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On the existence of ergoregions in rotating stars
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Summary. Very compact rotating stars in general relativity can in principle
contain regions, called ergoregions, in which all trajectories must rotate in
the direction of the star’s rotation. These regions are known to create an
instability in the star, and it is therefore of physical interest to know whether
realistic stars can contain ergoregions. We develop an approximation scheme
which enables us to study ergoregions with a minimum of numerical effort.
The method is to calculate the structure of a non-rotating star and then to
integrate the equation for the ‘dragging of inertial frames’ in the slow-rotation
approximation. When applied to uniform density stars, the results agree with
the more accurate calculations of Butterworth & Ipser to within a few per
cent. We apply the method to the more realistic degenerate-neutron equation
of state (Harrison—-Wakano—Wheeler), for which no other ergoregion calcula-
tions have been made, and conclude that no realistic neutron star, even with
strong differential rotation, can develop an ergoregion. The ergoregion
instability is therefore only likely to have astrophysical importance if stars
significantly more compact than ordinary neutron stars exist.

1 Introduction

In general relativity the rotation of a star ‘drags’ the orbits of particles and photons; for
example, the period of a circular, equatorial orbit is shorter in the prograde direction than
in the retrograde direction, as measured by an observer far from the star. This effect is
known. somewhat loosely, as the dragging of inertial frames. Collapse of a rotating star
causes both the star’s angular velocity and the dragging to increase. If the collapse proceeds
far enough. dragging can, in principle. become so great that in some regions all orbits would
be forced to co-rotate with the star. This region is called an ergoregion (ER). Friedman
(1975, private communication) has argued that a star without a horizon but having an ER
will be unstable to spontaneous emission of electromagnetic and gravitational waves. This
would presumably have the effect of carrying away both energy and angular momentum
from the star, spinning it down until the ER disappears. If ERs are common in rapidly
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rotating compact objects, such as newly formed pulsars, then the instability could have .
significant effect on the initial rotation period.

Unfortunately, little is known about what kinds of stars may have ERs: the only accura::
results are those of Butterworth & Ipser (1976 — discussed below), which require elaborat:
and expensive numerical calculations. The purpose of this paper is to present an approximats
method of determining the existence and structure of an ER, which is easily to apply anc
gives remarkably accurate answers. We have examined rigidly rotating stars in some detaii.
and we find that no such star with a realistic equation of state is likely to develop an ER. W¢
also conjecture that differential rotation is unlikely to be much more effective, but we
reserve a detailed examination of differential rotation for the future.

In addition, we have calculated the growth rate of Friedman’s ER instability for the case
of a massless scalar field. The results are summarized below but the details will appear in -
separate paper (Comins & Schutz 1977).

2 Outline of the method

Butterworth & Ipser (1976) have published accurate numerical calculations of the strycture
of realistic, rigidly rotating, uniform density stars. In sufficiently compact stars they‘md
that ERs form at an angular velocity below that which would cause shedding of matter from
the star’s equator. These landmark calculations yield a wealth of information about the stars.
but there is a quicker way of obtaining information just about the ER, which results from
the following simple observation. Most sequences of stars of increasing angular momentum
terminate where the angular momentum so dominates the structure of the star that it causes
shedding of mass from the equator. If an ER develops well before shedding, then the
structure of the star in which it develops is not rotation-dominated: the star is ‘slowly”
rotating in a dynamical sense. We can therefore restrict our considerations to the slow-
rotation approximation developed by Hartle (1967), Hartle & Sharp (1967) and Hartle &
Thorne (1968). We shall find that making the additional restriction of considering only very
compact stars reduces the problem to one of solving (a) the structure of a non-rotating star.
and (b) a single ordinary differential equation for the ER. Our notation is that of Misner.
Thorne & Wheeler (1973, hereafter MTW). |

3 Structure of the ergoregion

The ER may be defined as the region in which no time-like world line can remain at rest
relative to an observer at infinity. This notion of ‘at rest’ is definable in general relativity
only in stationary spacetimes, that is, spacetimes in which a (Killing) vector field &, exists
which moves each hypersurface forward in time invariantly. To remain at rest is to follow
a world line tangent to §,. This vector field is time-like at infinity; inside the ER it must be
space-like, so that nothing can remain at rest. The boundary of the ER is therefore the

surface on which E, is null:

E¢Ee = f00= 0.

A non-rotating star has the metric (MTW)

ds®= —exp [2d(r)] dr? + exp [2A(r)] dr? + rH(d8? +sin? 8 d¢?).

Slow rotation, with angular velocity §2, causes corrections (Hartle & Sharp 1967) to ggo, £11-
800 and gu that are of order 2% and adds an entirely new metric term of order

gop = ~ WEoo
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This equation defines w, the angular velocity of frame dragging. Since w is the only term
linear in §, it obeys a differential equation decoupled from all other metric corrections. If
€2 is a constant (rigid rotation) this becomes (Hartle 1967) the ordinary differential equation

_l_ﬁ(r“]_d_?_D)*-ﬂ’fj_] m:o’ (la)
r* dr dr/ rdr

where

w=80—w, (1b)
j(r)=exp [~ ®(r) — A(M)]. (1¢)

We are interested in goo. Including correction terms, it is
200 = — €xp [20(r)] [1 +A(r, )] + w?r?sin? 0.

Inspection of the equations governing /# (Hartle 1967) shows that 4 and w?¥? are of the same
order. This permits our second approximation: we neglect h(r, 8) in goo. This is not strictly
a consistent approximation, but it can be expected to hold in very compact stars, where
exp (2®) < 1. In such stars, a small w? can change the sign of g,,, while 7 would have to be
of order 1 to have any effect. (This justification was suggested to us by K. S. Thorne.) Since
ERs only form in compact stars, we can therefore take the boundary of the ER to be given

by the solution to
0= —exp [2d(r)] + w(r) r*sin? 6.

If a solution exists it is topologically a toroid. Its boundaries in the equatorial plane
satisfy

raw(r) = exp [®(r)]. (2)

To find these boundaries we need only solve for ®(r) of the non-rotating star and for w via
equation (1). Integration of equation (1) begins at the origin with d@/dr =0 and w finite
but arbitrary. The exterior solution for w is 2J/r3, where J is the angular momentum of the
star (MTW). Therefore the exterior solution for w is @ = Q(1 — 21/r®), where I is inter-
preted as the moment of inertia of the star. Both w and dw/dr must be continuous across
the surface of the star, and these two conditions uniquely determine w/$2 at the centre of
the star and /. Since equation (1) is homogeneous, the angular velocity £ is an arbitrary
scale factor, and so we automatically obtain the entire sequence of slowly rotating stars.
This is the same procedure as that used by Chandrasekhar & Miller (1974).

4 Results for uniform density stars

A non-rotating uniform density model is determined by two numbers, which we take to be
the mass M and radius R, (¢f. MTW). A rigidly rotating star is further characterized by its
angular momentum J, where J= [§. For three sequences parameterized by J, the
boundaries of the ER in the equatorial plane are plotted in Fig. 1. Each curve refers to a
different rotating model, labelled by 2M/R . The overall scale given by M has, of course.
been factored out. The two points on each curve at a given value of J/M? are the radii of
the ER boundary. The minimum J for each curve gives the point at which the ER first
forms. The curves terminate at some maximum J, where mass-shedding occurs for each
sequence. In our approximation, mass-shedding occurs when the centrifugal force on the
equator exceeds the gravitational force of the non-rotating star there. Observe that the sizes
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Figure 1. Size of the ergoregion (ER) for uniform density, rigidly rotating stars. The vertical axis i‘s‘
angular momentum of the star, in units of the square of its mass. (This ratio is dimensionless in
where ¢ = G = 1.) The horizontal axis gives the radii of the boundaries of the ER in the equatorial plane in
units of the star’s radius. Each curve refers to a different sequence of stars, labelled by the value of 2M/R,
for the non-rotating member. Curves: terminate at the value of J/M? at which shedding occurs at the
equator of the star. Each curve has a minimum, below which there is no ER. To find the size of an ER for
a certain value of J/M?, draw a horizontal line at that value; its intersections with the curve relating to the
sequence of interest give the radii of the boundaries.

of the ER in stars of low 2M/R are more strongly limited by mass shedding than those for
compact stars. Shedding sets a lower limit on 2M/R,, of 0.77. Stars less compact than this
do not form ER before shedding. For a star of one solar mass this corresponds to a density
of 1.4 x 10'®g/cm?, which is larger than one expects to find in neutron stars.

In Table 1 we list the characteristics of stars having incipient ERs and compare them
with the more accurate results of Butterworth & Ipser (1976). Our results are within a few
per cent of theirs. The moments of inertia of these relativistic stars are displayed in Fig. 2(a),
where the dimensionless //(2/5 MR2) is plotted against 2M/R . These agree well with the
results of Chandrasekhar & Miller (1974). The angular velocity of dragging, w, for a ty
compact star is depicted in Fig. 2(b). The good agreement of our approximate results with
the calculations of Butterworth & Ipser encourage us to apply them to the more realistic
equation of state discussed below, for which more accurate calculations do not exist to date.

Table 1. Comparison of present approximate results with those of Butterworth & Ipser (1976). Com-
parison of results for the sequences of uniform-density, rigidly rotating stars described in Fig. 1. Columns
(1)—(3) describe the present calculations: (1) the value of 2M/R* for the sequence; (2) the radius at
which an ER first forms along the sequence, in units of the star’s radius R ; and (3) the angular momen-
tum of the star in which the ER first forms, in units of the square of the star’s mass. Column (4) gives the
Butterworth—Ipser value of this angular momentum and (5) the percentage difference between (3) and

4).

2M/R, r/R, JIM it JIM it B&I Percentage
difference
0.7975 0.642 0.89 0.83 6.7
0.8194 0.600 0.74 0.73 1.8
0.8479 0.520 0.54 0.57 5.6

0.8556 0.486 048 0.49 2.1
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Figure 2. (a) The moment of inertia / versus 2M/R, for uniform-density, rigidly rotating stars. [ is
normalized by the (non-relativistic) moment of inertia of a sphere s MR}. (b) The angular velocity of the
dragging of inertial frames (in units of the star’s angular velocity), w/<2, plotted as a function of radius (in
units of the star’s radius, for a uniform density, rigidly rotating star). The star has 2M/R, = 0.7975.

5 Results for the Harrison, Wakano & Wheeler (HWW) equation of state

This equation of state (Harrison et al. 1965, hereafter HTWW), based on treating neutrons as
a cold ideal Fermi gas, is more realistic than the uniform density case, but is still of course an
idealization. It has the advantages of being analytic and easy to program; our results do not
justify the use of a more realistic equation for rigidly rotating stars. The non-rotating star for
this case is determined completely by the central number density. No extra scale factor such
as the total mass exists since the equation of state already contains the mass of the neutron.
Fig. 3 gives the angular momentum of the sequence of stars (parameterized by central mass
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Figure 3. Angular momentum versus compactness (as measured by 2M/R,) for rigidly rotating HWW
neutron stars which have an incipient ER. The curve is parameterized by log,, o, where g is the central
density of the star in gem™. To compare these stars with the uniform-density stars, note that every point
here corresponds to the minimum of a curve of the type drawn in Fig. 1. HWW stars form ERs at much
higher values of J/M? than do uniform-density stars.

density) which have an incipient ER. All of these models, however, are above the shedding
limit. We will discuss this in detail in a moment. A feature not present in the constant
density case which appears for the HWW stars is a minimum angular momentum below
which no star can have an ER. Notice how much larger J/M? must be in order for an ER to
develop in these stars than in the uniform density stars. Although perhaps not unexpected
this has the effect that all rigidly rotating HWW stars with ERs also shed matter at the
equator. Fig. 4 shows w versus r for a typical HWW star.
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Figure 4. Same as Fig. 2(b) for an HWW star of central density p. =1.1X10'**gcm®. This star has
2M/R, =0.274.
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One might hope to get around the shedding restriction by considering differentially
rotating stars. The idea is that formation of the ER may be dominated by the angular
‘momentum in the compact core: the shedding limit, on the other hand, is set by the diffuse
outer layers, whose angular momentum may not contribute substantially to formation of the
ER. For normal HWW stars, however, our calculation makes this seem like a false hope. We
find that by the time the ER has formed in these stars (at least for p. < 2 x 10'7gcm™), the
angular velocity is so large that centrifugal force dominates gravity not only at the surface
but practically all the way through the star, to well inside the core. Differential rotation,
then, probably could not help in forming an ER in these stars. The inner region, which is
already rotating too fast, would have to rotate even faster in order to maintain an ER while
the outer region rotates slowly enough not to shed. In stars with central densities larger than
2% 10" g/cm? there is a central region which has not reached its ‘shedding limit’ when the
ER forms; differential rotation may be effective in forming ERs in these stars. Unfortuna-
telgthese stars are almost certainly unstable: the non-rotating ones of these central
denstties have one unstable radial mode of pulsation (HTWW).

Thus it appears that realistic, rotating neutron stars will not have ERs. We must note that
the HWW stars are less relativistic than the constant density stars and so the approximation
used in ggo is not as good here as in the previous case. This suggests that the exact structure
of the ER (Fig. 4) may not be given as accurately here as before, but it is unlikely to affect
the qualitative conclusions that ERs are unlikely to form.

6 Growth rates of the ER instability for scalar fields

The timescale of the ER instability is examined in another paper (Comins & Schutz 1977).
It has considerable interest as a problem in its own right, because this instability has a close
similarity to other instabilities in general relativity. We quote here the major results. Atten-
tion is restricted to radiation of scalar waves on the background of a rotating star.

The scalar field is assumed to have an angular dependence of exp (im¢). Friedman (1975,
private communication) suggests that the instability mentioned in the Introduction sets in
thr&h the high m modes. In this limit the scalar wave equation is amenable to WKBJ
analysis. We find that instability is indeed caused by an ER. In a given ER, all modes with m
greater than some my are unstable, and m decreases as the size of the ER increases. The e-
folding time 7 for the unstable modes of the scalar field has the asymptotic form

T=T19exXp (m), B=0(1),

for large m, where 74 is a constant. The m dependence means that the instability is a weak
one: we find that all unstable modes will have growth times much longer than the dynamic
timescales of the star.

7 Astrophysical implications

It is clear from the calculation using the HWW equation of state there are no realistic rigidly
rotating stars with ERs. There are two situations in which ERs could conceivably arise: ultra-
stiff equations of state and ultra-dense equations of state. Equations of state for which p > p
(‘ultra-stiff”) have sometimes been suggested in order to permit spherical neutron stars of
6 M- or more. While these are unrealistic to begin with, it is interesting to note that rota-
tion should not raise the mass limit significantly, as it can for less-dense stars. The reason is
that these stars ought to be so compact that they would easily form an ER at low angular
velocities. creating the instability.
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An ‘ultra-dense’ equation of state need not have p > p: it need only provide a stiff regime
at densities higher than nuclear, in order that dense stars of moderate mass may be stable.
These are sometimes called hyperon stars. If one can get central densities of 10'7 or
10'8gcm™, our calculations indicate that ERs may form quite easily. (A stable ‘ultradense’
star based on quark confinement and a repulsive nuclear core is given, along with consequent
limitations on neutron star masses, in Ipser, Kislinger & Morley (1975, unpublished).)
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