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ABSTRACT. An analysis of data was carried out from the interferometric
gravitational wave detector prototype at Glasgow, to which artificial
signals analogous to those emitted by coalescing binary systems were
applied. We report on the ability to detect those signals, and the
methods used, as well as on a full account of the detector’s ocutput

noise analysis.

1. INTRODUCTION

The possibility of building detectors capable of responding to
gravitational waves brings of necessity the development and improvement
of techniques to analyse their output. In this paper, we report on the
analysis of data from the interferometric gravitational wave detector
prototype at Glasgow. The idea was to see if we could detect signals
associated with coalescing binaries, that were artificially added to the
detector’s output by the Glasgow group. Not only do we answer the above
affirmatively, but we also give a full account of the output’s noise

analysis.
Section 2 below describes the contents of the data sent to us by
the Glasgow group. Section 3 describes the Fourier analysis and

compares the results obtained from the Glasgow data to those expected
theoretically. The noise analysis is described in Section 4, and we
conclude this paper with a few comments.

2. DESCRIPTION OF THE DATA

The output data from the Glasgow prototype detector consists of two
independent streams, each associated with one of the two arms of the
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detector. (For the technical details of how the data is taken, cf. the
paper by Norman L. Mackenzie in this volume.) One of the streams,
called the primary data, is used as housekeeping data, and it contains
the evidence of drop-outs (i.e. when the detector 1is not locked
properly; data obtained in these intervals is to be rejected), the time
records, and a large-amplitude version of the artificially applied
chirps. The other stream, called the secondary data, contains the
detector’s output itself (which is essentially noise in this case), the
artificially applied signals corresponding to chirps from coalescing
binary systems (see below), and calibration signals which consist of
equal-amplitude pulses applied at different frequencies. These
calibration "combs” are used to compensate for the fact that the
secondary data are related (for instrumental reasons) to the detector’s
response in a way that is not uniform throughout the frequency spectrum.

The signal in both streams was sampled at 6000 Hz for 25 minutes
(to avoid aliasing, the data itself was filtered above 3000 Hz before
sampling), and was stored as l-byte data. When searching for signals in
noise one byte data is ideal. However its use does have some
restrictions on the analysis of the amplitude statistics of the noise
because of saturation or truncation effects.

The artificial signal applied to the detector’s output,
corresponding to that which one would obtain from a coalescing binary
system, 1is a chirp which increases in amplitude and frequency with time

in a well-defined way. If we place the chirp in a standard form in

which it has unit amplitude and frequency 100 Hz at t = 0, then we have
ir(t) = [1-0.34 t]—x s | 320m[1-(1-0.380)%] "
chirp = .34p s 0. 340

where p 1is the mass parameter, which 1is given by p = (reduced mass)
(total mass)2/2 (in units of solar masses) and characterises the chirp,
t is measured in seconds, and ¢ is the phase of the wave when it reaches
100 Hz. If we confine the chirp to the interval (ty,, t;) during which
its frequency rises from f, to f;, then we have

[1 - (fo/100)"°/3] [} - (f1/100)‘°/°]
ty © 0.34p St =S 034

Figure la shows a chirp with p = 10 in a frequency range 300-2000 Hz
(this value for @ was only chosen to make the graph clearer), while
Figure lb shows the real part of its Fourier transform. Figure lc shows
the power spectrum of a chirp with p = 0.15; again, this value was
chosen for clarity.

The signals actually applied to the detector were chirps in the
range 300-2100 Hz. All the applied chirps had the same mass parameter,
which was unknown to us, as was their location in the data streams.
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Figure la. Theoretical chirp for ¢ = 10. This large value
for p gives such a short chirp (1/60 s) that the sharp
increase in frequency towards the end is not noticeable.
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Figure 1b. Real part of the Fourier transform of the chirp in
Fig.la.
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Figure lc. Power spectrum of a chirp with p = 0.15.

3. FOURIER ANALYSIS

In order to detect the chirps embedded in the data, we built a family of
theoretical chirps obeying Eq.(l1) and starting from 300 Hz, with
different mass parameters. (We chose 300 Hz as the lower limit because
the Glasgow detector has relatively poor sensitivity below this
frequency.) These were then used as templates with which to correlate
the detector output. For the explicit calculation of the correlations
we used the fast Fourier transform (FFT) algorithm: we know that, if
F[g] denotes the Fourier transform of the function g, then

Flcorr(g,h)] = F{g]F¥[h] (2)

where an asterisk denotes complex conjugation. The direct correlation
of N points takes of order N2 operations, while the FFT of N points
takes of order Nlog,N. [We found that the FFT of a set of 4096 points
take 0.87 s on a MicroVax II; writing the result to a (direct access)
file takes a further 0.20 s, and reading the values from a file takes
0.01 s, making a total of 1.08 s. An improvement of speed by a factor
of about 100 is needed if the output of the planned detectors is to be
analysed in real time. ]

Using these methods we were able to detect the chirps embedded in
the secondary data. After finding that the mass parameter lay in the
range 0 < ¢ $ 0.1, we wished to fix @ more accurately. To do this, a
small subset of mass parameters in the above range was chosen. The
correlations for these mass parameters were calculated and the value of
P which yielded the maximum correlation was then used, as the centre of
a smaller interval. The range was continually narrowed in this way,
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until it was felt that no advantage could be gained by having further
accuracy; 1.e. that any change in the maximum correlation would be
masked by fluctuations due to the noise. In all, ten filters were
needed.

The best fit was obtained with p = 0.087 £ 0.001. Discussions
with the Glasgow group later revealed that 0.087 was exactly the mass
parameter that they had used in constructing their artificial chirps.
This initial ‘blind’ test of the correlation method was therefore
successful. (We should note that, because of the very low value of this
mass parameter, resulting in a very long chirp, only that portion of the
template between 300 and 400 Hz was used for the final correlations.
This allowed for more manageable subsets of data.)
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Figure 2. Correlation of theoretical chirp of p = 0.087, with
subset of secondary data.

Figure 2 shows the correlation (not normalised) between the
theoretical chirp with p = 0.087 and a section of the secondary data
containing an applied chirp. The plot is made against record point
number, and the maximum peak corresponds to the region in the embedded
chirp where its frequency is approximately 400 Hz.
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Figure 3 shows the log of the power spectrum of the record ip
which the maximum correlation in Figure 2 occurs. One notes a peak at
approximately 380 Hz, and this may be due to the presence of an applied
chirp. However, since corresponding peaks occur in other records at
similar frequencies (cf. Figure 5), we cannot easily judge whether a
chirp is present in Figure 3, or whether such peaks are due to
instrumental bias. For this reason, correlations are to be preferrad to
power spectral methods in detecting chirps in our data.

Finally, one notes that there are equally spaced, narrow pesks in
Figure 3, corresponding to interference from the mains supply at 50 Hz

and higher harmonics.

e PANES Sit S S SMS SNER SN ANN SNNY GHED NAnd SENS SUNE SNy SHANE SUND S e RREMEN SEN Ak B Sun REND ENN SEEE T ¥

LOG POWER

_l S R VU UAS SN VU VY SN VAN SN U WS SH SIS N GUNS S S VI SH G SN VY S SIS SIE S W
a . S0 1.20 1.50 2.00 2.58 3.9¢

3

FREQUENCY Hz X10

Figure 3. Log of the power spectrum of a record in which an
applied chirp occurs

4. NOISE ANALYSIS

To examine the performance of the detector, we studied the ou?put et
itself, which essentially consisted of noise. Ideally this nplse W9::;
be Gaussian, with zero mean. However instrumental effects will alw
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cause small zero offsets, and other non-Gaussian noise sources may be
present. In fact, taking the whole data set (excluding calibration

combs and drop-outs) we obtained

mean = —-11.79
(3)

standard deviation = o = 26.186.

This non-zero mean introduces a zero frequency, large amplitude peak in
the power spectra of all records of the secondary data, (Figure 3 has
been re-scaled so this peak is not present there). This mean has been
subtracted from the data before doing the analysis discussed in this
section, to account for this problem.
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Figure 4. Histogram of time data.

Figure 4 shows a histogram of the centralised (i.e. mean—-
subtracted) time series. The number of points having amplitude greater
than N times o, but less than (N+0.5) times O, is plotted against N.
Note that, while the central region of the histogram loocks roughly
Gaussian, two peaks show a relatively large number of points at -4.5 ¢
and 6 ¢. This is most likely due to the limiting of the dynamic range
of the data (cf. Section 2), by which all amplitudes are truncated at
the absolute value of 127.

We have also mentioned interference at 50 Hz and higher harmonics
from the mains supply. The power spectrum of an arbitrary subset of the
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data not only shows this interference, but also the non-uniform instry-
mental response, peaking near 1200 Hz (see Figure 5). This bias can be
compensated for by using the calibration signals (combs) applied to the
data (cf. Section 2).

However, the data also contains non-white noise and to allow for
this one could use a "local estimate" of o: for every small subset of
data (approximately 100 points), calculate its o value and look for
peaks inside the subset, relative to this ¢0. An analysis along these
lines should not only allow a study of the statistics of the power
spectrum of the raw data, but would also provide a way to set an upper
limit on the detector’s sensitivity. Such analysis is currently being

carried out.
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Figure 5. Log of the power spectrum of arbitrary record of time
series in which a chirp is not present.

5. COMMENTS

We have shown that, in a blind test of simple filtering techniques'g::

have been able to detect the artificially applied chirps in the GlasTrc
data and to determine the mass parameter of the chirp accurately- t;e
correlation method we used can therefore be expected to be useful in t&
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detection of true gravitational wave signals in future detectors’ out-
put. It must be said, however, that a continuously running detector
will output vast amounts of data, and since one cannot predict (at least
with sufficient accuracy) the kind of event that will take place, all
the data has to be correlated with more than one family of filters (for
coalescing binaries, for supernovae explosions, for neutron star and
black hole collapses, etc.). This asks for both real-time analysis of
the output and extremely fast hardware-software combinations that can
handle it.

Our experience with this experiment has shown that any attempt to
develop an automatic data-analysis system for real-time analysis of long
data streams will have to find ways to eliminate or cope with instru-
mental features in the data. In this case these included interference
from the electricity supply, and truncation and centring errors in the
l-byte data, and the non-uniform frequency response of the output data.
In the long run, a standard format for data storage would allow the
software to run more efficiently (e.g. by choosing the record lengths to
be an integer power of 2), and this together with agreement on the
information to be stored in the housekeeping data, should facilitate
data interchange between the different groups.
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