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It is shown that Einstein’s concept of the “strength” of a system of differential equations is directly
related to the number of dynamical degrees of freedom the equations permit. It may become a useful

tool for investigating the structure of the system.

In a recent paper, Mariwalla® discussed Einstein’s?
concept of the “strength” of a system of partial dif-
ferential equations. Although both suggested that the
strength was related to the amount of arbitrariness in
the solutions to the system, neither Mariwalla nor
Einstein made that relationship satisfactorily quantita-
tive, and both were surprised to find that the Maxwell
and Einstein equations had the same strength, twice that
of the scalar wave equation. The purpose of this paper
is to show that the strength is related in a well-defined
manner to the number of arbitrary functions of d-1
variables (where d is the dimension of the manifold)
necessary to determine a solution locally. For hyper-
bolic systems this is the amount of Cauchy data; it de-
fines the amount of dynamical freedom in the system,
The strengths of the scalar, Maxwell, and Einstein
systems are then readily understood in terms of the
number of polarization states available to the massless
particles associated with them. When extended to ex-
amine arbitrariness in fewer than d - 1 variables, the
method may become a useful tool in examining the
structure of the system of equations.

Suppose we have a system of equations for #» unknowns
U, on a d-dimensional manifold. If all the equations
can be placed in the normal form

akUA/axk:_fA(x’ v
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[where {x,y, (a=1,...,d- 1)} are the d coordinates,

k is fixed, and [ +m <k, I <k] in some coordinate
system, then a local analytic solution is always uniquely
determined by giving analytic functions for U, and their
first k — 1 derivatives with respect to x in the hyper-
surface x =const (Cauchy—Kowalewsky theorem). That
is, the sytem allows kn free functions of £-1 variables.
However, it may not always be possible to choose co-
ordinates {x,v,} such that all the equations of the system
take the form (1). In the Maxwell or Einstein equations,
for example, some equations represent constraints, of
the form

OIgA(x’»va‘athB/alxamyg)- (2)

Associated with the existence of these contraints are

gauge functions, whose values are arbitrary everywhere.

These gauge functions are physically unmeasurable, but
must be eliminated before the Cauchy—Kowalewsky
theorem can be brought to bear on the problem. The
existence of the constraints, moreover, means that not
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all the initial data is freely specifiable. We shall show
that Einstein’s concept of the “strength” of the system
provides a direct, if somewhat heuristic, method of
discovering just how much real freedom there is in a
complicated system of partial differential equations.

Consider the Taylor expansion of an analytic function
of d variables about a point. The total number of terms
of nth order in the expansion is?

[Z]E%Jj-—;)lz)!:<n+:_l>- (3)

If the function is completely unconstrained, then all of
these coefficients in the Taylor series may be given
arbitrarily. If for any reason the function can be given
arbitrarily on a (d - 1)-dimensional hypersurface, but
its behavior in the remaining dimension is determined,
then only [?;!] coefficients of order » are arbitrary. The

.converse is not necessarily true (the [¢;'] free coef-

ficients need not form a (d - 1)-dimensional Taylor ex-
pansion), but in the context in which we shall use it we
can suppose it will generally be true. The fraction of
free coefficients in such a function is

[d - d] __d-1
n n ntd-1"
which goes to zero for large n.

In order to determine the amount of freedom in a
system of partial differential equations, Einstein® sug-
gested one should expand all the dependent variables in
Taylor series and determine the number of relations
among the various coefficients of order » that are im-
plied by the differential equations of the system. By
subtraction there remains a number Z, of free coef-
ficients of order n. Einstein® and Mariwalla! have com-
puted this number for several physically interesting
fields. After removing all the gauge freedom in the
fields, they found that the ratio Z"/[‘},] always went to
zero as 1/z for large n, and they interpreted this to
mean that there were no completely free functions of d
variables left in the theories. They then defined the co-
efficient of 1/% to be the “strength, ” but did not interpret
it satisfactorily. It is clear, however, from the dis-
cussion of the previous paragraph, that the limit for
large # of Z_/[*!], which differs from the Einstein
strength by a factor of (d-1), is in fact the number of
free functions of d — 1 variables in the theory. We can
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formulate this precisely as follows. It is clear from Eq.
(3) that [ ¢] is a polynomial in » of order d-1. Since

Z_ is always a sum of such terms, **? it is also a poly-
nomial in » of maximum order d — 1. Therefore, it has
a unique representation of the form

Z,= 5 N, m . (4)
k=1 n

Then, at least heuristically, the number of free func-
tions of # variables in the solution is N,. (In the Ap-
pendix we show that all N, are integers, as they must be
for this approach to make sense. )

As a concrete example, let us consider the Maxwell
field in four dimensions. When the equations are formu-
lated in terms of a vector potential and the gauge free-
dom is removed from Z  explicitly, one obtains’

ol L) L L

If we were not to subtract the gauge freedom, the sec-
ond term would not be present. If the vector potential
is not introduced at all, one obtains'+?

ol o[t [t

Writing these in the form of Eq. (4) gives

sl [ [
o) o)

Neither Z, contains any free functions of four variables,
and both have four free functions of three variables.
These correspond to the two dynamical degrees of free-
dom in electromagnetism: On a Cauchy hypersurface
one can specify two variables and their time derivatives
freely. On the other hand, the two versions of Maxwell’'s
equations appear to differ at the two- and one-dimen-
sional level. In fact they do not: Because Z,*) refers

to a potential version of the Z,® equations, a term of
order n in the latter is of order » + 1 in the former. To
“lower” the order of the former, we rewrite Z» in
terms of m=n—1 and find

zZ, =4 [3] +2 [2:,
m m

So in this sense both versions are equivalent. The in-
terpretation of this two-dimensional term is not at all
clear, but in view of its independence of the use of a
potential, it appears to contain some real information
about Maxwell’s equations. We may conjecture that it
describes the freedom to set a boundary condition on the
elliptical constraint equation in the initial hypersurface,
but it should bear a more thorough investigation. There
is another tantalizing suggestion in the Einstein equa-
tions of general relativity, for which Z, '-® takes the
form

coral] [ 1)
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This is derived using the metric tensor as the funda-
mental variable; but the metric may be considered to be
a second-order potential for the Riemann tensor, which
is physically measureable. Shifting the order by two

(m =n-2), we get

sral2) o).

The coefficient of [fn] is zero, and the other coefficients
are positive, just as for electromagnetism.

Whatever the significance of the lower coefficients
may be, it is clearly not surprising that for the Einstein
and Maxwell equations, as well as for the Weyl and
Dirac equations,® one finds N, =4, while for the scalar
wave equation N,=2. All are field theories for spinning
particles: for zero spin particles there is only one
dynamical degree of freedom, while for massless
particles with spin there are two possible helicities
and hence two degrees of freedom.

APPENDIX

The expressions given by Einstein® and Mariwalla®
are always of the form

d
Z = K
n in@ger m [n — m] ’

where d is the dimension of the manifold and the K, are
always integers. This is in fact the general form for

Z,, because each term results from K, equations (al-
ways in d dimensions) containing m derivatives of the
field variables. We wish to reexpress this in the form of
Eq. (4). By using the definition of [4] it is easy to
derive the basic relation

[”il} '[3] i [ilﬂ R ES

By iteration of this we find

L =000 1

n+1 n n n
Equation (A1) can be rewritten as

L2 =017

n-1]  |» n ]’
from which follows by iteration

d I m\ |d-p
= - 1) .
2 -2 () (5]

Since all the coefficients are integers, the coefficients
N, in Eq. (4) are also integers.
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1K.H. Mariwalla, J. Math, Phys. 15, 468 (1974). Note the
error in Eq. (23), where (§) should everywhere be replaced
by (431).

2A . Einstein, Meaning of Relativity (Methuen, London, 1956),
6th ed., Appendix II; also (Princeton U.P,, Princeton, N.J.,
1955), 5th ed.
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