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Abstract. We present a derivation of the Boiu-Sommerfeld formula used by GuiM et ul to 
successfully calculate the complex eigenfrequencies for the low-lying quasi-normal modes of a 
Schwanschild black hole, It is shown Lhat this formula is valid even when the transition p i n e  
under considemtion come close together. 

PACS numbers: 97601,9880 

1. Introduction 

In a recent paper, Guinn et al [ 11 (hereafter GWKS) have calculated complex eigenfrequencies 
of the quasi-normal modes of a Schwarzschild black hole, using an extension of the standard 
WKB technique into the complex frequency domain. At the lowest order of approximation, 
they used essentially the familiar Bohr-Sommerfeld (hereafter BS) quantization condition 
for complex points. This simplified method proved to be very precise for the low-lying 
modes, producing results in accordance with haver’s [2], Nollert and Schmidt’s [3] and 
Andemon’s [4] numerical calculations, but it disagreed with these authors for the higher- 
order modes, in which the imaginary part of the fresuency becomes large. GWKS used the 
BS formula without proof, so its failure to agree with other methods for higher modes casts 
doubt on its applicability to this problem or to the other methods. In this paper we resolve 
these doubts by proving that the BS formula is applicable to the lowest-order modes, and 
then demonstrate how it fails for the higher modes. 

Our proof uses the phaseintegral formalism of Froman and Froman#, a generalization of 
the WKB method whose use for black-hole problems has been reviewed in [9]. The present 
paper can be read on its own, but readers wishing to follow all the details are referred to 
that review. Our results generalize the work of Thylwe [IO] for Regge-Pole positions. An 
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improved, generalized Bohr-Sommerfeld formula has already been published I 1  I], which 
corrects the major shortcomings of the GwKS formula for higher modes. 

In section 2 we briefly review the phase-integral formalism using the Regge- 
Wheeler [12] equation as a model problem for the application of the concepts as they 
are introduced. A more extensive review of this technique in the context of the black hole 
problem may be found in [9]. Section 3 gives a derivation of our result. In section 4 we 
present our conclusions and make suggestions for future work in this field. 

M E Ara6jo et a1 

2. Review of the phase-integral method 

Consider the time-independent Schrijdinger-like differential equation 

d2 - + Rt(r)\lr = 0 
dJJ 

where r is a complex variable. In the case of a Schwarzschild black hole, we have 1131 

R t ( r )  = - r2 
( r  - 2)2 

where a denotes the complex frequency, and where 

2 &e+ 1) ( r ) [ T - ’ ]  r3 
V,(r) = 1 - -  (3) 

is the Regge-Wheeler (odd-panty) potential and e is the spherical harmonic index. We have 
set M = 1. One should obtain the same complex frequencies with the use of either the 
ReggeWheeler potential or the Zerilli (even-parity) potential [14]. We use the former in 
the present work because it has a simpler functional form. We assume that the time factor 
of the solution of (1) is exp(-iat). 

The most general transformation of the dependent and independent variables that 
preserves the reduced form of ( 1 )  is given by [SI 

= / ’ Q ( 0  

for arbitrary Q ,  and (1) thus transforms to 

d2@ - + ( 1  + €)@ = 0 dw2 

where 

d2 2 R - Q 2  1 c=- Q2 -t m[5($Q2) - 4 Q z s Q 2 ] .  

It is clear from the above that if we were to find a Q that made 6 = 0, the functions 
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(8) 

would be linearly independent exact solutions of (6) and the general solution of (1) would 
be given by 

-tiwVI 6(r)  = e 

W) = a1 f i k )  + a2 fz(r) (9) 

where 

f i  ( r )  = Q-’”(r) eiO fz(r) = Q-’”(r) e-’”. (10) 

However, for potentials with complicated functional forms it is not possible in general to 
find Q2 to make E = 0 exactly. If one chooses Q2 in such a way that I E ~  is small compared 
with unity, then (8) still gives approximate solutions to the differential equation (1). The 
usual WKB approximation is obtained by taking Q2 = R, and is valid provided that R(r) 
satisfies the usual restrictions that make (1) treatable by the WKB method [El. 

Having chosen Q2 in a satisfactory way, it is convenient to write 

4 = ai (0) eiO + az(o) e-& (1 1) 

to transform the second-order ordinary differential equation (6) into a coupled system of 
ordinary differential equations for the ai. Imposing the condition that 

leads to 

The solution of the system (13) from initial data aj(oo) at w = wg to any other w may be 
given formally by 

ai(@) = Fij(W,w~)Uj(d. (14) 

Friiman and Friiman [5 ]  give convergent series for the matrix f i j ( o ( r ) ,  w(r0)) whose 
determinant is 1. They also give estimates of those series based on the assumptions that r 
and ro (o and wg) can be connected by a path A in the complex r-plane (o-plane) along 
which leiw(r)l increases monotonically from ro to r and an error bound defined as 

w. ro) = S, IG) QWG I (15) 

is much smaller than I .  
In the case of Schwarzschild black holes, R(r) as given by (2) and (3) is singular both 

at the origin and at the horizon. It is the.latter singularity that should be cause for concem, 
since we must be able to continue a solution valid at the horizon, where we place a boundary 
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condition of purely ingoing waves, into other regions of the complex plane. In order to 
satisfy this requirement we use OUT freedom in choosing Q2 and follow Fr6man and Ffiman 
(see chapter 11 in [ 5 ] )  to write 

M E Aruijo et a1 

1 
Qz(r) = R(r) - 

4(r - 2)’ ‘ 

Given that R has a second-order pole at the horizon this choice of Q2 makes the 
integrand of the pintegral (15) analytic at the horizon, which is a necessary condition for 
having a finite error bound when a solution is continued from the horizon to other regions 
of the complex plane. 

We have investigated the behaviour of IcQl in the neighbourhood of the horizon, using 
the eigenfrequency of some of the low-lying modes, and found that the error bound seems 
to be high for some of the possible paths along which one would continue the solution. 
Indeed Guinn et al by taking Q2 = R, the usual WKB approximation, have a divergent @- 
integral. This is a striking and unexpected feature since, as mentioned in the introduction, 
the BS formula gives accurate results for the low-lying modes. It is therefore clear that error 
estimates within the phase-integral formalism need further consideration. This problem is 
now being investigated. 

Note that to obtain Q and o one has to calculate the square rwt  of (16). We then 
assume that the complex r-plane is cut and a multiple-sheet Riemann surface introduced to 
make both Q and o single-valued functions (see figure 1). 

i Smksr AnbSrakes / ! 

Figure 1. Schematic representation of lhe complex r-plane showing the pauem of Stokes and 
anti-Stokes lies characteristic of a two-h”tion-point problem and a band B divided in two 
regions 81 and B, by Stokes lines. The wavy line denotes a cut, 
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From (2). (3) and (16) we obtain 

l i  Q2(r)  = u2 
r-m 

lim (r - 2)’QZ(r) = 40- . 2 
r-+2 

We choose the phase of Q(r)  such that 

lim Q ( r )  = U  

lim (r - 2)Q(r)  = -20. 
r-m 

r-+2 

It has been shown by Regge and Wheeler [I21 that the energy integral and the boundary 
conditions of purely ingoing waves at the horizon and purely outgoing waves at infinity 
lead to damped stable quasi-normal modes. Therefore, with our choice of time factor we 
must have Im u < 0. 

An important concept in the analysis of a differential equation in the complex coordinate 
plane is the role of the so-called Stokes and anti-Stokes lines. If E = 0, these are curves 
on which w, or equivalently Q dr, is pure imaginary or real respectively. The equations 
Re ( Q d r )  = 0 @n(qdr) = 0) are equivalent to a two-dimensional autonomous system of 
differential equations. The zeros of Q are the fixed points of the system. Since in general 
one is not able to solve e = 0 exactly, one has to work with the so-called semi-classical 
Stokes (anti-Stokes) lines, i.e. curves satisfying the condition Qdr pure imaginary (real) 
for some function Q for which I E ~  is small compared with unity. From this definition, it is 
clear that the solutions (8) behave as travelling waves along anti-Stokes lines and that their 
ratio remains the same size all along the line. 

The introduction of boundary conditions of outgoing waves at infinity and waves falling 
across the horizon on the real coordinate axis leads to well known numerical difficulties [ 141, 
since the desired solutions of (1) are exponentially increasing as the horizon and infinity are 
approached. Therefore, in order to uniquely define a quasi-normal mode, we have to single 
out an exponentially decreasing term from the required increasing one. This is a delicate 
problem, since the decreasing term will eventually become smaller than the error introduced 
in the increasing one. 

This problem can be avoided by placing the boundary conditions on anti-Stokes lines 
than run towards the horizon and infinity. It is shown in appendix B that the boundary 
condition of outgoing waves placed on the anti-Stokes lines emerging from the region 
where the two transition points lie towards infinity, leads to the correct boundary conditions 
at real infinity. 

The detailed description of the process leading to the calculation of the Stokes and 
anti-Stokes lines is given in appendix A. The computer programs for performing these 
calculations can be obtained from any of the authors upon request. 

3. Derivation of the Bohr-SommerfeId formula 

By virtue of our choice of cuts in the complex plane and phase for Q(r) ,  (19) and (20). 
we have that f , ( r )  in (10) represents outgoing waves as r H M and ingoing waves as 
r H +2. 
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Since there are no waves coming out from the black hole, near the horizon we must 
have that the function Ilr takes the asymptotic form 

i.e. a2 q(+2)  = 0. ul = u1(+2) is an undetermined normalization factor. In analogy 
with the demonstration given in the appendix of [9] it is possible to show that our choice 
of Qz and the boundary condition for quasi-normal modes at the horizon allow us to write 

al(r) = h l ( r ,  +2)a1(+2) = h ( r ,  +2)~1(+2) .  (22) 

Using (14), (21) and (22) we obtain that at an arbitrary point r in the complex coordinate 

(23) 

plane Ilr can be written as 

Wr) = [ F I I ( ~ ,  +2)f1(r) + F z I ( ~ ,  + 9 f d r ) k ( + 2 ) .  

In particular for r H 03 we have 

K-+W = [~l l (o0,+2)f i ( r )+ Fz1(03,+2)fi(r)]n1(+2). (24) 

The boundary condition of purely outgoing waves at infinity means that we must have 
Fzl(w, +2) = 0 and in the limit for r I+ co the function is 

Ilr - blfi(r) bl = ~ I ( + ~ ) F I I ( w ,  +2). (25) 
,+W 

Following Thylwe [lo], our next step is to show that has approximately the same 
functional form as in (21) and (25) in a certain band in the complex r-plane which surrounds 
the two transition points tl and f z  under consideration lying far away from them and from 
the other transition points (figure I ) .  If these two transition points, which may be close to 
each other, are well separated from the other transition points, one has a pattern of Stokes 
and anti-Stokes lines emerging from them that is characteristic of a two-transition-point 
problem consisting of first-order zeros [ 161. 

Although for the present analysis we do not need to know the precise configuration of 
Stokes and anti-Stokes lines, we need to use the fact that there is an anti-Stokes line running 
from the region containing the transition points to the horizon and another antiStokes line 
running from the same region to infinity such that both Rer H 03 and Imr H W. 

We start by deriving an expression for Ilr at a point Q in the left si& of the band B, 
denoted BI. For that purpose we consider a path A divided in three subpaths AI, A2 and 
h3. The subpath AI runs along an antiStokes lines from the horizon to a point b. A2 
connects b to a point c on the neighbouring anti-Stokes line and A3 links c to rl in such a 
way that I exp(iw)l is monotonically increasing (see figure 1). 

Now, in order to continue the solution from the horizon to r1 we have to calculate 
the F-matrix connecting them. It follows from (14) that &(+2, rl) can be written as the 
product of three matrices, namely, 

(26) 

Since the subpath At  connects two points on an anti-Stokes line we can use the basic 

f i j (+2,  rl) = Fix(+& b)Fxr@, c ) F / j ( ~ .  rd. 

estimates given in 191 to obtain 

1 0  
Fij(+2, h) = (0 I ) + O @ )  
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The subpath A2 connects two points on neigbouring antistokes lines along which 
lexp(iw)l has a single minimum. The F-matrix connecting b and c is then given by 
expression (3.7) in [ I @ ,  namely 

l ?  
Fij(b, C )  = 

where '?' denotes that Fjz is unknown and may be large. 

estimates of chapter 4 in [5]+ that 
From the characteristics of the subpath A3 described above we find, using the basic 

Now, using the inverse of (26) and (21) it follows that 

WO = 01(+2)f [ ( r1) [1  + O ( ~ d 1 .  (30) 

We now wish to obtain an expression for at a point rr in the right side of the band 
E, denoted E,. We consider a path j3 divided into two subpaths j3j and b. The subpath j31 
runs along the anti-Stokes line from infinity to d and subpath pz connects d to r, in such a 
way that along j32 I exp(io)l is monotonically increasing (figure 1). 

Again, in order to continue the solution from infinity torr we have to calculate E., (00, rr) 
which can be expressed as the product of two matrices, 

&j(oo, rA = &(CO, d)Fhj(d, T A .  (31) 

The subpath j3j connects points on an anti-Stokes lines. Thus, 

Using the basic estimates of chapter 4 in [5 ]  and the characteristics of subpath & 
described above we obtain 

Finally, using (25), (31), (32) and (33) we find that 

W d  = bd~(r , ) I l  + 001J1. (34) 

We have mentioned in the previous section, that the boundary condition of outgoing waves at 
infinity is placed on the anti-Stokes line that runs from the region containing the transition 
points to infinity. It must then be demonstrated that this procedure leads to the correct 
boundary condition at real infinity. This is equivalent to showing that, in the limit for 
d H 00 along pi, there exists a path running from d to a point in the real axis such that 
the F-matrix connecting them is the identity matrix. In appendix C we demonstrate the 
existence of such a path and comment that it is not unique. 
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Since the exact solution If? is continuous in the common boundary of the regions Bi and 
B,, it is reasonable to expect that if q(r1) and If?@,) are to be good approximations to the 
exact solution, they must both be valid in that region. Therefore, it follows from equating 
(30) and (34) that 

bi = a1(+2)ll +O(pL)I. (35) 

We have thus established that in the band B 

(36) 

The exact solution If?(r) is an analytic function in the band B and in the region 
surrounded by B except possibly for poles. It then follows [17] that the function *‘(r)/If?(r) 
is an analytic function of r in the region with simple poles at the zeros and poles of If?. 
The residue of a pole of order m is -m and at a zero of order n is n. It is reasonable to 
expect that in the present case both m and n are integers. Therefore, using Cauchy’s residue 
theorem we obtain 

dQ dfi  W r )  = a f i ( r ) [ l  + O b ) ]  p = a 1 - - - ( r W  +O(p)I. dr 

where N = m and we choose C to be a closed contour in the band B encircling 
the zeros and poles of If? in the positive sense. Assuming that expressions (36) are good 
approximations to the exact solution, we can approximate the integrand in (37) using them, 
and thus obtain 

n - 

Finally, using (38) in (37) we obtain the Bohr-Sommerfeld formula 

We note that the integration procedure does not introduce further errors since the 
integrand is a slowly varying function on the band B .  

4. Conclusions 

We have shown that the 6s formula can be obtained by a straightforward application of 
the phase-integral formalism to the Regge-Wheeler equation, even when the two transition 
points under consideration cannot be considered well separated from each other. They must, 
however, be well isolated from the other transition points. 

We have demonstrated that the boundq  conditions for outgoing waves at infinity, 
placed on the anti-Stokes lines emerging f” the region where the two transition points lie 
towards infinity (figure I ) .  leads to the correct boundary conditions at real infinity. This is a 
very important feature, since we now have a clear way of avoiding the numerical difficulties 
of tracking an exponentially decreasing term from the required increasing one [14]. 
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The BS formula is very accurate for the determination of the low-lying quasi-normal 
modes because the influence of the other transition points on the pattern of Stokes and anti- 
Stokes on the band B is negligible. For higher values of the overtone index n this influence 
becomes significant and third transition point must be taken into account (see [ 1 I]). 

It was pointed out that the error bound, the p-integral, Seems to be high for some of the 
possible paths along which one would continue the solution despite the accuracy of the BS 
formula for the calculation of the eigenfrequencies for the low-lying quasi-normal modes. 
We are at present carefully considering this question which is intrinsically connected with 
the more general topic of estimates of error bounds within the phase-integral formalism. 
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Appendix At 

In what follows, we will describe in detail the determination of the autonomous system 
of differential equations that one obtains from the equation for (semiclassical) anti-Stokes 
lines. Analogous steps can be followed for the equation for (semiclassical) Stokes lies. 

Semiclassical anti-Stokes lines are the integral curves of the system of ordinary 
differential equations obtained from the complex equation 

Im( Q'/' dz) = 0 (AI) 

where 

In the region close to a zero of Q, we then factorize it as 

where z, are the coordinates of the zero of Q. We then write. 

z - z1 = reis 

dz = (dr t ir @)ei9 

dr + ir dB = ds ei@ 

f ( z )  = If(z)le" 

t In this appendix r is a real variable and r = 0 is the coordinate of the zero of Q under consideration. 
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from which it follows that 

dr =dscosQ 

r d8 = ds sin6 . 
Then 

The equation (Al) is then equivalent to 

38 Q! - + - +Q = n r .  
2 2  

Finally, we substitute ( 1  I )  into (AB) and (A9) to obtain 

dr 
ds 

Equations (A12) and (A13) are the ones we use to obtain the anti-Stokes lines. The three 
lines emerging with angles of 120” between them are a result of setting 30 + a/2  = n r  in 
(A13) to avoid infinities at r = 0. 

Appendix B 

We intend to show that in the limit ford H 00, along the anti-Stokes line where it lies, there 
exists a path running from d to a point in the real axis such that the F-matrix connecting 
them is the identity matrix. This result follows from the basic estimates of chapter 4 in [5], 
provided that along such a path I exp (io)l is monotonically increasing and that the error 
bound, the p-integral, tends to zero. 

Consider a path a being a straight line orthogonal to the real axis connecting d to Red 
(figure 1). We start by showing that, for d H 00 along P I ,  I exp (iw)l is monotonically 
increasing along a. 

From the definiton (5) it follows that 

w(Red) = o ( d ) +  Q d r .  1 
Using (19), we obtain that far away from the region B 

S. Qdr = Qdy = -iy‘a 

where we have introduced the notation r = x + iy and d = x’ + iy‘. From (BI) and (B2) 
we have that 

Iexp[io(x’)ll = Iexp(y’Rea)l. (B3) 
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It follows from Reo  t 0 and y' H 00 that I exp(iw)l is monotonically increasing along a. 
the pintegral tends to zero along a. From 

(7), (IS) and (19) we have that 
We now show that for d H 00 along 

We point out that the path a is a 'good path' in the sense that it satisfies the necessary 
assumptions that allow us to use the basic estimates in [5] and is obviously simple to 
describe. However, it would have been more elegant to use a Stokes line orthogonal to the 
anti-Stokes line on which d lies to connect it to a point in the real axis. 

Far away from the transition points, both the Stokes and anti-Stokes lines under 
consideration tend to be straight lines. It follows that along such Stokes line (A in figure I )  
the integral in (B2) would be replaced by 

and in this case (B3) would be replaced by 

and using the same argument as before it follows that Iexp(iw)I is monotonically 

We also have that. for d H bo, the p-integral along A is given by 
increasing along this path. 

1 
dy=O 

1 0  
lim p =  lim - 

d+m ?+m 4Rea Ay2 + By + C 
along B I  -cm 

A = 1 + (2) 2 

Re U 
B = 2 -  

Re U 

(x' - 2) - y'- 
Re a 

Finally, it follows from the basic estimates given in [9] that 

lim F,j(d, e) = (i ?) d-rm 
lim Fij(d, Red) = 

rl-m 
along 8 ,  along 81 
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