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The canonical version of the vacuum Einstein field equations formulated ten 

years ago by Arnowitt, Deser, and Misner (AD~) [~has stimulated several attempts 

to quantize certain cosmological models, most notably ~isner's so-called ~[ixmaster 

Universe [2] . Some researchers have begun recently to extend these methods to 

non-vacuum spacetlmes; for examplej Nutku earlier at this conference described the 

canonical theory of a scalar field in Schwarzschild spacetime. The purpose of this 

talk is to generalize the ADaM field equations to include an arbitrary stress- 

energy tensor. This is not a "first step" toward a canonical formulation of the 

full non-vacuum field equations; rather~ it is simply a possible starting point. 

Essentially, the AD~I field equations are a linear combination of Einstein's 

GU~ = 0 equations that is particularly well-suited to a "three-plus-one split" of 

spacetlme, i.e.~ a division of spacetime into three-dimensional spacelike sections 

labelled by the parameter time. The metric of each section is the spacelike part 

of the metric for all of spacetime: 

4 
giJ ~ gi~ " (la) 

(Superscript "4" denotes quantities referred to the full four-dlmensional spacetime, 

while no superscript implies three-dimenslonal quantities. Latin indices run from 
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1 to 3, Greek from 0 to 3. Signature is - 2.) ADaM replace the remaining four 

metric components - which give information on how one hypersurface fits into the 

next 3 - with: a three-scalar 

N E (- 4gOO)-½ (ib) 

and a covariant three-vector 

4 
Ni - goi " (ic) 

The ADaM field equations are derived from the usual variational principle, 

I -- ~4R( - Ag)~ d 4x = 0 . (2) 

Were one to use {4g~9} as the set of independent variables, one would obtain 

G = 0 from Eq. (2) [4] . Using the ADaM variables {N~Ni,gij~, on the other 

hand, gives the ADaM equations. 

To obtain the non-vacuum equations, let L be the Lagrangian for the non- 

gravitational fields. Then Eq. (2) generalizes to 

4 ½ 4 x = I = g (4R + 2 K L)(- g) d 0 . (3) 

Using {4g~} as the variables gives [5] 

G = < T , (4) 

where 

, ~i. Z I( - .4 ~." ] • (5) 

The non-vacuum ADaM equations follow from mq. (3) if one uses the set ~a 8 } 

of ADaM variables, defined by 

aoo ~ (_ 4gOO)-½; a . ~ 4 4 4 
oi goi; aio ~ gio ; aij E gij ' (6) 

4 It is convenient in what follows to ignore the symmetry of a and 
e8 g~' 

For instance, variations of aoi will be taken while holding alo fixed. The final 
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results will, of course, be symmetrized. 

Because the transformation from {4g~} to {aa~ } is nonsingular and does 

not involve derivatives of 4gp~ or explicit dependence upon the spacetime 

coordinates i the equations obtained from varying aa6 will be the linear combination 

0 = ~a~ ~a~  ~ (71 

4 ~v 
of the equations obtained from varying g . We therefore need only find 

~ /~;a~ P in which it is understood that the derivative is taken holding all 

other a~ fixed, This is the key to the difference between Einstein and AD~f: it 

40I / .  
means, for examplep that ) ~ /d~ol is not the same as ) 4gOl - l~4gol = 

4 oo 4 II {4gOO, 4 4g 4gij -- g g ~ because in the first case one holds go~ ' ~ ' 

fixed while in the second case one holds {4goo , 4go~ , 4g~ , 4gij ] fixed. 

Bearing this in mindj we write do~cn the equations of transformation: 

4g~ = - 4gpi 4gUJ + 4gO~ 4gO~ N i NJ ; (8a) 

aij 

4 pv = _ 4gOp 4g~i - 4gO~ 4gOV N i ; (8b) 

aoi 

4g~ = - 4gUi 4gVO _ 4gO~ 4gOU N i ; (8c) 

aio 

45~ = 2 4gOp 4gO~ N . (8d) 

aoo 

St is straightforward to use Eqs. (7) and (8) to find the non-vacuum ADair 

field equations. (Here W ij is the momentum canonical to gij 0 defined by Eq. (9c) 

below. Indices on it and N i are raised and lowered by the three-dimenslonal 

metric, covariant differentiation with respect to which is denoted by a slash, 

"I".) 

- g½[3R + g-l(½~2 _~iJ~ij)3 = - 2KN2g~OO ; (9a) 

- W  i j  = K Ng½(T °i + NiT °°) ; (9b) 
JJ 



~t ~ ij 
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~tgij = 2Ng 2(Tij - ½gij'~ ) + Nil j + Nj [i ; (9c) 

= . Ng½(3RiJ _ ½giJ 3R) + ½Ng-½giJ~mn _ ½~ 2) 
mn 

-2Ng-½0ri% j - ½~IT ij) + g½(N lij _ giJNlmim ) 

+ (iJNlm) 1TM - N ilm~mj - N~im.~mi 

+ K Ng½(T ij - T°°NiN j) . (9d) 

I wish to remark on a few features of these equations, First, as we would 

expect, they do not contain L, since they are simply a linear combination of Eqs. 

(4). This means they can be used even if a Lagrangian is not available* Second, 

Eqs. (9) are instructive in understanding even the AD~I vacuum equations, since 

the particular linear combination used by ADaM is manifest. And third, the 

equations contain T uV, the contravariant components of the four-dimensional 

stress-energy tensor. In many situations (e.g., scalar field) one might feel that 

the covariant components, TUv , are physically more meaningful in a 3 + i split, 

in which case one can rewrite the equations as follows. 

4 o~ the three-hypersurface, n = - N g 

momentum density for the matterl 

, one can define a 

Using the unit normal to 

"preferred" energy and 

4 T 
,~ , (lOa) 

(10b) 

Then the stress tensor in the hypersurface is 

k = 4 T i k  . 

In terms of these quantities, the relevant parts of Eqs. (9) become 

(lOc) 
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- 2KN2g½T °° = - 2Kg~ ; (lla) 

KNg½(T °i + NiT °°) = - K g½~i ; (lib) 

KNg½(T ij - NiNJT °°) = Kg½(N~ ij + Ni~ j + NJ~ i) , (llc) 

where all indices on ~D and ~ are raised by the three-dimensional metric. 

Steps toward a full canonical theory could well begin here. One method 

would be to specify in advance the motion of the matter in terms of the metric 

tensor (e.g., homogeneous cosmology), and then to solve the constraint Eqs. (9a,b) 

by analogy with vacuum AD~I. A more general approach must include a canonical 

formulation for the fields present in spacetime. In any case, the basic 

gravitational constraints and dynamical equations will be Eqs. (9). 
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