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Summary. We study the normal modes and stability of a sequence of perfect
fluid discs in the Bardeen approximation, which enables systems in which
rotation, pressure and self-gravitation are all of comparable importance to be
studied with relative ease. The present paper treats uniformly rotating incom-
pressible discs analytically as a prelude to the study of compressible poly-
tropic discs in subsequent papers. The normal-mode eigenfunctions are found
analytically, and the equation for the dynamical eigenfrequencies reduces to a
cubic polynomial. The effects of gravitational radiation and viscosity on the
spectrum are also studied, viscosity in some detail in order to show how to
determine the left-eigenfunctions. The present sequence of discs may be
regarded as an approximation to Maclaurin spheroids. In their structure the
approximation leaves much to be desired, but in the onset of instability as a
function of the Ostriker parameter 7/|W|, agreement is remarkably good.

1 Introduction

Our present understanding of the perturbations and stability of rotating stellar models is
rudimentary compared to that for non-rotating models (see Ledoux 1974 for a review of the
non-rotating case). There has recently been considerable work on slowly-rotating models
(e.g. Lebovitz 1970; Hansen, Cox & Carroll 1978; Berthomieu ez al. 1978), in which rota-
tional corrections to the star’s structure are unimportant. At the other extreme, infinitesimally
thin rapidly rotating fluid discs have been studied in some detail, particularly as simple
models for galaxies (Hunter 1963, 1965), but these all have instabilities. The intermediate
case, where rotational and pressure support are comparable, has remained largely unexplored.
From the point of view of stability theory, this is the most interesting case, because it
embraces the models which are marginally stable, secularly and dynamically. The consider-
able numerical difficulties of constructing such models and calculating their normal modes
have only recently begun to be attacked. As Dyson & Schutz (1979) have emphasized,
general stability criteria are of no help in pinpointing the important dynamical and secular
instability points along sequences of differentially rotating perfect fluids: only the calcula-
tion of the normal modes of such stars gives the necessary information. Against such a back-
ground, it is helpful to have a relatively tractable sequence of systems in which rotation and
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pressure are comparable and whose normal modes may be studied accurately without using
huge amounts of computer time. The Bardeen ‘warm’ discs (Bardeen 1975) providé such a
sequence. This and two subsequent papers (Schutz & Verdaguer 1983: Verdaguer 1983)
study these discs with a view toward arriving at an understanding of the general features of
 normal modes of differentially rotating, self-gravitating perfect fluids.

The Bardeen discs are described below and in Bardeen (1975). Briefly, they are approxi-
mate solutions to the equilibrium equations for rotating bodies, in which the body is
assumed to be extremely oblate and its structure is calculated only to first order in its polar
thickness. This is an accurate approximation for very rapid rotation, which has led to its use
as a model for investigating galactic spiral structure (Bardeen 1975, and in preparation).
When the pressure is increased (the disc ‘warmed up’) the approximation becomes less
realistic, but this does not diminish its usefulness for our purposes. The large pressure discs
are still systems in which rotation, pressure and self-gravitation are all comparable, and we
expect that their normal modes should exhibit most of the complicated behaviour of modes
of more realistic systems. The discs’ principal advantage is the simplicity of the numerical
calculations. Finding the normal modes of realistic stars requires solving a set of two-
dimensional partial differential equations, the third dimension — azimuth — being removed
by Fourier analysis on the axially symmetric unperturbed background. The Bardeen approxi-
mation assumes in addition that the vertical direction (perpendicular to the equatorial plane)
is always in equilibrium, and this reduces the normal mode problem to ordinary differential
equations, which are much easier to solve numerically than the partial differential equations.

Other sequences of discs with pressure have recently been studied: Takahara (1976,
1978), lye (1978) and Smith (1979). These authors investigated infinitesimally thin discs
with two-dimensional pressure, generally taken to be a polytropic function of the surface
density. These studies have mainly been interested in galactic structure and spiral density-
wave theory, for which the two-dimensional pressure is meant to approximate random stellar
motions. For studies of individual stars, the Bardeen discs are rather better approximations,
since they solve the vertical structure, including corrections to the gravitational field due to
the thickness. This leads to a somewhat different eigenfrequency equation, though of course
the qualitative features and much of the mathematics is the same.

We will accordingly concentrate in this series on the questions that arise naturally from
stellar stability theory and that were not studied in detail in previous papers, namely the
behaviour of modes in the dynamically stable part of the sequences, and in particular the
onset of secular and dynamical instability and, for differentially rotating discs, the nature of
the continuous spectrum.

In this paper we introduce our study by considering the one sequence of discs which can
be treated analytically: incompressible discs. This will guide us in interpreting the modes of
the n =2 polytropic discs (Schutz & Verdaguer 1983), and at the same time it permits us to
make a comparison with the corresponding exact models, the Maclaurin spheroids, to judge
the effect of the approximations on the various stability points.

2 The equilibrium discs

Following Bardeen (1975) we here briefly sketch the ‘warm disc approximation’ in its
simplest case, uniform density and rigid rotation. We begin by constructing an infinitesimally
thin disc (the ‘cold’ disc. which has zero pressure) and then compute the first corrections
when hydrodynamic pressure is taken into account.

The cold disc, supported entirely by its angular velocity, §2., satisfies the equations, in
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cylindrical coordinates (r, ¢, z),
Qir+ov./or=0, 2.1
Viv,=—41Gp=—4n1Gad(2), 2.2)

where o(r) is the surface density of the disc. The solution (Hunter 1963) is most conveniently
expressed in terms of the coordinate

n=(1 - **/R*)V?, | (2.3)
where R is the radius of the disc:
(m =228 (24)
o = n=0gn, .
n 2C on
1 2
Vc(n,z=0)=£QcR2(1+772), (2.5)
R 4Q2R3
M= 27rf ardr= . (2.6)
0 3')TG

By integrating (2.2) in z from —e to +¢€ and taking the limit € > O one finds that dv./dz is
discontinuous at the disc and has the limit from above

av
g—c(n, z=0=-27Go(n)= —2nGogn, 2.7
z

so that near the disc we have (except at n = 0, the rim of the disc)

2
[

ve(m, 2)=%Q§R2(1+n2)—4 nlz|+0(z?). (2.8)

The cold disc is the starting point for a family of discs of uniform density p and uniform
angular velocity £2,,, both of which change from one member of the family to another. The
family may be defined by requiring all its members to have the same surface density o(n) as
the cold disc (and therefore the same mass and radius). At any point the disc has
thickness #(n), found by

h
o(n)= f pdz =2ph(n), (2.9)
—h
h(n) = 2R (2.10)
1(n) yal :

The surface of the disc, |z|=4, is an ellipsoid. Since the density is finite everywhere, the
gravitational field and its first derivatives are continuous. By symmetry, the warm disc’s
gravitational field has the form

Vo (M, 2) = vy (n, 0) + A(m)z% + 0(z*),

where A4 is a function to be determined.
If h< R then we should expect |dv,,/dz|> |0y, /dn] except near n = 0. We therefore
approximate
aZ

Vszza—sz=—41er (lzl<h) (2.11)
z
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which implies

A=-27nGp,
or
vw(m, 2)=vy(m, 0) — 20Gpz* + 0(z). (2.12)

The equatorial value v, (n, 0) is determined by the boundary condition that vy, ~ 0 at
infinity. But, within the approximation (2.11), v, and v, are identical for |z|> h if

nG
vw (7, 0)=VC(TI,0)— —~02(77)- (2.13)
2p

[This is easily proved by showing that vy, (n, k) =v.(n, k) and dvy,/0z(n, h) = 0v./dz (n, h)
provided (2.13) holds.]

Thus (2.12) and (2.13) are the unique solution for v,, which vanishes at infinity. Again,
this argument relies on neglecting dv/dn (the plane—parallel assumption), so it will fail near
the rim n = 0. But it should give an accurate approximation elsewhere.

The equilibrium angular velocity of the warm disc, §2,,, can be found once we know the
pressure, which is determined by the condition that it must support the disc vertically. (We
are using isotropic hydrodynamic pressure, not the kinetic pressure of a collisionless gas.)
Vertical equilibrium demands, forz < A,

0p/dz = pdvy oz = —4nGp.
The boundary condition that p = 0 at z = h gives

p=2nGp*(h* - z%), (2.14)
1

p(n.z=0)=£ﬂ002(n). (2.15)
Then radial equilibrium gives (for z = 0)

Op/or — pdvy [or=prl, (2.16)
or

2 - 2 89(2: ‘n

Q2 =02 (.lﬂﬂ3Gp . (2.17)

A convenient parameter for describing this family of discs is the aspect ratio

_h(r=0) 9%

M R G (2.18)
in terms of which we have

QL =021 - 8u/n), (2.19)
Vo (1, z=0)=uc(n,z=0)—§—uQ§R2n2. (2.20)

It is not difficult to calculate that the ratio of kinetic to potential energy of such a disc is

T=—=-~ ] (2.21)
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Figure 1. Comparison of 2? and T/| W] for the discs and the Maclaurin spheroids of the same aspect ratio
[same eccentricity € =~/(1 — u2)]. Each curve is the ratio of the indicated quantity in the disc to that in
the Maclaurin sequence. The limiting values of g = 0 (cold disc) and u = 7/8 = 0.3927 (2, = 0) correspond
to eccentricities of 1 and 0.9197, respectively.

These formulae allow us to compare the equilibrium discs with their Maclaurin counter-
parts of the same aspect ratio. In Fig. 1 we plot two curves: (i) the ratio of 22, (equation
2.19) to the Maclaurin Q2 (Chandrasekhar 1969); and (ii) the ratio of 7/|W| for the discs
(equation 2.21) to T/|W| for the Maclaurins, given by

(T/‘wl)Maclaurin = (3/6‘2 —-2- 3\/(1 - 62)/6 sin”! e)/2.

The comparison shows that the discs are a good approximation to the Maclaurin spheroids of
the same shape only for small u, say O< u < 0.15. We shall see later that the instability
points of the two sequences occur at larger values of u, so one would not necessarily expect
any relation between them. Nevertheless, the values of 7/!W| for the marginally stable
members of each sequence turn out to be remarkably close. We will discuss the significance
of this coincidence later.

3 The normal mode equations

We can study perturbations of these discs within the same approximations by adding the
assumption that vertical equilibrium applies even to the perturbation. This should be good
provided the wavelength of the perturbation is large compared to 4. The equation of motion
for a first-order perturbation is

Sv+(v-V)ov+(6v-V)v — V=0 (3.1)
where the effective potential, 6 ves¢, comprises the gravitational and pressure effects:
Svess=8v — 8p/p. (3.2)

The assumption of vertical equilibrium means (i) that we can use equations (2.13) and
(2.15) to calculate the perturbed effective potential, e.g.

Svegs(m, z2=0)=8v.(n,z=0) — 2nGadalp (3.3)
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(the second term here contains equal contributions from the pressure and gravitational
field); and (ii) that the horizontal components of §v are independent of z, so that-we can
integrate equation (3.1) over z to get a dynamical equation involving only components
parallel to the equatorial plane. In fact, this yields equation (3.1) restricted to z = 0. This

. and the vertically integrated continuity equation

86 +V.(06v+véa)=0 (3.4)

form an independent system of equations for the functions of two variables §0(n, ¢) and
dv(n, ¢). The vertical dependence in the problem can in principle be reconstructed later, but
we shall not need to do so. From now on, all perturbed quantities will be interpreted as
functions of n and ¢ only.

Equations (3.1) and (3.4) must be solved under the boundary condition that p = 0 on the
surface. Since the surface must follow the fluid flow on the boundary, we have Dp/Dt
(8/3t +v-V) p =0 on the surface. The boundary condition is that the Lagrangian change in
Dp/Dt should also vanish at the surface. But since Dp/Dt = 0 everywhere in the unperturbed
configuration, its Eulerian and Lagrangian changes are equal, and we conclude that the
boundary condition for our problem is

8(Dp/DH)=0=(8p +8v-Vp +v-VEp),=0. (3.5)

We can use the continuity equation (3.4) to simplify this considerably, since by (2.15) we
have 6 p = nGodo. A straightforward calculation converts (3.5) into

=— [n(V-vé0 +aV-8V)],=,. (3.6)

Since V-v =0 in the unperturbed configuration, and since g =047, this boundary condition
will be satisfied if we only take V -5 v to be finite at the surface.

In order to solve our equations it will be convenient to introduce a general potential
representation for dv:

6v=—iVa — Ux(Be,), (3.7)

where a and § are arbitrary functions of 7 and ¢, and e, is the unit vertical vector. Any
vector field in the equatorial plane can be represented this way. Hunter (1963) showed that
for the cold disc the following expansions in associated Legendre polynomials led to
equations for the functions [a]? (¢), 87" (¢), v} (¢), ZT* ()] which completely decoupled for
different values of / and m:*

2] [ o (1)
8 w© o B ()
=p2 A m -
SV, R*Q, mzz_ . l='0 ch;n ') Py (M) exp (im@). (3-8)
ndo e vm)
| ] | 2GR ]

We only need ‘even’ orders in the expansion (the use of 2/ in the index for the associated
Legendre polynomials) because by inspection the equations are invariant if n > — n every-
where. Moreover, (3.8) automatically satisfies the boundary condition. One crucial relation

* Note that these are not spherical harmonic expansions; in particular m is not restricted by /. The com-
pleteness of the expansions follows from Fourier analysis in ¢ followed by the completeness of the
associated Legendre polynomials for functions of n.
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which makes the equations separate when (3.8) is used is

o =297 2] (39)
with

20+ 2m)' 2D
= ( Q2D (3.10)

24I+2m+1 [(l+m)! “]2'

(Our notation yJ” is slightly at variance with Hunter’s: he would call this vJ%, ,,.)

Since our equations differ from Hunter’s cold disc equations only in the replacement of
8V by 8vesr, and since (3.3) shows that this change is proportional to 780, our equations
also separate if we use the expansions (3.8), with (3.9) replaced by

vi* =2(y1" = 2u/m) TP, (3.11)
=2y (3.12)

where u is defined in equation (2.18).
The divergence and curl of (3.1) now yield, respectively,

af' +i(mQy o +2Qu, 87 —2Q. TP ZP) =0, (3.13)
BT + i(m S BT — 2Q4 ) =0, (3.14)
while the continuity equation gives

P+ imQy S+ 2Q.Clal +2m QL fM) =0, (3.15)
where we define

Cl'=QRI+m)(2l+m +1) —m?. (3.16)

Normal modes are solutions of (3.13—3.15) with the time-dependence exp (iw?). If we
define

A= (w+mQy)/Qe,  Q=Qy/Q=(1-8u/m)"? (3.17)
then we find the eigenvalue equation
AN +H4TPCT - QHON+8mQIry = 0. (3.18)

Equations (3.13-3.15) are valid for all (/, m), except that for / = 0 only the combination
ag' + B¢ is physically significant, as inspection of (3.7—3.8) shows. In this case, equation
(3.15) and the sum of (3.13) and (3.14) give the quadratic eigenvalue equation

A2 2QA+4mIm =0, (3.19)

This quadratic is a factor of (3.18) for / = 0: the extra root A = — 2§ of (3.18) is spurious.

We shall discuss the stability of the discs in the next section. First we look at the general
character of the spectrum of eigenfrequencies. If we fix attention on a fixed 2 # 0, then the
limit / > oo is the limit of short wavelength. In this limit,

1= Q@rly, Cr=4nR (3.20)

Then equation (3.18) becomes

A3 — (B2ulm)N —16muf/n = 0. 3.21
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This has two families of solutions,

A= £ (32u/m)V2 (3.22
and

CA= —%mﬂ/lz. (3.23)
The pattern speed (relative to the inertial frame) of a mode is o, = - w/m, and for these
families we have respectively
wp= £ Q.(32u/m)"2l/m (3.24)
and
wp= 2y (1+1/21?). (3.25)

The first family are the analogues in these discs of the p-modes of non-rotating com-
pressible stars. Although the discs are incompressible, their two-dimensional modes behave
like compressible modes because the disc can change its thickness. Since the wavelength of
these waves is roughly R/, the wave speed is

cs= RQ.(32u/mm?)V2, (3.26)

This is independent of wavelength, as it is for p-aves.

The second family forms a sequence of pat:2rn speeds which approaches £, monotonic-
ally from above. These can be called Rossby modes, by analogy with the Rossby waves
described by Greenspan (1968, p. 89).

4 Stability of the discs

Dynamical stability is assured if the roots of (3.18) are all real. The marginal stability point
occurs when (3.18) has a double root, and this i=plies

4(Q% - CP Y — 27(mT Q)2 = 0. (4.1)

This is a cubic equation for u. As we should exoect from Hunter (1965), there are unstable
modes for each m for sufficiently small u. T2 eigenvalue which is hardest to stabilize is
m =2, 1=0: this is the familiar ‘bar mode’, ar.: s stable for u > n/106. This is then the point
of marginal dynamical stability.

As Friedman & Schutz (1978) have shown. =2 onset of secular instability to viscosity or
gravitational radiation occurs when a mode -:s. respectively, A =0 or w=0. As in the
Maclaurin spheroids, the bar mode is the harde: 1o stabilize against viscosity and the easiest
to stabilize against gravitationzl radiation. The:: transitional points both occur in the model
with u =3n/32. We have performed detailed ::culations of the etfects of both kinds of
dissipation in these discs, and -he results bear - the general picture presented by Friedman
& Schutz (1978). Both require a knowledge :7 the left eigentunctions associated with
eigenfrequencies as well as the right eigenfunc:.-as discussed above. This point is treated in
the Appendix, and applied to viscosity. The g-:+<tational radiation calculation is analogous
and will not be commented on “urther.

The instability points are :ummarized in ~:le 1. All of them occur at values of the
eccentricity too small for the :Ziscs to be a goc: :oproximation to the Maclaurins. Neverthe-
less the values of 7/|W/| at wi-ch all the insta~_-ies occur are remarkably similar in the two
sequences.
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Table 1. Critical values of the equilibria at the points of instability of the two sequences: aspect
ratio u, eccentricity e, ratio of kinetic to potential energy 7/1W| and angular velocity in units of

4nGp.

m e T/IWI QY4nGp

Dynamical instability points:
m=21=0disc 0.1964 0.98053 0.2857 0.0771
First Maclaurin* 0.3033 0.95289 0.2738 0.1101
m =3, 1= 0 disc 0.1719 0.98512 0.3157 0.0759
Second Maclaurint 0.2552 0.9669 0.3029 0.1049
m=0,1=2disc 0.0399 0.99920 0.4609 0.0282
m=0,1=3disc 0.0435 0.99905 0.4573 0.0304
Axisymmetric Maclaurin 0.0465 0.99892 0.4574 0.0324
Secular instability points:

m=2 1= 0 disc 0.2945 0.95564 0.1538 0.0578
Maclaurin bar mode* 0.5827 0.81267 0.1375 0.0936
Notes

* Chandrasekhar (1969).

1 The third-harmonic instability, Chandrasekhar & Lebovitz (1963).

t The fourth-harmonic instability, Bardeen (1971). This corresponds to our m =0, [ = 2 eigen-
function. To our knowledge the axisymmetric Maclaurin sixth-harmonic instability has not been
calculated. It corresponds to our m = 0, / = 3 mode, which is harder to stabilize thanm =0,7/= 2.

This coincidence suggests that we can adopt the following point of view on the Bardeen
sequences. Instead of being discouraged by Fig. (1), that the Bardeen approximation is not a
good approximation to the Maclaurins when systems of the same eccentricity are compared,
we can instead regard the Bardeen discs as an independent family of rotating systems, with a
certain planar pressure which produces an effective potential given by equation (3.3). Along
the sequence of these self-consistent dynamical systems the changes of stability occur in the
same fashion as along the Maclaurin sequence: first the m =2 secular, then the m =2
dynamical, etc. And when the two sequences are compared according to the Ostriker
parameter T/|W|, the places where these points of marginal stability occur are remarkably
similar.

This point of view suggests that the polytropic Bardeen discs studied in the following
paper, Schutz & Verdaguer (1982), will in fact be good guides to the qualitative and (in
T/|W|) quantitative behaviour of stability along more realistic sequences.
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Appendix: Left-eigenvectors and the effect of viscosity

If we take the point of view that viscosity is small and will therefore make a small change in
the eigenfrequencies, then it is possible to find this change in terms of the inviscid eigen-
functions. This is of course familiar to students of quantum mechanics, but in our case a
complication is that the inviscid eigenvalue problem is non-selfadjoint. As was pointed out in
an earlier paper (Schutz 1980) we must in this case solve the adjoint of the inviscid system
of equations, or in other words find their left-eigenvectors. There are two possible approaches
to this. Since our Legendre-polynomial expansions have reduced our differential equations
to algebraic ones (equations 3.13—3.15), we could similarly cast the viscid equations in
matrix form and use the left-eigenvectors of the inviscid matrix to find the frequency change
to first order. This method depends, however, on the separation in Legendre polynomials
peculiar to our present family of discs. Instead, we shall adopt a method which generalizes to
any uniformly rotating fluid, compressible or not. This is to find an operator S which
transforms a right-eigenfunction directly into a left-eigenfunction. One of us (Schutz 1980)
discovered such a transformation in the Lagrangian representation of the perturbation
equations, and in this appendix we shall find its Eulerian equivalent and use it to find the
viscous eigenfrequencies.

A.l THE ADJOINT EQUATIONS

Equations (3.1) and (3.4), the vertically integrated inviscid equations. can be written in the
eigenvalue form

Zerk6Uk+Vj6<I>[8a]=i7\8vj, (A.1)

— Q! Vj(a8v) = iNSo (A.2)
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where 6 @ is a self-adjoint operator on 60 which gives ovese /€2,

5®[50] (r) = — iLQG o80(r) + Fi(i)’_j_x_

c C

(A.3)

lt—r'|
where A is defined in equation (3.17), and where ey is the anti-symmetric tensor whose
Cartesian components are €y, =1, €y5 = — 1, €45 =€yy = 0. We define a Hilbert space for this
problem to be the vector space whose elements are pairs (8 v, 8 0) and whose inner product
between two pairs y; = (6v,, 80,) and y,=(6v,, §0,) is

Wy, Y= fo& vi-v,d?ix + f&o’f&ozdzx, (A.4)

where @ * denotes complex conjugation. (The inner product we choose here is to a large
extent arbitrary: it does not even have consistent dimensions. The only role it plays in the
end is to provide a topology for the Hilbert space.) If we summarize the equations (A.1—A.2)
as L [y] =i\y, then the adjoint operator L* is defined by demanding that

<y1,L[y2])=<L*[yl],J’2) (AS)

for all y, and y, obeying suitable boundary and differentiability conditions. This operator
may be found by integrating by parts. If L has an eigenvalue /A then L* has an eigenvalue
— iX*, and if we denote the eigenvector by y = (p, ) then the eigenequation L* [y] =—i\*y
becomes

—2Qep’ + Q' Vg = — iN*py (A.6)
—8®[V;(op’)] = — ir*q. (A7)

The boundary condition is that p* and g be finite. The pair (p, ¢), or more properly its
adjoint, is called the left-eigenvector of L for the eigenvalue A.

A.2 TRANSFORMATION OF RIGHT-EIGENVECTORS TO LEFT-EIGENVECTORS

The adjoint equations could be solved in a manner analogous to that used for the original
system, but it is quicker and more instructive to obtain the solution directly from the
original eigensolution. Schutz (1980) has shown that the Lagrangian form of the perturba-
tion equations has a remarkable symmetry operator which, when applied to a right-
eigenvector, produces the left-eigenvector for the same eigenvalue. It is not hard to discover
the corresponding transformation here. Let S be an operator which combines complex
conjugations with ¢-reflection:

Sév=(8v", —&u®%), S?=1. (A.8)

If 6 v has axial eigenvalue m, so does S&v. The operator S commutes with V and with metric
operations, such as raising and lowering indices, but it anti-commutes with €,; (i.e. with the
curl operator) because ¢-reflection changes the handedness of the coordinates. These facts
enable one to prove that if (§v, 80) is a right-eigensolution of the original equations with
eigenvalue A, then the associated eigensolution of equation (A.6) and (A.7) is

p=Sov, ¢q=0.5P[Ss0]. (A.9)

The left-eigensolution is the adjoint of this.
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A3 THE CHANGE IN THE EIGENFREQUENCY

The Navier—Stokes equation for incompressible viscous flow can be integrated vertically to
give the following eigenvalue problem

2Qej 505 + V8 @ [80] — (092 Vi 1K = NS, (A.10)
— Q! V;(abvl) = iNdo, (A.11)

where the viscous stress tensor is (for incompressible flow)

tkj=—0v(Vk60j +vj60k): (A12)

v being the kinematic viscosity. We may write the viscid system as:

Lyl +L'[y] =iry, (A.13)

generalizing our earlier notation. If we now take the inner product of this with our left-
eigenvector for the eigenvalue A, which we call y;, then we have

DL LIy, L' [y =iXyy, . ' (A.14)
The first term, by virtue of equation (A.5), becomes
DL LIyD=L*[yL], W ={—iNyr, y)= iAoy, ). (A.15)

So far we have made no approximations. Now we assume that X is close to A, and y close to
YR, the right-eigenvector for X,. Then the dominant terms in (A.19) give

A—No=— iy, L' [yrDDKyL, yr)- (A.16)

This is the standard result. We have all we need to evaluate these integrals: yr from
equation (A.9), yr in Section 3. After an integration by parts, the numerator of (A.16)
becomes

1 . .
(L, L'[yr])= - 2? fvo [V (S8vj)* + V;(Su)*] x (VX80 + VisvK)d 2. (A.17)

[t is useful to note that if X is real, then applying the operator S to equation (A.1-A.2)
shows that we can choose the complex phase of v’ and 8¢ so that Ssvf = — 8ui and
§80 =§0. For such modes, equation (A.17) is manifestly positive-definite.

The denominator of (A.16) is

(YL YR)= f{o(S&vi)*Svj + Q808D [S60]} d2x. (A.18)
Again when A is real, equations (A.1—A.2) imply

(YL, YR) = — 2—;\9 foejk(tsvj)*ﬁvkdzx. (A.19)
This is real but of indefinite sign. The place where it changes sign locates the onset of viscous

instability. By using the representation (3.7) of the velocity, plus the inviscid eigenequations,
one can cast this in the form (again for real A)

RSQY N”‘) A2 — 492) [m(\2 +4Q7) +4C T Q]

L= =7y A.20)
YLIRIE\ TN+ 2m)? (= (
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where

2 (21 +2m)!
[+2m+1 (2!
Thus (yp, yr) changes sign as A passes through zero, i.e. the secular instability sets in
through a mode whose frequency in the rotating frame is zero, as expected. Moreover, the
zero of {yy, yr) at A =0 does not cause A —}, to diverge in equation (A.16), because
equations (3.13-3.15) show that a and § also vanish there, so that (A.17) goes to zero
quadratically in A. The points of marginal secular stability to viscosity, A = 0, are the models
in which I'}” = 0, or from equation (3.11)

NP = f [PEis (P imdo = (A1)

m

M=
2

For the bar mode, m =2 and /=0, this model is also marginally stable to gravitational
radiation, just as in the Maclaurins.
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