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Summary. We study in detail the normal modes of a sequence of differen-
tially rotating, inviscid polytropic fluid discs in the Bardeen approximation.
The equilibrium isentropic self-gravitating discs have comparable pressure and
rotational support. At the low-angular-momentum end of the sequence, discs
are secularly and dynamically stable; at the high end they possess two
dynamically and two extra secularly unstable modes. We identify two types
of modes, called p- and r-modes, for which we introduce a classification
scheme based upon a number of criteria, including winding numbers in phase
diagrams. Most of the r-modes have corotation points and seem to be finite-
dimensional approximations to a continuous spectrum, caused by differential
rotation, but we also observe p-modes with corotation points which seem to
remain discrete modes even inside the continuous spectrum. In fact,
dynamical instability sets in through such modes, in a disc in which the ratio
7 of kinetic to potential energy is 0.27. Secular instability to gravitational
radiation sets in via a zero-frequency p-mode when 7 =0.1221. The r-modes
are never unstable. Apart from obvious effects of differential rotation, the
qualitative behaviour of eigenfrequencies along this sequence bears a striking
resemblance to that along the Maclaurin sequence of incompressible fluids.
In an appendix we describe an inexpensive test of the numerical accuracy of

eigenfrequencies,

1 Introduction

This is the second paper in a series which studies the normal modes of Bardeen discs in order
to gain insight into the general problem of the stability and normal modes of differentially
rotating highly oblate stars. OQur motivation for studying these discs was explained in the
first paper in the series, Schutz & Bowen (1983, Paper I), which studied the simplest discs
analytically. In this paper we study a sequence of discs with polytropic index n =2 and
considerable differential rotation. We find a whole range of complicated and interesting
behaviour of the eigenfrequencies along the sequence: the apparent existence of a

* On leave from Universitat Autonoma de Barcelona, Spain.
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continuous spectrum dominated by Rossby-type modes; the passage of low-order Rossby
modes from the discrete spectrum into the continuous one as the differential -rotation
increases; the presence of low-order p-type discrete-frequency modes in the middle of the
continuous spectrum in the more rapidly rotating discs; the onset of dynamical instability
in the fundamental bar mode at a point where its frequency is inside the continuous
spectrum; and the onset of the gravitational-radiation secular instability for the bar mode
through a zero-frequency mode. We discuss the classification of modes and propose a
nomenclature for them. We also investigate the possibility of using phase diagrams to
classify modes, as is done for non-rotating stars. A more detailed investigation of the
continuous spectrum and analytic calculations aimed at understanding these modes will be
presented in a subsequent paper (Verdaguer 1983). For references to related work on
polytropic discs, see Paper I.

2 Setting up the problem

The construction of the unperturbed discs and the equations governing their perturbations
are described by Bardeen (1975). The idea is to calculate the stucture of a highly oblate
rotating polytrope only to first order in its polar thickness. This reduces the equilibrium
equation from two dimensions down to one. In cylindrical coordinates (r, ¢, z) and for an
n =2 polytrope whose equation of state is

p=Kp*?, (1)

the equilibrium equation is
d

Qr=——[v.—ko™], (2)
ar

where o is the surface density of the disc (integral of its volume density p over z), §2 is its
angular velocity, v, is the gravitational potential produced by an infinitesimally thin disc,
(a ‘cold’ disc) of the same surface density,

V%, =4n1Go(r)6(2), 3)

and « is a parameter which governs the polar thickness of the disc. The final term in (2)is
an effective potential which combines two effects: the contribution of pressure and the
weakening of the gravitational field relative to v, because the mass is not all concentrated in
the plane z = 0. Both effects depend linearly on the parameter x, defined as

k =(BWrGKH B, 1/3), (4)

where B(n,m) is the beta function and K parametrizes the polytropic equation of state (1).
Clearly, this measures the ‘warmth’ of the disc, and our numerical sequence of discs is
constructed by varying x while keeping o(r) fixed. Fig. 1 shows this universal surface
density. For displaying our results, however, we shall replace k by the more usual parameter
7, the ratio of kinetic to potential energy of the equilibrium disc, which is found by
numerical integration.

Perturbations of these discs may be treated under similar approximations as for the
equilibrium structure, with the added assumption that equilibrium is always maintained in
the z-direction. The Eulerian perturbations 80, 82, and 8v (radial velocity) are in fact
z-averages of the true perturbations. If we look for a normal mode of frequency w and axial
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Figure 1. The surface density of the unperturbed discs. All discs in the sequence have this density. Units
are chosen so that the mass and radius of the discs equal unity.

eigenvalue m (i.e. scalar perturbations proportional to exp (it +ime)), we need to solve
the ordinary differential equations

1 d
(wW+mQ)s0—i — — (ordv) +masQ =0, (5)
rdr
d
ic—i—6(vc—x02’3)+(w+mQ)60+2irQ§Q=O, ©)
r
1 1 d
—m—26(vc—xaz/3)~i—2d—(rZQ)60+(w+mS2)6Q=O. (7
r r*dr

Because we are dealing with polytropes, the solutions can be scaled. Results in this paper
are chosen in units in which the mass M and radius R of the discs equal 1 and the angular
velocity at the rim of the cold disc (k =0) equals 1. The angular velocities of several warm
discs in our sequence are displayed in these units in Fig. 2.

Solutions of (5)—(7) are called the dynamical normal modes. It is also of interest to study
the effects of gravitational radiation reaction, which may produce the so-called secular

Figure 2. Angular velocity curves for several representative unperturbed discs. The values of the ratio
r of kinetic to potential energy of the displayed discs are listed in Table 1. Note that (r) is a

monotonically increasing function of r.
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instability. We shall determine the changes in the dynamical eigenfrequencies by eigenvalue
perturbation theory, as described by Schutz (1980b). Previous analytic work (see Comins
1979 for a summary) leads us to expect that the secular instability in a mode will set in
along a sequence as its frequency passes through zero. This is borne out by our calculations,
which also support the ‘explanation’ of the instability given by Friedman & Schutz (1978b)
in terms of the energy of the mode. These results are presented in Section 7 below.

Previous work gives us much less idea of what to expect of the general behaviour of the
dynamical modes along the sequence, because this seems to be the first differentially
rotating sequence to be studied in this detail. But from studies of the Maclaurin spheroids
(Lyttleton 1953; Chandrasekhar 1969), of the simplest Bardeen discs (Paper I), and of local
wave theory (Papaloizou & Pringle 1978) we think one could reasonably expect the
following features.

(i) For the isentropic discs we study there should be two kinds of modes: the analogues
of the p-modes of non-rotating stars (Ledoux & Walraven 1958), and the Rossby modes, the
analogues of the toroidal modes of non-rotating stars. (Our Rossby modes are named by
analogy with certain modes of incompressible fluids. See Greenspan 1968, p. 89.)

(if) Instead of the eigenfrequency w of a mode, it is physically preferable to use its
pattern speed

wp=— w/m, (®)

which is the angular velocity of surfaces of constant phase of the perturbation. In non-
rotating stars, the usual eigenvalue is w?, so eigenfrequencies come in the pairs +(w?)"?
These have identical eigenfunctions and equal but opposite pattern speeds.* For the p-mode
analogues in our discs we should expect rotation to ‘split’ these modes: we should still
expect pairs with roughly similar eigenfunctions and with pattern speeds on either side of
some mean angular velocity of the disc. The shorter-wavelength p-modes should have
pattern speeds further from the mean angular velocity.

(iii) As in Paper I, the Rossby modes, or r-modes, should form a single sequence of
pattern speeds decreasing to an accumulation point. If their eigenfunctions tend to
accumulate in the outer regions of the disc, then the accumulation point might be the
angular velocity of the rim.

(iv) The big unknown is the continuous spectrum of pattern speeds covering the range of
Q in the disc. Such modes have corotation points, and their eigenfunctions may exhibit
singular behaviour. This has not received much attention in the literature (¢f. Hunter 1969;
Balbinski 1982), but our finite-dimensional numerical approximation will give at best only
an indication of the true behaviour, since no finite-dimensional problem can have a
continuous spectrum. Thus, when we refer below to the ‘continuous spectrum’, we mean
the region where we expect the exact problem to have a continuous spectrum. We should
certainly expect the r-modes to be in this region for short enough wavelength, and it may
also happen that at least some p-modes will also be found there. This expectation is
supported by examining the Maclaurin sequence, along which the ‘bar mode’ — the analogue
of our fundamental p-mode — goes from pattern speeds larger than £ to speeds smaller than
2 before going unstable. In our case, this would mean passing though at least part of the
range of €2 in the star, i.e. being in the continuous spectrum,

These expectations are largely borne out by our calculations, as we shall see in Sections
5—6. We shall first, however, need to describe the method of calculation in more detail.

* Readers more familiar with modes of non-rotating stars should bear in mind two crucial differences:

here the eigenvalue is necessarily w, not w?; and the spherical harmonic index / no longer usefully
characterizes modes, although m remains an eigenvalue.
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3 Description of the numerical approach

In order to solve equations (5)—(7) we follow Bardeen (1975) by using the even Legendre
functions PJy . ,.(n), where n=(1—r%)"2  as a basis for expanding the dynamical perturba-
tions for fixed m. For the uniform-density, rigidly rotating disc these are exactly the eigen-
functions (Paper I), and they have the advantage that they automatically satisfy the
boundary conditions at the centre and edge of the disc. For the n = 2 polytropic discs under
consideration here, it is convenient to expand

So/n =exp(im@) 2. ;P51 m(n); 9)
I1=0

to represent the perturbed velocity in terms of potentials

8v=iV[A(n) exp(im¢)] +e, x V[B(n) exp(im9)], (10)
or equivalently
rdd m 1dB m
80=—i[~——+—B], BQ=—[————+—~A}; (11)
ndn r ndn r’

and to expand 4 and B in terms of the Legendre functions, with coefficients 4; and B,
respectively:

A=Y APT . (M), B= Y BPY.,n(). (12)
I=0

By using these expansions in equations (5)—(7), solving equation (3) for v, in terms of
the Legendre functions (Hunter 1963), multiplying (5)—(7) by P7j. m(n) and integrating
over the range 0 < < 1, we can write the perturbation equations in the form

Z Cjkdkziwdj, (13)
k=0

where the coefficients Cjx depend only on the equilibrium structure of the disc, and the
vector {d;} has as components {¢;,i =0,...;4;,i=0,..;B;,i=0,...}.

Equation (13) is the basic eigenvalue problem for w. The matrix Cjx whose eigenvalues
we seek is not Hermitian. For a given disc the matrix elements Cj, must be determined
numerically. The eigenvalue problem must also be solved numerically, and this forces us to
truncate the problem at some order NV, i.e. to solve

N

Z Cjk dk=iwdj. (14)
k=0
The faithfulness with which solutions of equation (14) represent solutions of (13) depends
on the accuracy with with we can represent the different eigenfunctions with Legendre
functions up to order 2V + m. In general, we should not expect good representations for

eigenfunctions with very short wavelengths or with singular behaviour.
Because Cji is non-Hermitian, we must distinguish between right- and left-eigenvectors

(Schutz 1980a). To make this important distinction explicit, we will write the truncated
problem (14) in the form

Clr =iw|r) (15)
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for the right-eigenvector |r), and similarly
(|1 C=iwll|, o (16)

for the left-eigenvector </|. In the appendix to Paper I is shown how to obtain the left-
eigenvector directly from the right-eigenvector without solving equation (16).

Most of our computations have been done with N =15, which is enough to represent
eigenfunctions with fairly small wavelengths; for comparison, some modes have been
computed using NV =30. We will consider the accuracy of these truncations in some detail
below. The most time-consuming step is the evaluation of all 3(V+1) eigenvalues of
equation (14). We have used an ICL 2980, on which the evaluation of the eigenfrequencies
and some selected eigenvectors takes about 30s of computer time for an NV =15 model.
Many of our figures have been plotted by the DIMFILM microfilm package on the University
of London’s CDC 7600.

4 Equilibrium sequence

The sequence of equilibrium models is calculated in the same manner as Bardeen (1975). We
choose a particular surface density o, which is common to all members of the sequence (Fig.
1). Then by changing the parameter k in equation (2), we construct a whole range of models
from very hot and thick models to cooler, thinner ones. Equation (2) forces a regularity
condition on o near the edge of the disc: if 0 ~ n¥ as n— 0 then k > 3. We take k = 3.

We have evaluated 45 models, ranging from the warmest with 7 =0.1178 (recall that r
denotes the ratio of kinetic to potential energy) to the coldest with 7 =0.3676. In Table 1
we list some properties of 10 of these models: 7, the ‘mean’ angular velocity J/I (angular
momentum divided by moment of inertia) and J/M. The angular velocity distribution for
these models is given in Fig. 2. The smaller the pressure and thickness are, the stronger the
differential rotation becomes. It is worth noting that, in the two hottest models represented,
the angular velocity is not monotonically decreasing outwards from the centre, and therefore
more than one corotation radius can exist for some frequencies. It is also apparent from Fig.
2 that we cannot make models much hotter than our hottest one, for eventually £ reaches

Table 1. Ratios of kinetic to potential
energies (1), of angular momentum (J) to
moment of inertia (/), and of angular
momentum to mass (M) for the discs
displayed in Fig. 2. The ratio J/I may be
regarded as the mean angular velocity of the
disc. The units are such that the mass and
radius of the disc equal unity.

z Ji J/mM

0.1186 1.494 0.210
0.1499 1.687 0.237
0.1803 1.848 0.260
0.2090 1.993 0.281
0.2380 2.125 0.299
0.2656 2.248 0.317
0.2923 2.365 0.333
0.3181 2.475 0.348
0.3433 2.580 0.363

0.3676 2.680 0.377
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can imagine tracing individual modes back along this extended sequence from the
non-rotating star up to our computed differentially rotating models.

When 2 =0 there are three kinds of modes, two of which are trivial. There are p-modes.
which come in pairs twy (i.e. equally distant from wp =0) and have |w |- as their
wavelengti: decreases. There are g-modes, which in our discs all have zero frequency since we
take the adiabatic index to be equal to 1+ 1/n=3/2. This is true as well for the rotating
discs, so we shall ignore the g-mode analogues in our later discussion. Finally, the
non-rotating star also has an infinite number of zero-frequency toroidal modes, which
physically correspond to setting the star into slow rotation.

When rigid rotation is introduced, the p-modes are ‘dragged’, appearing again in pairs
whose two values of wy, are roughly equidistant from £, for small Q, and with | wp| =
as their wavelength decreases. As £2 increases, we see from Paper [ that paired p-modes begin
to approach each other in frequency and eventually acquire the same w,, at which point
they go unstable. This is somewhat complicated in our case by the differential rotation
and the fact that these modes have corotation points (see the next paragraph), but the
general picture is similar to that in Paper I. By contrast, the #-modes occur singly rather
than in pairs, they are always stable in the £ = constant discs, they span only a finite range
of wp, and for small wavelengths wy, ~ (1 +1/2/?), where [ is index of the mode associated
with the Legendre polynomical P%y, ,,(n). Paper I gives a discussion of these modes. This
general pattern for the r-modes is also evident in the cold disc models of Hunter (1972)
and in the local calculations of Papaloizou & Pringle (1978).

When we introduce differential rotation, the main complication for the r-modes is the
corotation region. Qutside this region, the familiar pattern prevails, and in Fig. 4 we have

Figure 4. As IFig. 3, but dots have been joined into sequences which we believe represent the progress of
the p-mode cigentrequencies as r increases. Where we have found mixed-tvpe modes. near ‘bumping’
points, we have not joined them to any sequence. Membership of sequences becomes less certain the
further one goes into the corotation region.
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Figure 3. Pattern speeds of normal modes for m = 2 as functions of 7, the ratio of kinetic to potential
energy of the unperturbed model. Each dot is a computed eigentrequency. Crosses represent the real
(above wp = 0) and imaginary (below wp = 0) parts of (—w/m) for modes with complex
eigenfrequencies. The two solid curves are the maximum and minimum values of  inside the discs.
Boxed modes are examined in Figs 5—8.

zero at some radius; a thicker model would require an inward- pointing centrifugal force! So
our sequence terminates before it reaches zero angular momentum.

5 Spectrum of eigenfrequencies

In Fig. 3 the pattern speeds (equation 3) of most of the modes for m = 2 are plotted against
the value of 7 for the equilibrium model. The continuous lines denote the largest and
smallest values of €2 in the disc, so modes between them have corotation points, i.e. places
in the disc where Q equals wp. This region will be called the corotation region. 1t naturally
expands as the differential rotation increases with 7. The points represented by crosses are
the real and imaginary parts of the frequencies of dynamically unstable modes, divided by
—m. The imaginary parts are represented in the negative pattern-speed region for clarity. but
the complex frequencies come in complex—conjugate pairs.

All the points in Fig. 3 have been calculated for N = 15. For modes outside the corotation
region, this is large enough to get a good representation for all but the largest pattern speeds.
But the pattern speeds inside the corotation region turn out to be less well defined (i.e.
change more substantially with /), and we shall return to this point later on.

In order to make sense of the spectrum, it is useful to imagine extending our sequence by
adding another sequence of models from 7=0.12 down to some small 7, with decreasing
corotation region. (As we remarked earlier, this can not be accomplished without changing
the surface density distribution.) Eventually this hypothetical sequence reaches a model with
null corotation region: a uniformly rotating model. Then we can join at that point yet
another sequence, this time of constant-§2 models, extending down to =7 =0. Now we
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joined with solid lines those sequences of eigenfrequencies of Fig. 3 which seem to
correspond to the same modes as rotation increases. The p-modes are clearly behaving as
expected, and we can even see two discrete r-modes outside the corotation region in our
low-7 models. These r-modes are distinguished from the p-modes by the fact that their w,
increases nearly as fast as the maximum  does, while the p-mode |w,| decreases
monotonically with 7.

Inside the corotation region we have mainly the -modes. These comprise roughly one-
third of all the modes in the models (they are a larger fraction in Figs 3 and 4, since the high-
frequency p-modes are not displayed) and seem to accumulate at the minimum . In
contrast to the modes outside the corotation region, these modes suffer severe truncation
effects: their eigenfunctions are not well represented when N = 15 and do not converge any
better even when N = 30. This is related to another fact, that when N is changed there is a
relatively large change in the frequency of a mode in the corotation compared to what
happeus outside. The relation between these two is discussed in the Appendix, where we
give a precise characterization of the truncation error. Table 2 presents the computed spectra
for the model with 7=0.3181 for ¥=15 and N =30. Two things are striking: (i) for
p-modes the principal change from N =15 to 30 is the addition of higher values of ]wpl
(although there is some ‘filling-in’, particularly for wp>0), while the eigenfrequencies
already present at V =15 do not change very much; (ii) for »-modes, there is a general filling-
in of the corotation regicn, and it is hard to identify the N =15 modes in the N =30
spectrum. This filling-in is not what one would expect for the rigidly rotating disc, where the
increase in /V should simply add shorter-wavelength r-modes, all of which would be near the
accumulation point. What we appear to be seeing here is the numerical attempt to represent
the continuous spectrum: the shear of differential rotation means that every w, in the
corotation region is actually in the spectrum of the exact problem NV =0 so0 that increasing
the accuracy from N =15 to N =30 results in a denser spacing of modes in the corotation
region. Points of the continuous spectrum do not have proper (i.e. twice differentiable)
eigenfunctions (Riesz & Sz.-Nagy 1955), and for this region the truncation effects may
be severe even for r-modes far from the accumulation point.

Nevertheless, not all modes in the corotation region are r-modes, for some p-modes
clearly enter that region. It appears that these modes keep their identity to some degree:
their truncation problems are less severe, particularly near the lower edge of the region, and
the two lowest-order pairs manage to ‘find’ their partners in the corotation region, join and
go unstable. We have joined with solid lines those points in Fig. 4 which we feel represent
the progress of the p-mode in this region. With infinite accuracy the calculation would
probably reveal a smooth progress of a p-mode through the continuous spectrum. In our
truncated problem, there seems to be some interference between p- and r-modes. As 7
increases, r-modes tend to have increasing wp, p-modes decreasing. This would lead to
crossing of modes and degeneracy. The problem actually seems to avoid this degeneracy
by ‘bumping’, several examples of which can be seen in Fig. 4. At a bump, the r- and
p-modes seem to exchange character. This is most likely an artefact of our finite precision.
Many of the properties of the continuous spectrum, such as the possible existence of true
eigenvalues inside it, come out clearly in the recent study by Balbinski (1982), who develops
projection operators for the continuous spectrum’s ‘eigenfunctions’.

6 Eigenfunctions

Fig. 4 and Table 2 provide strong evidence for two qualitatively different classes of modes,
which we have called p- and r-modes; we will now see that the eigenfunctions of the two
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Figure 5. Eigenfunctions and a phase diagram for modes of a ‘slow’ model, 7 = 0.1437. The perturbations
in the surface density (5¢/n), radial velocity (8 v¥/i) and angular velocity (r8) are displayed in (a)—(c),
respectively. The vertical scales are arbitrary, but note that for any single mode the ratio of two
perturbations (e.g. §2/60) is independent of normalization. In (d) we plot a phase diagram. of 68
versus 6§o/n, for one mode. FFor the interpretation of Figs 5—8, see text.

classes are also qualitatively different, sometimes strikingly so even when modes of the two
classes are near each other in eigenfrequency. Our eigenfunction plots in Figs 58 are of
two kinds: (i) plots of perturbations* §c/n, 8v"/i. or r§S2 versus r, in which 7 runs from 0 to
1 and the normalization of the eigenfunctions is arbitrary; and (ii) phase diagrams, which
are plots of §o/n versus r§ (2. parametrized by r, in which both scales are arbitrary. Phase
diagrams of this type are useful in non-rotating stars for distinguishing between p-modes
and g-modes, based upon the sense of rotation (clockwise or counter-clockwise) of the
curve. In our problem we have similarly only one independent variable (r), so we may hope
that phase diagrams will also be useful here. There are three possible diagrams for each
mode, according to which pair of the variables (§ ¢, §v", § Q) is chosen. By experimenting
with all three pairs we have found that the pair (§ o, §§2) seems to give the best diagram:
it is generally a more open curve and it seems to show systematic trends better.

The eigenfunctions are chosen from two different models: a slowly rotating model with
7=0.1437, and a faster one, just near the onset of dynamical instability, with 7 =0.2710.
Fig. 5 shows three typical p-modes, the lowest-order counter-rotating p-modes of the slow

* For real-frequency modes, it is possible to choose 8¢ in equations (5)—(7) to be real. Then 62 is also
real and Sv' pure imaginary. The eigenfunction plots therefore give the amplitude of the perturbations.
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disc. The fundamental mode has wp =0.073, so it is rotating forwards with respect to the
inertial frame but backwards with respect to any part of the disc. Its eigenfunctions have
no nodes. The first and second ‘overtones’ have frequencies —0.423 and —0.970
respectively (i.e. further from the mean angular velocity of the disc), and their eigen-
functions have 1 and 2 nodes. respectively. All this is qualitatively the same as for p-modes
. of spherical stars. The phase diagram, for the second overtone, Fig. 5(d), winds counter-
clockwise one full turn(i.e., ending in the same quadrant in which it began). It thus has a
winding number +1. The fundamental’s phase diagram has winding number 0 and the
first overtone has 1/2 (i.e. it travels counter-clockwise through only two quadrants). Again,
this behaviour is familiar from non-rotating stars (¢f. Unno ez al. 1979).

Fig. 6 displays the forward-going counterparts of the first and second p-modes of Fig. 5
for the slow model as well as two r-modes outside the continuous spectrum. (The forward-
going fundamental p-mode in this model already has a corotation point. We shall look at
such modes in the fast model below.) The p-modes, so classified because they are on
descending sequences in Fig. 4, are those with wp =2.253 and wyp, = 3.004. The r-modes, on
ascending sequences, are wp, =2.168 and wp, = 2.469. Thus. the r-modes alternate with the
p-modes as the frequency increases; nevertheless, the two r-modes have eigenfunctions
which resemble each other much more than they resemble the p-modes, and vice versa. This
confirms the classification of the modes. The p-modes have | and 2 nodes for w, =2.253
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Figure 6. As Fig. 5 for four other modes of the same model.



Normal modes of Bardeen discs — II 893

and 3.004, respectively, as one expects. The r-modes have somewhat less regular behaviour:
the number of nodes is not the same for each eigenfunction of a single frequency, and the
trend in numbers of nodes is not clear. But the phase diagrams help considerably. Fig. 6(d)
shows this for wp = 2.168. Its winding number, as defined above, is —1: one full clockwise
turn. That for w, = 2.469, which is not shown, also winds clockwise, but through only one
quadrant, a winding number —1/4. We are thus inclinded to classify wp =2.469 as the first
r-mode and wp = 2.168 as the second. This accords with the uniformly rotating case, where
wy, decreases as the order of the 7-mode increases.

Based on these examples, we shall introduce a shorthand for referring to modes. For
example, mode 2p* is the second-overtone forward-going p-mode, Op~ the backward
fundamental p-mode, etc. The mode 1r is the first Rossby mode (w, = 2.469 above), while
the r-mode of next highest frequency is 2r, etc. The character of the mode (p or r) is
defined by its phase diagram (counter-clockwise or clockwise rotation, respectively), while
the order is defined by the ordering of frequencies: for p* modes, np* has a lower w, than
(n+ Dp*, while for r modes, nr is lower than (n —1)r. For p-modes this ordering should
hopefully follow the number of nodes and the winding number, while for #-modes it should
at least follow the winding number. Classifying a p-mode as p* or p~ is easy if the mode has
no corotation point; otherwise we shall do it by following the mode along a sequence, as in
Fig. 4.*

For the fast model we show in Figs 78 eigenfunctions whose pattern speeds are in the
corotation region. This model is of interest because it is near the point of dynamical
instability, which occurs when the Op* modes converge to become unstable (cf. Fig. 4).
The eigenfunctions of the two branches of the fundamental, Op~ (wp=0.890) and
op* (wp=1.272), are shown in Figs 7 and 8, respectively. On the whole, their eigen-
functions are similar, although it is notable that they no longer have nodes. The Op~
mode has just entered the corotation region, yet it is clearly distinguished from the other
two modes in Fig. 7, high-order r-modes with pattern speeds very close to that of Op™:
wp =0.867 and 0.895. A typical phase diagram for a high-order r-mode is also shown in
this figure. This phase diagram is for a mode in the slow model, but it is essentially the same
in the fast one. It winds clockwise, and it shows a characteristic feature of these high-
order r-modes, that their dominant amplitude is near the edge of the disc. This compresses
all the winding in the phase diagram to a small corner. In Fig. 7(a,b) it is also evident that
wp =0.867 and w, =0.895 show this high-amplitude tendency for §o and 8v" near the
edge. The Op~ mode shows none of this. The r-mode at wp, =0.895, which is very close to
the Op~ frequency 0.890, shows a tendency to high amplitudes in the main part of the disc:
this is uncharacteristic of r-modes and probably reflects a ‘mixing’ due to the closeness of
the two eigenfrequencies and the finite numerical precision. In Fig. 7(c) the scale is
dominated by the behaviour of the two r-modes at the edge, where both become large,
especially 0.867. The Op~ mode is hardly distinguishable from zero on this scale. This
illustrates another characteristic of the r-modes: 6%/8c (which is independent of
normalization) is much larger than for p-modes.

The other branch of the fundamental of the fast disc (wp =1.272 in Fig. 8) is more
difficult to distinguish from neighbouring r-modes, possibly because it lies further inside the

* There may be another method, namely using the sign of the mode’s canonical angular momentum, but at
present we do not know how to resolve the ‘trivials’ ambiguity for modes with corotation points
(Friedman & Schutz 1978a) and so we cannot yet define the canonical angular momentum. Nevertheless,
we feel that the classification into p* or p~ should be intrinsic to the model having those modes: it shouid
not require knowing the behaviour of the mode along one ot the infinite number of sequences of discs
which contain that particular model.
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Figure 7. (a)—(c): As Fig. 5 for three modes of the “fast” model, r = 0.2710. In (c¢) the candidate for the
Op- mode, wp = 0.890, is indistinguishable from zero on this scale. (d) The phase diagram ot a typical
high-order r-mode, taken from the *slow’ model.

corotation region. We can guess where it is by following the sequence of modes in Fig. 4.
The pattern speeds of p* modes tend to decrease as the angular velocity increases along our
sequence, while those of r-modes increase. In the region of the continuous spectrum. our
numerical method can distinguish only the general features of p- and r-modes: some modes
seem typical of one type or the other, but many modes have a mixed character. which we
discuss below. We feel that the mode with w, =1.272 is the best candidate for the Op*
mode, while the nearby wp =1.179 and wp = 1.344 modes are r-modes. But these 7-modes
seem to share many p-mode features in their eigenfunctions.

This mixed character is also illustrated in Fig. 8(d), which shows the phase diagram of the
fast disc’s 17 mode, the continuation of the 1r mode of Fig. 6 into the corotation region. It
starts near the centre of the disc as typical r-mode (clockwise) and ends near the edge as a
typical p-mode (counter-clockwise). This mixed character may be due to the fact that the
frequency of this mode is very near the frequency of the 4p™ mode, ie. very near a
‘bumping’ point of the type discussed below.

Physically one might expect the long-wavelength p- and r-modes to be the most
important for stability, as they have more coherent changes in density in the inner parts of
the disc where the mass is concentrated. Short wavelength modes of both types tend to have
significant amplitudes near the edge of the disc. The most important modes for stability,
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Figure 8. (a) -(¢): As lig. 5 tor three modes of the “fast’ model. (d) Phase diagram of the 1r mode of the

same model.

either dynamical (as in Fig. 4) or secular (as in the next section) are the Op * modes. Their
amplitudes tend to get larger in the centre as the angular velocity increases (compare Fig. 5
with Fig. 7). After 7~ 0.27 these become dynamically unstable. A much more precise deter-
mination of the marginal instability point is not possible because of the inaccuracy of the
eigenfunctions in the corotation region. By contrast, we have not seen any instabilities in the
r-modes.

An obvious feature of Fig. 4 is mode ‘bumping’, where two modes seem to approach
each other’s eigenfrequencies, then turn away. It must be stressed that the classification of a
mode as a p- or r-mode can and does change at such avoided crossings, even when they
occur outside the continuous spectrum. Thus. the classification is physically useful but

mathematically somewhat ambiguous.

7 Secular instability to gravitational radiation

There is a general criterion for the onset of secular instability to gravitational radiation
(Friedman & Schutz 1978b) which says that secular instability will set in for a mode as its
pattern speed changes from negative to positive along a sequence of models. Moreover, only
the corotating modes going backwards with respect to the mean angular velocity of the disc
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(0 < wp £(82)) are secularly unstable, or more precisely, only modes with negative canonical
energy are secularly unstable. In this section we will explicitly calculate the effect of
gravitational radiation on the frequency of some of the modes of our discs, and we will
confirm the above picture in detail.

According to the standard formulation of the radiation reaction problem for a
Newtonian system (cf. Misner, Thorne & Wheeler 1973) we can calculate the damping due
to the radiation by adding to the Newtonian potential the ‘reaction’ potential V(reqcry given

by
5

= (3., Vi yK
V(react) 505 dis {jk)xx s (17)
where
l I
Hx =Lk = 3 Oy, (18)
Ijk=fpxjxk d3x. (19)

Only the perturbed density §o contributes to the radiation reaction. (The extra reaction
corrections to the continuity equation, pointed out by Schutz 1980c, do not, as it turns
out, affect the present calculation.) This reaction potential has a simple expansion in terms
of the Legendre functions, by analogy with equation (12). If we write

oo

V(react) = Z V(teact)! Pr2nl+m(77) exp (im¢), (20)
1=0

then only one coefficient is non-zero for m =2:

= _ ﬁrﬁ L+ 10 ) . 5 50 o)
Vosser1 = = =z (60 + = 1) (1ef)* 87, 1)
where ¢ and ¢, are the first coefficients in the expansion (9) of §o/n for m = 2. Note that
modes with m>2 do not couple to this potential because it takes account only of
quadrupole gravitational radiation.

Because the reaction potential is of order (v/c)®, we can treat it as a small perturbation on
our original dynamical eigenvalue problem. The effect of Vresy) is to change the matrix C
in equation (13) by a matrix § C, and to change the eigenfrequency of a dynamical mode by
a first-order ‘secular’ amount (cf. Schutz 1980b)

(I1186C\r)
dbw=—i ——,
Ir

where (/] and |r) are, respectively. the left- and right-eigenvectors of the dynamical problem,
equations (15) and (16). The results of Schutz (1980b) guarantee that {/|r) # 0 except at
points of marginal dynamical stability. A mode is said to be secularly unstable when
Im(8 w) < 0. Physically we can expect that the modes most affected by radiation should be
the Op modes, because they have the most coherent changes in density. Moreover, p-modes
should be affected more than the r-modes: and the short wavelength modes, being less
coherent, may be almost unaffected by radiation.

Unlike the determination of the marginal dynamical instability point, we can calculate
with precision the onset of secular instability, which occurs at 7 =0.1221 and coincides with
the point where the Op~ mode has zero frequency (a Dedekind-like mode).

(22)
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Table 3. Secular instability to gravitational radiation in the Op~ mode of the
sequence. Column 1 is the ratio of kinetic to potential energy of the unperturbed
disc: column 2 is the pattern speed, without radiation effects; column 3 is the change
in the frequency produced by radiation (negative numbers represent exponential
growth); column 4 is the mean value of the angular velocity, equation (23); and
column 5 is the canonical angular momentum, following Friedman & Schutz (1978a).
The last two have not been defined for modes with corotation points, as in the last
row of the table. Numbers in brackets are powers of 10.

T wp Iméw-c5/G () Je
0.1186 -0.0116 0.507 (= 10) 1.2488 —0.0474
0.1499 0.0953 -0.212 (-5 1.3778 —0.0542
0.1803 0.2153 —0.140 (-3) 1.5363 —-0.0640
0.2096 0.3599 —-0.204 (- 2) 1.7455 -0.0786
0.2380 0.5484 —-0.189(-1) 2.0131 —0.0964
0.2656 0.8176 ~0.189 (0 2.2374 -0.0946
0.2710 0.8900 -0.343 (0 — -

In Table 3 we show some of the results for the Op~ mode. We follow it from a point
where it is stable up to near the point of its dynamical instability. The last two columns
show (i) the mean angular velocity of the disc when averaged over the mode’s eigenfunction,

(Q)=JoQIEIzdzx/J.olélzdzx, (

where § is the canonical Lagrangian displacement eigenvector of the dynamical mode
(Friedman & Schutz 1978a); and (ii) the canonical angular momentum J, of the dynamical
mode, as defined by Friedman & Schutz (1978a) in terms of §. (The canonical energy of
these modes, £, is given by E.=cwpJ..) Table 3 illustrates the assertions made at the
beginning of this section and confirm the criteria established in Friedman & Schutz (1978b).
The canonical Lagrangian displacement vector § of the mode is easily obtained from the
Eulerian perturbations. As Friedman & Schutz (1978b) point out, this displacement is auto-
matically canonical if the mode has no corotation point, but not necessarily otherwise. We
have not attempted to extend the analysis to modes whose eigenfrequencies are in the
corotation region. See Balbinski (1982) for a calculation of £ for the continuous spectruin.

The eigenfunctions of the Op~ mode are displayed in Fig. 5 for 1=0.1437 and Fig. 7 for
7=0.2710. The pattern rotates in the same direction but more slowly than the background
disc, and the density changes are largest in the inner regions. (Recall that m =2, so we
will have maximum growing density along a diameter and maximum decreasing density
along a perpendicular diameter.) The radial velocity of this perturbation is outwards where
80 >0 and inwards where 60 < 0. The change §Q in the tangential velocity is negative
where 0 > 0 and positive where 6 0 < 0. The whole disc tends towards a bar shape. with no
spiral pattern since the mode is dynamically stable.

[t is interesting to see how secular instability sets in the 1p~ mode (also when it reaches
wp =0) in order to compare the effects of the radiation in it with the effects of the
fundamental mode.

In Table 4 some values for this mode are shown. The same conclusions can be drawn for
the higher p-modes, which become secularly unstable when their pattern speeds become
zero and remain secularly unstable until the dynamical instability point. As the modes
acquire more and more nodes, which tend also to concentrate near the edge of the disc,

they become less and less affected by radiation.
29

19
(9]
—
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Table 4. The same as Table 3 for the 1p~ mode. It goes secularly unstable at a larger
value of 7 than the Op~ mode.

T wp méw-c5/G () Je

0.1186 —0.5440 0.383 (- 3) 1.1632 -0.0271
0.1499 -0.3923 0.280 (- 4) 1.2672 -0.0308
0.1803 ~0.2382 0.379 (- 8) 1.3471 -0.0349
0.2096 —0.0803 0.192(=7) 1.4028 -0.0394
0.2380 0.0782 —0.895(-7) 1.4480 —0.0448
0.2656 0.2387 —0.627 (-4) 1.5197 —0.0529
0.2923 0.4096 -0.173 (=2 1.6490 -0.0659
0.3181 0.6162 -0.209(-1) 1.8471 —0.0847
0.3433 0.9246 -0.302 (0) 1.9650 -0.0789

The p* modes are always secularly stable. Those with large wavelengths are the more
damped by radiation and even when they enter the corotation region they are more strongly
damped than nearby r-modes. Neither the discrete r-modes nor the r-modes in the
corotation region are secularly unstable and they also follow the general pattern that the
ones more strongly damped by gravitational radiation are the ones with larger wavelengths.

8 Conclusions

We have studied the normal modes of a particular sequence of rotating, compressible
Bardeen fluid discs in some detail. It is usually possible to distinguish two classes of modes,
which we have called p- and r-modes. Each disc has two branches of p-modes, and the
stability of the disc seems to depend only on their properties. There is a single sequence of
r-modes, and in discs with strong differential rotation most of them have corotation points.
We believe that an exact (i.e. analytic) analysis would find that these r-modes are only
numerical approximations to a continuous spectrum of modes. We find p-modes with
corotation points as well, but these will probably remain discrete modes even in an
analytic calculation. We tind that the first secular instability to gravitational radiation sets in
at T/|W|=0.1221; the first dynamical instability occurs at T/| W |~ 0.27, and the p-modes
invoived have corotation points. The behaviour of the modes along the sequence is
remarkably similar to the pattern for the Maclaurin sequence (Chandrasekhar 1969). The
presence of strong differential rotation does not seem to have too much influence, nor
does the compressibility of the disc. A number of question marks remain. particularly
concerning the continuous spectrum and the reliability ot the criteria that we have suggested
for the classification of modes.
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Appendix: a simple test for numerical accuracy

»Because our numerical method uses expansions in basis functions {PTy . m}, truncation of
the expansion at some maximum value &V of / means throwing away short-wavelength
information. One can always test whether this is important by increasing NV and, say, looking
at the change in the eigenfrequency, but this can be expensive. It turns out that there is an
easy way of detecting numerical inaccuracy by looking at the eigenfunction of the mode for
fixed V.

The expensive part of the numerical calculation is finding an eigenfrequency. Once the
eigenfrequency is known, it is a simple matter to find the left- and right-eigenvectors for
that eigenfrequency, equations (15) and (16). These are found as a series of coefficients —
e.g. for|r)wefind{r;,i =0, ..., N} — in expansions on the basis functions:

N N
[ry="Y rlbj), {(I1="3 L{b;l (24)
j=0 j=0

where in our case [b;) is the basis function P%; , m(n) and (b | is the orthonormal conjugate
basis with respect to integration over n from O to [,

@ +2m+ D)

= A 2
<b1| 27(2]""2}72)! P2/+m(n)- (-—5)
This guarantees that
(b]flbk>=5,-k. (26)

One might expect that a test of the accuracy of the mode is whether the expansions (24)
converge, but it is not immediately clear what this means. Naively one might hope that #;
should get small as j >V, but this depends on the normalization of |b;): replacement of
|6;) by Nj|b;) scales rj to rj/N;, which can be made as small as one likes by choosing V;
appropriately. However, this rescaling replaces (bj| by (bj'[/N-, in order to preserve
orthonormality, and this in turn sends /; into N;j/j, which will do the opposite to the
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‘convergence’ of this series. Thus, neither of the sequences {r;}, {/;} alone tests the
convergence of the eigenfunction expansion.
A much better test is the convergence of the product {/|r):

N
Alry=3Y Iin(bilb) = Y Iiry. _ (27)
j K ji=0

What we propose is that the expansion (24) is accurate if the products /jr; get small as
j—> N. These products are independent of rescaling the basis functions. Moreover,
although the overall normalization of eigenfunctions is arbitrary (i.e. if | ) is an eigenvector
so is a|r)), the ratio of any two of these products, (I;7;)/(/xry), is independent of this
normalization.

Naturally, this criterion is not perfect, for no criterion based on fixed NV can supply all the
information about larger V. It is possible that the ‘true’ eigenfunction for some mode would
have (Jjr;) getting very small as j approaches, say, 15, and then getting large again asj gets
near, say, 100. Our test of accuracy for N =15 would then suggest more accuracy than we
were entitled to assume. Fundamentally, this requires some judgment about the physical
'problem and the appropriateness of the basis functions { | b;} to the problem. If one expects
on physical grounds that the sequence |;r; | ought to decrease roughly monotonically, forj
larger than some small value, then the criterion we propose here should be reliable. For our
part, we have that expectation in this problem because we known that the basis functions
are the true eigentunctions for the special case of the uniformly rotating, incompressible
disc.

In Tables 5 and 6 we present a comparison of our convergence criterion with the results
of increasing N. There is good correlation between the accuracy we judge on the basis of
(I|r) and the size of the change in the eigenfrequency when /V changes.

[t can be seen in Tables 5 and 6 — and this is borne out in our calculations in general —
that the r-modes with corotation points are very inaccurate, so much so that |/ ry | shows
no sign of decreasing at all even for the larger value of V. This suggests (but of course does
not prove) that the exact (/|r) does not exist, i.e. that there are no proper eigenfunctions
for these modes in the exact problem. This is our principal reason for believing that we are
only representing the continuous spectrum here, and representing it badly. The large
changes in wp, with V only reinforce this conclusion.

Table 5. Dctails ot the convergence test for the eigenfunctions of two modes of the disc with 7 = 0.3181,
computed with &/ = 15. The products /jrj are explained in the Appendix. The columns labelled A, B, C are
the separate parts tor the density perturbation and certain linear combinations of the velocity potentials
ot cquations (11)-(12). The mode with wp = 0.616226 is the 1p~ mode. has no corotation point, and
shows good convergence. The other mode is a high-order r-mode with a corotation point, and shows little
evidence ot convergence.

V=15 wp=().6l6226 wp=0.9l4853

/ ‘[j"j)A (/jl‘j)B (lj)'j)C (ljrj)A (/jrj)B (ljl'jk)C
0 2176 (- 1) 1171 (~2) 2.289 (=2) 3.119 (-5 4.545 (-3) 4.618 (-95)
| 5.316 (-3) 6.098 (-3) 1.476 (—=2) 6.427 (-2 6.059 (- 9.088 (—-9%5)
3 4.208 (-2 4.092(-2) 2.863(-3) 2.116 (—6) 8.495(-3) 2551 (-4
5 4.626 (-3 8.163 (-3) 2,452 (--3) 5.014(-7) 3.218(~2) 4.029 (-9
7 §.337(-9%) 4.985 (-4) 3.424 (—-4) 1.682 (-6) 6.561 (-2) 4.315(-4)
9 1.184 (-5 3.846 (-5) 2795 (-5 [.570 (-6) 8.561 (-2) 3.213 (-4

1 1.403 (-6) 3571 (-6) 3.760 (-6 8.709 (-7 7.239(-2) 1.456 (- 4)
13 2.444 (-8) 1.109 (=7) 1.228 (=7 2.712(-7) 3.357(-2) 1.706 (- 5)
15 2314 (-9 1.026 (—8) 7.434 (-9 2.336 (—-8) 2.774 (-3) 1.578 (-6)
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Table 6. The same as Table 5 for & = 30. The Ip~ mode continues to converge and values of (lry for
7 <12 are almost unchanged from N = 15. The r-mode shows even less tendency to converge, and ‘its
products (/;7j) are substantially ditferent from N =15 even for j = 0. This corresponds to the change in
wp: no change to six figures for 1p~, 0.3 per cent change for the r-mode.

N =30 wp = 0.616226 wp = 0.912005
J Uira (Urip (U;ridc (5rda (irip (Iyric
0 2176(-1  L171(-2)  2.289(-2)  5.694(-6)  8.098(-6)  8.195(-6)
1 5.361(=3)  6.098(-3)  1476(-2)  1.149(-6)  1.048(-4) 1603 (-5)
30 4208(-2) 4.092(-2)  2863(-3)  4749(-7)  1.523(-3)  4.630(-5)
S 4626(-3)  8.163(-3)  2452(-3)  5.189(-9)  6.141(~3)  7.837(-5)
7 5327(=5)  4.984(-4)  3424(-4)  2779(-7)  1.380(-2)  9.401(-95)
9 LI81(-5)  3.846(-5)  2795(-5)  3.448(-7)  2.087(-2)  8.427(-9)
11 1395(-6)  3.574(-6)  3.761(-6)  2685(-7)  2242(-2)  5.469(-9)
13 2310(=8)  L140(=7)  1.242(-7)  1472(-7)  1653(=2)  2.124(-9)
15 1.064(-9  7206(-9)  4.989(-9)  5.116(-8)  6.811(-3)  4.786(-8)
16  1.860(-10)  2.539(-9)  1.546(-9)  2.178(-8)  2755(-3)  3.355(-6)
20 2322(-13)  2.389(-11)  7.255(-12)  3307(-9)  6.073(-3)  1.620(-9)
25 4612(-17)  5.773(-16)  7.528(-16)  1.505(-8)  1.987(-2)  1.992(-5)
30 2497(-19)  1.023(-17)  8.245(-18)  4.905(-10) 6.128(-4)  1L521(-7)
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