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Abstract. The literature contains a number of different
and inequivalent generalisations of the standard geodesic
deviation equation to higher order in the separation of the
geodesics and/or to large rates of separation. Motivated
by applications to the motion of particles in gravitational
waves, I adopt a definition of geodesic deviation based upon
a geodesic curve leaving a reference geodesic orthogonally
and connecting it to a target geodesic. Working in
Riemann normal coordinates to higher order, I solve the
geodesic equation and construct the appropriate geodesics.
In the case of nearly parallel geodesics the resulting
deviation equation to second order is derived and discussed.
In the case of rapidly diverging geodesics I argue that no
'deviation equation' can substitute for a full solution of
the geodesic equation.

Introduction

During the course of a study of the interaction of gravita-
tional waves with matter, I went through the literature looking for
extensions of the usual equation of geodesic deviation beyond first
("infinitesimal') order in the separation of the geodesics, To my
initial surprise I found a number of inequivalent formulations claiming
to be 'the' second-order geodesic-deviation equation, and it was not
always clear what underlying assumptions caused them to differ.
Reviews of the principal formulations and attempts to unify them into a
common framework have been made by Manoff (1979) and Swaminarayan &
Safko (1983). That there are inequivalent extensions is not really
surprising. The usual equation of geodesic deviation (see Misner, et
al., 1973, whose conventions I adopt),

VuVuE = R(u,&)u, (1)

applies not only when the connecting vector & is small but also (as has
been stressed by Hodgkinson 1972) only to neighbouring geodesics that are
nearly parallel. Any extension to gecdesics which are not nearly
parallel or to second order in ¢ requires a definition of a connecting
curve between the two geodesics, to which §is tangent. Such a curve
may be defined in inequivalent ways. The easiest mathematically is to
specify some initial connecting curve through a congruence of neighbour-
ing geodesics and then to Lie drag it along the congruence. I will
instead consider here the consequences of demanding that the connecting
curve be a geodesic. This case has been treated before, but usually
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as a modification of the Lie-dragging definition (e.g. Bazanski 1977,

but not Hodgkinson 1972). In oxder to clarify certain points, and
because the problem of connecting up two separated curves is essentially
nonlocal, I will adopt the 'sledgehammer' technique of explicitly solving
the geodesic equation for the reference, target and connection geodesics.
This can be done to the appropriate order in Riemann normal coordinates.
I will initially not assume that the geodesics are almost parallel,
specialising to that case later. In the non-parallel case I will argue
that no extension of Eg.(l) is possible, in the sense of a second-order
differential equation which may be integrated along one geodesic to find
the deviation of the other: one must solve the 'global' problem for the
two geodesics and their connecting geodesic.

There is an obvious drawback to defining a connecting curve by Lie
dragging. Even if the initial connecting curve is arranged to be a
geodesic, the dragged curves will not be geodesics. An example easy to
visualise is that of a congruence of great circles of constant longitude
on the sphere. Where they cross the equator, the equator itself is an
obviously natural connecting curve. But dragging the equator along them
means advancing it the same distance along each curve. This produces a
circle of constant latitude; it still cuts the geodesics orthogonally
but is not itself a geodesic. In particular, the length of the dragged
connecting curve will not be a sensible measure of the distance from

one great circle to another as measured by an observer located on one of
them. This observer would do what we did at the equator: send out a
connecting geodesic orthogonally from his own geodesic and use this to
measure the rate of change of nearby geodesics as he moves along his own.
The conventional textbook derivations of Eq.{(l) dc assume that £ is Lie-
dragged along u, but this is because they work only to first oxder in §;
differences between the geodesic tangent to £ and other connecting curves
tangent to & are of second order in £.

In general relativity, a geodesic connecting curve has a useful physical
interpretation. Consider a freely-falling local inertial observer
keeping track of nearby free particles as a gravitational wave passes.
If he tries to describe the resulting dynamics in special-relativistic
language in which the Riemann tensor is a tidal gravitational 'force',
then he will have to locate the particles' positions at any time in the
flat three-space he carries along with him (the tangent space orthogonal
to his four-velocity). The natural way to do this is to send out
geodesics which are locally spatial, i.e. orthogonal to his world line.
If the geodesic Yy with tangent vector A” intersects the world line of a
particular particle at affine parameter |, then the 'location' of the
particle is pAl at that time. In this way, he uses the spatial section
of the exponential map to provide spatial coordinates for his particles.
This is the definition of geodesic deviation we shall explore. Given a
reference geodesic I' and a target geodesic I'', we define the connecting
geodesic from a point P on [ to I'' to be that geodesic Yp which is
orthogonal to [ and intersects I'' at unit affine parameter distance from
P. (In a normal neighbourhood of P, Yp Will be unique.) We define the
geodesic connecting vector AD to be the tangent to yY_ at P. Geodesic
deviation describes the evolution of AP as P moves anng r.
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Intersection of Geodesics in Riemann Normal Coordinates
A particular point O on the reference geodesic ' will serve
as the origin of a Riemann normal coordinate system, with metric ’

_ 1 uv o1 [SERAVIN¢] u
guB = nuB ERaqux X gRuqu;ox X' x + 0O(x'), (2)

where Nag is the Minkowski metric and the Riemann tensor and its
derivative are evaluated at O, and are therefore constants in what

follows. The Christoffel symbols are

A _ 2_A u 1A [SIRY; 3
r a8 " 3R (aﬁ)ux P T X o+ O(x°), (3)
where round brackets denote the symmetric part and I define
A 5_ A 1_A (4)

PraBuy T 28 (@B (v) T 2N (v (s 8)

We shall take the reference geodesic to be the time axis x° = t of our
coordinates, and we suppose that the target geodesic I'' has affine

narameter s and begins at x%(s=0) = £a with derivative dxa/ds(s=0) =n .
It is straightforward to solve the geodesic equation
a2 a® &’ (5)
gs2 oB ds ds
for the following power-series expression for xCx
sy = £+ sn® + s2a% + s3B* + s*¢® + o(sY) (6)
where
o 1 o L v,.B 1 o U v.B,.0
= = + + 7
A 3RannE 12Pw60nn€<‘; 03 (7
a 1 o uv 3,0 1 _a uv 8.0
B = -— P + = —
18 P puge NN E + 02 =3 R aNNNET + 0 (8)
a
c =0 , (9)
whereafrom now on On means terms of nth order in any small quantities:
x, £, s, and any other affine parameters. In each case, the terms

omitted in Egs.(7)-(9) make Os errors in Eq.(6). Note that we do not
assume that n~ 1is small: the target geodesic need not move nearly
parallel to the reference one. Notice also that £ and n~ are co-
ordinate-dependent representations of the initial data; we will return
at the end to their description in invariant terms.

Let the &onnecting geodesic Y originate at a point Xa with tangent
vector A7, Calling its affine parameter U, we have from Egs. (6)-(9)
a 1 a Y
2 AUA XB 1 _a AUAV B g

o _ o
x (W) = x + uA -+ uy [SR VB + TEP V8o X X1

1 _o u,v,B8 o
+5Ruvo;BAAAX“3+05’ (10)

Now we suppose that the geodesics intersect. Let their intersection
occur at parameter s, on I'' and u = 1 on Y. Thig choice of U means that
we can interpret A” as the vector 'connecting' ¥ and ['(s,). There-
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o ..
fore we %fke A" as a small quanitity of order s or xaz The connectipa
vector A7 depends, of course, on the intersection point we choose on ['',
and hence depends on s_. Expanding

o
AO(-'(S*) = oAa + S, 1A0L + S*Z zAa + 5*3 3/\.0' + S*u qA + Os, (11)

we find from the equality of Egs.(6) and (10)

A% = g% Xoc _ é’ RauB\) Xv(gu_xu) (EB-XB)
- -113 POLOB]J\) XUX\)(EO—XO) (EB—XB)
-5 ROLGB\);u x€9x) €%y (€ + o, (12)
= = 2 xEE - 2O
Z'AO(' = —:1,7 Raqu g\)n“nB - —31- Raqu x\)n“nB
. le Paogu\)(gugv XUX\))DOWB
- % Ra(oBM;u) Xv(io—xo)ﬂgnu + 03 (14)
A% = L g («E\)-x\))nongnU + Oy (15)
12 7 gBv;u
A = 0y, (16)

where vertical bars protect indices from symmetrisation.

The Geodesic Connecting Vector
We now make some convenient specialisations. Let us take
['* to originate at t = 0 and Y to originate on [ at time t. These

conditions imply

£ =0, yx =0, x"=t. (17)

Now we impose our demand that Y be orthogonal to I. This fixes the
intersection point T'(s*) of vy and ', and so it determines s, as a
function of the time t at which y leaves T. In our coordinates,
orthogonality simply means

A(s,) = 0. (18)

Solving this for s, (t) gives a power series of the form
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s, (t) = s1t + sot? + s3td + syt + 0s. (1)
There is no constant term s, because the coordinate line connecting the
origin O with the point I'' (o) (which is just El) is already a geodesic
orthogonal to the time axis. It is convenient to define

o

v* = n*/m° (=)

and to rescale the coefficients in Eq.(19) by no:

51 =500 =1+ %'Rojko g +'f§ Rojko;l gjgkil + Ou, (1)
3, = son” = % Ro(jk)o ngk - %-Rojgk vijEk
- f? POchk eI fé Pojkoo gl
+-é Ro(jk)o;l vigket +<f3 Rojko;l viedek 4 o, )
S5 = Sano - % Rojko Vjvk * é Ro(jk)o,l gjvkvl * % POjkoo jgk
¥ %% Rojko,l vIvie! ”ff ROjBk,u P o, (=
gu - Suno - f? Pojkoo Vjvk +'f5 ROjko;l Vj kvl + 01 . Ry

Rescaling the s.'s effectively removes the time dilation factor {(and
any other scale”factors if n~ is not normalised) so that s, represents a
time lapse as measured on [. J

We can now use Eq. (19)-(24) in Eqg.{11) to find the tangent to the connect-
ing curve Y. If we define

S LR L (25)
a a a

the parallel projection along v" onto hypersurfaces t = const., we find

Al - 1 ) 1 X _ 4 _ L I
(s,(£)) = & +.ev + o {tl- 3R sko® & T T R ko H )

2 1 u J u j. k 1 pu j. k. 1
+ - - —
£l 3R ojo & R kjoE vV +3R kljg 'AAY
- lgH ikl 1 p " 0B 5k
IR (klolin %Y T 12P 4koo T Pagyk YV EE]
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+ £ [% Rukoj vV - ’é Pujkoogj a _112“ Ruokj;o‘i‘jvk

* T%.Rukoj;ogjvk _‘% Rukjo;lngle - %3 Ruklo,j Ejvkvl

* 112 Ruklj;o e+ 1_12' Ruklj;mgjvkvlvm - '117 R“ojo;o £
+ e - TE'Pujkoo Vjvk _'ff Rphkjo;l Vjvkvl]}+ Os

242

(26)

These are the components of Aa on the coordinate basis at time t on the

t-axis. It is preferable to have them on the parallel-transpo&ted basis

from the origin (which is equivalent to parallel-transporting A~ back to

the origin). It is easy to calculate from Egs.(2)-(4) that the basis

one-forms %~ of the Oﬁigin, which are an orthonormal tetrad, have the
)

following components (®

~N _ M 1
(W )O =9 c 6 t o0o 12

This allows us to write down our main result:

2pH _ £3gH

oJ0o;0

+ O(t“

e - (&>6)O 1% (s, (t)) = 0

ate - (in)0 1os,e)) = g5+ et 4 Q" - %R“jkoéjék
- f? Rujko;l Ejgkgl] * tz[- % Ruojogj - Rukjo(E
* % Rukljgjvkvl - % Ru(jk}o] ;1)‘5j5k vt - T1§ (P
- uaBjk vuvB)gjgk] + t3] -é—Ruoj v . —é— R“koj
- % Pujkoogjvk B 'é" RuOjo;ogj 12 uokj;ogjvk
* 112 “koj;ogjvk - % Rukj ,1£jvkvl

LorM gl LRt gyt

when parallel-transported along I':

).

(27)

(28)
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L ook Jgkylym v 1 oM gk
P2 R kgt VYV F Tl g Py (VY
- L gk Jykgl - L gH 3
17 R Koz VUV 17 R o050 V 1} + os. (29)

Neglecting the o(t*) term in Eq.(27) does not destroy the o(t*) terms in
Eqg. (29) because it would only enter Eq.(29) multiplied by El, and would
therefore be O3.

Notice that at t = 0 we have Al(o) = El. This is because, by definition
of Riemann normal coordinates, the coordinates of a point are the com-
ponents of the vector at the origin tangent to the geodesic joining the
point to the origin with unit affine parameter interval. Therefore gl
is not just a coordinate quantity: it is the initial value of the
geodesic connecting vector. On the other hand, we find

= vt ot - rRM g7 N ol 2 R

a .1 1
a ! l(t)]t=o m 3 7 jko T 12 7 jkojl
(30)

The l.h.s. of this equation is the proper-time covariant derivative of
A" on T, so that we see that the initial rateaof change of A" is not
simply related to the initial rate of change V~ of [''.

We can properly call Aa the geodesic connecting vector, since it is the
tangent vector at ' to the geodesic Y that is @rthogonal to I' and
connects [ to I''. Under what circumstances A~ satisfies a differential
equation is the subject of the next section.

Special Cases

Nearly parallel geodesics to first order

1f I and "' are nearly parallel then.V  is Q;. Keeping all
powers of t but working only to first order in gl and V7, we find

1 i i 1 2, i Jj 1 3 _1i J i 3 5
= v - — - = .
A~ (t) £+ t 5 t°R ojog gt [R Ojov + R Ojo;og 1 + 0o(t>)
(31)
The second derivative of this is
az 1 ~ i 3
dt? A ’t“O - R ojo &% . (32)

. 1, .
Given that A” is the component on a parallel-transported basis, we can
also write this in terms of the tangent U to I':

_ o0 [TRRVING
= - R UuA lt=O . (33)

vUVUA uBv

s

This is just the usual first-order geodesic deviation equation, Eq.(1),
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at the origin. But can we infer from Eq.(31) that Eq.(33) will be
valid at other times: does the geodesic deviation equation describe
the evoluticn of A" at other times? We can check consistency of this
by asking if higher derivatives of Eqg.(31) are consistent with what we
would obtain from using Eq.(32) at other times, i.e. from the equation

2 ~
I RV C (34)
at? Jo
where hats over indices refer to the parallel-transported basis.
Equation (34) implies
3 ~ ~ . A .
LA, =-rY, g -r, v, (35)
at? t=0 ojo;o ojo

which is the same as we obtain from Eqg.(31), and

= O (36)

which 1is also (trivially)consistent with Eqg.(31), since we have been able
to keep only 0¢ in the t% terms.

Nearly parallel geogesics to second orderi

Keeping terms of second order in & and V  in Eq.(29) gives
1 i i1 i ik 2, 1 i 3
Ji\ = + t{V- - =R + - =

(©) & £l 3 jko £°80) el 2 R ojog

ik 1 i i -k
kjo 4 (R o00j;k R jko;o)E &l

1 3,1 b i j 5
\..,t
‘ (R oo V- + R 0j0;0 E7Y + O(t7), (37)

L i i
where I have discarded t® terms quadratic in £~ and V' since they are Os
overall. By analogy with Eqg. (34), the second order geodesic deviation
equation for a geodesic connecting vector is

2 e i P » oy R
d\ Al = =- RlOAO AJ - 2Rlﬁ40 AJ dA + _1- (Ri
at? J J at T2 ' ooojik
R (38)

. . Cl
or in terms of the unit vector U tangent to [,
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7o A% 2 = rY gMgvaB Y Og AB M
v (- RT 00 A" + 2R 8oy AV AT

1.y oY B O H V. O o
+ 2(R VB0 R 8o ;) A"ATuTu (8 y + U UY) (39)

The second-order part of this is equivalent to Eq, (4.2} of Bazanski when
we realise that his rj] and s is related to our A" by A” = r] + 3s .

It is also equivalent to the second-order part of Eg.(2.51) of Hodgkinson
(1972) , although he does not make a clear statement that he is using a
geodesic connecting curve. Our Os accuracy does not permit us to test
consistency of the higher time derivatives as we did in the first-order
case.

Rapidly diverging geodesics

If V- is not small then [ and ['' are close but rapidly
diverging. The origin O is therefore a special point, and it cannot
be expected that an equation derived near it will hold everywhere along

T. Indeed, to first order in £ Eg.(29) becomes
i _ 1 i ipo2, 1 p J _ LM J X
AT(t) = £7 + tv + Qu{t - 3R 050 £ R 5o gy
1 u Ik, L 3
+3R K13 E°VVTT + oY), (40)

from which one might postulate the deviation equation

2 ~ a~ ey ey
gt oot -rH, AT 2R“ﬁ4 A3k
a2 H oJo o
+ % R“Riﬁ AJVRVI), (41)

which is essentially Eq.(2.52) of Hodgkinson (1972). But since the
r.h.s. of Eg.{41) is of order NA’, its time~derivative is of order 1,

and therefore Eg.(41) cannot be integrated for as 1long as Eq.(34) can
before the assumptions under which it was derived break down. Indeed,
inspection of Eg.(29) at order t* reveals terms that involve derivatives
of the Riemann tensor along VJ and gJ, which would not be produced by
differentiating Eq.(41) along I. Therefore there is no real 'equation
of geodesic deviation' in the rapidly diverging case. We have only
power-series solutions like Eq. (29), or relations among derivatives,
such as Eq.(41), which are valid only asymptotically near the origin O.
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