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Perturbations and stability of rotating stars. 

I. Completeness of normal modes 

BY J. D Y S O NA N D  B. F. S C R U T Z  

Department of Applied Mathematics and Astronomy, 
University College, Card#, U.K. 

(Communicated by X.Chandrasekhar, F.R.S. -Received 19 March 1979) 

Linear adiabatic perturbations of a differentially rotating, axisymmetric, 
perfect-fluid stellar model have normal modes described by a quadratic 
eigenvalue problem of the form 

where A and C are symmetric operators, B antisymmetric, and 5 the 
Lagrangian displacement vector. We study this problem and the associated 
time evolution equation. We show that, in the Hilbert space H', whose 
norm is square-integration weighted by A ,  the operators A-1B and 
A-1C are anti-selfadjoint and selfadjoint, respectively, when restricted 
to vectors 6 belonging to  a particular but arbitrary axial harmonic. We 
then find bounds on the spectrum of normal modes and show that any 
initial data in the domain of C leads to a solution whose growth rate is 
limited by the spectrum and which can be expressed in a certiin weak sense 
as a linear superposition of the normal modes. The normal modes are 
defined more precisely in terms of parallel projection operators associated 
with each isolated part of the spectrum. The quadratic eigenvalue 
problem can be reformulated in the space H' @ H' (initial data space, or 
phase space) as a linear eigenvalue problem for an operator T, the 
generator of time evolution. This operator is not selfadjoint in H'  @ H' 
but i t  is selfadjoint in a Krein space (an indefinite inner-product space) 
formed by equipping H' @ H' with the symplectic inner product. The 
normal modes are its eigenvectors and generalized eigenvectors. 

I.  INTRODUCTION 

(a) Motivation 

Interest in rotating stars and their perturbations has been growing rapidly during 
the past ten years. It is probably fair to  say that the influence of angular momentum 
on dynamical phenomena is one of the most poorly understood areas of astrophysics, 
despite the fact that its importance on nearly every mass scale, from star formation 
to  galactic structure, cannot be doubted. In  attempting to gain some feeling for the 
effects of rotation, one of the simplest systems to study is the differentially rotating 
perfect-fluid star. An understanding of its principal instabilities should be relevant 
t o  the study of the collapse of massive stellar cores and the formation of pulsars. 

1: 389 I 
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An understanding of its short-wavelength normal modes may be important for 
such objects as cataclysmic variables and P-Cephei (multi-period) variable stars 
(Papaloizou & Pringle 1978). The large scale modes of rotation-dominated fluid 
dislcs have also been used to model spiral structure in galaxies (Bardeen 1975). 
The perturbation problem itself has, moreover, considerable mathematical interest, 
being expressible either as a quadratic eigenvalue problem (equation (4.9) below) 
or as a linear eigenvalue problem for a non-selfadjoint operator (equation (4.10)), 
both of which are much less well understood than the linear selfadjoint eigenvalue 
problem that arises in non-rotating stars ( 5  2 below). 

The only fluid systems whose global perturbations have been a t  all well studied 
outside the slow rotation approximation are the Maclaurin spheroids (Chandra- 
selchar 1969) and the thin disk (Bardeen 1975). (For a local analysis see the review 
by Bricke & Mippenhahn 1972.) This paper is the first of a series that will study, 
analytically and numerically, linear adiabatic perturbations of more general 
systems. We shall always take our stars to be axisymmetric perfect-fluid systems 
without meridional circulation. The series will focus attention on the normal modes 
of the stars, because a t  present they are the key to instability: there is no general 
criterion for non-axisymmetric dynamical instability. This situation is in contrast 
with perturbations of non-rotating stars (Lebovitz 1965a, b), with axisymmetric 
perturbations of rotating stars (Chandrasekhar & Lebovitz 1968), and with non- 
axisymmetric secular instability of rotating stars (Bardeen et al. 1977), a11 of which 
have criteria based on the positive-definiteness of certain functionals over a given 
set of trial functions. Even the study of secular instability (that is, instability to 
viscosity and gravitational radiation), however, comes down to a study of normal 
modes because all perfect fluid models are formally unstable (Friedman & Schutz 
1978 a, b). Only a detailed knowledge of the dynamical normal modes enables one 
to  calculate whether the timescale of the secular instability is significant and 
whether the competing effects of viscosity and gravitational radiation cancel one 
another or not (Detweiler & Lindblom 1977; Comins 1978). But in order to have 
confidence in the results of a normal mode analysis one needs to know whether the 
modes are complete: can any perturbation be expressed as a superposition of normal 
modes? I n  this paper we show that the answer is yes. 

(b) The problem, 

We consider unperturbed stars which are (1) perfect fluids with the density vanish- 
ing on the surface (the surface being defined by the pressurep = 0), (ii) axisymmetric, 
(iii) in purely azimuthal flow described by an angular velocity 9.We allow 9 to 
take both signs inside the star and we do not assume reflexion symmetry through 
any plane perpendicular to  the axis of rotation. Linear, adiabatic perturbations are 
governed by the following equations, written in terms of the Lagrangian displace- 
ment vector [(x, t ) t  in the reference frame of a non-rotating (inertial) observer 

t For footnote see facing page. 
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(Lynden-Bell & Ostriker 1967): 

where a subscript ' t '  indicates a time derivative and where the operators A, B, 
and C acting on an arbitrary vector q give 

Here y is the adiabatic index (a lnp/a lnp), and 6, @ is the solution to 

V26, Qi = 4nG6,p = -4nGV. (pq). (1.24 

We assume that the density p, pressure p, velocity v, and gravitational field Qi 
of the unperturbed model are as smooth as necessary (infinitely differentiable will 
always do) and satisfy the equation of hydrostationary equilibrium 

p(v.V)v+Vp+pV@= 0, 
and Poisson's equation 

V2@= 4nGp. 

We make no assumption about the equation of state. Equation (1.1) has 'physical' 
solutions and a set of 'trivial' solutions which arise from a certain ambiguity in the 
relation between initial data for { and for the Eulerian perturbations (Friedman 
& Schutz 1978~) .  Our completeness result applies to  the whole set of solutions. 
Moreover, i t  would be unaffected if (1.2) were expressed with respect to  some 
rigidly rotating reference frame. 

A normal mode is usually understood to  be a solution to (1.1) with time depen- 
dence e": 

5(x,t)= S(x)eht, (1.4) 

We shall follow the rather unusual convention of using simply h in the exponential, 
rather than iw or -iw. This will be convenient for our Laplace-transform approach 
to  the initial-value problem in § 4. Note that, since h is generally complex, {(x) is 
also complex, and t,he solution is the real part of the product {(x)expht. Our 
definition of a normal mode must, however, be refined further to allow for the 
continuous spectrum, and this is done in $ 5 .  

Because the star is axisymmetric, perturbations can be expanded in 'axial 

7 The equations in their Eulerian form are convenient for some purposes, particularly since 
they have only first order spatial derivatives. However, the Lagrangian version is superior 
for the present study because of the symmetr~r of its differential operators (equations (1.12)-
(1.14)). 
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harmonics' of eigenvalue m. In  a cylindrical or spherical coordinate system t ( x )  
has components 

tk(%, 52, d) = t k ( ~ 1 ~ ~ 2 )  (1.6) 
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elrn$, 

where q5 is the angle about the axis of symmetry (always the z-axis when we label 
i t  explicitly). Equivalently, in the coordinate-free language of differential geometry 
we require 

Zd5 = imt, (1.7) 

where g4is the Lie derivative with respect to the generator of rotations about the 
axis of symmetry. Since the axial harmonics are complete, we lose no generality 
looking a t  fixed m. Restricted to such vector fields, the operator A is unchanged 
but Bbecomes simpler because of the fact that v is purely azimuthal. The restriction 
of B can be written 

Bm Em = %JQ(imtrn+ e, x tm), (1.8) 

where 0 is the star's angular velocity and e, is the unit vector along the axis of 
symmetry. I n  the same way, G becomes C,,, whose rather complicated form we 
do not need to  write out explicitly. From now on nre shall always assume a fixed m 

and write tm(xl, x2), B,, and C,, simply as 5, B, and C. 

( c )  Functional analysis i n  thisproblem 

Completeness is a question for functional analysis, and inevitably much of'this 
paper is rather t,echnical. I n  this section we define some terms and conventions we 
follow, and try to explain the basic ideas to  readers who want to  understand our 
result but are unfamiliar with the mathematics. We follow the well-written Riesz 
& Sz.-Nagy ( I  955 ) wherever possible. 

The usual inner product between vector fields t and q, 

(where * means complex conjugation and the integral is over the volume of the star) 
and its associated norm 

lltll = ( t>t)*> (1.10) 

define the Hilbert space H of vector fields t of finite norm (1.10). An operator D 
in H whose domain is dense in H (which means that any vector q in H can be approxi- 
mated by a vector q, in the domain of D in such a way that j / q- q,ll is as small as 
desired) has an adjoint D* whose action on a vector 7, D"7, is defined by 

(D*q,t)= (q, D t )  V 9 6 domain of 27. (1.11) 

The domain of D* is the set of vectors q in N for which (q, D t )  is finite for all t in 
the domain of D. If D is a differential operator then the domein of D* may clearly 
be considerably larger than that of D. 
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Lynden-Bell & Ostriker (1967) show that A, B, and C have the following pro- 
perties on vector fields < and q both in the domain of the relevant operator: 

Then A and C are said to  be symmetric and B antisymmetric. They are not necessarily 
selfadjoint (identical to  their adjoints) because their domains rnay be smaller than 
their adjoints' domains. I n  fact equations (1.2a) and (1.8) show that  the domains 
of A and B (and of their adjoints) are all of H, so they are, respectively, selfadjoint 
and anti-selfadjoint. This is not so for C , which will be studied in § 3. 

Because A is positive we can define another inner product, which we denote by 
angle brackets 

(1,15) 

The inner product ( ,) defines a Hilbert space H'  which is larger than H because p 
vanishes on the surface: there are some functions which have a finite integral 
weighted by p (i.e. in H') but an infinite unweighted integral (i.e. not in H). We 
shall use the density-weighted inner product (1.15) and its norm extensively. 

Finally, the norm of an operator D is defined in terms of whatever norm / /  / /  is 
defined for vectors: 

I/DI/= sup [li~<lllli<!ii, (1.16) 

where 'sup' means the least upper bound for all 5 in the relevant Hilbert space. 
The operators A and B are said to be bounded because they have finite norms. 

(d) Outline of the paper 

The first step in our completeness proof is the proof in 5 3 that C is selfadjoint 
in H'. This is followed in 5 4 by a study of the initial-value problem. We put bounds 
on the growth rate of any perturbation and bounds on the spectrum of eigen- 
frequencies. I n  § 5 we define the normal modes precisely and show that any per- 
turbation can be resolved as a superposition of contributions from each isolated 
part of the spectrum. In  order to motivate our approach and also to show the 
limitations of what we have been able to  prove, we first take a look a t  the com- 
pletely solved problem of the normal modes of a non-rotating star. 

2. NORMALM O D E S  O F  A SPHERICAL,N O N - R O T A T I N G  S T A R  

We specialize equations (1.1) and (1.5) to  the spherical background star by 
setting the operator B to  zero: 

A<tt+C t  = 0, (2.1) 

h 2 A t+C{ = 0. (2.2) 
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An important point is that (2.2) is not solved by the eigenvectors and eigenvalues of 
C, but rather by those of A-lC: 

where we have introduced the shorthand C' for A-16. But C' is not a symmetric 
operator in the usual inner product ( , ), and this is the reason we introduced the 
density-weighted inner product ( , ) and its Hilbert space N'. It is easy to see that 
symmetry of C' in the inner product ( ,) follows from symmetry of C and A in ( , ): 

(7, C'5) = (7, A-lC5) = (7, AA-lC5) = (7, C5) = (Cq,5) 
= (AA-'Cq, 5) = (A-lCq, At )  = (C'q, A t )  = (C'q, 5). (2.4) 

So theproblemroduces tostudying theeigenvectors andeigenvalues of thesymmetric 
operator C' in M'. 

The question of the completeness of these eigenvectors turns on whether C' is 
not merely symmetric but selfadjoint (cf. Riesz & 82.-Nagy 1955). There are several 
possible approaches to this problem. Eisenfeld (1969) has proved i t  for non-rotating 
stars more or less directly. I t  also is a special case of our general proof for rotating 
stars in $ 3 below. What selfadjointness guarantees is the existence of a family of 
orthogonal projection operators (E,), depending on the real number p. One can 
think of El, as projecting onto the subspace of H' spanned by all the eigenvectors 
associated with eigenvalues less than or equal to p.  Similarly, the operator dE, is 
the difference between El, and E,L+,,,, and so projects onto eigenvectors whose 
eigenvalues lie between p and p +dp. If the spectrum is discrete, which is usually 
the case for spherical stars, then if p, is an eigenvalue dEFo projects onto a subspace 
of the domain of C'. But if the spectrum has a continuous portion (which does not 
seem to  be excluded), then the 'eigenvectors' need not be in the domain of C'. The 
projections dE, will, nevertheless, be complete, in the sense that their sum is unity: 

A relation like this will also be derived for rotating stars. However, for non- 
rotating stars we can make yet another step. Because C', when operating on vectors 
in the eigensubspace defined by dB,, just has the valuep, we have a spectral theorem: 

and so on for polynomials and regular functions of C'. 
How does this relate to solutions of (2.1)? If the solution is analytic in time a t  

t = 0 then we have the Taylor series 
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all the coefficients of which are determined by C(0) and tt(0) by the equations 

Ctt(0)= -C1t(0), 

tttt(0)= -C1tt(0), 
etc. This gives 

By the spectral theorem (2.6), we can write this as 

The second form is really just a shorthand for the first, but i t  can be rearranged in 
an illustrative form: 

This shows explicitly how a spectral value p defines two eigenfrequencies &,a*, 
which are related to solutions having time dependence e*ipgt and which evolve 
from specific initial data. Thus, if initial data are chosen for ?vhich Ct(0) = ip${(O) 
for some p in the spectrum, then the time dependence e-ipgt will be absent. So 
equation (2.10) is the representation of t(t)in terms of normal modes: the integral 
over p is the linear superposition of modes, and each mode is defined by a particular 
choice of data for t(0) and tt(0). The distinction between normal modes, which 
involve both t (0)  and tt(0), and eigenfunctions of C' is often blurred, but i t  will be 
crucial to an understanding of the normal modes of rotating stars. 

We show in § 3 that, under reasonable assumptions, C' has a lower bound. From 
(2.10) this sets an upper bound on the growth rate of any perturbation. Note also 
that (2.9) and (2.10) are apparently not well defined if p = 0 is in the spectrum. 
This case is handled by referring directly to (2.8), which shows that such a 'zero- 
frequency mode ' is a linear function of time. 

3. S E L F A D J O I N T N E S S  S T A ROF OPERATORS OF A  ROTATING 

As in the non-rotating case we define operators 

B' = A-1B and C' = A-lC, 

and write the eigenvalue problem as 

,425 +AB'E +C'[ = 0, 
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where the operators have the symmetry properties 
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in H', when both 7 and [are in the appropriate domains. 

It is easy to show that B' is bounded, i.e. that? 


is a bounded function of [on all of H'. By (1.8)this is 

the integrals being taken over the whole star. Since 

lCX.(e,x C ) l  = I({* x C).e,l ,< CX.C, 

i t  follows that Ib(t)l  G 2(nb+ 1)Grnax, (3.5) 

where Q,,, is the maximum value of /Q / in the star. So B' is a bounded anti- 
symmetric operator whose domain is H'; i t  is therefore anti-selfadjoint. 

The operator C' is not bounded, so we must prove i t  is selfadjoint (more properly, 
that i t  has an extension to a larger domain such that the domains of i t  and its adjoint 
are identical). lye  use the Stone-Friedrichs theorem (cf. Riesz & Sz.-Nagy 1955): 
if C' is symmetric on a dense domain and if the real function 

has a lower (upper) bound on the domain of C', then there exists a selfadjoint 
extension of C' with the same lower (upper) bound. (After proving the existence of 
this extension, we will always take the symbol C' to refer to the extended operator.) 

It is clear that C' has no upper bound, for consider the single term 

in which we have integrated by parts and used the fact that p = 0 on the surface. 
We can certainly choose {to have unit norm but very short-wavelength oscillations 
across the star; the shorter the wavelength the larger the integral. As this is the 
only term in C' containing second derivatives, i t  will not be compensated by other 
terms. (Physically, one should expect this unboundedness, for sound waves must 
have the local dispersion relation (frequency) = (sound speed)/(wavelength), 
which associates large frequencies with short wavelengths.) 

We shall show that C' has a lower bound. Hunter (1977) showed that C has a 
lower bound in H, but that does not suffice for us, because our space H' is larger 

t This definition of boundedness is equivalent to that using (1.16) for symmetric and 
antisymmetric operators. 
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than H. Specifically, our denominator in c(5) contains p, which vanishes on the 
surface, and it is conceivable that by concentrating 6 there one could make -c([) 
arbitrarily large. I n  fact this is possible without a further (weak) restriction on C. 

The restriction is the following condition on the unperturbed model: the square 
of the generalized Brunt-Viasa,la frequency (local buoyancy frequency) associated 
with a real displacement 5, 

must be bounded below for all 5 uniformly over the star. Here Y is the vector 
Schwarzschild discriminant: 

I n  appendix A we show that N2is the square of the frequency characterizing the 
response of a local perturbation that preserves the local angular velocity. If N 2  
becomes arbitrarily large and negative as, say, one approaches the surface of the 
star, then the star will have local instabilities of a very rapid nature and the model 
cannot be taken seriously. We believe that any reasonable model will satisfy this 
criterion. (We want to emphasize that our condition is only that N 2  have a lower 
bound, not that it be positive-definite or have any other particular value as its 
bound.) 

To show how this condition guarantees lower-boundedness of C' we rewrite 
equation ( 1 . 2 ~ )  in the following form: 

where Sgdenotes the Eulerian perturbation caused by the Lagrangian displacement 
5. Denoting the four terms in (3.9) by Cl 5, C25, etc. in sequence, we also define 

From now on we take t to be real: a symmetric operator bounded on real vectors 
in its domain has the same bound on complex vectors. 

We want to show that each c5 is bounded below. The first three follow from 
arguments given by Hunter (I977; appendix A). The results are 

Here Q,,, and p,,, are maximum angular velocity and density in the star; the 
constant p in (3.13) depends on bounds on the derivatives of Q, and is evaluated in 
appendix B. 
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For ~ ~ ( 5 )we follow Hunter up to a point. The numerator of c,({) is 

The third term in the final integral is a pure divergence which vanishes upon 
integration because both p and V p vanish a t  the surface. So we may write 

This means that 

which brings in the assumed lower bound on N2. 
Summarizing, we have proved that 

The only term that involves m is, in fact, the first. Clearly, this lower bound is not 
uniform in m, a fact that has been noticed by several workers (Stewart 1975; 
Friedman & Schutz 1978b). Only by restricting attention to a particular value of m 
can we make this proof of the selfadjointness of C' work. But we want to make i t  
clear that C' may still be selfadjoint on the larger Hilbert space which allows 
general azimuthal behaviour (or on FI' even if N2(<) is not bounded below); only 
our method of proving i t  fails. It may be of some interest to note here also that 
(if S2(<) $(B')2 is bounded below u~ziformly in is bounded below) the operator C' --
m (i.e. regardless of azimuthal dependence) because it is simply C' without the term 
we called C: above. It is tempting to hope that this limits thegrowth rate of unstable 
modes, but we linom of no argument which establishes this when B' and C' do not 
commute. 
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4. T H E  E V O L U T I O N  O F  A G E N E R A L  P E R T U R B A T I O N  

(a) General remarks 

I n  this section we take the major steps toward the completeness result by finding 
an explicit expression for C(t) in terms of {(O) and Ct(0). Our approach is to use 
Laplace transforms. I n  order to establish our results rigorously, we need to  prove 
the existence of the inverse Laplace transform, and for this reason this section will 
be more technical than the previous two. 

Our object is to study solutions to  the equation 

Ctt + B'Ct + C'C = 0, (4.1) 
where B' and C' have the following properties in a Hilbert space H' with inner 
product { ,): 

(i) B' is anti-selfadjoint and bounded; (4.2) 
(ii) C' is selfadjoint with lower bound s > -oo. (4.3) 

This problem has been studied extensively in the literature, and results more 
powerful than those developed here have been obtained under more restrictive 
assumptions: H' finite-dimensional or C' positive-definite, for example (cf. Barston 
~967-1974; Bognar 1974). We believe our results are the strongest so far to  be 
applicable to the stellar perturbation problem. 

It is sometimes convenient to rewrite (4.1) as the two first order equations 

which can be written compactly as 

Q = TC. (4.5) 

Here T is the matrix in (4.4) and 5is an element of the Hilbert space f12= H' @ H' 
with inner product (( ,)) 

((Cl, 52)) (tl ,  t-2) + ( t f ~tfz), (4.6)5& 

where ti and qi are the components of ci,The space EI, may be regarded as initial- 
data space. The inner product (4.6), though mathematically acceptable, is clearly 
not physically meaningful: if by (4.4) we regard q as the time derivative of C,then 
i t  is not even dimensionally correct. A more meaningful inner product is given by 
the matrix 

which is the symplectic structure of the problem. With the indefinite inner product 
W, Hz becomesphuse space. VC7ith respect to  W ,the matrix T is selfadjoint; eyuiv- 
alently, the matrix E = WT, 
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is selfadjoint with respect to (( , )). Obviously E is just the conserved energy of 
the perturbation (its canonical energy, as discussed a t  length by Friedrnan & Schuta 
1978a,b).  However, because W is not positive-definite, i t  is not possible to  define 
a Hilbert space by using this natural inner product as a norm. Because i t  is non- 
degenerate, M' defines a Krein space (Bognar 1974), which is an indefinite inner 
product space. The operator T is selfadjoint in the Krein space. Conversely, i t  
should not be surprising that T is not symmetric with respect to  (( , )),which has 
no natural role in the problem. Nevertheless, we will use (( ,)) exclusively from 
now on. The syrnn~etry of T is of less interest to  us than the completeness of its 
eigenvectors, and to discuss eigenvectors and completeness one needs only the 
topology of II,, not its metric structure. The inner product (( , )) induces a t  least 
as fine a topology as one can define using W (cf. Bognar 1974). 

(b )  The eigenvector problem 


There are two equivalent eigenvnlue problems, 


and (A-T)<= 0. (4.10) 

We shall prove their equivalence below. First we need some definitions. The set 
of operators 

L(h) = h2+hB'+G' (4.1I)  

is called a qziadratic pencil (Bognar 1974). I ts  resolvent set p(L) is the set of complex 
numbers A for which [L(h)]-l exists as a bounded operator with domain H'. When 
h is in p(L), the operator-valued function of h 

R A P )= [-W)l-l (4.12) 

is the resolvent of the pencil. The complement of p(L) in the complex plane is the 
spectrum of the pencil, rr(L). All these are analogues of the definitions for the linear 
eigenvalue problenl (4.10) in Hz with inner product (4.6). The resolvent set of T,  
p (T) ,is the set of complex h for which the resolverlt of T,  

is a bounded operator with domain H,. The spectrum of T, rr(T), is the cornplemer~t 

of P(T). 
We now show that the eigenvalue problems are equivalent, in the sense that 

r ( T )  = r (L) .  
The formal inverse RA(T) is 

h + B  I 

simple multiplication shows that i t  is indeed the left inverse of h -T on the domain 
of T if h €p(L).If the coefficients in C' and B' are C" functions on the star, they 15611 
map the space of C" vectors into itself; on this subspace of thedomainof T ,  equation 
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(4.15)defines the trueinverse of h -T if h €p(L). But ther.h.s. is a bounded operator 
if h ep(L): the only possibly unbounded term is RA(L) C', which equals 

on the domain of C'. The r.h.s. is bounded because R(L) is bounded, which enables 
one to extend R,(L) C' as a bounded operator to  the whole of H'. This proves that 
if h ep(L),  R,(T) is the bounded inverse of (A -T )  and soh €p(T). On the other hand, 
i t  is well linown (Riesz & Sz.-Nagy 19 j j) that RA(T) is an analytic operator-valued 
function on p(T), and i t  is easy to construct a similar proof that RA(L) is analytic 
on p(L), so that the r.h.s. of (4.15) is analytic on p(L). Therefore the two resolvent 
sets must in fact be identical, which proves (4.14). 

The proof that R,(L) is analytic yields another result that we shall need below: 
if d(h) is the distance of h ep(L) from the nearest point in a(L), then 

where the norm / (  / I  is defined by the inner product ( , ). 
I n  solving the initial-value problem we shall concentrate on L(h), returning to  

consider T in § 5 on normal modes. For the rest of § 4 we write R,(L) simply as R(h). 
It is possible to show that both o(L)  and p(L) are non-empty. I n  particular, 

points h on the positive real axis satisfying the inequality 

(recall that s is the lower bound of C') are in the resolvent. We prove this by defining 
H = h2+C', which is positive-definite by (4.18) and is selfadjoint, and expanding 

This is bounded by the sum 

This proves that (4.19) converges and h satisfying (4.18) is in p(L). 
Another result we shall need is that p(L) and a (L)  are symmetric about the 

imaginary4 axis, which follows directly from (4.1 1) and the assumed properties 
of B' and C': if h is in p(L) then so is -A*. We can now provide restrictions on the 
spectrum which are illustrated in fignre I .  This is essentially a generalization of 
Howard's circle theorem (Drazin & Howard 1966). 

THEOREM1.The spectrum a(L)  consists of the union of (a) a subset of the imaginary 
axis with (b) a subset of thosepoints for which /hI2 < -min (0, s) and ( Im A (  < +I(BII(. 

Proof. Suppose, starting a t  A, in p(L), we approach a point a, on the boundary 
of the spectrum along a curve in p(L). As h+cr,, equation (4.17) shows us that 
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l/R(A)/l+a.There must therefore exist a sequence of vectors e, of unit norm in 
W' such that the vectors 

have unboundedly increasing norm. Inverting this equation and dividing by 

/ I  tlhll gives 
-W)%Ill rhll = e~/lltl~ll+O. 

That is, there must exist a sequence of normalized vectors C,( = r,/il  l l h l i )  for which 

I 

FIGUREI. Lirnits on the spectrum of norrnal modes of a rotating star. Ttie circle has radius 

181 ),hvllere s is the (negative) lower bound of C'. If G' has a non-negative lower bound, the 
,~rcle vanishes. The spectrum consists of some points or1 tlie imaginary axis and some 
inside the shaded region of the circle. Since unstable rnocles correspond to points in the 
right half-plane, if s is non-negative then there are no unstable modes. I3ut if s is negative 
there is no guarantee of instability: there are only limits on the spectrum. 

We shall place bounds on v(L) by determining necessary conditions for this to  
happen. 

It is necessary (but not sufficient) that 

where b(h) = -~(CA, = ({A, C'CA) B'EA), c(h) 

are both real. Equation (4.21) has solutions h* given (implicitly) by 



403 Modes of rotating stars 

The boundaries of a(L)must be solutions of (4.22). The constraints that  b and c 
are real, that c is bounded below by s ,  and that Ibl is bounded by 1 1  B1/llead to the 
limits given in the theorem. 

We shall need two more results for the time-evolution problem. We know now 
that R ( A )  is analytic a t  least everywhere outside the strip I R e ( A ) J< - s .  I ts  
behaviour a t  infinity is of interest. 

LEMMA1. The  resolvent R ( u + i v )  (with u, v real) i s  a bounded function of v as 
IvI -fafor$xed u # Oandof u a s  lul +co for$xedv. 

Proof. The proof is by contradiction. If 11 R(u+iv)II is not bounded then equation 
(4.21) again applies along the given paths. The imaginary and real parts of (4.21) 
respectively establish the result for the two classes of paths. 

LEMMA2. I f  { i s  in the domain of C' then the following asymptotic bounds hold 
along the paths of lemma 1 at each point in the star: 

IR(A)(A+B1)51E IAl-l. (4.24) 

Proof. This follows from lemma 1 and a variant of identity (4.16) for vectors in 
the domain of C':  

A-l(A2 +AB' +Ct)-l C' = A-l - (A2+AB' +Ct)-l ( A  +B ' ) .  

If we operate on a $xed vector { with both sides of this equation, lemma 1 gives 
(4.24).Dividing by A then gives (4.23).It is important to restrict 5 to the domain 
of C ;counter-examples can be found for other 5. 

(c)  Evolution from initial data 

We have studied the eigenvalue problem in order to solve the initial-value 
problem, equation (4.1).If the solution 5(t)which evolves from given initial data 
g t ( O )  and C(0)is bounded in time by euot, then, following Case (1960),we can find its 
Laplace transform 

gL(A)E/ *e - ~ ~ ~ ( t )Re A > u,.dt, 
0 

It satisfies the equation 

(A2+AB' +C')  cL(A)  = ( A+B ' )  {(O) +540)  

The time-development of 5 can be recovered from the usual Laplace-inversion 
integral 

1 i*+ul 
5( t )= - e"R(A) [{t(O) + ( A+B'){(O)]dl\,

2x1 -im+u, 
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where the integral is over the line Re ( A )  = ZL, > u, in the complex plane. Clearly, 
the spectral points (singularities of R(A)) will be crucial. 

All of this follows from the assumption that c(t) was sufliciently well behaved. 
We, however, have the converse problem: given gt(0) and 9(0), what properties 
of R(h) guarantee that (4.27) exists and gives the correct solution to (4.1)? Our 
answer uses the following theorem i11 Laplace transform theory (Ditliin & Prudnikov 
1965). The condition 
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is necessary and sufficient for a function f,(h). analytic in the half-plane Re (A) > u,, 

to  be the Laplace transform of a function f (t) for which 

Somf (t)l a  e-2uot df < m. (4.29)1 

Since we already know that R(h), and therefore cL(A), is analytic for Re ( A )  > Is]&, 
all we need prove is the following. 

LEMMA3. If g(0) and ct(0) are in the domain of C', then for any 6 > 0, and at each 
point in the star 

IR(u+iv) [<t(O) + ((u +iv) +B')5(0)]12dv< m. (4.30) 

Proof. This follows directly from lemma 2. 
We can therefore state the principal result of this section. 

THEORE~T2. Eql~ation (4.27) gives the development in time of initial data in the 
dot~zain of C'. Every solution is bourzded in time, in the integral sense of (4.29). by 
exp (,lot), where A, is any real number larger than the largest real part of any point 
in the spectrum a(L). 

Proof. The first statement has already been proved. The second follows from 
deforming the path of integration to  be as close to the spectrum as possible. It is 
important for A, to exceed the largest real part of the spectrum, because i t  may 
happen that the normal mode associated with a point cr, in the spectrum will grow 
as (polynomial or infinite series in t) x e"ot. 

Theorem 2 proves a weak kind of completeness useful for stability analysis: if 
one finds that the spectrum lies entirely on the imaginary axis (no unstable modes) 
then thero are no exponentially growing solutions to the initial-value problem. 

Before leaving this subject, we should mention that we are very close to having 
proved that the operator T in Hz generates a semigroup, the 'time-evolution ' 
semigroup (Yosida I 957; Bade 1953). We have been unable to use standard semi- 
group theory. however, because Bade's condition (B') or Yosida's theorem in 
lecture 8 are too strong for our problem. 
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I n  this section \nre will make the following assumptions about the spectrum cr(L), 
which we regard as very reasonable and, in principle, provable for the stellar 
problem. 

(i)For JIm (A) 1 > $ 1 1  B'll, where we have shown the spectrum to  be confined to the 
imaginary axis, i t  consists of isolated eigenvalues of finite multiplicity plus possible 
accumulation points. 

(ii) All points of the spectrum off the imaginary axis are also isolated, of finite 
multiplicity, and have no accumulation points on the imaginary axis. 

We expect that differentially rotating stars should have a continuous piece of the 
spectrum confined to  the imaginary axis? between the bounds set by B'. The 
reader will see that our assumptions are actually much stronger than we need in 
this section, but we make them for the sake of definiteness. They are illustrated 
in figure 2. 

A normal mode is a solution associated with a single point of the spectrum. If 
we deform the contour of integration that defines { ( t ) in the Laplace-inversion 
integral by pushing the contour through the spectrum as shown in figure 2, then 
the result is a sum over a finite number of integrals along the contours Fj,%?+, 
and %f-: 

Each contour %fj encircles either: (i) an isolated point, (ii) an accumulation point 
and all the spectral points in some neighbourhood of it,  which can be chosen as 
small as we like, or (iii) the whole of the continuous spectrum and points accumu- 
lating to  it. The contours Ce, and %f- include the high frequency contributions, and 
can be made to  intersect the axis as far away as we wish. Because the integral 
(4.26) converges, the contributions from F* can be made arbitrarily small, and is 
this limitling sense can be dropped from (5.1). 

We now want to  define the normal mode associated with any spectral point. As 
we pointed out in the spherical case, a normal mode is defined by its initial data, 
both c(0) and gt(O). It is natural, then, to see them as elements of H, = H' @ H'. 
If we recall the contribution of contour to the Laplace-inversion integral, 

we see that i t  is nothing more than the first line of the following equation in H,: 

t Friedman & Schutz (1978b) have shown that trivial perturbations contribute a continuous 
spectrum like this. I t  would he interesting to know whether the spectrum of non-trivial modes 
is discrete even in this region ! 
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entRn(T) <(O) dh. 

It is not hard to see that the second line of (5.2) is just the inversion integral for 
dgj(t)/dt once the identity (4.15) has been applied. (The integral over the 1 in 
(4.15)vanishes.) 

Consider the case where contains only one point of the spectrum, h = r j .  
Then we find i t  convenient to regard the operator 

( t )  = f ,ehtRh(T)dh 

- - 1 _ - - 


FIGURE2. Rj~ot l ie t ica l  spectrum of normal inodes of a rotating star. The heavy line on the 
imaginary axis is the continuous spectruni. Contours are those used in the Laplace- 
int ersion integrals. 

itself as the normal mode associated with a;..I ts  value on the initial data [(O) gives 
the amount of that normal mode in the solution. The operator 

is in fact a parallel projection operator (Riesz & Sz.-Nagy 195$),which projects on 
to the normal modes a t  space of H, and commutes with projections for other 
isolated parts of the spectrum: 

$. Pk= q.ajk. (5.6) 

If the spectrum consisted only of isolated points, then the sum (5.1) and the con- 
tinuity [(t) -+ [(O) as t -+ 0 implies that 
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which is a statement of the completeness of the normal modes. (Compare (2.5) for 
selfadjoint operators.) 

But the spectrum will be more complicated than this: there will in general be 
accumulation points and continuous parts. Projections can be defined for accumu- 
lation points by a limiting process. Let V0enclose a sequence of isolated spectral 
points {rj ,  j= 1, . ..) with limit point r,. A projection can be defined for each r j ,  
as above, so we define for r, the projection 

However, when the contour V,, surrounds a continuous part of the spectrum, we 
know of no method which will define for us a projection operator for each point, or 
a family of projections as in the selfadjoint case. We are forced to  settle for a single 
projection on to the whole continuous spectrum. If, as we have assumed, this part 
of the spectrum is confined to the imaginary axis, then i t  will contribute no 
instabilities (in the sense of exponentially growing solutions). 

What we are able to achieve in the way of completeness for the rotating case is 
much weaker than for the non-rotating case. The result of most practical value is 
that the spectrum bounds the growth of all perturbations. The fact that the normal 
modes are, in some sense, complete is perhaps reassuring for the trustworthiness 
of tlze numerical calculations we intend to  pursue. In  numerical calculations, the 
problem must be approximated by a finite-dimensional one, whose normal modes 
are always complete. If this had not been true for the infinite-dimensional case, 
one mould have had to interpret the numerical work cautiously. 

\\That do the normal modes themselves look like? This is another question whose 
answer is less complete than in the spherical case. For selfadjoint operators, the 
restriction of the operator to the subspace associated with one of its projection 
operators reduces the operator to multiplication by the eigenvalue: all vectors in 
the subspace are eigenvectors. Not so here. It is well known from finite-dimension 
matrices (cf. Hirsch & Smale 1974) that the characteristic subspaces of a non- 
symmetric operator do not necessarily consist only of eigenvectors; they can contain 
Jordan chains. In  other words, not all operators are diagonalizable. Our projection 
operators project on to the subspace spanned by the whole chain to the eigenvalue, 
and these generalized characteristic vectors must be included to  obtain complete- 
ness. As Bognar (1974) points out, these chains are associated with modes which are 
not purely exponential in time, but which generally are polynomials in t (whose 
maximum order is the length of the Jordan chain) times the exponential of the 
eigenfreyuency. Our methods in this paper give no information about these chains 
except that, if they are infinite in length, the polynomial in time they produce is 
bounded by any exponential. It would be very useful to  have some idea of what 
order these polynomials may be. At present we have only the example of the 
Maclaurin spheroids' bar mode (Chandrasekhar 1969), where the symmetry of the 
problem reduces H, to two dimensions. There the only Jordan chain appears a t  
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the onset of dynamical instability (i.e. on the imaginary axis), and the corresponding 
mode has a first-order polynomial in time in it. Is  this a general feature, or an accident 
of the low dimensionality of If2? 

It is a pleasure to acknowledge many helpful discussions with R. Sorkin, D. 
Evans and D. Harris. 

A P P E N D I X  L O C A L  B U O Y A N C Y  < Y C YA. T H E  F R E Q U C L  

The purpose of this appendix is to show, in a heuristic way. the relation between 
the condition we are forced to place on the star in order to guarantee lower-bounded-
ness of C' and the local response of tho fluid to a perturbation. 

Considor the adiabatic displacement of a fluid element from its original position 
r to a new position r +5, in such a manner that tho element acquires the pressure 
and angular velocity of the background star a t  its new position. I t s  density, p, 
differs (in general) from that of the background, p,, a t  the new position. The force 
per unit volume it feels is 

A 

F = -p,V@-Vp+p,1;22G, 
A 

where G is the unit vector in the cylindrical radial direction. The equilibrium 
equation of the background gives us 

A 

0 = -p,V@-vp+ p, Q2G, 
and so we conclude 

Now, to  first order in 5we have 

and Pb = P + ~ . ~ P ,  

the first equation following from the adiabatic andisobaricnature of the perturbation 
(A denoting the Lagrangian change). So we have 

F = VP(E.Y), 

w h e r e 9  is the vector Schwarzschild discriminant 

9= ( ( J / P ) ~ P -( J / Y P ) ~ P .  

The initial acceleration away from its original position in the direction 5 is (c .Vp) 
(g.Y)/(plc/), and this leads to a motion whose square 'resonant frequency' is 

AT2(t5)= ( 5 . v ~ )  (5.Y)/(pjtI2). 

When X2(c) > 0 this is a generalization of the (squared) Brunt-Viasala frequency 
(Eckart 1960; Viasala 1925). When AT2< 0 we have exponential growth. 
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If the star were not rotating then the derivation we have just given would be 
reasonably watertight. When rotation is present i t  is merely indicative. I n  fact, 
however, our results in § 4 show that if N2(9)is bounded then no perturbation grows 
arbitrarily rapidly. I n  that sense, this heuristic argument has some plausibility. 

APPENDIXB. L O W E RB O U N D  O N  A P A R T  O F  C' 

I n  this appendix we go beyond Hunter's (1977) calculation to get an explicit 
form for the lower bound of C;, which may have some interest. As Hunter shows, 
we can write 

It will be more convenient to introduce the cylindrical coordinate w, 

and write the integrand of (B I)  as 

where Piiis the projection operator orthogonal to the x direction. The minimum 
value of this quadratic form in 5 a t  any point is simply pj</ times the minimum 
eigenvalue of the matrix in (B 2). It is simple to verify that this eigenvalue, denoted 
by P, is 

P = +a2-min {(wR2),,, 12[Q4+ ((wQ2), ,)214). (B 3) 


If we extend the definition of /3 to be the minimum of (B 3) over the entire star, 
then we have proved 

c3(5)2 P. (B 4) 
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