principle the internal structure of the stars is
irrelevant to the gravitational radiation emitted by their
orbital motion, which is governed by weak gravitational
fields.?® But only a detailed examination of the remainder
term in the asymptotic expansion can answer the question
within this framework. The difficulty of such a task may
be enormous because the remainder term involves the rela-
tivistic solutions for €540, not just their e=0 limits.
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APPENDIX: NEGLECTING RETARDATION

Lemma 2 gives a sufficient condition for neglecting re-
tardation, but it still proves possible to neglect retardation
when condition (ii) of Lemma 2 does not apply. Here we
shall show how this can happen. Equation (4.9) can be
written as

2371

I(r,x7,0)= lim fﬁe f flr—rxi4+rmi,0)drdQ
’ ’ e—’o 0 41r > ’ n °

(A1)

As in Lemma 2 we suppress the dependence of f on x7
and n’ and write

flr—er,xi+rmi 0)=h(r—err) .
Then Eq. (4.11) becomes
f/eh d ‘r/eh
fo (r—er,r)dr = fo (r,r)dr

0 0 ’

We can therefore identify the “instantaneous” and “retar-
dation” parts of I, I;, and I,, where

T/€
L= [" h(zrnar, (A3)

T/€ er
I,= fo fo h (r—mn,rddndr

T/
=e [ rh (r—ner)dr, O<mo<er (A4)

and where we have used the mean-value theorem to reduce
I,, and the angular integration is understood.

We conjecture that |I,/I; | —0 as €e—0 if I, exists in
the limit. This enables us to neglect retardation. We have
no proof of this (one difficulty being the dependence of 1,
on € and r), but offer the following examples to show that
it is likely to be true for most cases.

Clearly, if the integral in (A4) exists as €é—0, then the
factor of € in front of it makes I, vanish, and retardation
is negligible. This happens under condition (ii) of Lemma
2.

Suppose, however, that the radial integral in I, diverges
but I, remains finite. This will happen if, for example,

|rh (T,r)| <4,

h(r,r)=N(1)/r+0(r~?%) asr—o , (AS)

h(r) is regular at r =0,

where A is a constant and N(7) is an arbitrary bounded
function of 7. The second condition is only asymptotic.
Then we have for sufficiently small €

I;=N(m)In(1/€)+0(€%, |I,| <4 . (A6)

In this case |I,/I;| —0 so we can still neglect retarda-
tion. It is true that I; diverges, which would mean that
the sequence of solutions is not differentiable with respect
to € at the order at e=0. But this does not prevent one
from developing asymptotic approximations near €=0:
sine Ine is not differentiable at e=0 but €lne is asymptotic
to it.
If we consider more divergent functions, like
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| rh (7,r)| <Ar,
h(r,r)=N(1)+0(r"1) asr—ow , (A7)
h(r,r) regular at r =0 .

then we have
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I;=7N(7)/e+O0(lne), |I,| <AT*/2€ . (A8)

In this case I, is not negligible next to I;, and it is diver-
gent. This happens as well if we take higher powers of
in (A7). It seems likely that if I; diverge then I,/I,
remain finite.
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